应用随机过程习题课二
- 格式:doc
- 大小:298.50 KB
- 文档页数:3
第一章习题解答1. 设随机变量X 服从几何分布,即:(),0,1,2,k P X k pq k === 。
求X 的特征函数,EX 及DX 。
其中01,1p q p <<=-是已知参数。
解 0()()jtxjtkk X k f t E eepq ∞===∑()k jtkk p q e∞==∑ =0()1jt kjtk pp qe qe ∞==-∑又200()kkk k q qE X kpq p kq p p p ∞∞======∑∑222()()[()]q D X E X E X P =-=(其中 00(1)nnn n n n nxn x x ∞∞∞====+-∑∑∑)令 0()(1)n n S x n x ∞==+∑则 1000()(1)1xxnn k n xS t dt n t dt x x∞∞+===+==-∑∑⎰⎰202201()()(1)11(1)1(1)xn n dS x S t dt dxx xnx x x x ∞=∴==-∴=-=---⎰∑同理 2(1)2kkkk k k k k k x k x kx x ∞∞∞∞=====+--∑∑∑∑令20()(1)k k S x k x ∞==+∑ 则211()(1)(1)xkk k k k k S t dt k t dt k xkx ∞∞∞+====+=+=∑∑∑⎰)2、(1) 求参数为(,)p b 的Γ分布的特征函数,其概率密度函数为1,0()0,0()0,0p p bxb x e x p x b p p x --⎧>⎪=>>Γ⎨⎪≤⎩(2) 其期望和方差;(3) 证明对具有相同的参数的b 的Γ分布,关于参数p 具有可加性。
解 (1)设X 服从(,)p b Γ分布,则10()()p jtxp bxX b f t ex e dx p ∞--=Γ⎰ 1()0()p p jt b x b x e dx p ∞--=Γ⎰101()()()()(1)p u p p p p p b e u b u jt b x du jt p b jt b jt b∞----==Γ---⎰ 1(())x p p e x dx ∞--Γ=⎰ (2)'1()(0)X p E X f j b∴== 2''221(1)()(0)X p p E X f j b +== 222()()()PD XE X E X b∴===(4) 若(,)i i X p b Γ 1,2i = 则121212()()()()(1)P P X X X X jt f t f t f t b-++==-1212(,)Y X X P P b ∴=+Γ+同理可得:()()iiP X b f t b jt∑=∑-3、设X 是一随机变量,()F x 是其分布函数,且是严格单调的,求以下随机变量的特征函数。
第二章 Markov 过程 习题解答1、 设}1,{≥n n ξ为相互独立同分布的随机变量序列,其分布为:01}0{,0}1{>-===>==p q P p P n n ξξ定义随机序列}2,{≥n X n 和}2,{≥n Y n 如下:⎪⎪⎩⎪⎪⎨⎧=========----;1,1,3;0,1,2;1,0,1;0,0,01111n nn n n n n nn X ξξξξξξξξ ⎩⎨⎧===-;,1;0,0,01其它n n n Y ξξ试问随机序列}2,{≥n X n 和}2,{≥n Y n 是否为马氏链?如果是的话,请写出其一步转移概率矩阵并研究各个状态的性质。
不是的话,请说明理由。
解:(1)显然,随机序列}2,{≥n X n 的状态空间为}3,2,1,0{=S 。
任意取S i i i j i n ∈-132,,,,, ,由于当i X n =给定时,即1,-n n ξξ的值给定时,就可以确定1+n X 的概率特性,即我们有:}{},,,,{12233111i X j X P i X i X i X i X j X P n n n n n n ========+--+因此}2,{≥n X n 是齐次马氏链,其一步转移概率矩阵为:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=p qp q p q p qP 0000000 由于01,0>-=>p q p ,画出状态转移图,可知各个状态都相通,且都是非周期的,因此此链是不可约的遍历链。
(也可以利用02>P 判定此链是不可约的遍历链)(2)显然,}2,{≥n Y n 的状态空间为}1,0{=S ,由于:}1,1{}1,1,0{}1,10{23234234=========Y Y P Y Y Y P Y Y Y P}0,1{}0,1,0{}0,10{23234234=========Y Y P Y Y Y P Y Y Y P由}2,{≥n Y n 的定义,可知}1,1,1{}1,1,0{}0,1,1{}0,1,0{}1,0,1{}1,1{12312312312312323===⋃===⋃===⋃⋃===⋃======ξξξξξξξξξξξξξξξY Y}1,1,0,0{}0,1,0,0{}1,1,0{12341234234====⋃========ξξξξξξξξY Y Y}0,0,1{}0,1{12323======ξξξY Y , ∅====}0,1,0{234Y Y Y利用}1,{≥n n ξ是相互独立同分布的随机变量序列及其分布,我们有:322233}1,1{q q p pq Y Y P ++=== 223234}1,1,0{q p pq Y Y Y P +==== 223}0,1{pq Y Y P ===0}0,1,0{234====Y Y Y P即有:22222343}1,10{q p pq qp pq Y Y Y P +++==== 0}0,10{234====Y Y Y P由于01,0>-=>p q p ,因此有}0,10{}1,10{234234===≠===Y Y Y P Y Y Y P根据马氏链的定义可知}2,{≥n Y n 不是马氏链。
西 南 交 通 大 学本科生考试试卷B课程名称 随 机 过 程二零零三年二零零四年第一学期 考试日期班级 学号 姓名 成绩一顾客来到服务台要求服务当服务台中的服务员都正在为别的顾客服务时来到的顾客就要排队等待服务顾客的到达是随机的每个顾客所需服务时间也是随机的若令为t 时刻的队长)(t X 即正在被服务的顾客和等待服务的顾客的总数目Y (t )为t 时刻来到的顾客所需等待时间}),({},),({T t t Y T t t X ∈∈是随机过程吗为什么二试写出随机过程),( ) sin()(+∞−∞∈Θ+=t t A t X ω的任意两个样本函数并画出其图形 1若A 是在(上均匀分布的随机变量)1 ,1−−ω在(0, 2π)上服从均匀分布而Θ为常数 2若A 服从上均匀分布)1 ,1(−Θ服从(0, 2π)上均匀分布而ω为常数三一书亭用邮寄订阅销售杂志订阅的顾客数是强度为6的一个泊松过程每位顾客订阅1年2年3年的概率分别为0.20.30.5彼此如何订阅是相互独立的每订阅一年店主即获利5元设Y (t )是[0, t )时段内店主从订阅中所获得总收入试求 1)]([t Y E 即[0, t )时段内总收入的平均收入2)]([t Y D四在电报信号传输中信号是由不同的电流符号给出C C −,且对于任意的t电路中电流X (t )具有概率分布2121)(i p C Ct X −因电流的发送有一个任意的持续时间电流变换符号的时间是随机的设X (t )在[0, t )内变量的次数N (t )为强度λ的泊松过程试讨论{的平稳性}0),(≥t tX五若每隔一分钟观察噪声电压以X (n )表示第n分钟观察噪声电压所得结果则X (n )为一随机变量}1),({≥n n X 为一随机过程此过程是马氏过程吗为什么六一质点在圆周上作随机游动圆周上共有N 格质点以概率p 顺时针游动一格以概率逆时针移动一格p q −=1试用马氏链描述游动过程并确定状态空间及转移概率矩阵七设一齐次马氏链的概率转移图如下图}0),({≥n n X 且已知其初始分布为31})0({==i XP 3,2,1=i21试求1 二步转移概率矩阵2 3)3(,2)1({==X X P }2)5(,=X参考解答一顾客来到服务台要求服务当服务台中的服务员都正在为别的顾客服务时来到的顾客就要排队等待服务顾客的到达是随机的每个顾客所需服务时间也是随机的若令)(t X 为时刻的队长t 即正在被服务的顾客和等待服务的顾客的总数目Y (t )为t 时刻来到的顾客所需等待时间}),({},),({T t Y T t t X ∈∈是随机过程吗t 为什么解答若令X (t )为t 时刻的队长,则固定t 时, X (t )为一随机变量,其可能取值为0,1,2,…, 其参数空间为表示t 时刻的状态,故状态空间为因此为一随机过程}0|{≥=t t T ,n t X =)(},2,1,0{L =E , }0),({≥t t X若令Y (t )为t 时刻来到的顾客所需等待的时间, 则固定t 时, Y (t ) 为一随机变量,其可能取值为即其参数空间为为t 时刻的状态,故状态空间为因此亦为一随机过程0≥t , }0|{≥=t t T ,s t X =)(}0|{≥=s s E ,}0),({≥t t Y 二试写出.(1) 若A 是(-1, 1)上均匀分布, 为常数解答()sin()()X t A t t R ω=+Θ∈的任意两个样本函数,ωΘ图1取 12A =±得随机过程的两个样本函数图形如图111(sin(x t ω=+Θ2))21()sin()2t x t t ω=−+Θ(2)若 服为常Θ从(0,2),,U A πω数 解答 ()12,ππ=2()sin()cos()2sin()sin()X t A tA t X t A t A t πωωωπωΘ=+==+=−取三一书亭用邮寄订阅销售杂志订阅的顾客数是强度的一个泊松过程图2每为6位顾客订阅1年2年3年的概率分别为0.20.30.5彼此如何订阅是相互独立的每订阅一年店主即获利5元设Y (t [0t )时段内)是, 店主从订阅中所获得总收入试求1)]([t Y E 即[0, )时段内总收入的平均收入t2)]([t YD解答(1) 法一 设N(t)为订阅杂志的顾客数, 为订阅j 年的顾客数()j N t 123()()()()()N t N t N t N t N t ⇒=++且 (6)t π故由已知π123232323()3),()(2),()()()[0,)()10()15()()()10()15()531021550()2()100()225()2531002225500N t t N t t N t t Y t t t N t N t EY t t EN t EN t t t t tDY t t DN t DN t t t t tππ++∴=++=×+×+==++=⋅+⋅+=111服从服从服从均为泊松过程记为内店主的总收入则Y(t )=5N 5EN 5D N法二 设店主从第n 个订阅者处获利X(n)则5 10 15X(n) p k 1/2 1/3 1/6X(n)相互独且 立 EX(n)=50/6, DX(n)=500/6()()()N t Y t X n =∑总获利100221()[(()/())](()/())(())5050(())(())5066(2)()(()())[[(()())/()]]500(())5006n k k EY t E E Y t N t E Y t N t k P N t k kP N t k E N t tDY t E Y t EY t E E Y t EY t N t E N t t =∞=∞==========−=−==∑∑四在电报信号传输中信号是由不同的电流符号给出C C −,且对于任意的t电路中电流X (t )具有概率分布2121)(ip C Ct X − 因电流的发送有一个任意的持续时间电流变换符号的时间是随机的 设X (t )在[0, t )内变量的次数N (t )为强度λ的泊松过程试讨论}0),({≥t t X的平稳性解答1对于任意的tEX (t)=02 +∞<=22)(c t EX3对于 时21t t <})()({})()({)()(),(221222122121c t X t X P c c t X t X P c t X t EX t t R X −=−===})({})({122122奇数偶数=−−=−=t t N P c t t N P c )(0121220)(21221212)!12())(()!2())((t t k k k t t k e k t t c e k t t c −−+∞=++∞=−−∑∑+−−−=λλλλ )(!))((122)(22)(01221212t t R c e c e k t t c X t t t t k k −==−−=−−−−+∞=∑λλλ类似地, 对于时, 有12t t <)(),(21221t t R c t t R X X −=因此,合并两式即得, )(),(122222112t t R c ec t t R X t t X −==−−λ与无关,可见,t }0),({≥t t X为宽平稳过程五 若每隔一分钟观察噪声电压以X (n )表示第n 分钟观察噪声电压所得结果则X (n )为一随机变量}1),({≥n n X 为一随机过程此过程是马氏过程吗为什么解答: 由于第n 分钟观察噪声电压所得结果与其它各次观察噪声电压所得结果互不影响,显然为独立随机序列}1),({≥n nX 因此对于任意的正整数, 的条件联合分布函数为 n n n n m <<<<L 21)(),(,),(),(21n X n X n X n X m L })(,)(|)({),,,,,,,|,(112121m m m n x n X x n X x n X P n n n x x x n x F ≤≤≤=L L L })(,)({})(,)(,)({1111m m m m x n X x n X P x n X x n X x n X P ≤≤≤≤≤=L L})({})({})({})({})({})({})({})({1111m m m m m m m m x n X P x n X P x n X P x n X P x n X P x n X P x n X P x n X P ≤≤≤=≤≤≤≤≤=L L},|,{})(|)({})({})(,)({m m m m m m m m n x n x F x n X x n X P x n X P x n X x n X P =≤≤=≤≤≤=满足马尔科夫性,因此此过程是马氏过程六 一质点在圆周上作随机游动圆周上共有N 格质点以概率p 顺时针游动一格以概率逆时针移动一格p q −=1试用马氏链描述游动过程并确定状态空间及转移概率矩阵解答 将N 个格点分别记为1,2,…..,N如图排列 用X(n)表示n 时质点的位置显然它只与 X(n-1)时的位置有关与X(n-1)以前的位置无关满足马尔科夫性,因此为马氏过程}1),({≥n n X 其状态空间为E={ 1, 2, . . . . . .,N},参数空间为}1{≥=n T 故 为一马氏链}1),({≥n n X 其一步转移概率为((1)/())111ij p P X k j X k i p j i q j i i N o =+===+⎧⎪==−<<⎨⎪⎩其它1((1)/()1)2((1)/())11j N j p P X k j X k p j q j N o p P X k j X k N p j q j N o =+===⎧⎪==⎨⎪⎩=+===⎧⎪==−⎨⎪⎩其它其它七设一齐次马氏链{的概率转移图如下图}0),(≥n n X 且已知其初始分布为31})0({==i XP 3,2,1=i21试求1二步转移概率矩阵2}2)5(,=X 3)3(,2)1({==X XP解答1⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=0012/12/102/12/10P⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=2/12/104/14/12/14/14/12/10012/12/102/12/100012/12/102/12/102P 2}2)5(,3)3(,2)1({===X X X P}3)3(|2)5({}2)1(|3)3({}2)1({======X X P X X P X P2412141]02121[31])0([)2(31)2(23231=××++==∑=p p p p i i i西 南 交 通 大 学本科生考试试卷A课程名称随 机 过 程二零零二年二零零三年第一学期 考试日期 2003.1.6班级 学号 姓名 成绩 一10分设质点M 在一直线上移动每单位时间移动一次且只能在整数点上移动质点M 的移动是随机的试建立描述这一随机现象的随机过程 二20分试写出随机过程),( ) sin()(+∞−∞∈Θ+=t t A t X ω的任意两个样本函数并画出其图形1若A 是上均匀分布的随机变量)1 ,1(−ω, Θ均为常数2若Θ服从(0, 2π)上的均匀分布A , ω为常数三10分试求随机过程的一维分布函数} , cos )({R t t A t X ∈=ω一维概率密度函数自相关函数与协方差函数其中A 服从标准正态分布N (0,1)四20分设在[0, t )时段内乘客到达某售票处的数目为一强度是3=λ人/分的泊松过程试求1在5分钟内有7位乘客到达售票处的概率2第3位乘客在3分钟内到达售票处的概率 五10分设)},( sin cos )({+∞−∞∈+=t t B t A t X ωωω为常数为一随机过程其中A 与B 是互不相关随机变量且 0)()(==B E A E2)()(σ==B D A D 试问此随机过程是否平稳过程为什么六20分设在每次试验中事件A 发生的概率为)10(<<p p 现将这项试验独立地重复进行多次以X (n )表示到第n 次为止事件A 发生的次数1试问{是何种随机过程},2,1),(L =n n X2试写出{的一维概率分布},2,1),(L =n n X七10分一只老鼠放在迷宫内见下图每隔单位时间老鼠在迷宫中移动一次随机地通过格子也就是说如果有R 条通路供离开那么选取其中任一条通路的概率为R1试用马氏链描述老鼠的移动规律给出它的状态空间和一步转移矩阵参考解答:一10分设质点M 在一直线上移动每单位时间移动一次且只能在整数点上移动质点M 的移动是随机的试建立描述这一随机现象的随机过程 解答设Y 为第n 个单位时刻质点M 所在位置, 而令随机变量n⎩⎨⎧−=向左移动一个整数单位质点向右移动一个整数单位质点M M X i 11L ,2,1=i 由于质点M 的移动是随机的, 故 21}1{}1{=−===X P X P 则在时刻 t=n 时, 质点所在的位置为M 1nn i i Y X ==∑,易知参数集为状态集为, 因此}1,{≥=n n T ,},2,1,0{L ±±=E {,1}n Y n ≥成为描述上述随机现象的随机过程二试写出. (1) 若A 是(-1, 1)上均匀分布, 为常数解答()sin()()X t A t t R ω=+Θ∈的任意两个样本函数,ωΘ图1取 12A =±得随机过程的两个样本函数图形如图111(sin(x t ω=+Θ2))21()sin()2t x t t ω=−+Θ 见图1(2)若 服为常Θ从(0,2),,U A πω数解答 ()12,2()sin()cos()2sin()sin()Xt A t A t X t A t A t πππωωωπωΘ=取=+==+=− 见图2{()cos ,}X t A t t R ωω=∈是一常数三试求随机过程的一维分布函数一维概率其中A 服从标准正态分布N (0, 1)密度函数自相关函数与自协方差函数 解答在一个给定时刻t 0随机变量X (t )为A 的性函数0线而A 服从标准正态分布N (0, 1)由概率论知(t X 0)服从正态分布0(0,(cos ))N t ω2故一维率密度函数为概一维分布函数为自相关函数为12=((),())R X t X t 212(cos cos E A t t ωω)])t t DA A ωω=+212cos cos ([E 因为所以自协方差函数1,0,DA EA ==12cos cos t t ωω= 12121(2),())((),())()()X X C X t X t R X t X t m t m t =−0 所以 Co 2t X 2ωω=(因为,()X t R m t ∀∈=))(),((v 1t X 1t t cos cos 四设在[0,t )时段内乘客到达某售票处的数目为一强度是3=λ人/分的泊松过程试求1在5分钟内有7位乘客到达售票处的概率2第3位乘在客3分钟内到达售票处的概率 解答设N(t)为[0t 内到达的乘客数则 N(t)(1) (3)t π773515(35((5)7N ==)15)7!7!P e e −×−×= 153315(3)((3)3)!n k k n P P N ek ττ∞−=≤=≥=∑表第个乘客到达的时间()21000 cos t 0cos 2t ωω⎧⎫⎛⎞⎪≠⎬⎪⎭1(,)f x t =()200 cos t 0cos 2dx t ω⎧⎫⎛⎞⎪≠⎬⎪⎭101(,)xF x t ω−∞=∫(2)。
钱敏平龚光鲁随机过程答案(部分)随机过程课后习题答案第⼀章第⼆题:已知⼀列⼀维分布{();1}n F x n ≥,试构造⼀个概率空间及其上的⼀个相互独⽴的随机变量序列{(,);1}n n ξ?≥使得(,)n ξ?的分布函数为()n F x 。
解:有引理:设ξ为[0, 1]上均匀分布的随机变量,F(x)为某⼀随机变量的分布函数,且F(x)连续,那么1()F x η-=是以F(x)为分布的随机变量。
所以可以假设有相互独⽴的随机变量12,,...,n θθθ服从u[0, 1]分布,另有分布{()}n F x ,如果令1(,)()n n n F ξθ-?=,则有(,)n ξ?为服从分布()n F x 的随机变量。
⼜由假设条件可知,随机变量{(,),1}n n ξ?≥之间相互独⽴,则其中任意有限个随机变量12(,), (,),...,(,)n i i i ξξξ的联合分布为:11221122{(,),(,),...,(,)}()()()i i n in i i i i in in P i x i x i x F x F x F x ξξξ?≤?≤?≤=再令112{,,...,,...},,{|()[0,1],1,2,...}n i i i i w w w w A A x F x i -Ω=∈=∈=,令F 为Ω所有柱集的σ代数,则由Kolmogorov 定理可知,存在F 上唯⼀的概率测度P 使得:11221122{(,),(,),...,(,)}()()()i i n in i i i i in in P i w i w i w F w F w F w ξξξ?≤?≤?≤=则所构造的概率空间为(Ω,F , P)。
第⼋题:令{};1n X n ≥是⼀列相互独⽴且服从(0,1)N (正态分布)的随机变量。
⼜令1n n S X X =++22(1)n S n n ξ+=1(,,)n n F X X σ=试证明:,;1n n F n ξ≥()是下鞅(参见23题)。
第一章习题解答1. 设随机变量X 服从几何分布,即:(),0,1,2,k P X k pq k ===。
求X 的特征函数,EX 及DX 。
其中01,1p q p <<=-是已知参数。
解()()jtxjtkk X k f t E eepq ∞===∑()k jtkk p q e∞==∑ =0()1jt kjtk pp qe qe ∞==-∑又200()kkk k q qE X kpq p kq p p p ∞∞======∑∑222()()[()]q D X E X E X P =-=(其中 00(1)nnn n n n nxn x x ∞∞∞====+-∑∑∑)令 0()(1)n n S x n x ∞==+∑则 1000()(1)1xxnn k n xS t dt n t dt x x∞∞+===+==-∑∑⎰⎰202201()()(1)11(1)1(1)xn n dS x S t dt dxx xnx x x x ∞=∴==-∴=-=---⎰∑同理 2(1)2kkkk k k k k k x k x kx x ∞∞∞∞=====+--∑∑∑∑令20()(1)k k S x k x ∞==+∑ 则211()(1)(1)xkk k k k k S t dt k t dt k xkx ∞∞∞+====+=+=∑∑∑⎰)2、(1) 求参数为(,)p b 的Γ分布的特征函数,其概率密度函数为1,0()0,0()0,0p p bxb x e x p x b p p x --⎧>⎪=>>Γ⎨⎪≤⎩(2) 其期望和方差;(3) 证明对具有相同的参数的b 的Γ分布,关于参数p 具有可加性。
解 (1)设X 服从(,)p b Γ分布,则10()()p jtxp bxX b f t ex e dx p ∞--=Γ⎰ 1()0()p p jt b x b x e dx p ∞--=Γ⎰101()()()()(1)p u p p p p p b e u b u jt b x du jt p b jt b jt b∞----==Γ---⎰ 10(())x p p e x dx ∞--Γ=⎰ (2)'1()(0)X p E X f j b∴== 2''221(1)()(0)X p p E X f j b +== 222()()()PD XE X E X b∴===(4) 若(,)i i X p b Γ 1,2i = 则121212()()()()(1)P P X X X X jt f t f t f t b-++==-1212(,)Y X X P P b ∴=+Γ+同理可得:()()iiP X b f t b jt∑=∑-3、设X 是一随机变量,()F x 是其分布函数,且是严格单调的,求以下随机变量的特征函数。
习 题一、习题编号本次作业:1,2, 7,9,12,17,18,19,23,25 二、习题解答1.1 设随机试验E 是将一枚硬币抛两次,观察H -正面,T -反面出现的情况,试分析它的概率空间(),,P Ω。
解1.1: 样本空间:Ω = {HH, HT, TH, TT}集类:F = { Ø, Ω, {HH}, {HT}, {TH}, {TT},{HH,HT}, {HH, TH}, {HH,TT}, {HT, TH}, {HT, TT}, {TH, TT}, {HH, HT, TH}, {HH, HT, TT}, {HT, TH, TT}, {TH, TT, HH}, }概率:P: P{HH} = P{HT} = P{TH} = P{TT} = 1/41.2 设,A B ∈Ω,集类{},A B =。
试求:()σ的所有元素。
解1.2:因为:{},A B =所以:(){},,,σ=∅Ω1.3 设四个黑球与两个白球随机地等分为A 与B 两组,记A 组中白球的数目为X ;然后随机交换A 与B 中一个球,再记交换后A 组中白球的数目为Y 。
试求:(1)X 的分布律;(2)Y|X 的分布律;(3)Y 的分布律。
解1.3:(1)总计有2个白球,因此,X 的取值为0,1,2。
等分共有36C 种分法,等分后,X 取值分别为0,1,2的概率为:3211244242333666012012131()()555XX C C C C C P X P X C C C ⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ (2)交换一个球后,1)如果X 中没有白球,则交换后Y 可能取值为0、1 2)如果X 中有一个白球,则交换后Y 可能取值为0、1、2 3)如果X 中有两个白球,则交换后Y 可能取值为1、2|0|01|00|11|12|11|22|21225221(|)3399933Y XP Y X ⎛⎫ ⎪ ⎪ ⎪⎝⎭(3)20()(|)()i P Y P Y X i P X i ====∑2(0)(0|)()1123359515i P Y P Y X i P X i =======⨯+⨯=∑2(1)(1|)()21532135953535i P Y P Y X i P X i =======⨯+⨯+⨯=∑2(2)(2|)()23110953515i P Y P Y X i P X i =======+⨯+⨯=∑故Y 的分布律为:012131()555YP Y ⎛⎫ ⎪ ⎪⎪⎝⎭1.4 设A 与B 是概率空间(),,P Ω上的事件,且()01P B <<,试证明:A 与B独立的充要条件为:()()|=|P A B P A B 。
习题1. 设随机过程{(,),}X t t ω-∞<<+∞只有两条样本函数12(,)2cos ,(,)2cos ,X t t X t t x ωω==--∞<<+∞且1221(),()33P P ωω==,分别求:(1)一维分布函数(0,)F x 和(,)4F x π;(2)二维分布函数(0,;,)4F x y π;(3)均值函数()X m t ; (4)协方差函数(,)X C s t .2. 利用抛掷一枚硬币一次的随机试验,定义随机过程12cos ()2t X t πωω⎧=⎨⎩出现正面出现反面且“出现正面”与“出现反面”的概率相等,各为12,求 1)画出{()}X t 的样本函数2){()}X t 的一维概率分布,1(;)2F x 和(1;)F x3){()}X t 的二维概率分布121(,1;,)2F x x3. 通过连续重复抛掷一枚硬币确定随机过程{()}X tcos ()2t t X t t π⎧=⎨⎩在时刻抛掷硬币出现正面在时刻抛掷硬币出现反面求:(1)1(,),(1,)2F x F x ; (2)121(,1;,)2F x x4. 考虑正弦波过程{(),0}X t t ≥,()cos X t t ξω=,其中ω为正常数,~(0,1)U ξ.(1)分别求3,,,424t ππππωωωω=时()X t 的概率密度(,)f t x . (2)求均值函数()m t ,方差函数()D t ,相关函数(,)R s t ,协方差函数(,)C s t . 5. 给定随机过程:()X t t ξη=+ ()t -∞<<+∞其中r. v. (,)ξη的协方差矩阵为1334C ⎛⎫= ⎪⎝⎭,求随机过程{(),}X t t -∞<<+∞的协方差函数.6. 考虑随机游动{(),0,1,2,}Y n n =1()(),1,2,,(0)0nk Y n X k n Y ====∑其中()(0,1,2,)X k k =是相互独立同服从2(0,)N σ的正态随机变量. 试求: (1)()Y n 的概率密度;(2)((),())Y n Y m 的联合概率密度(m n ≥).7. 给定随机过程{(),}X t t T ∈,定义另一个随机过程:1,(),()0,().X t x Y t X t x <⎧=⎨≥⎩试证:{(),}Y t t T ∈的均值和自相关函数分别为{(),}X t t T ∈的一维分布函数和二维分布函数. 8. 设随机过程()cos()β=+ΘX t A t其中β为正常数,r. v. ~(0,1),~(0,2)A N U πΘ二者相互独立. 试求随机过程{(),}X t t -∞<<+∞的均值函数()m t 、方差函数()D t 和相关函数(,)R s t .9. 已知随机变量,ξη相互独立都服从正态分布2(0,)N σ,分别设:(1)()X t t ξη=+; (2)()cos X t t ξ=,令01max ()t Z X t ≤≤=,分别两种情形求()E Z .10. 一个通讯系统,以每T 秒为一周期输出一个幅度为A 的信号,A 为常数,信号输出时间~(0,)i X U T ,且持续到周期结束,设每个信号的输出时间i X 相互独立,设()Y t 为t 时刻接收到的信号幅度,求{()}Y t 的一维概率分布。
第二章一、填空题1、随机过程若按状态空间与参数集分类可分为__、__、__、__四类.2、__是随机过程{X(t),t∈T}在时刻t的平均值,__是随机过程在时刻t对均值m x(t)的偏离程度,而__和__则反映随机过程{X(t),t∈T}在时刻s和t 时的线性相关度.3、若随机变量x服从(01)分布,即p k=p{x=k}=,k=0,1则其特征函数g(t)=__.4、若随机变量X服从参数为的指数分布,则其特征函数g(t)=__.5、若随机变量X服从退化分布,即p(X=c)=1,其中c为常数,则其特征函数g(t)=__.二、计算题1、已知Γ分布,X~Γ(α,β),若其中α,β>0,试求Γ分布的特征函数.2、设随机变量X服从泊松分布,即p k=p(X=k)=,k=0,1,…,n,求其特征函数.3、设随机过程X(t)=Y+Zt,t>0,其中Y,Z是相互独立的N(0,1)随机变量,求{ X(t),t>0}的一,二维概率密度族.4、设随机过程:0),sin()cos()(>+=t t Z t Y t X θθ,其中Y 、Z 是相互独立的随机变量,且EY=EZ=0,DY=DZ=δ2,求{X(t),t>0}的均值函数、协方差函数和方差函数.5、设随机变量Y 具有概率密度f(y),令)0,0(,)(>>=-Y t t X eYt,求随机过程X(t)的一维概率密度及EX(t),R x (t 1,t 2).6、设随机过程Z t =,t 0,其中X 1,X 2,…,X n 是相互独立的,且服从N(0,)的随机变量,ω1, ω2,…, ωn 是常数,求{Z t ,t}的均值函数m(t)和相关函数R(s,t).参考答案:一、填空题1、离散参数链,连续参数链,随机序列,随机过程2、均值函数m X(t),方差函数D X(t),协方差函数B X(s,t),相关函数R X(s,t)3、q+p4、5、二、解答题1、1、g(t)===其中:Γ(α)=2、g(t)= = ===3、由于X与Z是相互独立的正态随机变量,故其线性组合仍为正态随机变量,要计算{X(t),t>0}的一、二维随机概率密度,只要计算数字特征m x(t),D X(t),即可. m x(t)=E(Y+Zt)=EY+tEZ=0,D X(t)=D(Y+Zt)=DY+t2DZ=1+t2,B X(s,t)=EX(s)X(t)- m x(s) m x(t)=E(Y+Zs)(Y+Zt)=1+st,==,故随机过程{X(t),t>0}的一、二维概率密度分别为f t(x)=exp{-},t>0,f s,t(x1,x2)=.exp{[]}, s,t>0,其中4、由数学期望的性质)sin()cos()]sin()cos([)(=+=+=EZ t EY t t Z t Y E t EX θθθθ又因为Y 、Z 相互独立,故])cos[()()sin()sin()()cos()cos()]sin()cos()][sin()cos([)]()([),(),(σ222θθθθθθθθθs t Z E t s Y E t s t Z t Y s Z s Y E t X s X E t s t s RBxX-=+=++===DX(t)=5、有随机变量函数的概率密度公式知:X(t)的一维概率密度:0,/)/ln ()(/)()()()(>-='='=t tx t x f y x y f x y y f x fX(t)的均值函数和相关函数为:dy e y f E t EX ytYte ⎰∞--==0)()()( dy y f e eeE t X t X E t t R t t y Yt Yt x )(][)]()([),(0)(21212121⎰∞+---===6、m(t)=E(Z t )=E[]=0,R(s,t)=E(Zs )=E===。
习题课(第5章)1. 考虑一个状态空间为S={1,2,3,4,5}的齐次马尔科夫链,已知p 11=0.3, p 12=0.3, p 21=0.1, p 22=0.2,试计算P(X 4=2,X 3≤2,X 2≤2,X 1≤2 | X 0=1).2. 一齐次马尔科夫链有四个状态0,1,2,3,其一步转移概率矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=0010001000012/12/100P 试确定各状态的类型。
3. 一齐次马尔科夫链状态空间为S={0,1,2,3,4},其一步转移概率矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=2/1004/14/102/12/10002/12/1000002/12/10002/12/1P 试对其状态空间进行分解。
4. 如果明天是否下雨仅取决于今天是否下雨,而与过去的天气无关。
设今天下雨、明天有雨的概率为α,今天无雨而明天有雨的概率为β。
用0状态表示有雨,用1状态表示无雨,那么n X 表示时刻n 时的天气状态,试求该过程的平稳分布。
5. 三个黑球,三个白球,等分后放入甲、乙两个袋子。
现考察甲袋中的白球数,甲乙两袋每次各取一球后互换,n 次后的状态记为n X 。
试问{n X , n =0,1,2,…}是否为马氏链,如果是,求其一步转移概率矩阵P 。
6. 如果把某门课程每年进行的期末考试仅分为“难”和“容易”两类,如果某一次考试为“难”,那么下一次考试是“容易”的概率为0.7;如果该次为“容易”,那么下一次考试是“难”的概率是0.6。
(1)试构造一个马尔科夫链来描述该过程,并写出其一步转移概率矩阵;(2)试求该门课程在某次考试为“难”的条件下,之后的连续两次均为“难”的概率;(3)若该过程的初始分布为测试为“难”和“容易”的概率各占一半,求考试连续3次为“难”的联合概率;(4)试求该过程的极限分布。
7. 小明同学本学期选了随机过程课,每周一、三、四有课。
小明的上课行为模式可描述如下:他某次是否到课仅仅取决于上一次是否到课。
习题一1.设随机变量X 服从几何分布,即:(),0,1,2,...k P X k pq k ===。
求X 的特征函数、EX 及DX 。
其中01,1p q p <<=-是已知参数。
2.(1)求参数为(p,b )的Γ分布的特征函数,其概率密度函数为(2)求其期望和方差;(3)证明对具有相同的参数b 的Γ分布,关于参数p 具有可加性。
3.设X 是一随机变量,F (x )是其分布函数,且是严格单调的,求以下随机变量的特征函数。
(1)(),(0,)Y aF X b a b =+≠是常数; (2)Z=ln F()X ,并求()k E Z (k 为自然数)。
4.设12,,...,n X X X 相互独立,具有相同的几何分布,试求 的分布。
5.试证函数 为一特征函数,并求它所对应的随机变量的分布。
6.试证函数 为一特征函数,并求它所对应的随机变量的分布。
7.设12,,...,n X X X 相互独立同服从正态分布2(,)N a σ,试求n 维随机向量12,,...,n X X X 的分布,并求出其均值向量和协方差矩阵,再求 的概率密度函数。
8.设X 、Y 相互独立,且(1)分别具有参数为(m, p)及(n, p)的二项分布;(2)分别服从参数为12(,),(,)p b p b 的Γ分布。
求X+Y 的分布。
9.已知随机向量(X, Y )的概率密度函数为试求其特征函数。
10.已知四维随机向量X ,X ,X ,X 1234()服从正态分布,均值向量为0,协方差矩阵为B σ⨯kl 44=(),求(X ,X ,X ,X E 1234)。
11.设X 1,X 2 和X 3相互独立,且都服从(0,1)N ,试求随机变量112Y X X =+和213Y X X =+组成的随机向量(Y 1, Y 2)的特征函数。
12.设X 1,X 2 和X 3相互独立,且都服从2(0,)N σ,试求:(1)随机向量(X 1, X 2, X 3)的特征函数;1,0()0,0()p p bxb x e x p x p x --⎧>⎪Γ⎨⎪≤⎩=0,0b p >>1nkk X =∑(1)()(1)jt jnt jt e e f t n e -=-21()1f t t=+11ni i X X n ==∑221[1()],1,1(,)40,xy x y x y p x y ⎧+--<<⎪=⎨⎪⎩其他(2)设112123123,,S X S X X S X X X ==+=++,求随机向量(S 1, S 2, S 3)的特征函数;(3)121Y X X =-和232Y X X =-组成的随机向量(Y 1, Y 2)的特征函数。
习题一1.设随机变量X 服从几何分布,即:(),0,1,2,...k P X k pq k ===。
求X 的特征函数、EX 及DX 。
其中01,1p q p <<=-是已知参数。
2.(1)求参数为(p,b )的Γ分布的特征函数,其概率密度函数为(2)求其期望和方差;(3)证明对具有相同的参数b 的Γ分布,关于参数p 具有可加性。
3.设X 是一随机变量,F (x )是其分布函数,且是严格单调的,求以下随机变量的特征函数。
(1)(),(0,)Y aF X b a b =+≠是常数; (2)Z=ln F()X ,并求()k E Z (k 为自然数)。
4.设12,,...,n X X X 相互独立,具有相同的几何分布,试求 的分布。
5.试证函数 为一特征函数,并求它所对应的随机变量的分布。
6.试证函数 为一特征函数,并求它所对应的随机变量的分布。
7.设12,,...,n X X X 相互独立同服从正态分布2(,)N a σ,试求n 维随机向量12,,...,n X X X 的分布,并求出其均值向量和协方差矩阵,再求 的概率密度函数。
8.设X 、Y 相互独立,且(1)分别具有参数为(m, p)及(n, p)的二项分布;(2)分别服从参数为12(,),(,)p b p b 的Γ分布。
求X+Y 的分布。
9.已知随机向量(X, Y )的概率密度函数为试求其特征函数。
10.已知四维随机向量X ,X ,X ,X 1234()服从正态分布,均值向量为0,协方差矩阵为B σ⨯kl 44=(),求(X ,X ,X ,X E 1234)。
11.设X 1,X 2 和X 3相互独立,且都服从(0,1)N ,试求随机变量112Y X X =+和213Y X X =+组成的随机向量(Y 1, Y 2)的特征函数。
12.设X 1,X 2 和X 3相互独立,且都服从2(0,)N σ,试求:1,0()0,0()p p bxb x e x p x p x --⎧>⎪Γ⎨⎪≤⎩=0,0b p >>1nkk X =∑(1)()(1)jt jnt jt e e f t n e -=-21()1f t t=+11ni i X X n ==∑221[1()],1,1(,)40,xy x y x y p x y ⎧+--<<⎪=⎨⎪⎩其他(1)随机向量(X 1, X 2, X 3)的特征函数;(2)设112123123,,S X S X X S X X X ==+=++,求随机向量(S 1, S 2, S 3)的特征函数;(3)121Y X X =-和232Y X X =-组成的随机向量(Y 1, Y 2)的特征函数。
第一章习题解答1. 设随机变量X 服从几何分布,即:(),0,1,2,k P X k pq k ===L 。
求X 的特征函数,EX 及DX 。
其中01,1p q p <<=-是已知参数。
解 0()()jtxjtkk X k f t E eepq ∞===∑Q()k jtkk p q e∞==∑ =0()1jt kjtk pp qe qe ∞==-∑又200()kkk k q qE X kpq p kq p p p ∞∞======∑∑Q222()()[()]q D X E X E X P =-=(其中 00(1)nnn n n n nxn x x ∞∞∞====+-∑∑∑)令 0()(1)n n S x n x ∞==+∑则 1000()(1)1xxnn k n xS t dt n t dt x x∞∞+===+==-∑∑⎰⎰202201()()(1)11(1)1(1)xn n dS x S t dt dxx xnx x x x ∞=∴==-∴=-=---⎰∑同理 2(1)2kkkk k k k k k x k x kx x ∞∞∞∞=====+--∑∑∑∑令20()(1)k k S x k x ∞==+∑ 则211()(1)(1)xkk k k k k S t dt k t dt k xkx ∞∞∞+====+=+=∑∑∑⎰)W2、(1) 求参数为(,)p b 的Γ分布的特征函数,其概率密度函数为1,0()0,0()0,0p p bxb x e x p x b p p x --⎧>⎪=>>Γ⎨⎪≤⎩(2) 其期望和方差;(3) 证明对具有相同的参数的b 的Γ分布,关于参数p 具有可加性。
解 (1)设X 服从(,)p b Γ分布,则10()()p jtxp bxX b f t ex e dx p ∞--=Γ⎰ 1()0()p p jt b x b x e dx p ∞--=Γ⎰101()()()()(1)p u p p p p p b e u b u jt b x du jt p b jt b jt b∞----==Γ---⎰ 1(())x p p e x dx ∞--Γ=⎰Q (2)'1()(0)X p E X f j b∴== 2''221(1)()(0)X p p E X f j b +== 222()()()PD XE X E X b∴===(4) 若(,)i i X p b Γ: 1,2i = 则121212()()()()(1)P P X X X X jt f t f t f t b-++==-1212(,)Y X X P P b ∴=+Γ+:同理可得:()()iiP X b f t b jt∑=∑- W3、设X 是一随机变量,()F x 是其分布函数,且是严格单调的,求以下随机变量的特征函数。
习题
1. 设随机过程{(,),}X t t ω-∞<<+∞只有两条样本函数
12(,)2cos ,(,)2cos ,X t t X t t x ωω==--∞<<+∞
且1221
(),()33P P ωω==,分别求:
(1)一维分布函数(0,)F x 和(,)4F x π
;
(2)二维分布函数(0,;,)4F x y π
;
(3)均值函数()X m t ; (4)协方差函数(,)X C s t .
2. 利用抛掷一枚硬币一次的随机试验,定义随机过程
1
2
cos ()2t X t πωω⎧=⎨⎩出现正面出现反面
且“出现正面”与“出现反面”的概率相等,各为1
2
,求 1)画出{()}X t 的样本函数
2){()}X t 的一维概率分布,1
(;)2F x 和(1;)F x
3){()}X t 的二维概率分布121
(,1;,)2
F x x
3. 通过连续重复抛掷一枚硬币确定随机过程{()}X t
cos ()2
t t X t t π⎧=⎨
⎩在时刻抛掷硬币出现正面
在时刻抛掷硬币出现反面
求:(1)1(,),(1,)2F x F x ; (2)121
(,1;,)2
F x x
4. 考虑正弦波过程{(),0}X t t ≥,()cos X t t ξω=,其中ω为正常数,~(0,1)U ξ.
(1)分别求3,,,424t ππππωωωω
=
时()X t 的概率密度(,)f t x . (2)求均值函数()m t ,方差函数()D t ,相关函数(,)R s t ,协方差函数(,)C s t . 5. 给定随机过程:
()X t t ξη=+ ()t -∞<<+∞
其中r. v. (,)ξη的协方差矩阵为1334C ⎛⎫
= ⎪⎝⎭
,
求随机过程{(),}X t t -∞<<+∞的协方差函数.
6. 考虑随机游动{(),0,1,2,}Y n n =
1
()(),1,2,
,(0)0n
k Y n X k n Y ==
==∑
其中()(0,1,2,)X k k =是相互独立同服从2(0,)N σ的正态随机变量. 试求: (1)()Y n 的概率密度;
(2)((),())Y n Y m 的联合概率密度(m n ≥).
7. 给定随机过程{(),}X t t T ∈,定义另一个随机过程:
1,(),()0,().X t x Y t X t x <⎧=⎨≥⎩
试证:{(),}Y t t T ∈的均值和自相关函数分别为{(),}X t t T ∈的一维分布函数和二维分布函数. 8. 设随机过程
()cos()β=+ΘX t A t
其中β为正常数,r. v. ~(0,1),~(0,2)A N U πΘ二者相互独立. 试求随机过程{(),}X t t -∞<<+∞的均值函数()m t 、方差函数()D t 和相关函数(,)R s t .
9. 已知随机变量,ξη相互独立都服从正态分布2(0,)N σ,分别设:
(1)()X t t ξη=+; (2)()cos X t t ξ=,
令01
max ()t Z X t ≤≤=,分别两种情形求()E Z .
10. 一个通讯系统,以每T 秒为一周期输出一个幅度为A 的信号,A 为常数,信号输出时间
~(0,)i X U T ,且持续到周期结束,设每个信号的输出时间i X 相互独立,设()Y t 为t 时
刻接收到的信号幅度,求{()}Y t 的一维概率分布。
11. 一个通讯系统,每隔T 秒信号源输出一个宽为X 的矩形脉冲,其中r. v. ~(0,)X U T ,
并假定不同时间间隔脉冲宽度的取值是相互独立的,能传送的这类信号称为脉冲调制信号. 设(),0Y t t ≥,表示脉冲宽度调制信号在t 时间幅度{(),0}Y t t ≥是一个随机过程,它的一个样本函数如图所示. 试求()Y t 的一维分布.
图
12. 一个通讯系统,以每T 秒为一周期输出一个幅度为A 的信号,A 为常数,每个周期内信
号输出时间5~(0,)6i X U T ,持续时间~(0,)6i T
Z U ,,i i X Z 相互独立,且输出时间i X 相
互独立,持续时间i Z 也相互独立,证()Y t 为t 时刻接收到的信号幅度,求{()}Y t 的一维概率分布。
13. 一脉冲位置调置信号()Y t ,其幅度为A ,(0,)U T ξ=,ξ与()Y t 相互独立,设
()()Z t Y t ξ=+,求(1)()Z t 的一维概率分布;(2){()}Z t 的均值函数和自相关函数. O
T 2T 3T
X 1 X 2
X 3 X 4 A Y (t ) t
14. 设()cos()X t a t ξη=+其中a 为常数,ξ服从柯西分布,
即21
(),()(1)
f x t x ξπ=-∞<<+∞+
~(0,2)U ηπ,,ξη相互独立. 求该过程均值函数()X m t ,协方差函数(,)C s t .
15. 设()cos()X t t ξβη=+,其中β为正常数,随机变量ξ服从瑞利分布:
2
2
22,0(),00,0x x e x f x x σξσσ-⎧⎪>=>⎨⎪≤⎩
~(0,2)U ηπ,ξ与η相互独立. 试求随机过程{(),}X t t -∞<<+∞的均值函数()X m t ,协
方差函数(,)X C s t .
16. (半随机二元波) 设{(),}X t t -∞<<+∞在每个长度为T 的区间[(1),]n T nT -,
0,1,2,n =±±,取值+1或1-,且
1
{()1}{()1},(1)2
P X t P X t n T t nT ===-=-<<
且在不同区间的取值是独立的.求{(),}X t t -∞<<+∞的均值函数和自相关函数。