高等数学(同济大学数学系-第七版)上册第五章课后答案
- 格式:docx
- 大小:2.15 MB
- 文档页数:38
同济版高数第七版上册课后答案合集高等数学是大学阶段的一门重要课程,对于理工科的学生来说尤为重要。
而同济版高数第七版上册是高等数学课程中的经典教材之一,其课后习题是检验学生对知识掌握程度的重要方式。
为了帮助学生更好地掌握课程内容,我们整理了《同济版高数第七版上册课后答案合集》,希望能对广大学生有所帮助。
第一章函数与极限。
1.1 函数的概念与性质。
1.2 三角函数。
1.3 常用初等函数的性质。
1.4 极限的概念。
1.5 极限的性质。
1.6 无穷小与无穷大。
1.7 极限运算法则。
第二章导数与微分。
2.1 导数的概念。
2.2 导数的运算法则。
2.3 高阶导数。
2.4 隐函数与参数方程的导数。
2.5 微分的概念。
2.6 微分中值定理。
2.7 几何应用。
第三章微分中值定理与导数的应用。
3.1 函数的单调性与曲线的凹凸性。
3.2 渐近线与曲线的渐近性。
3.3 函数的极值与最值。
3.4 弧微分。
3.5 函数的单调性与曲线的凹凸性。
3.6 渐近线与曲线的渐近性。
3.7 函数的极值与最值。
3.8 弧微分。
第四章不定积分。
4.1 不定积分的概念与性质。
4.2 不定积分的基本公式。
4.3 牲积分的运算法则。
4.4 有理函数的积分。
4.5 三角函数的积分。
4.6 有理函数的积分。
4.7 三角函数的积分。
第五章定积分。
5.1 定积分的概念与性质。
5.2 定积分的基本公式。
5.3 定积分的换元积分法。
5.4 定积分的分部积分法。
5.5 定积分的换限积分法。
5.6 定积分的应用。
第六章定积分的应用。
6.1 曲线长度。
6.2 曲边梯形的面积。
6.3 旋转体的体积。
6.4 平面图形的面积。
6.5 牲积分的应用。
第七章微分方程。
7.1 微分方程的基本概念。
7.2 可分离变量的微分方程。
7.3 齐次微分方程。
7.4 一阶线性微分方程。
7.5 可降阶的高阶微分方程。
7.6 可降阶的高阶微分方程。
以上是《同济版高数第七版上册》的主要内容,每一章节都包含了丰富的知识点和大量的习题。
高等数学 高等教育出版社--同济大学数学系习题一1、(4)⎥⎦⎤⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎪⎪⎭⎫ ⎝⎛-254876131210131311412 (5)原式=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++++333232131323222121313212111321)(x a x a x a x a x a x a x a x a x a x x x233332323131322322222121311321122111x a x x a x x a x x a x a x x a x x a x x a x a ++++++++= =j i ij j i x x a ∑=31,2、(1)T B A 23-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡165654111202022242363636333 (2)B AB T -=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101012111101011121121212111 =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101441300101012111202431211 (3)T BA A -2=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡121211121101012111121212111121212111=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡414645233242031211656676444 3、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎪⎪⎪⎭⎫ ⎝⎛321321321220011112y y y B y y y z z z ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321321321111110011x x x A x x x y y y ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=552121023111110011230011112BA ⎪⎩⎪⎨⎧++=--=-=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛∴32133212211321321321321552223552121023xx x z x x x z x x z x x x x x x BA y y y B z z z 或 4、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=5.14.4251482041015620105B A 则4321414.118562.1515114355158A A A A AB ←←←←⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡= 即1A 工厂总收入158万元,利润55万元,其他类似. 5、设现有人口用矩阵表示为(单位:万人):)50,80(=A转移矩形⎪⎪⎭⎫ ⎝⎛=∆9.01.02.08.0B , 则三年后人口可表示为[]3)(AB B B AB = )09.74,91.55(781.0219.0438.0562.0)50,80(=⎪⎪⎭⎫⎝⎛= 即三年后市区,郊区人口分别为55.91,74.09万人.注:也可以先乘AB ,再计算(AB )B ,最后算[]B B AB )(.用AB 3计算时,B ,B 2,B 3的每行两数之和为1,最终结果两数之和为130,否则结果错误. 6、记⎪⎪⎪⎭⎫⎝⎛=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=7.015.110506230157182010B A则 T AB )150,5.46,6.47(=即此人每天摄入蛋白质,脂肪,碳水化合物分别为47.6,46.5,150克. 7、⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------------⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------------=22222200002000020000240040000400004111111111*********11111111111111A⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡==44442242222)(A A 猜想⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=nn nn nA 222222222 (*) 用数学归纳法证明①当1=n 时,显然由2A 的表达式知猜想成立. ②设k n =时成立,即{}K K K K k diag A 222222,2,2,2=.当1+=k n 时,22)1(2A A A k k ⋅=+={}k k k k diag 22222,2,2,2{}22222,2,2,2diag =diag{)1(2)1(2)1(2)1(22,2,2,2++++k k k k }. 因此,1+=k n 时,猜想也成立综上:(*)式成立,因此⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------------⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡==+111111*********120000200002000022222212nn n n n n A A A ()A nn nnn n n n nn n n n n n n n 2222222222222222222222222222222222=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡------------=. 注:简洁算法是()A A E A A n n n 22222==.8、 ⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=121557331233122A222200003003151551012155735)(x O E A A A f =⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛--=+-=∴ 9、(1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=+521123241302111120221032121T T B A 注:也可用T B A )(+,更易求! (2)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎪⎪⎪⎭⎫⎝⎛⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=54651360556410630201232121311012210)(TTT BA (3)B B A T )(-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=921116521031101221010334100110、设33)(⨯=ij a B ,则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=000000100010000000100010333231232221333231232221131211323122211211333231232221131211a a a a a a a a a a a a a a a AB a a a a a a a a a a a a a a a BA由AB=BA 可得:,0,,,0,,0323133223221312312221121========a a a a a a a a a a a a⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=∴111211131211a a a a a a B 即任意形如),,(000R c b a a b a c b a∈∀⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡的矩阵都可以和A 相交换. 11、(1)T TT T A A A A A A +∴+=+)(对称T T T T T A A A A A A A A -∴--=-=-)()(反对称(2))(21)(21T T A A A A A -++=12、AB B B A B AB B T T T T T ==)(13、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=nn n n n a a a a a a A ΛΛΛ1221111,考虑T AA 的对角线上的元素,由nxn T AA 0=可得 0,,2,1,0),(0)2,2(0)1,1(0222212222222121212211=∴==∴∈⎪⎪⎩⎪⎪⎨⎧=+++=++=+++A nj i a Ra n n AA a a a AA a a a AA a a a ij ij T nn n n T n T n ΛΘΛΛΛΛΛ元的第元的第元的第14、注意到:n k n n E A A E A E =+++--))((1Λ及n n k n E A E A A E =-+++-))((1Λ(利用0=k A ).A E n -∴可逆,且11)(--+++=-k n n A A E A E Λ.15、0672=--n E A A⎪⎪⎩⎪⎪⎨⎧=⎪⎭⎫ ⎝⎛+-+⇒-=-+=-⇒=-⇒nn n n n n n n n n E E A E A E E A E A E E A A E E A A 129121)2(12)9)(2()6761(6)7(再验证:nn n n n E E A E A E A E A =+⋅⎪⎭⎫⎝⎛+-=⋅⎪⎭⎫⎝⎛-)2(1291216761于是可说E A A 2,+均可逆,且 n n n E A E A E A A 43121)2(,676111+-=+-=-- 说明:对于数a而言,当0672=--a a 时,可以得到12)9)(2(,6)7(-=-+=-a a a a ,矩阵的乘法可类比.16、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==345123101)(ij b B ,易求出AB. 17、⎪⎪⎭⎫⎝⎛-=αααα2cos 2sin 2sin 2cos 2A猜想 ⎪⎪⎭⎫⎝⎛-=ααααn n n n A n cos sin sin cos (*)用数学归纳法证:① 1=n 时成立.② 设1-n 时成立,则n 时,⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-----=⋅=-ααααααααcos sin sin cos )1cos()1sin()1sin()1cos(1n n n n A AA n n ⎪⎪⎭⎫⎝⎛-=ααααn n n n cos sin sin cos 故(*)式成立19、(1)原式T T T T n u u u u uu uu E )(λμμλ+--= T T n uu u u E )(λμμλ-+-=(2)当1≠u u T λ时,由0=-+u u T λμμλ可解出,1uu T λλμ--=则由(1)结果可知此时n T n T n E uu E u E =--))((μμλ,从而T n uu E λ-可逆. 22、22))((B BA AB A B A B A -+-=-+.当BA=AB 即A 、B 可交换时,22))((B A B A B A -=-+. 23、设,),,(),(1T n ij x x x a A Λ==由0=Ax 得⎪⎪⎩⎪⎪⎨⎧=++=++=++)(0)2(0)1(01121211111m x a x a x a x a x a x a n mn m n n n n ΛM ΛΛΛΛ由于n R x ∈是任意的(x 是任意n 维列向量),分别取),,2,1(,)0,,1,,.0(n j e x T j ΛΛΛ===,则,0),,,(21==T mj j j j a a a Ae Λ得到),,,1.(0m i a ij Λ==又j 分别取n ,,2,1Λ时,可得 ),,1;,,1(,0n j m i a ij ΛΛ===,故 .0=A24、设T j ij i e y a A x )0,,1,,0(),(),0,,1,,0()(ΛΛΛΛ====则由⇒=0xAy ,0010)0,,1,,0(111111==⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛ijnn nj n in ij i n j a a a aa a a a a a M M ΛΛM M M ΛΛM M MΛΛΛΛ).,,1;,,1(n j m i ΛΛ== 故 .0=A 25、(1) T ij x a A )1,,1,1(),(Λ==则 11111111111nx nn n n nn n n a a a a a a a a Ax ⎪⎪⎪⎭⎫ ⎝⎛++++=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=ΛΛΛΛM ΛΛΛΛ (2)A 的每行元素之和为常数a ,即是ax Ax =.,)()(111x aA x ax A Ax A ---=⇒=∴又0≠a (否则00=⇒=x Ax ,矛盾)x a x A 11=∴-,即A -1每行元素之和皆为a1.27、设),,(1n a a diag A Λ=,)(ij b B =,),(),(ij ij d BA c AB ==则 ,001ij i nj ij i j ij b a b b a b c =⋅+++⋅=ΛΛ(A c ij =Θ的第i 行元素与B 的第j 列对应元素乘积之和)j ij in j ij i ij a b b a b b d =⋅+++⋅=001ΛΛ,令BA AB =得ij ij d c =.即 j ij ij i a b b a =0)(=-⇒ij j i b a an a a ΛΘ1两两不等,即)(j i a a j i ≠≠ B j i b ij ∴≠=∴)(0为对角矩阵.习题二1、按第3行展开00000000051412524232115141311325242252423221514131231a a a a a a a a a a a a a a a a a a a a a a D -=25242315141341322524231514134231a a a a a a a a a a a a a a a a ⋅-⋅==0. 2、(1)第2列减去第3列,提出公因数100; (2)化阶梯形;(3)第一行展开,再化阶梯形;(4)第2,3,4列加到第1列提出公因数10.(5)yxx y x y x y y x yx yx x y x yx y x y yx D 111)22(222222+++=+++++= xy x y xx y y x ---+=001)22().(2)]([)22()22(332y x y x y x y x xy x yxy x +-=-+-⋅+=---⋅+=(7)原式 .0221222122212221252321252321252321252321222222222=++++=++++++++++++=d d c c b b a a d d d d c c c cb b b b a a a a3、(1)按第一行展开,再把第2个1-n 阶行列式按最后一行展开000)1(1⋅⋅⋅⋅-+⋅⋅⋅=+ΛΛy xx yxx xD n1121)1()1(-++--+=n n n y x xxO.22--=n n x y x(2)按第一行展开111)1(-+-⋅=n n n b b b D O )()1(11n n b b Λ+-=.(3)原式=.)1(!)1(!221)1)(1()1(121)1(2)2)(1(12)1(1111++++++++-++-=-==----=--n n n n n n n n n n n n n n ΛΛNN(4)第1,3至n 行分别减去第2行,再按第1列展开.)!.2(220000100222000012000010022220001--=--=--=n n n D ΛM M M M M ΛΛΛΛM M M M M ΛΛΛ(5)212---=n n n D D D ⇒211----=-n n n n D D D D12312=-=-D D⇒)2(11≥=--n D D n n∴1)2(2⋅-+=n D D n (等差数列)123+=-+=n n 4、(1)略(2)4阶范德蒙行列式的变形. 5、(1)用归纳法.当 2=n 时,,11112121212a a a a a a D ++=++=等式成立.设当k n =时等式成立,即k k k k k k a a a a a a a a a a a a a D ΛΛΛΛΛ3222112121++++=--.当1+=k n 时,1212112111101101111111111111101110111++++++++=+++++=k k k a a a a a a a a D ΛM M M M ΛΛΛM M M M ΛΛΛM M M M ΛΛ,1321121211211211211110000++-+++++++=+=+=k k k k k k k k k k k k a a a a a a a a a a a a a a a D a a a a D a a a ΛΛΛΛΛΛΛM O M M ΛΛ等式得证.(2)归纳法. 当3=n 时,,)()(11))((0011113132121132321122213123133313213123133313231131213332313213∏≤<≤-++=++++--=----=----==i j j ia aa a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a D结论成立.假设当1-n 时结论成立. 当n 时,n nn n n n nn n n n n a a a a a a a a a a a a D ΛΛM M M MΛΛ32122322213211111----=211231132211233331122111)()(---------+++--=n nn n n n n n n nn n n a a a a a a a a a a a a a a a a ΛΛMMMΛΛ)111111)(()(21231221333311312333311222------------+--=n nn n n n n n n nn n n n n n n aa aa a a aa a aaa a a a a a a a ΛΛM M M ΛΛΛM M M ΛΛ)111)(()(223223333111122-------+--=n nn n n n n n n n aaa a a a a D a a a a ΛΛM M MΛΛ))()())((()(2122112∏∏≤<≤≤<≤-+-++--=ni j j ini j j in n a aa a aa a a a a a ΛΛ.)()(121∏≤<≤-+++=ni j j in a aa a a Λ另一证法参见《 学习指导》.6、利用范德蒙行列式,可得∏-≤<≤---------==11111111111)()().(111)(n i j j i n n n n n n a a x a x a a a x a a xx D ΛΛM M M MΛΛ由于),11(,-≤<≤≠n i j a a j i 故上式为x 的1-n 次多项式,其根分别为.,,,121-n a a a Λ8、用初等变换化为阶梯形即可得秩.9、利用行初等变换化 )()(1-→→A E E A ΛΛ得到1-A .注:(2)E A 4442=⎪⎪⎪⎭⎫ ⎝⎛=O ⇒ 441AA E A A =⇒=⋅-.11、⇒+=⋅B A B A 2A B E A =-)2(⎪⎪⎪⎭⎫⎝⎛-----=-=⇒-9122692683)2(1A E A B 注意左、右乘的区别!12、设.)(1110--+++=n n x c x c c x f Λ由⇒=i i b a f )(⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=----n n O n n n n n b b c c c a a a a a a AC M M M ΛM M M M ΛΛ1111122111111由范德蒙行列式,⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛⇒≠-=-≤<≤∏n n n i j j i b b A c c a a A M M 11010)(det即n c c ,,0Λ唯一存在,从而)(x f 唯一存在. 13、 当0det ≠A 时, 1)(det *-=A A A())det()(det )(det det *det 11--==⇒A A A A A n ⎪⎭⎫ ⎝⎛==⇒--A A A A n det 1det )(det *det 11Θ.当0det =A 时,0*=AA . 设r A rank =)(,则11000000--⎪⎪⎭⎫ ⎝⎛=⇒⎪⎪⎭⎫ ⎝⎛=Q Er P A Er PAQ *000*11A Q Er P AA --⎪⎪⎭⎫ ⎝⎛=⇒ 0000211=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=-C C Er P ,(记)*211⎪⎪⎭⎫ ⎝⎛=-C C A Q000021=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⇒C C Er (1-P Θ可逆) O C O O C =⇒=⎪⎪⎭⎫ ⎝⎛⇒11⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=∴⎪⎪⎭⎫⎝⎛=∴-222100*0*QC C Q A C A Q0*det =∴A (*A Θ中至少有r 行为0行).14、(1) rank(A)=.)(0||||0||*1*n A rank A A A n n =⇒≠=⇒≠⇒-(2) ,1)(-<n A rank 则A 的1-n 阶子式全为0,从而*A 的任一元素为0,故.0)(*=A rank(3) 当,1)(-=n A rank 则A 中至少有一个1-n 阶子式不为0,即*A 至少有一个元素不为0,故.1)(*≥A rank 反之,.0||0||1)(*==⇒=⇒-=E A AA A n A rank 又存在n 阶可逆矩阵,,Q P 使.0001⎪⎪⎭⎫ ⎝⎛=-n E PAQ 又,0**1==-PAA A PAQQ 记⎪⎪⎭⎫ ⎝⎛=-21*1B B A Q ,其中2B 为*1A Q -的最后一行,则由,00.0001211=⇒=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-B B B E n 于是,10)()(2*1*≤⎪⎪⎭⎫ ⎝⎛==-B rank A Q rank A rank 故.1)(*=A rank15、由已知条件知,T A A )(*=,于是||||*A A =.0||||||||||**=⇒=⇒=A A A A E A AA n或.1||±=A 但∑=>=ni ij a A 12,0||(某个),0≠ij a 故.1||=A16、利用⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛=---12111212212111112100A A A A A A E A A E A r n r 及例2.21的结论.习题四6、设313322211,,ααβααβααβ+=+=+=,321,,βββ线性无关3),,(321=⇔βββr ,而321,,ααα线性无关3),,(321=⇒αααr ,故只须证:),,(),,(321321αααβββr r =或:),,(),,(321321βββααα→列初等变换.事实上:),,(),,(322132121ααααααα+→+C C),,(),,()2,,()2,,(),,(3211332213213221332212332212313332βββααααααααααααααααααααααα=+++++++++++→→→→-++C C C C C C C3)(),,(321321==∴αααβββr r 321,,βββ∴线性无关.方法2 设 =+++++)()()(133322211ααααααx x x 0 (1) 下证 0321===x x x(1)式332221131)()()(αααx x x x x x +++++⇒=0由321,,ααα线性无关⎪⎩⎪⎨⎧===⇒⎪⎩⎪⎨⎧=+=+=+∴000000321322131x x x x x x x x x 从而133221,,αααααα+++线性无关. 方法3:,110011101),,(),,(321133221⎪⎪⎪⎭⎫⎝⎛=+++ααααααααα 记 .110011101⎪⎪⎪⎭⎫ ⎝⎛=AA A ∴≠=02det Θ可逆线性无关321321133221,,3),,(),,(ααααααααααααΘ↑==+++∴r r7、(1)432,,αααΘ 线性无关32,αα∴ 线性无关(整体线性无关,则部分也是) 又321ααα,,Θ线性相关1α∴可由32αα,唯一线性表示(定理4.5) (2)反证法,设4α可由321,,ααα线性表示,则),,(),,,(3214321αααααααr r = ①又321,,αααΘ线性相关3),,(321<r ααα∴ ② 又432,,αααΘ线性无关,有 3),,(432=αααr3),,(),,,(4324321=≥∴αααααααr r ③由①②③知⎩⎨⎧<≥3),,,(3),,,(43214321ααααααααr r 矛盾.10、设),,(),,,(11n n B A ββααΛΛ== 则),,(11n n B A βαβα++=+Λ设r i i αα,,1Λ是A 的一个最大线性无关组,s j j ββ,,1Λ是B 的一个最大线性无关组则s B r r A r ==)(,)(,由于k α可由r i i αα,,1Λ线性表示,k β可由s j j ββ,,1Λ线性表示,)(n k ,,1⋯⋯=n n βαβα+⋯⋯+∴,11可由r i i αα,,1Λ,s j j ββ,,1Λ线性表示,从而),,,(),(1111s r n n r r ββααβαβα⋯⋯⋯⋯≤+⋯⋯+s r +≤ 即).()()(B r A r B A r +≤+12、假设r n -⋯⋯ξξξη,,,,21线性相关r n -⋯⋯ξξξ,,,21Θ线性无关η∴可由r n -⋯⋯ξξ,,1线性表示设 i i rn i k ξη∑-==1),,1(r n i i -=ΛΘξ是0=AX 的解 η∴也是0=AX 的解,从而0=ηA ,但η却是B AX =的解,从而0≠=B A η矛盾. 13、112211)1(+------++++=r n r n r n r n k k k k k x ηηηηΛΛ11122111)()()(+-+---+-+-+-++-+-=r n r n r n r n r n r n k k k ηηηηηηηΛ 令1122111,,+---+-+--=-=-=r n r n r n r n r n ηηαηηαηηαΛ 则0)(1=-=-=+-B B A A r n i i ηηαr n -⋯⋯∴αα,1是0=AX 的解 ①下证:r n -⋯⋯αα,1线性无关02211=+++--r n r n x x x αααΛ0)()(1111=-++-⇔+---+-r n r n r n r n x x ηηηηΛ 0)(1111=---+++⇔+----r n r n r n r n x x x x ηηηΛΛ 11,,,+--r n r n ηηηΛΘ线性无关, .021====∴-r n x x x Λr n -∴αααΛ,,21线性无关. ②由①,②知r n -αααΛ,,21是0=Ax 的基础解系.又1+-r n η是B Ax =的解(非齐次方程的一个特解!)∴111+---+++r n r n r n k k ηααΛ11)1(11+-------+++=r n r n r n r n k k k k ηηηΛΛ是=AX B 的通解.14、032321=+-x x x 的基础解系为,203,02121⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=ηη它们就是V 的一组基.注:分别取⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛20,0232x x 得1η,2η. 17、充分性:设),,(,),,(11n T m b b a a ⋯⋯=⋯⋯=βα αβ=A ,则1)()(≤≤αr A r ① 因0,≠βα,不妨设i a ,0≠j b 则A 的第i 行第j 列的元素为i a 0≠j b∴ 1)(≥A r (至少有一个一阶子式不为0) ② ∴ 1)(=A r (由①与②得)必要性:设),,,(21n A αααΛ=, ),,,()(121n r A r αααΛ==, 则n ααΛ1的最大线性无关组只含1个向量,设它为α,)0(≠αΘ α为n αα⋯⋯,1的最大线性无关组 ∴ n αα⋯⋯,1可由α线性表示设ααααααn n k k k ===,,,2211Λ,令),,,(21n k k k Λ=β 则0≠β (否则,由1)(021=====A r n 与αααΛ矛盾.)则),(1n A ααΛ=),,(1ααn k k ⋯=)(21n k ,,k k ⋯=ααβ=. 其中α为1⨯m 向量,β为n ⨯1向量. 18、令⎪⎪⎪⎭⎫⎝⎛=T m T A ααM 1, ,1⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=T T m T B βααM则0=Ax 的解都是0=Bx 的解(条件) 显然0=Bx 的解都是0=Ax 的解 (后者比前者少一个方程))()(B r A r =∴(结构定理4.11))()(T T B r A r =∴⇒),,(),,(11βααααm m r r ΛΛ= ∴β可由m αα,,1Λ线性表示19、令),,(),,,(11p n B A ββααΛΛ==,则矩阵方程B AX =有解∃⇔矩阵B AP P p n =⨯使得,∃⇔矩阵),(),(,11p n p n P a P ββαΛΛ=⨯使得⇔ 存在矩阵使得,)(p n ij p P ⨯=⎪⎩⎪⎨⎧++=++=n np p pn n p p p p ααβααβΛΛΛΛΛΛΛ1111111 p ββ,,1Λ⇔能由n ααΛ,1线性表示⇔ )()(A rank B A rank =M20、这里A 是实矩阵(否则未必成立,如⎪⎪⎭⎫⎝⎛=1i A )考虑0=AX 与0)(=X A A T 的解由===⇒=0)()(0T T T A AX A X A A AX 0知0=AX 的解一定是0)(=X A A T 的解.下证:0=AX A T 的解也是0=AX 的解,设0=AX A T 则0=AX A X T T .AX 是实向量,记⎪⎪⎪⎭⎫ ⎝⎛=n a a AX M 1,则0),,()()(22111=+=⎪⎪⎪⎭⎫ ⎝⎛=n n n T a a a a a a AX AX ΛM Λ.0),,(1==∴T n a a AX Λ,即X 是0=AX 的解,从而0)(=X A A T 的解也是0=AX 的解∴ 0)(=X A A T 与0=AX 同解 ∴ )()(A rank A A rank T =(定理4.11)21、有结论,对线性无关组k ββΛ,1,若k <n ,则可以从n αα,,1Λ中取一个向量j α,记作1+k β,使11,,+⋯⋯k k βββ线性无关(*),现用该结论证明本题:r Θ<n ,可以取{}n j αααΛ,1∈ 使j r αββ,1Λ,线性无关 记j r αβ=+1,如果n r =+1,则证毕!如果1+r <n ,上述结论(*),可再从n αα,,1Λ中找k α使11+r ββΛ,,k α线性无关,如此进行下去,直到得到n ββΛ,1线性无关,此时从n αα,,1Λ中取了r n -个向量n r ββΛ,1+加入r ββΛ,1,使得n ββΛ,1线性无关(作为n R 的一组基). P.S .证明结论(*)向量组n αα,,1Λ不能用r ββΛ,1线性表示,否则由于n r <导致n ααΛ,1线性相关,矛盾∴存在某个j α不能用r ββΛ,1线性表示而k ββΛ,1,j α线性无关,记1+=r j βα即可.22、A 可由1A 线性表示,又1A 可由A 线性表示,于是1A 与A 等价,从而r A rank A rank ==)()(1,由定理4.7 知1A 为A 的最大线性无关组.23.(1)取11,,-m ααΛ的一个最大无关组)(,1个r ir i ααΛ,则r r m m m ==--),,,(),,(1111αααααΛΛ从而ir i ααΛ,1也是m ααΛ,1的最大无关组,显然它不包含m α(ir i αα,1ΛΘ是从11,,-m ααΛ中取出的!)(2)假设结论不成立,则A 有一个最大线性无关组ir i αα,1Λ,不包含m α,则包含在11,,-m ααΛ中,从而m α能表示为ir i αα,1Λ的线性组合,也能表示为11,,-m ααΛ的线性组合,矛盾.习题五2、若λ为A 的特征值,X 为相应的特征向量,即X AX λ=,于是X AX X A 22λλ==,又E A =2,则0)1(22=-⇒=X X X λλ,由于0≠X ,则1012±=⇒=-λλ.5、(反证)若21X X +为A 的属于λ的特征向量,则212121)()(AX AX X X A X X +=+=+λ0)()(22112211=-+-⇒+=X X X X λλλλλλ,由于21,X X 线性无关,则21λλλ==,矛盾. 7、X AX A x A X AX i i λλ==⇒=Λ(i 为自然数).)()()(101010X f X a X a X a X A a AX a X a X A a A a E a X A f mm m m m m λλλ=++=++=++=⇒ΛΛΛ8、(1))5)(5)(1(34430241-+-=----=-λλλλλλλE A ,A 的特征值为5,5,1321-===λλλ.(1.1)若求)det(100A ,由上题知A 100的特征值为:1 , 5100, (-5)100,于是2001001001005)5(51)det(=-⨯⨯=A .(1.2)若求A 100,先将A 对角化:对11=λ,0)(0010011024440240=-⇒⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=-X E A E A 的基础解系⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=0011X ; 对52=λ,0)5(0021101012404802445=-⇒⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-X E A E A 的基础解系⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=2122X ; 对53-=λ,0)5(00210101844202465=+⇒⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=+X E A E A 的基础解系⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=1213X .取⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==120210121),,(321X X X P ,则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-120210505511P ,11110011551551551551500050001-----⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⋅⋅⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⇒⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⇒⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=P P P P P P A P P A AP P Λ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=--100100100110010011005000501501551551P P P P .16、设n 阶正交阵A (n 为奇数)有特征值λ及相应特征向量X ,即X AX λ=,0)1()()(22=-⇒=⋅===X X X X X X AX AX AX A X X X T T T T T T T λλλλ,由于022221≠+++=n T x x x X X Λ,故,112±=⇒=λλ设A 的所有特征值为n λλλ,,,21Λ,则1det 21==A n λλλΛ,由于)1(1n i i ≤≤±=λ且n 为奇数,故必有某个,1=k λ又A E -的特征值为),,2,1(,1n i i Λ=-λ,从而0)1()1()1()det(1=---=-n k A E λλλΛΛ.17、设n n ββααΛΛ,,,11为n R 中两组单位正交基,从n αα,,1Λ到n ββ,,1Λ的过渡矩阵P=B A n n 1111),,(),,(--=记ββααΛΛ,由于A ,B 为正交阵,由正交阵性质知B A P 1-=为正交矩阵.20、(2)A 可逆,由AB BA AB BA BA A A A AB A ,~)()(11⇒==--与BA 有相同特征值.21、由16题证明知A 的特征值为1或-1,由于A 为上三角矩阵,其对角线上元素为特征值,即1±,再利用A 的任两列正交可得A 为对角阵. 另一证法可参见《学习指导》.22、存在正交矩阵Q ,使⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n T AQ Q λλλO 21,令QY X =,则:22111)(n n n T T T T y y Y Y Y AQ Q Y AX X λλλλ++=⎪⎪⎪⎭⎫⎝⎛==ΛO ,取{}n c λλ,,max 1Λ=,则X cX X Q X Q c Y cY y y c AX X T T T n T ===+≤--11221)()(Λ注:题目中)det(AX X T 应改为AX X T .24.由X AX ⋅==00知21,ξξ为A 的属于0的特征向量,且它们正交.由A 对称知A 的属于3的特征向量3ξ必与21,ξξ正交.现求3ξ.由于021222132132121=⎪⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛x x x x x x T T ξξ, ⎥⎦⎤⎢⎣⎡-→⎪⎪⎭⎫ ⎝⎛-210201212221得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎪⎪⎪⎭⎫ ⎝⎛1223321x x x x ,取⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=1223ξ,则21,ξξ,3ξ为A 的两两正交的三个特征向量,单位化:⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡=313232,323132,323231321ηηη,得正交阵[]321,,ηηη=Q , 且⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=300AQ Q T ,于是 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=122244244313112221222130012221222131300T Q Q A . 26、设λ为A 的特征值,X 为相应特征向量,则X AX λ=,X AX A X A 22)(λ==,由A A =2得000)(22=⇒=-⇒=-λλλλλX 或1,即A 的特征值为0或1,E+A 的特征值为1或2,故E+A 的所有特征值之积不为0,即0≠+A E ,从而E+A 可逆,或由A E A E E A A E A E A E 21)(2121)21)((12-=+⇒=-+=-+- 27、若B 与A 相似,即存在可逆阵P ,使AP P B 1-=,从而P A P B k k 1-=,因而01==-P A P B m m ,但对角阵Λ不满足0=Λm ,故A 不与对角阵Λ相似. 28、记),,,(21n diag B λλλΛ=则存在可逆阵,P 使k k B P A P B AP P =⇒=--11.设n n A a A a E a A f Λ++=10)(,则))(),(()(111101110111011101n n n nn nn n n nn f f diag a a a a a a a a E a p A P a AP P a E a P A f P λλλλλλλλλλΛΛO ΛO ΛO Λ=⎪⎪⎪⎭⎫⎝⎛++++++=⎪⎪⎪⎭⎫⎝⎛++⎪⎪⎪⎭⎫ ⎝⎛+=+++=---)(A f ⇒相似于)(),((1n f f diag λλΛ.29、由已知条件,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡010010A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡0112011A ,⇒⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1103110A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⇒⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-300211002100111010303210230321021001110101A A30、由于A 为实对称阵,必与对角阵相似,要使A 与B 相似,只要A 与B 有相同特征值即可,B 的特征值为0,1,2,也为A 的特征值,A 的特征多项式为:λλλλλ---=-=11111)(yy x xE A f ,于是有0)2()1()0(===f f f ,即y x y x y y xx f =⇒=--==0)(11111)0(2 00201010)1(=⇒===x xy y y xx f 或0=y y x y x y y xx f -=⇒=+=---=0)(11111)2(2 31、用21,x x 分别表示市区,郊区居民数量,依题意有3:2:9.015.01.085.0212121=⇒⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡x x x x x x习题六3、存在正交矩阵Q ,变换QY X =将二次型f 化为标准型,即:2222211)(n n T T T y y y Y AQ Q Y AX X f λλλ+++===Λ,取),2,1(n i e Y i Λ==则0==i f λ ),2,1(n i Λ=,(即此时取i Qe X =).00011=⋅⋅=⇒=⎪⎪⎪⎭⎫⎝⎛=⇒-Q Q A AQ Q n T λλO6、二次型3231212322212245x x x x x x ax x x f --+++=的矩阵 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=a A 11112125,A 正定⇔A 的各阶顺序主子式).3,2,1(,0=>∆k k即,20211112125,011225,05321>⇒>-=----=∆>==∆>=∆a a a故当2>a 时,二次型f 正定.7、设n 阶实对称阵A 的n 个特征值为n λλλΛ,,21,则存在正交矩阵Q ,使T n n T Q Q A AQ Q ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⇒⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=λλλλλλO O 2121 A正定⇒A 的n 个特征值nλλλ,,,21Λ全为正T n n Q Q A ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⇒λλλλλλO O 2121B B A T =⇒,其中Tn Q B ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=λλλO 21为满秩阵. 反之,若有n 阶满秩矩阵B ,使B B A T =.令BX Y =,则:22221)()())((n T T T T T y y y Y Y BX BX BX B X AX X f +++=====Λ,从而对任一0≠X ,有,00>⇒≠=f BX Y 所以f 正定.8、(1))0(,0≠>=X AX X f T 取i e X =,则).,21(0010)010()(11111,n i a a a a a a a a e f ii nn n in ii i n i ΛM M ΛΛΛΛΛΛΛΛΛΛ,=>=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=(2)与(1)类似可证.9、(1)对B A BX X AX X X B A X x f X T T T +⇒>+=+=≠0)()(,0正定(2)K K K T T K A A A A ⇒==)()(对称A 正定A ⇒的特征值n λλλΛΛ,,21全为正k A ⇒的特征值k n k k λλλΛΛ,,21全为正k A ⇒正定(3)设A 的n 个特征值为n λλλΛΛ,,21,则aE A +的n 个特征值为),2,1(,n i a i Λ=+λ,取{}i a λmax >,则),2,1(0n i a i Λ=>+λ即aE A +的n 个特征值全为正aE A +⇒正定.10、f 的矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=3030002aa A ,由标准型23222152y y y f ++=知A 的三个特征值为1,2,5. 由0)3)(3)(2(33002=---+-=--=-λλλλλλa a aa E A 知A 的三个特征值为a a -+3,3,2.于是2=a 或2-,不妨取2=a ,于是⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=320230002A 对⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-=00011000122220001,11E A λ,对应特征向量⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=1101ξ,单位化,212101⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡-=η 对22=λ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-300210001202100002E A ,对应特征向量⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=0012ξ,取22ξη=; 对53=λ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-0001100012202200035E A ,对应特征向量⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1103ξ,单位化⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡=212103η,于是所用正交变换矩阵为⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡-=2102121021010Q . 11、二次型f 的标准矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=λλλ111111A ,要f 正定,即要求A 正定,必须A 的各阶主子式:0>∆k ,)3,2,1(=k 即01>=∆λ,011122>-==∆λλλ,10)2()1(11111123>⇔>-+=--=∆λλλλλλ且202>⇔>-λλ. 故当2>λ时,二次型f 为正定. 12、A为正定矩阵,则A为对称矩阵,即,ij ji a a =因此ij j ij i i ji j ji b c a c c a c b ===,从而B 也为对称矩阵.⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎪⎪⎪⎪⎪⎭⎫ ⎝⎛===n n n nn n n n n n j iji ij c c c A c c c c c c a a a a a a a a a c c c c a c b B OO O ΛΛΛΛΛΛO21212121222211121121)()(⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⇒n n n n n n n n T x c x c x c A x c x c x c x x x c c c A c c c x x x BX X M ΛM O O Λ2211221121212121),,(),( (1)由于n c c c Λ,,21为非零实数,对021≠⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n x x x X M ,有02211≠⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n n x c x c x c M ,又A 为正定矩阵,则(1)式右端大于0,从而对0≠X ,有0>BX X T ,故B 为正定矩阵.。
高等数学同济第七版上册课后习题答案L 求下列函数的自然定义域: ⑴ y = J3K +2; ⑶ y =—Vi- x 2;X (5) y=sin(7)y = arcsin(x-3); (9)jV = ln(x + l);解:(1)3AI + 2>0=>X >-23(2)1 -厂工 0 = JCH ±1, 即定义域为(-8, -1) U (-1/)D (1, +8) (3)/ = 0且1一/之0=4工0且产仔1 即定义域为[-1R)D(0,1](2)y = 1 - JC (4);y -1 , A /4-JT (6)y = tan(x +1); (8)J=V3-x + arctanJL; x(10)y = e e\,即定义域为「一 2,+0?(4)4-犬>。
二>卜|<2即定义域为(—2,2)(5)x2 0,即定义域为[0, +oc)71(6)x +1 / kjr + 一 (% £Z), \ 2 1即定义域为x xe R^x^(k+ )兀一1k eZ(7)|x-3|< 1= 2 WxW 4,即定义域为[2,4](8)3—冗2 0且4工0,即定义域为(一8,0) u(0,3](9)x + 1 >0=>x> -1 即定义域为(-1,+8) (10)工工0,即定义域为(一双0) u (0, +oo)2,下列各题中,函数/(x)和g(x)是否相同?为什么?(1)/U) = 1g g(x) =21gx(2)/U) = x, g(x)=岳(3)/(%) = #(f-丁), g(x) =(4)/(x) = l,g(x) =sec'x — tarrx解;(1)不同,因为定义域不同((2)不同,因为对应法则不同,g(M= 1—= x.x>0< 0(3)相同,因为定义域,对应法则均相同(4)不同,因为定义域不同匹斗|斗<3 .设a“)=\ 兀3州花一11 3求0(二),夕(巴),旗一土),0(-2),并指出函数y = Q(x)的图形6 4 41 /乃、, 7T yfl二?,以 4)= sin 耳=~^,0(_Z)= sin(--)l = =0,44 | 2(l)y=(2)y = x + In x,(0, +oo)证明:,匹、 .匹%)=sm%解:4 .试证下列函数在指定区间内的单调X \-xx 1⑴尸/W = ---- -- = T+ -- --- ,(一00』)1-x 1-x设X] <工2 < 1,因为/%)—/区)=“七方 ,〉0 (—Xi) >U1 2所以/(X2 )> /(&),即/(X)在(一8,1)内单调增加(2) y - /(x) = x + In x,(0, +8)设0<»<彳2,因为 /U) -/u) = X - x+ In 当二。
5.2 课后习题详解习题5-1 定积分的概念与性质1.利用定积分定义计算由抛物线y =x 2+1,两直线x =a 、x =b (b >a )及x 轴所围成的图形的面积.解:因为函数f(x)=x 2+1在区间[a ,b]上连续,所以函数可积,为计算方便,不妨把[a ,b]分成n 等份,则分点为每个小区间长度为取ξi 为小区间的右端点x i ,则当n→∞时,上式极限为即为所求图形的面积.2.利用定积分定义计算下列积分:解:因为被积函数在积分区间上连续,所以把积分区间分成n等份,并取ξi为小区间的右端点,得到(1)(2)3.利用定积分的几何意义,证明下列等式:证:(1)根据定积分的几何意义,定积分表示由直线y=2x、x=1及x轴围成的图形的面积,该图形是底边长为1、高为2的三角形,因此面积为1,即(2)根据定积分的几何意义,定积分表示的是由曲线以及x轴、y轴围成的在第I象限内的图形面积,即单位圆的四分之一的图形,因此有(3)因为函数y=sinx在区间[0,π]上非负,在区间[-π,0]上非正.根据定积分的几何意义,定积分表示曲线y=sinx(x∈[0,π])与x轴所围成的图形D1的面积减去曲线y=sinx(x∈[-π,0])与x轴所围成的图形D2的面积,显然图形D1与D2的面积是相等的,所以有(4)因为函数y=cosx在区间上非负.根据定积分的几何意义,定积分表示曲线与x轴和y轴所围成的图形D1的面积加上曲线与x轴和y轴所围成的图形D2的面积,而图形D1的面积和图形D2的面积显然相等,所以有4.利用定积分的几何意义,求下列积分:解:(1)根据定积分的几何意义,表示的是由直线y=x,x=t以及x轴所围成的直角三角形面积,该直角三角形的两条直角边的长均为t,因此面积为因此有(2)根据定积分的几何意义,表示的是由直线x=-2,x=4以及x轴所围成的梯形的面积,该梯形的两底长分别为梯形的高为4-(-2)=6,因此面积为21.因此有(3)根据定积分的几何意义,表示的是由折线y=|x|和直线x=-1,x=2以及x轴所围成的图形的面积.该图形由两个等腰直角三角形组成,一个由直线y=-x,x=-1和x轴所围成,其直角边长为1,面积为另一个由直线y=x,x=2和x轴所围成,其直角边长为2,面积为2.因此(4)根据定积分的几何意义,表示的是由上半圆周以及x轴所围成的半圆的面积,因此有5.设a<b,问a、b取什么值时,积分取得最大值?解:根据定积分几何意义,表示的是由y=x-x2,x=a,x=b,以及x轴所围成的图形在x轴上方部分的面积减去x轴下方部分面积.因此如果下方部分面积为0,上方部分面积为最大时,的值最大,即当a=0,b=1时,积分取得最大值.6.已知试用抛物线法公式求出ln2的近似值(取n=10,计算时取4位小数).解:计算y i并列表表5-2-1按抛物线法公式,求得7.设求解:(1)(2)(3)(4)8.水利工程中要计算拦水闸门所受的水压力.已知闸门上水的压强p与水深h存在函数关系,且有p=9.8h(kN/m2).若闸门高H=3m,宽L=2m,求水面与闸门顶相齐时闸门所受的水压力P.解:在区间[0,3]上插入n-1个分点,取ξi∈[h i-1,h i],并记Δh i=h i-h i-1,得到闸门所受水压力的近似值为根据定积分的定义可知闸门所受的水压力为因为被积函数连续,而连续函数是可积的,因此积分值与积分区间的分法和ξi的取法无关.为方便计算,对区间[0,3]进行n等分,并取ξi为小区间的端点所以。
高等数学同济第七版上册课后习题答案高等数学作为大学理工科专业的重要基础课程,对于学生的逻辑思维和解决问题的能力培养起着关键作用。
而同济大学出版的《高等数学》第七版上册更是被广泛采用的教材之一。
课后习题作为巩固知识、加深理解的重要环节,其答案的准确性和详细程度对于学生的学习效果有着直接的影响。
在学习高等数学的过程中,很多同学都会遇到各种各样的难题。
有些概念看似简单,但在实际应用中却容易出错;有些题目需要灵活运用多种方法才能求解。
这时候,课后习题答案就成为了同学们的重要参考。
对于函数与极限这一章节,课后习题涵盖了函数的基本概念、性质,以及极限的计算方法。
比如,求函数的定义域、判断函数的奇偶性等问题,答案需要清晰地给出解题思路和步骤。
在计算极限时,可能会用到极限的四则运算法则、两个重要极限、等价无穷小替换等方法。
答案应该详细说明每一步的依据和计算过程,让同学们能够理解为什么这样做。
导数与微分这部分的习题答案则要注重对导数定义、求导法则的应用。
比如,复合函数求导、隐函数求导等问题,答案要指出关键的步骤和易错点。
同时,对于微分的概念和应用,也要给出清晰的解释和示例。
中值定理与导数的应用这一章节的习题答案相对较难。
对于罗尔定理、拉格朗日中值定理和柯西中值定理的应用,答案要引导同学们如何构造合适的辅助函数,如何利用定理的条件进行推理。
在处理函数的单调性、极值和凹凸性问题时,答案要结合图形进行分析,让同学们能够直观地理解函数的变化趋势。
不定积分和定积分是高等数学中的重要内容。
在不定积分的习题答案中,要展示各种积分方法的运用,如换元积分法、分部积分法等。
对于定积分的习题,答案不仅要给出计算结果,还要解释定积分的几何意义和物理意义,以及在实际问题中的应用。
空间解析几何与向量代数这部分的习题答案,要帮助同学们理解向量的运算、空间直线和平面的方程。
通过具体的例子,让同学们掌握如何用向量方法解决几何问题。
总的来说,高等数学同济第七版上册课后习题答案应该具有以下特点:一是准确性。