八年级数学特殊三角形(习题及答案)

  • 格式:docx
  • 大小:44.93 KB
  • 文档页数:6

下载文档原格式

  / 6
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

特殊三角形(习题)

例题示范

例1:已知:如图,在四边形ABCD 中,∠B =∠D =60°,AB =BC ,AD =CD ,点E 在边BC 上,点F 在边CD 上,且∠EAF =60°. 求证:△AEF 是等边三角形. 【思路分析】 ①读题标注:

②梳理思路:

要证△AEF 是等边三角形,已知∠EAF =60°,只需证△AEF 是等腰三角形即可,考虑证AE =AF ,可以把这两条线段放在两个三角形中证全等. 观察图形,连接AC ,可以把线段AE 和AF 分别放在△ABE 和

△ACF 中.结合题中条件∠B =∠D =60°,AB =BC ,AD =CD ,可知△ABC 和△ACD 均为等边三角形,所以∠B =∠ACF =60°,

∠BAC =∠EAF =60°,因此∠BAE =∠CAF ,进而得证△ABE ≌△ACF ,证明成立. 【过程书写】

证明:如图,连接AC .

∵∠B =∠D =60°,AB =BC ,AD =CD ∴△ABC 和△DAC 是等边三角形 ∴AB =AC ,∠BAC =60°,∠ACF =60° ∴∠1+∠3=60°,∠B =∠ACF ∵∠EAF =60° ∴∠2+∠3=60° ∴∠1=∠2

∴△ABE ≌△ACF (ASA ) ∴AE =AF

∴△AEF 是等边三角形

巩固练习

1. 如图,以正方形ABCD 的边AB 为一边向外作等边三角形ABE ,连接DE ,

则∠BED 的度数为________.

60°

60°

60°

F

E D

C

B

A

F

E

D

B

A 3

2160°

60°

60°F

E

D

C

B

A

2.如图,在△ABC的外部,分别以AB,AC为直角边,点A为直角顶点,作等

腰直角三角形ABD和等腰直角三角形ACE,CD与BE交于点P,则∠BPC 的度数为________.

3.如图,在Rt△ABC中,∠C=90°,∠A=30°,DE是线段AB的垂直平分线,

交AB于点D,交AC于点E,若DE=2,则AC的长是________.

4.如图,在△ABC中,∠ACB=90°,D在BC上,E为AB的中点,AD,CE相

交于F,且AD=DB.若∠B=20°,则∠DFE的度数为________.

5.已知:如图,在△ABC中,AB=AC,∠B=15°,过C作CD⊥AB,交BA的

延长线于点D.求证:AB=2CD.

6. 已知:如图,在△ABC 中,∠BAC >90°,BD ,CE 分别为AC ,AB 边上的高,

F 为BC 的中点,连接DE ,DF ,EF . 求证:∠FED =∠FDE .

7. 已知:如图,在△ABC 中,AC =BC ,∠ACB =90°,CD ⊥AB 于点D ,E 为AC

的中点,BE 交CD 于点G ,EF ⊥BE 交AB 于点F .求证:EF =EG .

F E

D

A G F E

D C B A

思考小结

1.在做几何题目的时候,看到“直角+30°”,考虑30°角所对的直角边是

___________________;看到“直角+中点”,考虑直角三角形_____________________________;看到“等腰+一线”,考虑等腰三角形___________.

2.根据上面的思考方式研究等腰直角三角形的性质:

如图,在等腰直角三角形ABC中,CD⊥AB于点D,如果从等腰的角度出发,看到“等腰+高线”,考虑等腰三角形_________,所以得到AD=______;如果从直角的角度出发,看到“直角+中点”,考虑_____________________________,可以得到CD=______.

综上可得,对于图中的等腰直角三角形ABC我们可以得到:CD=______=_______.

【参考答案】

1.45°

2.90°

3. 6

4.60°

5.证明:如图

∵AB=AC

∴∠B=∠ACB

∵∠B=15°

∴∠ACB=15°

∵∠DAC是△ABC的一个外角,

∴∠DAC=∠B+∠ACB

=15°+15°

=30° ∵CD ⊥AB ∴∠D =90°

在Rt △ADC 中,∠D =90°,∠DAC =30° ∴CD

∴CD

即AB =2CD

6. 证明:如图

BD ,CE 分别为AC ,

AB 边上的高 ∴∠BDC =

∠CEB =90° ∵F

是BC 的中点 ∴DF =

BC ,EF ∴DF =EF ∴∠FED =∠FDE 7. 证明:如图,连接DE .

∵AC=BC ,∠ACB=90° ∴∠A =45° ∵CD ⊥AB ∴∠ADC =90°,AD

∴CD ∴AD =CD ∵E 为AC 中点 ∴DE ,DE ⊥AC ,∠1=45°

∴∠AED =90°,∠A =∠1 ∴∠2+∠DEF =90° ∵EF ⊥BE ∴∠3+∠DEF =90° ∴∠2=∠3

在△AEF 和△DEG 中

321G

F

E D

C

B

A

∴△AEF≌△DEG(ASA)

∴EG=EF

思考小结:

1. 斜边的一半,斜边上的中线等于斜边的一半,三线合一

2. 三线合一,BD,直角三角形斜边上的中线等于斜边的一半,

,AD,BD

相关主题