小学奥数 简单数列求和讲课教案
- 格式:ppt
- 大小:801.50 KB
- 文档页数:7
数列求和教学设计一、学情分析和教法设计:1、学情分析:学生在前一阶段的复习,已经基本掌握了等差、等比数列这两类最基本的数列的定义、通项公式、求和公式,同时也掌握了与等差、等比数列相关的综合问题的一般解决方法,也学会了由数列的递推公式求数列的通项公式。
本节课作为一节复习课,将会根据不同的通项公式求出数列的和,并能运用通项分裂成差的两项进行相加抵消的方法求和,也用构造同类项利用错位相减法求差比数列的和,从而培养学生观察、分析、归纳、猜想的能力、逻辑思维能力以及演绎推理的能力。
2、教法设计:本节课设计的指导思想是:引导学生进行探索、讨论,分析、启发、总结。
先引出相应的知识点,然后分析解决的问题,在例题及变式中巩固相应方法,再从讨论中对求和方法的理解,更好地锻炼学生探索和解决问题的能力。
在教学过程中采取如下方法:先提出问题再让学生回答,调动学生的主动性和积极性,发挥其创造性;有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性;可以及时巩固所学内容,抓住重点,突破难点。
因此本节课采用学生主讲、教师点评的授课方式,既能充分发挥学生主观能动性,又能充分暴露学生认知过程中的错误,获取理想的教学效果.二、教学设计:1、教材的地位与作用:数列求和是数列的重要内容,是研究数列的一种方法。
对数列的内容的考查是近几年高考的热点内容之一,属于高考命题中常考常新的内容;化归思想是解决数学问题的基本思想,解题的过程实际上就是转化的过程。
2、教学目标:研究近几年的高考试卷,发现数列与不等式,三角函数,向量等知识的综合应用往往出现在高考中的最后两题,成为学生的丢分题,从而加强数列综合应用的教学显得尤为重要.根据学生的认知水平和数列求和在新课程理念的要求,确定教学目标如下:◆知识目标:①复习等差和等比数列的前n项和公式、回忆公式推导过程所用倒序想加和错位相减的思想方法,及用数列求和公式求和时,应弄清基本量中各基本量的值,特别是用等比数列求和公式求和时,应关注公比q是否为1;②记住一些常见结论便于用公式法对数列求和;③学会分析通项的结构并且对通项进行分拆;能运用拆并项求和思想方法解决非特殊数列求和问题。
《数列求和》教学设计(第一课时)目标:1、熟练掌握等差、等比数列的求和公式2、掌握非等差、等比数列求和的几种常见模型与方法重点:掌握由数列通项公式求数列的前几项和的方法难点:非等差,等比数列的求和如何化归为等差,等比数列的求和以及应用。
利用裂项相消法、错位相减法求数列的前几项和;高考定位:知识梳理:一、数列求和的常用方法1.公式法(1)等差数列的前n 项和公式:S n =n (a 1+a n )2=______________; (2)等比数列的前n 项和公式:S n =⎩⎪⎨⎪⎧ na 1,q =1,a 1-a n q 1-q=a 1(1-q n )1-q ,q ≠1.2.分组转化法把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. 3.裂项相消法(1)把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.(2)裂项时常用的三种变形:①1n (n +1)=1n -1n +1; ②1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎪⎫12n -1-12n +1; ③1n +n +1=n +1-n .4.错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,这个数列的前n项和可用错位相减法求解.5.倒序相加法如果一个数列{a n}的前n项中与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n项和即可用倒序相加法求解.6.并项求和法一个数列的前n项和中,可两两结合求解,则称之为并项求和.形如a n=(-1)n f(n)类型,可采用两项合并求解.例如,S n=1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050.一、公式法求数列的前n项和•求数列的通项公式»等差数列»等比数列•求数列前n项和的公式»等差数列»等比数列高考链接例(2016·北京高考改编)已知{a n}是等差数列,{b n}是等比数列,且b2=3,b3=9,a1=b1,a14=b4.(1)求{a n}的通项公式;a n=2n-1,b n=3n-1.(2) 求数列{a n},{b n}的前n项和;(3)设c n=a n+b n,求数列{c n}的前n项和;例题第二问主要考察的是等差数列与等比数列的求和公式,故而让学生快速计算,要求算的要快,要准确。
数列求和(教案)教学目标:会利用等差、等比数列的前n 项和求一些特殊数列的前n 项和;会灵活运用倒序相加法、裂项相消法、错位相减法、拆项重组法求和。
教学重点:错位相减法、裂项相消法的熟练运用。
教学环节:一、课题引入:通过高斯的故事,引出数列求和。
二、展示考纲要求三、检测课前预习,归纳求和方法1、已知数列{a n }的通项公式a n =2n +2n-1,则其前n 项和S n =( )A 、2n+n-2B 、2n+1+n2-2C 、2n+n2-2D 、2n+1+n22、若lg(xy)2=,111lg lg()...lg()lg n n n n s x xy x y y --=++++ (x>0,y>0),s=( ) A 、n n+12() B 、n 2 C 、n n 1+() D 、n 23、数列{a n }的前n 项和为S n ,若a n = 1(1)n n +,则S 5=( ) A 、130B 、45C 、56D 、16 4、已知数列{a n }的通项公式a n =n ,数列{b n }的通项公式b n = 2n 。
求数列{a n b n }的前n 项和T n 。
方法归纳:1、公式法 ①直接用等差、等比数列的求和公式求和②掌握一些常见的数列的前n 项和2、倒序相加法一个数列如果距首末两项等距离的项的和相等,那么求这个数列的前n 项和可用倒序相加法。
相加时注意:(1)首末两项的和是多少?(2)共有多少个这样的和?3、错位相减法错位相减法主要用于{a n ·b n }的前n 项和,其中{a n }、{b n }分别是等差数列和等比数列,乘以等比数列的公比实现错位,目的是为了对齐同类项;相减目的是为了构造新的等比数列,但最后一项的符号要判断准确。
4、裂项相消法把数列的每一项变为两数之差,以便大部分项能“正”、“负”相消,只剩下有限几项。
常适用于通项为11n n a a +⋅的前n 项和,其中数列{a n }为等差数列。
数列求和公式教案教案标题:数列求和公式教案教案目标:1. 了解数列的概念和特点。
2. 掌握数列求和公式的推导和应用。
3. 培养学生的逻辑思维和数学推理能力。
教学重点:1. 数列求和公式的推导过程。
2. 数列求和公式的应用。
教学难点:1. 数列求和公式的推导过程。
2. 复杂数列求和公式的应用。
教学准备:1. 教师准备:白板、黑板笔、教材、多媒体课件。
2. 学生准备:课本、笔记工具。
教学过程:Step 1: 引入(5分钟)教师通过提问和示例引入数列的概念,引发学生对数列的兴趣,并与学生一起总结数列的特点。
Step 2: 数列求和公式的推导(15分钟)2.1 教师给出一些简单的数列,引导学生观察规律,并引导学生尝试推导数列求和公式。
2.2 教师给出数列求和公式的推导过程,逐步解释每个步骤的原因和意义。
2.3 学生进行小组合作,尝试推导其他数列的求和公式,并与全班分享他们的思路和答案。
Step 3: 数列求和公式的应用(20分钟)3.1 教师通过多个实际问题引导学生将数列求和公式应用于实际情境中。
3.2 学生进行个人或小组练习,解决与数列求和相关的问题。
3.3 学生展示他们的解决方法和答案,并与全班进行讨论和比较。
Step 4: 拓展与延伸(10分钟)4.1 教师提供一些复杂的数列求和问题,引导学生运用已学知识进行解决。
4.2 学生进行个人或小组探究,解决更具挑战性的数列求和问题。
4.3 学生展示他们的解决方法和答案,并与全班进行讨论和比较。
Step 5: 总结与评价(5分钟)教师与学生一起总结数列求和公式的推导过程和应用方法,并对学生的学习成果进行评价和反馈。
教学延伸:1. 学生可以尝试推导其他类型的数列求和公式,如等差数列、等比数列等。
2. 学生可以通过阅读相关数学文献或书籍,了解更多数列求和公式的应用领域。
教学资源:1. 教材:数学教材相关章节。
2. 多媒体课件:用于展示示例和推导过程等。
教学评价:1. 学生的课堂参与情况。
数列求和免费教案教案标题:数列求和免费教案教学目标:1. 学生能够理解数列的概念和性质。
2. 学生能够应用递推公式求解数列的前n项和。
3. 学生能够解决实际问题中与数列求和相关的计算。
教学准备:1. 教师准备白板、黑板笔、教学投影仪等教学工具。
2. 学生准备纸和笔。
教学过程:步骤一:导入(5分钟)教师通过提问引导学生回顾数列的概念,并与学生一起讨论数列的应用领域,如金融、物理等。
步骤二:概念讲解(10分钟)教师通过示例和图示解释数列的递推公式和通项公式,并与学生一起探讨数列的性质,如等差数列和等比数列的特点。
步骤三:数列求和方法介绍(10分钟)教师向学生介绍数列求和的常用方法,包括等差数列求和公式和等比数列求和公式,并通过实例演示求解数列的前n项和。
步骤四:练习与讨论(15分钟)教师提供一些练习题,要求学生独立解答,并在解答完成后进行讨论和答疑。
教师可以选择一些实际问题,让学生应用数列求和的方法解决问题。
步骤五:拓展应用(10分钟)教师引导学生思考更复杂的数列求和问题,如求解部分项和、求解无穷级数等,并与学生一起探讨解决方法。
步骤六:总结与归纳(5分钟)教师与学生一起总结数列求和的方法和应用,并提醒学生在实际问题中灵活运用数列求和的知识。
步骤七:作业布置(5分钟)教师布置相关的作业,要求学生练习数列求和的应用,并在下节课前完成。
教学延伸:1. 学生可以通过编写程序来计算数列的前n项和,进一步巩固数列求和的概念和方法。
2. 学生可以研究更复杂的数列求和问题,如级数求和、递归数列求和等,拓展数列求和的应用领域。
教学评估:1. 教师通过课堂练习和讨论,观察学生对数列求和的理解和应用能力。
2. 教师可以布置作业来评估学生的数列求和能力,并及时给予反馈。
教学反思:教师可以根据学生的学习情况和反馈,调整教学方法和内容,以提高学生对数列求和的理解和应用能力。
《数列求和》教学设计一、教学目标1.知识目标学生能够理解数列求和的基本概念,掌握常用的数列求和公式,能够熟练应用求和公式解决实际问题。
2.能力目标学生能够运用数学思维和方法,分析问题,提出合理的求和方法,并能灵活运用求和公式解决实际问题。
3.情感目标学生能够树立积极的学习态度,发现数列求和的有趣之处,提高数学思维能力和解决问题的能力。
二、教学重点和难点1.教学重点(1)数列求和的基本概念和常用的求和公式;(2)运用求和公式解决实际问题。
2.教学难点(1)问题分析和求解的过程;(2)运用数列求和解决实际问题。
三、教学过程设计1.导入新课(10分钟)(1)向学生提问:“在做加法运算的时候,我们经常会遇到从1开始的连续整数相加的问题,你们知道如何快速求和吗?”(2)引导学生思考,并提示“等差数列”的概念。
(3)分享一个有趣的问题:“小明和小红相约去打篮球,每天他们都会增加一个篮球的练习量,小明从第一天开始每天练习一个篮球,小红从第一天开始每天练习两个篮球,问他们练习30天后总共练习了多少个篮球?”(4)引导学生思考解决问题的方法。
2.板书设计(5分钟)根据导入新课的内容,板书“等差数列”和“数列求和”的概念。
3.概念讲解(20分钟)(1)对等差数列的概念进行详细讲解和举例。
(2)引入数列求和的概念,并通过具体的例子让学生理解求和的含义。
(3)介绍数学家高斯的求和故事,引出等差数列求和公式。
4.基本求和公式(20分钟)(1)教师讲解等差数列求和的基本公式S_n=(a_1+a_n)*n/2,并通过例题进行演练。
(2)介绍等差数列求和公式的推导过程,并通过几个简单例子进行说明。
5.应用题训练(25分钟)(1)学生分组进行应用题训练,训练内容包括常见的等差数列求和问题和实际生活中的应用问题。
(2)学生在小组内共同讨论,解决问题,并由小组代表上台分享解题思路和解题过程。
6.拓展练习(15分钟)(1)给出一些拓展练习,要求学生在规定时间内完成,并进行答案的交流和讨论。
三年级奥数专题教案一、第一章:数列问题1.1 教学目标:(1)使学生理解数列的概念及其基本性质。
(2)培养学生解决数列问题的能力。
1.2 教学内容:(1)数列的定义与性质。
(2)数列的通项公式。
(3)数列的求和方法。
1.3 教学重点与难点:(1)数列的概念及其性质。
(2)数列的通项公式的应用。
1.4 教学方法:采用讲授法、案例分析法、小组讨论法等。
1.5 教学步骤:(1)引入数列的概念,引导学生理解数列的定义。
(2)讲解数列的性质,让学生掌握数列的基本特点。
(3)介绍数列的通项公式,并通过例题让学生熟悉公式的应用。
(4)讲解数列的求和方法,让学生学会解决数列求和问题。
二、第二章:几何问题2.1 教学目标:(1)使学生了解几何图形的基本概念及其性质。
(2)培养学生解决几何问题的能力。
2.2 教学内容:(1)几何图形的定义与性质。
(2)几何图形的计算方法。
(3)几何问题的解决策略。
2.3 教学重点与难点:(1)几何图形的基本概念及其性质。
(2)几何图形的计算方法。
2.4 教学方法:采用讲授法、案例分析法、小组讨论法等。
2.5 教学步骤:(1)介绍几何图形的基本概念,让学生了解各种几何图形的特点。
(2)讲解几何图形的性质,让学生掌握图形的性质及其运用。
(3)介绍几何图形的计算方法,并通过例题让学生熟悉计算过程。
(4)讲解几何问题的解决策略,让学生学会解决实际问题。
三、第三章:逻辑问题3.1 教学目标:(1)使学生理解逻辑问题的基本概念。
(2)培养学生解决逻辑问题的能力。
3.2 教学内容:(1)逻辑问题的定义与特点。
(2)逻辑推理的方法。
(3)逻辑问题的解决策略。
3.3 教学重点与难点:(1)逻辑问题的基本概念。
(2)逻辑推理的方法。
3.4 教学方法:采用讲授法、案例分析法、小组讨论法等。
3.5 教学步骤:(1)引入逻辑问题的概念,让学生了解逻辑问题的特点。
(2)讲解逻辑推理的方法,让学生掌握推理过程。
数列求和教学目标: 让学生回顾数列基本知识点;让学生能够掌握数列的求和的几种基本方法;锻炼学生的自我思考能力。
教学重难点:对题意的分析以及方法的选择。
学法指导:示范,探究教学过程:※课标展示,强调本节内容及重点一、 回顾数列求和的方法:学生活动:请学生做总结,不全的由其他同学做补充。
通过课件总结方法:1、 公式法2、 分组求和法3、 裂项法4、 错位相加法5、 倒叙相加法二、 互动探究1、(2010重庆)、已知{}n a 是首项为19,公差为-2的等差数列,n S 为{}n a 的前n 项和.(Ⅰ)求通项n a 及n S ;(Ⅱ)设{}n n b a -是首项为1,公比为3的等比数列,求数列{}n b 的通项公式及其前n 项和n T . 学生活动:学生小组讨论后,由学生对本题题意及解题方法进行讲解,然后由其他组同学进行补充或者更正。
教师活动:通过课件展示整个解题过程,1、点出学生方法中的不足2、强调步骤的严密性3、对例题做出点评。
2、(2010山东) 已知等差数列{}n a 满足:3577,26a a a =+=.{}n a 的前n 项和为n S 。
(Ⅰ)求n a 及n S ; (Ⅱ)令21()1n n b n N a +=∈-,求数列{}n a 的前n 项和T n . 学生活动:学生小组讨论后,由学生对本题题意及解题方法进行讲解,然后由其他组同学进行补充或者更正。
教师活动:通过课件展示整个解题过程,1、点出学生方法中的不足2、强调步骤的严密性3、对例题做出点评。
3 学生活动:学生小组讨论后,由学生对本题题意及解题方法进行讲解,然后由其他组同学进行补充或者更正。
教师活动:通过课件展示整个解题过程,1、点出学生方法中的不足2、强调步骤的严密性3、对例题做出点评。
4学生活动:学生小组讨论后,由学生对本题题意及解题方法进行讲解,然后由其他组同学进行补充或者更正。
教师活动:通过课件展示整个解题过程,1、点出学生方法中的不足2、强调步骤的严密性3、对例题做出点评。
6.4 数列求和【考纲要求】1.考查非等差、等比数列求和的几种常见方法.2.通过数列求和考查学生的观察能力、分析问题与解决问题的能力以及计算能力. 【复习指导】1.熟练掌握和应用等差、等比数列的前n 项和公式.2.熟练掌握常考的错位相减法,裂项相消以及分组求和这些基本方法,注意计算的准确性和方法选择的灵活性. 【基础梳理】 数列求和的常用方法 1.公式法直接利用等差数列、等比数列的前n 项和公式求和 (1)等差数列的前n 项和公式: S n =n (a 1+a n )2=na 1+n (n -1)2d ;(2)等比数列的前n 项和公式: S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q =a 1(1-q n )1-q ,q ≠1.2.倒序相加法如果一个数列{a n }的前n 项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法,如等差数列的前n 项和公式即是用此法推导的. 3.错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求,如等比数列的前n 项和公式就是用此法推导的. 4.裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和. 5.分组转化求和法一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和而后相加减. 6.并项求和法一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050.【助学微博】 一种思路一般数列求和,应从通项入手,若无通项,先求通项,然后通过对通项变形,转化为与特殊数列有关或具备某种方法适用特点的形式,从而选择合适的方法求和. 两个提醒在利用裂项相消法求和时应注意:(1)在把通项裂开后,是否恰好等于相应的两项之差;(2)在正负项抵消后,是否只剩下了第一项和最后一项,或有时前面剩下两项,后面也剩下两项. 三个公式(1)1n n +1=1n -1n +1;(2)12n -12n +1=12⎝⎛⎭⎫12n -1-12n +1; (3)1n +n +1=n +1-n .【考向探究】考向一 公式法求和【例1】►已知数列{a n }是首项a 1=4,公比q ≠1的等比数列,S n 是其前n 项和,且4a 1,a 5,-2a 3成等差数列. (1)求公比q 的值;(2)求T n =a 2+a 4+a 6+…+a 2n 的值.【训练1】 在等比数列{a n }中,a 3=9,a 6=243,求数列{a n }的通项公式a n 及前n 项和公式S n ,并求a 9和S 8的值.考向二 分组转化求和【例2】►(2012·包头模拟)已知数列{x n }的首项x 1=3,通项x n =2n p +nq (n ∈N *,p ,q 为常数),且x 1,x 4,x 5成等差数列.求:(1)p ,q 的值;(2)数列{x n }前n 项和S n 的公式.【训练2】 求和S n =1+⎝⎛⎭⎫1+12+⎝⎛⎭⎫1+12+14+…+⎝⎛⎭⎫1+12+14+…+12n -1.考向三 裂项相消法求和【例3】►在数列{a n }中,a 1=1,当n ≥2时,其前n 项和S n 满足S 2n =a n ⎝⎛⎭⎫S n -12. (1)求S n 的表达式;(2)设b n =S n2n +1,求{b n }的前n 项和T n .【训练3】 在数列{a n }中,a n =1n +1+2n +1+…+n n +1,又b n =2a n ·a n +1,求数列{b n }的前n项和S n .考向四 错位相减法求和【例4】►已知等差数列{a n }满足a 2=0,a 6+a 8=-10. (1)求数列{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫a n 2n -1的前n 项和.【训练4】 设数列{a n }满足a 1+3a 2+32a 3+…+3n -1a n =n 3,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =na n ,求数列{b n }的前n 项和S n .【专题突破】未对q =1或q ≠1讨论出错【问题诊断】 错位相减法适合于一个由等差数列{a n }及一个等比数列{b n }对应项之积组成的数列.考生在解决这类问题时,都知道利用错位相减法求解,也都能写出此题的解题过程,但由于步骤繁琐、计算量大导致了漏项或添项以及符号出错等.【防范措施】 两边乘公比后,对应项的幂指数会发生变化,应将相同幂指数的项对齐,这样有一个式子前面空出一项,另外一个式子后面就会多了一项,两项相减,除第一项和最后一项外,剩下的n -1项是一个等比数列.【示例】►(2010·四川)已知等差数列{a n }的前3项和为6,前8项和为-4. (1)求数列{a n }的通项公式;(2)设b n =(4-a n )q n -1(q ≠0,n ∈N *),求数列{b n }的前n 项和S n . 错因 未对q =1或q ≠1分别讨论,相减后项数、符号均出现了错误. 实录 (1)由已知得⎩⎪⎨⎪⎧a 1+a 2+a 3=6,a 1+a 2+…+a 8=-4, 即⎩⎪⎨⎪⎧3a 1+3d =6,8a 1+28d =-4, 解得a 1=3,d =-1,∴a n =4-n . (2)由(1)知b n =n ·q n -1,∴S n =1+2·q 1+3·q 2+…+n ·q n -1, qS n =1·q +2·q 2+3·q 3+…+n ·q n ,两式相减得:(1-q )S n =1+q +q 2+…+q n -1+n ·q n =1-q n 1-q +n ·q n .∴S n =1-q n 1-q 2+n ·q n 1-q . 正解 (1)设{a n }的公差为d ,则由已知得⎩⎪⎨⎪⎧ a 1+a 2+a 3=6,a 1+a 2+…+a 8=-4,即⎩⎪⎨⎪⎧3a 1+3d =6,8a 1+28d =-4,解得a 1=3,d =-1,故a n =3-(n -1)=4-n . (2)由(1)知,b n =n ·q n -1,于是S n =1·q 0+2·q 1+3·q 2+…+n ·q n -1, 若q ≠1,上式两边同乘以q .qS n =1·q 1+2·q 2+…+(n -1)·q n -1+n ·q n , 两式相减得:(1-q )S n =1+q 1+q 2+…+q n -1-n ·q n =1-q n 1-q-n ·q n . ∴S n =1-q n 1-q 2-n ·q n 1-q =n ·q n +1-n +1q n +11-q 2.若q =1,则S n =1+2+3+…+n =n n +12,∴S n=⎩⎪⎨⎪⎧n n +12 q =1,nq n +1-n +1q n +11-q2q ≠1.【试一试】已知数列{a n }是首项为a 1=14,公比q =14的等比数列,设b n +2=3log 14a n (n ∈N *),数列{c n }满足c n =a n ·b n . (1)求数列{b n }的通项公式; (2)求数列{c n }的前n 项和S n .答案【例1】[审题视点] 求出公比,用等比数列求和公式直接求解. 解 (1)由题意得2a 5=4a 1-2a 3. ∵{a n }是等比数列且a 1=4,公比q ≠1, ∴2a 1q 4=4a 1-2a 1q 2,∴q 4+q 2-2=0, 解得q 2=-2(舍去)或q 2=1,∴q =-1.(2)∵a 2,a 4,a 6,…,a 2n 是首项为a 2=4×(-1)=-4,公比为q 2=1的等比数列,∴T n =na 2=-4n .应用公式法求和时,要保证公式使用的正确性,尤其要区分好等差数列、等比数列的通项公式及前n 项和公式. 【训练1】解 在等比数列{a n }中,设首项为a 1,公比为q ,由a 3=9,a 6=243,得q 3=a 6a 3=2439=27,∴q =3.由a 1q 2=a 3,得9a 1=9,∴a 1=1.于是,数列{a n }的通项公式为a n =1×3n -1=3n -1, 前n 项和公式为S n =1×1-3n 1-3=3n -12.由此得a 9=39-1=6 561,S 8=38-12=3 280. 【例2】[审题视点] 第(1)问由已知条件列出关于p 、q 的方程组求解;第(2)问分组后用等差、等比数列的求和公式求解.解 (1)由x 1=3,得2p +q =3,又因为x 4=24p +4q ,x 5=25p +5q ,且x 1+x 5=2x 4,得3+25p +5q =25p +8q ,解得p =1,q =1.(2)由(1),知x n =2n +n ,所以S n =(2+22+…+2n )+(1+2+…+n )=2n +1-2+n n +12. 对于不能由等差数列、等比数列的前n 项和公式直接求和的问题,一般需要将数列通项的结构进行合理的拆分,转化成若干个等差数列、等比数列的求和. 【训练2】解 和式中第k 项为 a k =1+12+14+…+12k -1=1-⎝⎛⎭⎫12k1-12=2⎝⎛⎭⎫1-12k .∴S n =2⎣⎡⎦⎤⎝⎛⎭⎫1-12+⎝⎛⎭⎫1-122+…+⎝⎛⎭⎫1-12n =2⎣⎡⎦⎤1+1+…+1n 个-⎝⎛⎭⎫12+122+…+12n =2⎣⎢⎡⎦⎥⎤n -12⎝⎛⎭⎫1-12n 1-12=12n -1+2n -2. 【例3】[审题视点] 第(1)问利用a n =S n -S n -1(n ≥2)后,再同除S n -1·S n 转化为⎩⎨⎧⎭⎬⎫1S n 的等差数列即可求S n .第(2)问求出{b n }的通项公式,用裂项相消求和. 解 (1)∵S 2n =a n ⎝⎛⎭⎫S n -12,a n =S n -S n -1(n ≥2), ∴S 2n =(S n -S n -1)⎝⎛⎭⎫S n -12, 即2S n -1S n =S n -1-S n ,① 由题意S n -1·S n ≠0,①式两边同除以S n -1·S n ,得1S n -1S n -1=2,∴数列⎩⎨⎧⎭⎬⎫1S n 是首项为1S 1=1a 1=1,公差为2的等差数列.∴1S n =1+2(n -1)=2n -1,∴S n =12n -1. (2)又b n =S n 2n +1=12n -12n +1=12⎝⎛⎭⎫12n -1-12n +1,∴T n =b 1+b 2+…+b n=12⎣⎡⎦⎤⎝⎛⎭⎫1-13+⎝⎛⎭⎫13-15+…+⎝⎛⎭⎫12n -1-12n +1 =12⎝⎛⎭⎫1-12n +1=n2n +1.使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的. 【训练3】解 a n =1n +1+2n +1+…+n n +1=1+2+…+n n +1=n n +12n +1=n2. ∴b n =2a n ·a n +1=2n 2·n +12=8nn +1=8⎝⎛⎭⎫1n -1n +1.∴S n =8⎣⎡⎦⎤⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1n +1 =8⎝⎛⎭⎫1-1n +1=8nn +1. 【例4】[审题视点] 第(1)问列出关于首项a 1与公差d 的方程组可求解;第(2)问观察数列⎩⎨⎧⎭⎬⎫a n 2n -1的通项采用错位相减法.解 (1)设等差数列{a n }的公差为d ,由已知条件可得⎩⎪⎨⎪⎧ a 1+d =0,2a 1+12d =-10,解得⎩⎪⎨⎪⎧a 1=1,d =-1.故数列{a n }的通项公式为a n =2-n .(2)设数列⎩⎨⎧⎭⎬⎫a n 2n -1的前n 项和为S n ,∵a n 2n -1=2-n 2n -1=12n -2-n 2n -1, ∴S n =⎝⎛⎭⎫2+1+12+122+…+12n -2-⎝⎛⎭⎫1+22+322+…+n 2n -1.记T n =1+22+322+…+n2n -1,① 则12T n =12+222+323+…+n2n ,②①-②得:12T n =1+12+122+…+12n -1-n 2n ,∴12T n =1-12n1-12-n 2n. 即T n =4⎝⎛⎭⎫1-12n -n 2n -1. ∴S n =2⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12-4⎝⎛⎭⎫1-12n +n2n -1=4⎝⎛⎭⎫1-12n -4⎝⎛⎭⎫1-12n +n 2n -1=n 2n-1.用错位相减法求和时,应注意(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n -qS n ”的表达式. 【训练4】解 (1)a 1+3a 2+32a 3+…+3n -1a n =n 3,①∴当n ≥2时,a 1+3a 2+32a 3+…+3n -2a n -1=n -13, ②①-②得:3n -1a n =n 3-n -13=13,∴a n =13n .当n =1时,a 1=13也适合上式,∴a n =13n .(2)b n =na n=n ·3n ,∴S n =1×3+2×32+3×33+…+n ·3n , ③ 则3S n =32+2×33+3×34+…+n ·3n +1, ④∴③-④得:-2S n =3+32+33+…+3n -n ·3n +1 =31-3n 1-3-n ·3n +1=-32(1-3n )-n ·3n +1.∴S n =34(1-3n)+n ·3n +12=34+2n -1·3n +14. 【试一试】[解答] (1)由题意,知a n =⎝⎛⎭⎫14n(n ∈N *), 又b n =3log 14a n -2,故b n =3n -2(n ∈N *).(2)由(1),知a n =⎝⎛⎭⎫14n,b n =3n -2(n ∈N *),∴c n =(3n -2)×⎝⎛⎭⎫14n(n ∈N *).∴S n =1×14+4×⎝⎛⎭⎫142+7×⎝⎛⎭⎫143+…+(3n -5)×⎝⎛⎭⎫14n -1+(3n -2)×⎝⎛⎭⎫14n , 于是14S n =1×⎝⎛⎭⎫142+4×⎝⎛⎭⎫143+7×⎝⎛⎭⎫144+…+(3n -5)×⎝⎛⎭⎫14n +(3n -2)×⎝⎛⎭⎫14n +1, 两式相减,得34S n =14+3⎣⎡⎦⎤⎝⎛⎭⎫142+⎝⎛⎭⎫143+…+⎝⎛⎭⎫14n -(3n -2)×⎝⎛⎭⎫14n +1=12-(3n +2)×⎝⎛⎭⎫14n +1, ∴S n =23-3n +23×⎝⎛⎭⎫14n (n ∈N *).。
数列求和数列求和常见的几种方法:(1) 公式法:①等差(比)数列的前n 项和公式;②自然数的乘方和公式:1123(1)2n n n ++++=+ 22221123(1)(21)6n n n n ++++=++ (2)拆项重组:适用于数列{}n a 的通项公式n n n a b c =+,其中{}n b 、{}n c 为等差数列或者等比数列或者自然数的乘方;(3) 错位相减:适用于数列{}n a 的通项公式n n n a b c =⨯,其中{}n b 为等差数列,{}n c 为等比数列;(4)裂项相消:适用于数列{}n a 的通项公式:1,(1)()n n k a a n n n n k ==++(其中k 为常数)型;(5) 倒序相加:根据有些数列的特点,将其倒写后与原数列相加,以达到求和的目的. (6) 分段求和:数列{}n a 的通项公式为分段形式二、例题讲解例1、(拆项重组)求和:1111357[(21)]2482n n ++++++练习1:求和122334(1)n S n n =⨯+⨯+⨯+++例2、(裂项相消)求数列11111,,,,,13355779(21)(21)n n ⨯⨯⨯⨯-+ 的前n 项和练习2:求11111121231234123n S n=+++++++++++++++例3、(错位相减)求和:23147322222nn -++++练习3:求2311234(0)n n S x x x nx x -=+++++≠例4、(倒序相加)设4()42xx f x =+,利用课本中推导等差数列前n 项和的方法,求:1231000()()()()1001100110011001f f f f ++++ 的值例5、已知数列{}n a 的通项公式为*32(4)()23(5)n n n a n N n n -≤⎧=∈⎨-≥⎩ 求数列{}n a 的前n 项和n S检测题1.(北京卷)设4710310()22222()n f n n N +=+++++∈ ,则()f n 等于( D )A.2(81)7n -B.12(81)7n +- C.32(81)7n +- D.42(81)7n +- 2.. (福建)数列{}n a 的前n 项和为n S ,若1(1)n a n n =+,则5S 等于( B )A .1B .56C .16D .1303.(07高考山东文18)设{}n a 是公比大于1的等比数列,n S 为数列{}n a 的前n 项和.已知37S =,且123334a a a ++,,构成等差数列.(1)求数列{}n a 的等差数列. (2)令31ln 12nn b a n +== ,,,,求数列{}n b 的前n 项和T 解:(Ⅰ)设{}n a 的公差为d ,{}n b 的公比为q ,则依题意有0q >且4212211413d q d q ⎧++=⎪⎨++=⎪⎩,,解得2d =,2q =. 所以1(1)21n a n d n =+-=-, 112n n n b q --==.(Ⅱ)1212n n n a n b --=. 122135232112222n n n n n S ----=+++++ ,①3252321223222n n n n n S ----=+++++ ,②②-①得22122221222222n n n n S ---=+++++-221111212212222n n n ---⎛⎫=+⨯++++- ⎪⎝⎭ 1111212221212n n n ----=+⨯--12362n n -+=-. 4.设数列{}n a 满足211233333n n n a a a a -++++=…,a ∈*N .(Ⅰ)求数列{}n a 的通项; (Ⅱ)设n n nb a =,求数列{}n b 的前n 项和n S解 (I)2112333...3,3n n n a a a a -+++=221231133...3(2),3n n n a a a a n ---+++=≥ 1113(2).333n n n n a n --=-=≥ 1(2).3n n a n =≥验证1n =时也满足上式,*1().3n n a n N =∈(II) 3n n b n =⋅,23132333...3nn S n =⋅+⋅+⋅+⋅ ①②①-② : 231233333n n n S n +-=+++-⋅1133313n n n ++-=-⋅-,111333244n n n n S ++∴=⋅-⋅+⋅5.求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和.23413132333...3n n S n +==⋅+⋅+⋅+⋅解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积 设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ……………… …② (设制错位) ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS (错位相减)1122212+---=n n n∴ 1224-+-=n n n S6.: 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.解:设n n n n a n -+=++=111(裂项) 则 11321211+++⋅⋅⋅++++=n n S n (裂项求和)=)1()23()12(n n -++⋅⋅⋅+-+-=11-+n7.:数列{a n}的前n 项和12-=n n a S ,数列{b n}满)(,311*+∈+==N n b a b b n n n .(Ⅰ)证明数列{a n }为等比数列;(Ⅱ)求数列{b n }的前n 项和T n 。
第四章数列《数列求和》教学设计1.理解一些常见数列的求和方法.2.会求一些常见数列的前n项和.教学重点:常见数列的求和方法.教学难点:错位相减法求一类数列的和.PPT课件.【新课导入】问题1:等差数列的前n项和公式是什么?设计意图:通过回顾等差数列的前n项和公式,温故知新.问题2:等比数列的前n项和公式是什么?师生活动:学生回顾公式并回答.预设的答案:设计意图:通过回顾公式,引入新课.问题3:如果一个数列既不是等差数列也不是等比数列,如何求它的前n项和呢?常见数列的求和方法有哪些?设计意图:通过该问题,引起学生思考既不是等差数列也不是等比数列的特殊数列求和.【探究新知】知识点一 错位相减法一般地,如果数列{a n }是等差数列,{b n }是等比数列,求数列{a n ·b n }的前n 项和时,可采用错位相减法求和,一般是和式两边同乘以等比数列{b n }的公比,然后作差求解. 数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. 求和时一般在已知和式的两边都乘以组成这个数列的等比数列的公比;然后再将得到的新和式和原和式相减,转化为同倍数的等比数列求和,这种方法就是错位相减法.知识点二 裂项相消法这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的.知识点三 分组求和法对于求数列的和,其中为等差或等比数列,可考虑用拆项分组法求和.知识点四 倒序相加法这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个.知识点五 并项求和法奇偶并项求和的基本思路:有些数列单独看求和困难,但相邻项结合后会变成熟悉的等差数列、等比数列求和.但当求前n 项和而n 是奇数还是偶数不确定时,往往需要讨论. 并项求和一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如类型,可采用两项合并求解.【巩固练习】例1 已知数列{a n }的通项公式为a n =(3n +2)·2n ,求该数列前n 项和S n . 师生活动:学生分组讨论,教师讲解. 预设的答案:S n =5×2+8×22+11×23+14×24+…+(3n -1)·2n -1+(3n +2)·2n ……① 2S n =5×22+8×23+11×24+14×25+…+(3n -1)·2n +(3n +2)·2n +1……② ①-②得:-S n =5×2+3×22+3×23+3×24+…+3·2n -1+3·2n -(3n +2)·2n +1 =10+3(22+23+24+…+2n -1+2n )-(3n +2)·2n +1=10+3(2n +1-4)-(3n +2)·2n +1q {}n n a b ±{}{},n n a b 1()n a a +(1)()nn a f n =-=3·2n +1-(3n +2)·2n +1-2 =(1-3n )·2n +1-2故S n =(3n -1)·2n +1+2. 设计意图:通过该题让学生理解乘公比错位相减法的应用及步骤.发展学生数学抽象、数学运算、数学建模的核心素养.易错点剖析:用错位相减法求和应注意的问题:(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n −qS n ”的表达式;(3)两式相减时最后一项因为没有对应项不要忘记变号;(4)对相减后的和式的结构要认识清楚,中间是n -1项的和;(5)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.例2 已知等差数列为递增数列,且满足,.(1)求数列的通项公式; (2)令,为数列的前n 项和,求.师生活动:学生分析题意,完成(1);师生一起完成(2).预设的答案:(1)由题意知,或为递增数列,,故数列的通项公式为(2). 设计意图:通过该题让学生理解裂项相消法的应用及相消规则.发展学生数学抽象、数学运算、数学建模的核心素养.方法总结:等差数列中相邻两项积的倒数构成的数列求和用裂项相消法;常见的通项分解(裂项)有: (1) [一般] {}n a 12a =222435a a a +={}n a *1()(1)(1)n n n b n N a a =∈+-n S {}n b n S 222(22)(23)(24)d d d +++=+23440d d ∴--=2d ∴=23d =-{}n a 2d ∴={}n a 2.n a n =1111()(21)(21)22121n b n n n n ==-+--+11111111[(1)()()...()]2335572121n S n n ∴=-+-+-++--+11(1)221n =-+21nn =+111(1)1n a n n n n ==-++1111()()n a n n k k n n k==-++(2)(3) (4)(5)例3 求和:.师生活动:学生分组讨论,派代表发言;教师完善.预设的答案:原式. 设计意图:通过该问题让学生理解分组求和法,让学生会求一类可转化为等差数列和等比数列的求和的数列求和问题.发展学生数学抽象、数学运算、数学建模的核心素养.方法总结:分组分解求和的基本思路:通过分解每一项重新组合,化归为等差数列和等比数列求和.例4求和 师生活动:学生独立完成,教师完善.预设的答案:设 ①②①+②得,所以.设计意图:通过该题让学生理解倒序相加法.发展学生数学抽象、数学运算、数学建模的核心素养.方法总结:如果一个数列距离首末两项的和相等,就可以采用倒序相加法. 例5求和12-22+32-42+…+992-1002.师生活动:学生分组讨论,派代表板演,教师完善.预设的答案:12-22+32-42+…+992-1002=(12-22)+(32-42)+…+(992-1002)1111()(21)(21)22121n n n n =--+-+2(2)1111()(21)(21)22121n n a n n n n ==+--+-+1111[](1)(2)2(1)(1)(2)n a n n n n n n n ==--++++n a ==()()()12235435235n n ----⨯+-⨯+⋅⋅⋅+-⨯()()122462353535n n ---=+++⋅⋅⋅+-⨯+⨯+⋅⋅⋅+⨯()()()1215152233152154nn n n nn -----+=-⨯=+---︒++︒+︒+︒89sin 3sin 2sin 1sin 2222 ︒++︒+︒+︒=89sin 3sin 2sin 1sin 2222T ︒++︒+︒+︒=1sin 87sin 88sin 89sin 2222 T ︒++︒+︒+︒=89cos 3cos 2cos 1cos 2222 T 289T =44.5T ==(1-2)(1+2)+(3-4)(3+4)+…+(99-100)(99+100)=-(1+2+3+4+…+99+100)=-5 050.设计意图:通过该题让学生理解并项求和法.发展学生数学抽象、数学运算、数学建模的核心素养.方法总结:通常数列中的项是正负交替或奇偶项各有规律的,往往采用并项求和法.【课堂总结】1.板书设计:2.总结概括:师生活动:学生总结,老师适当补充.设计意图:通过总结,让学生进一步巩固本节所学内容,提高概括能力.3.课堂作业:目标检测题【目标检测设计】 1.已知若等比数列满足则( )A .B .1010C .2019D .2020 设计意图:进一步巩固错位相减法.本题综合考查函数与数列相关性质,需要发现题中所给条件蕴含的倒数关系,寻找规律进而求出答案. 2.求数列的前n 项和. 设计意图:进一步巩固错位相减法.该数列为两个数列的积,其中为等差数列,为等比数列,故可考虑用错位相减法求和. 3.求数列前n 项的和.设计意图:让学生进一步巩固裂项相消法. 参考答案: 1.D等比数列满足即2020故选D. 2.①, ②, 22()(),1f x x x=∈+R {}n a 120201,a a =122020()()()f a f a f a +++=201922n n ⎧⎫⎨⎬⎩⎭n S {}n 12n ⎧⎫⎨⎬⎩⎭()()32121n n ⎧⎫⎪⎪⎨⎬-+⎪⎪⎩⎭22()(),1f x x x =∈+R 22222122()11122211f x f x x x x x x⎛⎫∴+=+ ⎪+⎝⎭⎛⎫+ ⎪⎝⎭=+=++{}n a 120201,a a =120202019220201...1,a a a a a a ∴====()()()()()()120202019202012...2f a f a f a f a f a f a ∴+=+==+=122020()()()f a f a f a +++=231123122222n n n n n S --=+++⋅⋅⋅++234111*********n n n n nS +-=+++⋅⋅⋅++①-②得, . 3.∵, .23411111112222222n n n n S +=++++⋅⋅⋅+-1111221212n n n +⎛⎫- ⎪⎝⎭=--111,22n n n +=--11222n n nnS -∴=--()()3311212122121n a n n n n ⎛⎫==-⎪-+-+⎝⎭3111111131311233557212122121n S n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫∴=-+-+-+⋅⋅⋅+-=-= ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥-+++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦。
《数列求和》教学设计授课教师:杜敏一、教学目标:1、知识与技能让学生掌握数列求和的几种常用方法,能熟练运用这些方法解决问题。
2、过程与方法培养学生分析解决问题的能力,归纳总结能力,联想、转化、化归能力,探究创新能力。
3、情感,态度,价值观通过教学,让学生认识到事物是普遍联系,发展变化的。
二、教学重点:非等差,等比数列的求和方法的正确选择三、教学难点:非等差,等比数列的求和如何化归为等差,等比数列的求和四、教学过程:考点1 公式法与分组求和法1.公式法直接利用等差数列、等比数列的前n项和公式求和(1)等差数列的前n项和公式:S n=n a1+a n2= .(2)等比数列的前n 项和公式:S n =⎩⎪⎨⎪⎧ na 1,q =1,a 1-a n q 1-q =a 11-q n1-q ,q ≠1. 2.分组求和法一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后相加减[填一填] (1)数列112,314,518,7116,…的前n 项和S n = . (2)数列1,12,2,14,4,18,…的前2n 项和S 2n = . 考点2 倒序相加法与并项求和法1.倒序相加法如果一个数列{a n }的前n 项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和可用倒序相加法,如等差数列的前n 项和公式即是用此法推导的.2.并项求和法在一个数列的前n 项和中,可两两结合求解,则称之为并项求和. 形如a n =(-1)n f (n )类型,可采用两项合并求解.例,求S n =1002-992+982-972+…+22-12 [填一填] (1)函数y =f (x )的图象关于点(12,1)对称,则f (-5)+f (-4)+…+f (0)+…+f (5)+f (6)= .(2)若S n =1-3+5-7+9-11+…+(-1)n -1(2n -1),则S 15+S 30= .考点3 裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.[填一填] (1)数列{a n }的前n 项和为S n ,若a n =1n n +1,则S 40= . 2)数列{a n }中,a n =1n +n +1,若前n 项和S n =9,则项数n 等于 .考点4 错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求,如等比数列的前n 项和公式就是用此法推导的.[填一填] (1)已知数列{a n }的前n 项和为S n ,且a n =n ·2n ,则S n = . (2)12+12+38+…+n 2n 等于 . 典例:考向大突破一:分组转化法求和例1:已知数列{a n }满足a n =4n -2,数列{b n }满足 ,S n 为数列{b n }的前n 项和,求S 2n⎧⎪⎨⎪⎩n-1n-12,n 1a ,n 2为奇数为偶数二、裂项相消法求和例2:(2013·全国卷Ⅰ)已知等差数列{a n }的前n 项和S n 满足S 3=0,S 5=-5.(1)求{a n }的通项公式;考向大突破三、错位相减法求和例3(2013·湖南卷)设S n 为数列{a n }的前n 项和,已知a 1≠0,2a n -a 1=S 1·S n ,n ∈N *.(1)求a 1,a 2,并求数列{a n }的通项公式;(2)求数列{na n }的前n 项和.五、方法总结:⎧⎫⎨⎬⎩⎭2n-12n+11(2)n a a 求数列的前项和公式求和:对于等差数列和等比数列的前n 项和可直接用求和公式.拆项重组:利用转化的思想,将数列拆分、重组转化为等差或等比数列求和. 裂项相消:对于通项型如11+⋅=n b n b b a (其中数列{}n b 为等差数列) 的数列,在求和时将每项分裂成两项之差的形式,一般除首末两项或附近几项外,其余各项先后抵消,可较易求出前n 项和。
数列的求和教学目标:1、让学生掌握数列求和的方法;2、让学生能熟练的求数列的前n 项和;3、提高学生的思维能力。
重难点:裂项相消和错位相减法教学手段:多媒体;引导学生小结,讲练结合。
一.基础知识小结:求和的常用方法:公式法,倒序相加法,分组求和法,裂项相消法和错位相减法 练习:1.、求和)2123()217()214()11(12-+-+++++++n n 2.、求和)1(1431321211+++⨯+⨯+⨯n n 3.、若,121=+x x 则1)()(21=+x f x f ,已知)1()2()1(n n f n f n f S n -+++= ,求n S 。
4、求和:9997531+-+-+-= S 。
二.例题讲解:例一:设数列}{n a 的前n 项和n S ,点),(n S n n )(*N n ∈均在函数23-=x y 的图像上, (1) 求数列}{n a 的通项公式;(2) 设13+=n n n a a b ,n T 是数列}{n b 的前n 项和,求使得20m T n <对所有)(*N n ∈都成立的最小正整数m 。
例二:数列}{n a 和}{n b 中,n S 为数列的前n 项和,2,111==b a 。
且1),1(2-=+=+n b n n n a b a n n S ,(1) 求数列}{n a 和}{n b 的通项公式。
(2) 设1112211-++-+-=n n n b a b a b a T ,求n T 。
三、练习:1、数列}{n a 的通项公式是11++=n n a n ,则120S =( )。
2、求和)0()12(53112≠⋅-++++=-a a n a a S n n四.小结。
数列求和教案教案标题:数列求和教案教案目标:1. 理解数列的概念和性质。
2. 掌握数列求和的方法和技巧。
3. 运用数列求和的知识解决问题。
教案步骤:1. 引入数列的概念和性质a. 使用具体生活例子引起学生对数列的兴趣,如斐波那契数列、等差数列等。
b. 解释数列的定义:数列是按照一定规律排列的数字的集合。
c. 解释数列的基本性质,如公差、首项、通项公式等。
2. 解决等差数列求和的问题a. 解释等差数列的概念和性质,包括公差和通项公式。
b. 引导学生理解等差数列求和公式的推导过程。
c. 给予学生一些具体的等差数列求和问题,并引导他们运用所学的知识解决问题。
3. 解决等比数列求和的问题a. 解释等比数列的概念和性质,包括公比和通项公式。
b. 引导学生理解等比数列求和公式的推导过程。
c. 给予学生一些具体的等比数列求和问题,并引导他们运用所学的知识解决问题。
4. 解决其他类型数列求和的问题a. 引导学生思考其他类型数列的求和方法,如斐波那契数列、等差数列的和等。
b. 给予学生一些具体的其他类型数列求和问题,并引导他们找到解决问题的方法和技巧。
5. 总结和拓展a. 总结数列求和的基本方法和技巧。
b. 提供更多的数列求和问题,让学生加深对所学知识的理解和运用。
c. 鼓励学生在课后拓展数列求和的应用,如数学竞赛等。
扩展练习:1. 对于等差数列 {3, 7, 11, 15, ...},求前10项的和。
2. 对于等比数列 {2, 4, 8, 16, ...},求前5项的和。
3. 对于斐波那契数列 {1, 1, 2, 3, 5, ...},求前8项的和。
评估方式:1. 在课堂上布置练习题,检查学生对数列求和的理解和运用能力。
2. 考察学生解决数列求和问题的思路和方法。
3. 鼓励学生在课后通过编写文章或讲解视频来展示对数列求和知识的理解深度。
教案提供的专业指导将帮助教师详细规划教学内容和步骤,确保学生能够深入理解数列求和的概念和运用方法。
《简单数列求和》教学设计学习内容:根据人教版数学教材六年级上册数与形例 2内容改编。
学习目标:1引导学生探索研究数与形之间的联系,寻找并发现规律,会利用图形来解决有关数的问题。
2. 经历猜想与验证的过程,体会和掌握数形结合、归纳推理等基本数学思想。
学习重难点:探索数与形之间的联系,寻找规律,并利用图形来解决有关数的问题。
学习准备:课件。
学习过程:.开门见山,揭示课题。
同学们,今天这节课我们一起来探讨简单的数列求和问题。
(板书课题:简单数列求和)、探索发现,学习新知。
(一)初次猜想验证。
师:这里有一个正方形,把它看作“ T,平均分成两份,每一份是这个正方形的一 生齐答:12再把剩下的2平均分成两份,每一份是这个正方形的几分之几呢? 生:生1:- 生2: 1的1是12 2 4师:涂色部分是整个整个正方形的几分之几?该怎样列式呢?生: 师:生: 师:1+1 2 41 1 1 +1等于多少? 2 4 3 4谁来说说你是怎么算的?师: 师: 你知道为什么是寸吗? 1.探究丄+丄2 4生「先通分,1变成,|+扛师:还有不同的算法吗? 生2:可以用1减去空白部分,就能得到涂色部分是正方形的几分之几, 师:太棒了,他把加法转化成减法来计算了,此处应该有掌声! 课件演示1+1 =1 -1 = ?2 4442.探究2 4 8课件演示:课件演示^+丄+丄二仁丄-72 4 8 8 83. 探究1』』+丄2 4 8 16演示:丄+丄十1+丄2 4 8 16师:我再接着分,这一份是整个正方形的几分之几?师:我再接下来把空白部分平均分成两份,其中一份是整个正方形的几分之几呢? 生:师: 1 8你是怎么知道的? 1的1是14 28师:现在涂色部分是整个正方形的几分之几?该怎样列式?生: 牛 1亠1亠1生:一+—+—2 4 8 1 1 1师:丄+丄十丄的结果是多少呢?谁知道除了通分,还可以怎么算?生2:用1减去空白部分,也就是 1 71-— =— 0ifi4 84生:师:现在求涂色部分是整个正方形的几分之几,又该怎样列式? 4. 课件出示:1 1 1 1 1 15—+— +_ +一 =1—=一 2 4 8 16 16 16师:仔细观察,你有什么发现?扌,求这样一组分数的和,只要用1减去最后一个分数。
小学数列求和教学设计教学设计:小学数列求和目标:教学生掌握数列的概念,以及利用数列求和的方法解决实际问题。
一、引入教师可以使用一个小故事或者生活中的实际例子引入数列的概念。
比如,“小明每天都要给自己的存钱罐里面投入一些零花钱,第一天投入1元,第二天投入2元,第三天投入3元,这样持续下去,问小明投入了多少钱呢?”这个例子可以引出数列的概念,并引出数列求和的问题。
二、理解概念1. 教师可以给学生解释数列和求和的概念,比如:数列是按照一定规律排列的数字序列,求和就是把这些数相加的过程。
2. 通过举例子让学生理解数列和求和的概念,比如:1+2+3+4+...+n的求和方法。
三、数列求和的方法1. 列表法学生可以通过列出每一项的方法来计算数列的和,比如上面的例子,学生可以列出1, 2, 3, ...进行计算。
2. 公式法通过找规律,学生可以学习数列求和的公式,比如等差数列的求和公式Sn=n(a1+an)/2。
四、练习1. 让学生通过练习题来巩固自己对数列求和的理解和掌握。
2. 比如给学生一些简单的等差数列、等比数列的求和题目,让他们运用上面学到的方法来解决问题。
五、实际问题应用1. 教师可以给学生一些实际问题,让他们运用数列求和的方法来解决。
比如:“某个班级有50个学生,老师要给他们组织一次郊游,每个学生缴纳20元,问共需要多少钱?”六、反思教师可以引导学生对数列求和的知识进行反思,总结出数列求和的方法和应用技巧。
同时,可以让学生相互讨论,互相分享自己的解题思路。
通过这样的教学设计,可以帮助学生深入理解数列求和的方法和意义,同时培养学生解决问题的能力。
等差、等比数列的求和公式(1)一、考纲要求:掌握等差的求和公式、等比数列的求和公式. 二、教学目标:1、掌握等差数列前n 项和公式及其推导过程2、掌握等比数列前n 项和公式及其推导过程3、能熟练利用公式解决相关问题 三、重点难点掌握公式的推导方法和公式的应用 教学过程: 知识梳理:1. (1)等差数列的前n 项和(倒序相加法):公式1:2)(1n n a a n S +=公式2:1(1)2n n n S na d -=+; (2)若数列{a n }的前n 项和S n =An 2+Bn ,则数 列{a n }为 等差数列2、等比数列{a n }的前n 项和为S n (错位相减法)当1≠q 时, q q a S n n --=1)1(1 或qqa a S n n --=11当q=1时, 1na S n = 基础训练:1、在等比数列{a n }中,已知a 1=25,前三项的和S 3=215, 则公比q 的值为___.2、在等差数列{a n }和{b n }中,a 1=25,b 1=75,a 100+b 100=100, 则数列{a n +b n }的前100项的和为=_______3、 设()442xxf x =+,利用课本中推导等差数列前n 项和方法,求121111f f ++⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭…1011f +⎛⎫⎪⎝⎭的值为4、已知等比数列{a n }中,前n 项和S n =54,S 2n =60,则S 3n=_______例题精析:例1 (1)已知数列}{n a 中,23),,2(21*1=∈≥+=-m n n a N n n a a ,前m 项和215-=m s ,求1a 和m 的值(2)设等比数列}{n a 的前n 项和为n s ,17,184==s s , 求通项公式n a(3)已知数列的前n 项和n s 是关于正整数n 的二 次函数,其图像上三个点A(1,3),B(2,7),C(3,13)。