新北师大版数学八年级上册期末测试题
- 格式:doc
- 大小:433.00 KB
- 文档页数:5
北师大版八年级上册数学期末考试试题一、单选题1.下列实数中,是无理数的是()A B .3-C .0.101001D .132.如图,直线a ,b 被直线c 所截,下列条件中,不能判定a ∥b 的是()A .∠2=∠5B .∠1=∠3C .∠5=∠4D .∠1+∠5=180°3.若一次函数(2)1y k x =-+的函数值y 随x 的增大而增大,则()A .2k <B .2k >C .0k >D .0k <4.快要到新年了,某鞋店老板要进一批新年鞋,他一定会参考下面的调查数据,他最关注的是()A .中位数B .平均数C .加权平均数D .众数5.下列各命题中,属于假命题的是()A .若a -b =0,则a =b =0B .若a -b >0,则a >bC .若a -b <0,则a <bD .若a -b≠0,则a≠b6.二元一次方程组22x y x y +=⎧⎨-=-⎩的解是()A .02x y =⎧⎨=-⎩B .02x y =⎧⎨=⎩C .20x y =⎧⎨=⎩D .20x y =-⎧⎨=⎩7.已知正比例函数y =kx 的函数值y 随x 的增大而减小,则一次函数y =kx -k 的图象大致是()A .B .C .D .8.如图,已知函数y =ax+b 和y =kx 的图象交于点P ,则根据图象可得关于x ,y 的二元一次方程组y ax by kx=+⎧⎨=⎩的解是()A.24xy=-⎧⎨=-⎩B.42xy=-⎧⎨=-⎩C.24xy=⎧⎨=-⎩D.42xy=-⎧⎨=⎩9.如图,点O是△ABC内一点,∠A=80°,∠1=15°,∠2=40°,则∠BOC等于()A.95°B.120°C.135°D.无法确定10.如图,∠AFD=65°,CD∥EB,则BÐ的度数为()A.115°B.110°C.105°D.65°二、填空题11.甲、乙两地7月上旬的日平均气温如图所示,则甲,乙两地这10天中日平均气温的方差S2甲与S2乙的大小关系是S2甲_______S2乙.(填“>”或“<”)12.小明某学期数学平时成绩为70分,期中考试成绩为80分,期末考试成绩为90分,计算学期总评成绩的方法:平时占30%,期中占30%,期末占40%,则小明这学期的总评成绩是________分.13.若|3x﹣0,则xy的算术平方根是_____.14.如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是_____.15.如图,已知∠1=100°,∠2=140°,那么∠3=________度.16.如图,在Rt△ABC中,∠C=90°,AC=3,BC=5,分别以点A、B为圆心,大于1AB2的长为半径画弧,两弧交点分别为点P、Q,过P、Q两点作直线交BC于点D,则CD的长是_____.17.如图,在直角坐标系中,点A,B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A,B,C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是____________.18.如图,在△ABC 中,∠A=40°,点D 是∠ABC 和∠ACB 角平分线的交点,则∠BDC 为________三、解答题1901323(21)2-+20.解下列方程组:569745x y x y -=⎧⎨-=-⎩21.某单位750名职工积极参加向贫困地区学校捐书活动,为了解职工的捐数量,采用随机抽样的方法抽取30名职工作为样本,对他们的捐书量进行统计,统计结果共有4本、5本、6本、7本、8本五类,分别用A ,B ,C ,D ,E 表示,根据统计数据绘制成了如图所示的不完整的条形统计图,由图中给出的信息解答下列问题:(1)补全条形统计图;(2)这30名职工捐书本数的众数是本,中位数是本;(3)求这30名职工捐书本数的平均数是多少本?并估计该单位750名职工共捐书多少本?22.如图,已知12l l //,且3l 与1l ,2l 分别交于A ,B 两点,点P 在直线AB 上.(1)当点P 在A ,B 两点之间运动时,求1∠,2∠,3∠之间的数量关系,并说明理由.(2)如果点P 在A ,B 两点外侧运动,试探究1∠,2∠,3∠之间的数量关系(点P 与A ,B 不重合),并说明理由.23.某市推出电脑上网包月制,每月收取费用y (元)与上网时间x (小时)的函数关系如图所示,其中BA 是线段,且BA ∥x 轴,AC 是射线.(1)若小李11月份上网20小时,他应付多少元的上网费用?(2)当x≥30,求y 与x 之间的函数关系式;(3)若小李12月份上网费用为135元,则他在该月份的上网时间是多少?24.如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,将△ACB 沿CD 折叠,使点A 恰好落在BC 边上的点E 处.(1)求△BDE 的周长;(2)若∠B =37°,求∠CDE 的度数.25.某水果店11月份购进甲、乙两种水果共花费1700元,其中甲种水果8元/千克,乙种水果18元/千克.12月份,这两种水果的进价上调为:甲种水果10元/千克,乙种水果20元/千克.(1)若该店12月份购进这两种水果的数量与11月份都相同,将多支付货款300元,求该店11月份购进甲、乙两种水果分别是多少千克?(2)若12月份将这两种水果进货总量减少到120千克,设购进甲种水果a千克,需要支付的货款为w元,求w与a的函数关系式;(3)在(2)的条件下,若甲种水果不超过90千克,则12月份该店需要支付这两种水果的货款最少应是多少元?26.甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山上升的速度是每分钟________米,乙在A地时距地面的高度b为________米;(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式(写出自变量范围);(3)登山多长时间时,甲、乙两人距地面的高度差为70米?参考答案1.A2.B3.B4.D 5.A 6.B 7.C 8.B 9.C 10.A 11.> 12.81 1314.x=2 15.6016.8 517.(0,3)18.110°【详解】解:∵D点是∠ABC和∠ACB角平分线的交点,∴∠CBD=∠ABD=12∠ABC,∠BCD=∠ACD=12∠ACB,∵∠A=40°,∴∠ABC+∠ACB=180°−40°=140°,∴∠DBC+∠DCB=70°,∴∠BDC=180°−70°=110°,故答案为:110°.191.1)1=+1=.20.34xy=-⎧⎨=-⎩.【详解】解:569745x y x y -=⎧⎨-=-⎩①②,①×2-②×3,得-11x=33,解得x=-3,把x=-3代入①,得-15-6y=9,解得y=-4,故方程组的解为34x y =-⎧⎨=-⎩.21.(1)补全图形见解析;(2)6,6;(3)6本;4500本.【详解】解:(1)D 组人数=30﹣4﹣6﹣9﹣3=8.(2)众数是6本中位数是6本.故答案为6,6.(3)平均数=6(本),该单位750名职工共捐书约4500本.22.(1)123∠+∠=∠,见解析;(2)123∠-∠=∠或213∠-∠=∠,见解析.【详解】(1)123∠+∠=∠.理由如下:如图所示,过点P 作1//PQ l .12//l l ,12////l l PQ ∴,14∴∠=∠,25∠=∠.453∠+∠=∠ ,123∴∠+∠=∠.(2)123∠-∠=∠或213∠-∠=∠.理由如下:当点P 在下侧时,过点P 作1l 的平行线PQ ,如图所示,12//l l ,12////l l PQ ∴,24∴∠=∠,134∠=∠+∠,123∴∠-∠=∠.当点P 在上侧时,如图所示,12//l l ,24∴∠=∠,又413∠=∠+∠,213∴∠-∠=∠.23.(1)60元;(2)y =3x ﹣30;(3)55个小时.【详解】解:(1)根据题意,从图象上看,30小时以内的上网费用都是60元;(2)当x≥30时,设函数关系式为y =kx+b ,则30604090k b k b +=⎧⎨+=⎩,解得k 3b 30=⎧⎨=-⎩,故函数关系式为y =3x ﹣30;(3)由135=3x ﹣30解得x =55,故12月份上网55个小时.24.(1)△BDE 的周长为12;(2)∠CDE 的度数为82°.【分析】(1)由折叠的性质可知,DE=AD ,CE=AC ,则△BDE 的周长=BD+DE+BE=BD+BE+AD=AB+BE ,先求出BE 的长,再利用勾股定理求出AB 的长即可;(2)由折叠的性质可知:∠ACD=∠BCD ,∠A=∠CED ,再利用三角形内角和定理求解即可.【详解】解:(1)由折叠的性质可知,DE=AD ,CE=AC ,∴△BDE 的周长=BD+DE+BE=BD+BE+AD=AB+BE ,∵∠ACB=90°,AC=6,BC=8,∴BE=BC-CE=BC-AC=2,10AB =,∴△BDE 的周长=AB+BE=10+2=12;(2)由折叠的性质可知:∠ACD=∠BCD ,∠A=∠CED ,∵∠ACB=90°,∠B=37°,∴∠A=∠CED=53°,1452ECD ACB ==o ∠,∴=180=82CDE BCD CED --o o ∠∠∠.25.(1)该店5月份购进甲种水果100千克,购进乙种水果50千克;(2)w =﹣10a+2400;(3)12月份该店需要支付这两种水果的货款最少应是1500元.【分析】(1)设该店5月份进甲种水果x千克,购进乙种水果y千克,根据总价=单价×购进数星,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(120-a)千克,根据总价=单价×购进数量,即可得出w关于a的函数关系式;(3)根据甲种水果不超过90千克,可得出a的取值范固,再利用一次函数的性质即可解决最值问题.【详解】解:(1)设该店11月份购进甲种水果x千克,购进乙种水果y千克,根据题意得:8181700 10201700300 x yx y+=⎧⎨+=+⎩,解得10050xy=⎧⎨=⎩,答:该店5月份购进甲种水果100千克,购进乙种水果50千克;(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(120﹣a)千克,根据题意得:w=10a+20(120﹣a)=﹣10a+2400;(3)根据题意得,a≤90,由(2)得,w=﹣10a+2400,∵﹣10<0,w随a的增大而减小,∴a=90时,w有最小值w最小=﹣10×90+2400=1500(元).答:12月份该店需要支付这两种水果的货款最少应是1500元.【点睛】本题考查了二元一次方程组的应用、以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组:(2)根据各数之间的关系,找出w关于a的函数关系式. 26.(1)10;30;(2)15(02)3030(211)x xyx x≤<⎧=⎨-≤≤⎩;(3)登山3分钟或10分钟或13分钟时,甲、乙两人距地面的高度差为70米.【分析】(1)根据速度=高度÷时间即可算出甲登山上升的速度;根据高度=速度×时间即可算出乙在A地时距地面的高度b的值;(2)分0≤x<2和x≥2两种情况,根据高度=初始高度+速度×时间即可得出y关于x的函数关系;(3)当乙未到终点时,找出甲登山全程中y关于x的函数关系式,令二者作差等于70得出关于x的一元一次方程,解之即可求出x值;当乙到达终点时,用终点的高度-甲登山全程中y 关于x 的函数关系式=70,得出关于x 的一元一次方程,解之可求出x 值.综上即可得出结论.(1)解:甲登山上升的速度是:(300-100)÷20=10(米/分钟),b=15÷1×2=30.故答案为:10;30;(2)解:当0≤x <2时,y=15x ;当x≥2时,y=30+10×3(x-2)=30x-30.当y=30x-30=300时,x=11.∴乙登山全程中,距地面的高度y 与登山时间x 之间的函数关系式为:15(02)3030(211)x x y x x ≤<⎧=⎨-≤≤⎩;(3)解:甲登山全程中,距地面的高度y 与登山时间之间的函数关系式为y=kx+b (k≠0),把(0,100)和(20,300)代入解析式得:10020300b k b =⎧⎨+=⎩,解得:10100k b =⎧⎨=⎩,∴甲登山全程中,距地面的高度y 与登山时间之间的函数关系式为y=10x+100(0≤x≤20),当10x+100-(30x-30)=70时,解得:x=3;当30x-30-(10x+100)=70时,解得:x=10;当300-(10x+100)=70时,解得:x=13.答:登山3分钟、10分钟或13分钟时,甲、乙两人距地面的高度差为70米.。
北师大版数学八年级上册期末考试试题一、选择题(每小题3分,共30分,每小题只有一个正确答案)1.下列各组数是勾股数的是()A.1,,B.0.6,0.8,1C.3,4,5D.5,11,12 2.下列计算正确的是()A.=4B.=3C.4﹣=3D.3.已知点A(3,5)和点B在直角坐标平面内关于y轴对称,则点B的坐标是()A.(5,﹣3)B.(﹣3,5)C.(3,﹣5)D.(﹣3,﹣5)4.下列命题中,真命题的是()A.同旁内角互补,两直线平行B.相等的角是对顶角C.同位角相等D.直角三角形两个锐角互补5.若m>n,则下列不等式一定成立的是()A.2m<3n B.2+m>2+n C.2﹣m>2﹣n D.<6.下列四组数值是二元一次方程2x﹣y=6的解的是()A.B.C.D.7.如图,直线l1∥l2,CD⊥AB于点D,∠1=50°,则∠BCD的度数为()A.50°B.45°C.40°D.30°8.某百货商场的女装专柜对上周女装的销售情况进行了统计,销售情况如下表所示:颜色黄色绿色白色紫色红色数量(件)10018022080550百货商场经理根据上周销售情况的统计表,决定本周多进一些红色的女装,可用来解释这一现象的统计知识是()A.方差B.平均数C.众数D.中位数9.点M(﹣1,a)和点N(﹣3,b)是一次函数y=﹣2x+m图象上的两点,则()A.a>b B.a=b C.a<b D.无法确定10.一次函数y=ax﹣a(a≠0)的大致图象是()A.B.C.D.二、填空题(每小题4分,共16分)11.函数y=的自变量x的取值范围是.12.若一次函数y=2x+b的图象经过点(1,﹣3),则b=.13.已知:如图,∠1=∠2=∠3=54°,则∠4的度数是.14.在Rt△ABC中,斜边BC=,则AB2+AC2+BC2的值为.三.解答题(共54分)15.计算:(1)+|2﹣|﹣(π+2021)0;(2)(3+)2+(1+)(1﹣).16.解方程组或不等式组:(1);(2).17.如图AB∥CD,∠B=62°,EG平分∠BED,EG⊥EF,求∠CEF的度数.18.如图所示,在平面直角坐标系xOy中,已知△AOC的顶点坐标分别是A(﹣2,2)、C (3,3).(1)作出△AOC关于x轴对称的△DOE,其中点A的对应点是D,点C的对应点是E,并直接写出D和E的坐标;(2)若P为x轴上一点,若OP=OA,求点P的坐标.19.某校八年级(1)班的同学积极响应校团委号召,每位同学都向学校对口帮扶的贫困地区捐赠了图书.全班捐书情况如图,请你根据图中提供的信息解答以下问题:(1)该班共有名学生;(2)本次捐赠图书册数的中位数为册,众数为册;(3)该校八年级共有320名学生,估计该校八年级学生本次捐赠图书为7册的学生人数.20.如图,在平面直角坐标系xOy中,直线l1:y=﹣x+3与x轴交于点A,点P(a,4)在直线l1上,过点P的直线l2交x轴于点B(﹣3,0).(1)求△P AB的面积;(2)求直线l2的解析式:(3)以P A为腰作等腰直角△QP A,请直接写出满足条件的点Q的坐标.B卷四、填空题(每小题4分,共20分)21.若实数x、y满足:y=++,则xy=.22.的整数部分为a,的小数部分为b,那么(b+2)2﹣a的值是.23.若关于x、y的二元一次方程组的解满足x+y<1,则a的取值范围为.24.如图,长方形ABCD中,AD=4,AB=3,点P是AB上一点,AP=1,点E是BC上一动点,连接PE,将△BPE沿PE折叠,使点B落在B',连接DB',则PB'+DB'的最小值是.25.已知:k为正数,直线l1:y=kx+k﹣1与直线l2:y=(k+1)x+k及x轴围成的三角形的面积为S k,则S2=,S1+S2+S3+…+S2020的值为.五、解答题(共30分)26.学校准备租用一批汽车,现有甲、乙两种大客车,甲种客车每辆载客量45人,乙种客车每辆载客量30人.已知1辆甲种客车和3辆乙种客车共需租金1240元,3辆甲种客车和2辆乙种客车共需租金1760元.(1)求1辆甲种客车和1辆乙种客车的租金分别是多少元?(2)学校计划租用甲、乙两种客车共8辆,送330名师生集体外出活动,最节省的租车费用是多少?27.已知:等边三角形ABC,直线l过点C且与AB平行,点D是直线l上不与点C重合的一点,连接线段DB,并将射线DB绕点D顺时针转动60°,与直线AC交于点E(即∠BDE=60°).(1)如图1,点E在AC的延长线上时,求证:DE=DB;(2)如图2,AB=2,CD=4,依题意补全图2,试求出DE的长.(3)当点D在点C右侧时,直接写出线段CE、BC和CD之间的数量关系.28.如图,直线y=kx+2(k<0)与x轴、y轴分别交于点A、B.(1)如图1,点P(﹣1,3)在直线y=kx+2(k<0)上,求点A、B坐标;(2)在(1)的条件下,如图2,点A'是点A关于x轴的对称点,点Q是第二象限内一点,连结AQ、PQ、QA'和P A',如果△PQA'和△AA'Q面积相等,且∠P AQ=∠AP A',求点Q的坐标;(3)如图3,点C和点D是该直线在第一象限内的两点,点C在点D左侧,且两点的横坐标之差为1,且CD=k+2,作CE⊥x轴,垂足为点E,连结DE,若∠OAB=2∠DEB,求k的值.参考答案与试题解析一.选择题(共10小题)1.下列各组数是勾股数的是()A.1,,B.0.6,0.8,1C.3,4,5D.5,11,12【分析】三个正整数,其中两个较小的数的平方和等于最大的数的平方,则这三个数就是勾股数,据此判断即可.【解答】解:A、、不是正整数,不是勾股数,此选项不合题意;B、0.6、0.8不是正整数,不是勾股数,此选项不合题意;C、是勾股数,因为32+42=52,此选项符合题意;D、不是勾股数,因为112+52≠122,此选项不合题意;故选:C.2.下列计算正确的是()A.=4B.=3C.4﹣=3D.【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以判断哪个选项中的式子是正确的.【解答】解:=2,故选项A错误;=2,故选项B错误;4﹣=3,故选项C错误;×=,故选项D正确;故选:D.3.已知点A(3,5)和点B在直角坐标平面内关于y轴对称,则点B的坐标是()A.(5,﹣3)B.(﹣3,5)C.(3,﹣5)D.(﹣3,﹣5)【分析】根据关于y轴对称的点得坐标特点直接得到答案.【解答】解:∵点A(3,5)与点B关于y轴对称,∴B点坐标为(﹣3,5).故选:B.4.下列命题中,真命题的是()A.同旁内角互补,两直线平行B.相等的角是对顶角C.同位角相等D.直角三角形两个锐角互补【分析】根据平行线的性质、对顶角、直角三角形的性质判断解答即可.【解答】解:A、同旁内角互补,两直线平行,是真命题;B、相等的角不一定是对顶角,原命题是假命题;C、两直线平行.同位角相等,原命题是假命题;D、直角三角形两个锐角互余,原命题是假命题;故选:A.5.若m>n,则下列不等式一定成立的是()A.2m<3n B.2+m>2+n C.2﹣m>2﹣n D.<【分析】根据不等式的性质解答.【解答】解:A、若m=3,n=﹣2,则2m>3n,故不符合题意.B、若m>n,则2+m>2+n,故符合题意.C、若m>n,则2﹣m<2﹣n,故不符合题意.D、若m>n,则>,故不符合题意.故选:B.6.下列四组数值是二元一次方程2x﹣y=6的解的是()A.B.C.D.【分析】把各项中x与y的值代入方程检验即可.【解答】解:A、把代入方程得:左边=2﹣5=﹣3,右边=6,∵左边≠右边,∴不是方程的解,不符合题意;B、把代入方程得:左边=8﹣2=6,右边=6,∵左边=右边,∴是方程的解,符合题意;C、把代入方程得:左边=4﹣4=0,右边=6,∵左边≠右边,∴不是方程的解,不符合题意;D、把代入方程得:左边=4﹣3=1,右边=6,∵左边≠右边,∴不是方程的解,不符合题意.故选:B.7.如图,直线l1∥l2,CD⊥AB于点D,∠1=50°,则∠BCD的度数为()A.50°B.45°C.40°D.30°【分析】先依据平行线的性质可求得∠ABC的度数,然后在直角三角形CBD中可求得∠BCD的度数.【解答】解:∵l1∥l2,∴∠1=∠ABC=50°.∵CD⊥AB于点D,∴∠CDB=90°.∴∠BCD+∠DBC=90°,即∠BCD+50°=90°.∴∠BCD=40°.故选:C.8.某百货商场的女装专柜对上周女装的销售情况进行了统计,销售情况如下表所示:颜色黄色绿色白色紫色红色数量(件)10018022080550百货商场经理根据上周销售情况的统计表,决定本周多进一些红色的女装,可用来解释这一现象的统计知识是()A.方差B.平均数C.众数D.中位数【分析】百货商场经理最值得关注的应该是爱买哪种颜色女装的人数最多,即众数.【解答】解:由于销售最多的颜色为红色,且远远多于其他颜色,所以选择多进红色女装主要根据众数.故选:C.9.点M(﹣1,a)和点N(﹣3,b)是一次函数y=﹣2x+m图象上的两点,则()A.a>b B.a=b C.a<b D.无法确定【分析】直接利用一次函数增减性分析得出答案.【解答】解:y=﹣2x+m,k=﹣2<0,故y随x的增大而减小,∵﹣1>﹣3,∴a<b,故选:C.10.一次函数y=ax﹣a(a≠0)的大致图象是()A.B.C.D.【分析】因为a的符号不确定,故应分两种情况讨论,再找出符合任一条件的函数图象即可.【解答】解:分两种情况:(1)当a>0时,一次函数y=ax﹣a经过第一、三、四象限,选项A符合;(2)当a<0时,一次函数y=ax﹣a图象经过第一、二、四象限,无选项符合.故选:A.二.填空题(共4小题)11.函数y=的自变量x的取值范围是x≥1.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:根据题意得,x﹣1≥0,解得x≥1.故答案为x≥1.12.若一次函数y=2x+b的图象经过点(1,﹣3),则b=﹣5.【分析】直接利用一次函数图象上点的坐标特点得出答案.【解答】解:∵一次函数y=2x+b的图象经过点(1,﹣3),∴﹣3=2+b,解得:b=﹣5.故答案为:﹣5.13.已知:如图,∠1=∠2=∠3=54°,则∠4的度数是126°.【分析】根据平行线的判定得出l1∥l2,根据平行线的性质解答即可.【解答】解:∵∠1=∠2=∠3=54°,∵∠1=∠5,∴∠5=∠2,∴l1∥l2,∴∠6=∠3,∴∠4=180°﹣∠6=180°﹣54°=126°,故答案为:126°.14.在Rt△ABC中,斜边BC=,则AB2+AC2+BC2的值为10.【分析】由直角三角形的性质可得AB2+AC2=BC2=5,即可求解.【解答】解:∵在Rt△ABC中,斜边BC=,∴AB2+AC2=BC2=5,∴AB2+AC2+BC2=5+5=10,故答案为10.三.解答题(共5小题)15.计算:(1)+|2﹣|﹣(π+2021)0;(2)(3+)2+(1+)(1﹣).【分析】(1)根据绝对值、零指数幂和二次根式的加减法可以解答本题;(2)根据完全平方公式、平方差公式可以解答本题.【解答】解:(1)+|2﹣|﹣(π+2021)0=3+2﹣1=2+1;(2)(3+)2+(1+)(1﹣)=9+6+2+(1﹣2)=9+6+2+(﹣1)=10+6.16.解方程组或不等式组:(1);(2).【分析】(1)根据加减消元法可以解答本题;(2)根据解一元一次不等式组的方法可以解答本题.【解答】解:(1),①+②×2,得5x=15,解得x=3,将x=3代入①,得y=2,故原方程组的解是;(2),由不等式①,得x>4,由不等式②,得x≤6,故原不等式组的解集是4<x≤6.17.如图AB∥CD,∠B=62°,EG平分∠BED,EG⊥EF,求∠CEF的度数.【分析】求出∠DEG,证明∠DEG+∠CEF=90°即可解决问题.【解答】解:∵AB∥CD,∠B=62°,∴∠BED=∠B=62°,∵EG平分∠BED,∴∠DEG=∠BED=31°,∵EG⊥EF,∴∠FEG=90°,∴∠DEG+∠CEF=90°,∴∠CEF=90°﹣∠DEG=90°﹣31°=59°.18.如图所示,在平面直角坐标系xOy中,已知△AOC的顶点坐标分别是A(﹣2,2)、C (3,3).(1)作出△AOC关于x轴对称的△DOE,其中点A的对应点是D,点C的对应点是E,并直接写出D和E的坐标;(2)若P为x轴上一点,若OP=OA,求点P的坐标.【分析】(1)分别作出A,C的对应点D,E即可.(2)利用勾股定理求出OA即可解决问题.【解答】解:(1)如图,△ODE即为所求作.D(﹣2,﹣2),E(3,﹣3).(2)∵A(﹣2,2),∴OA==2,∵OA=OP=2,点P在x轴上,∴P(2,0)或(﹣2,0).19.2020年为“扶贫攻坚”决胜之年.某校八年级(1)班的同学积极响应校团委号召,每位同学都向学校对口帮扶的贫困地区捐赠了图书.全班捐书情况如图,请你根据图中提供的信息解答以下问题:(1)该班共有40名学生;(2)本次捐赠图书册数的中位数为7册,众数为8册;(3)该校八年级共有320名学生,估计该校八年级学生本次捐赠图书为7册的学生人数.【分析】(1)由捐书7册的人数及其所占百分比可得总人数;(2)先用总人数乘以捐书4册和8册对应的百分比求出其人数,再根据中位数和众数的概念求解即可;(3)用总人数乘以样本中捐书7册人数所占百分比即可.【解答】解:(1)该班学生总人数为12÷30%=40(人),故答案为:40;(2)捐书4册的人数为40×10%=4(人),捐书8册的人数为40×35%=14(人),∵中位数是第20、21个数据的平均数,而第20、21个数据均为7册,∴这组数据的中位数为7册,∵数据8出现的次数最多,有14个,∴众数为8册,故答案为:7、8;(3)估计该校八年级学生本次捐赠图书为7册的学生人数320×30%=96(人).20.如图,在平面直角坐标系xOy中,直线l1:y=﹣x+3与x轴交于点A,点P(a,4)在直线l1上,过点P的直线l2交x轴于点B(﹣3,0).(1)求△P AB的面积;(2)求直线l2的解析式:(3)以P A为腰作等腰直角△QP A,请直接写出满足条件的点Q的坐标.【分析】(1)利用解析式y=﹣x+3确定A(3,0),再把P(a,4)代入y=﹣x+3求出a得到P(﹣1,4),然后根据三角形面积公式计算△P AB的面积;(2)利用待定系数法求直线l2的解析式;(3)讨论:当P为直角顶点,则PQ⊥P A,PQ=P A=4,利用两直线垂直,一次项系数互为负倒数可设PQ的解析式为y=x+b,再把把P点坐标代入求出b得到PQ的解析式为y=x+5,设Q(x,x+5),利用两点间的距离公式得到(x+1)2+(x+5﹣4)2=(4)2,解方程得到此时Q点的坐标;当A为直角顶点时利用同样的方法确定Q点的坐标.【解答】解:(1)当y=0时,﹣x+3=0,解得x=3,则A(3,0),把P(a,4)代入y=﹣x+3得﹣a+3=4,解得a=﹣1,∴P(﹣1,4),∵B(﹣3,0),∴△P AB的面积=×(3+3)×4=12;(2)设直线l2的解析式为y=kx+b,把B(﹣3,0),P(﹣1,4)分别代入得,解得,∴直线l2的解析式为y=2x+6:(3)当P为直角顶点,则PQ⊥P A,PQ=P A==4,∵P A的解析式为y=﹣x+3,∴PQ的解析式为y=x+b,把P(﹣1,4)代入得﹣1+b=4,解得b=5,∴PQ的解析式为y=x+5,设Q(x,x+5),∴(x+1)2+(x+5﹣4)2=(4)2,解得x1=﹣5,x2=3,此时Q点的坐标为(﹣5,0)或(3,0);当A为直角顶点,则AQ⊥AP,AQ=P A=4,∵P A的解析式为y=﹣x+3,∴PQ的解析式为y=x+m,把A(3,0)代入得3+m=0,解得m=﹣3,∴AQ的解析式为y=x﹣3,设Q(x,x﹣3),∴(x﹣3)2+(x﹣3)2=(4)2,解得x1=﹣1,x2=7,此时Q点的坐标为(﹣1,﹣4)或(7,4);综上所述,Q点的坐标为(﹣5,0)或(3,0)或(﹣1,﹣4)或(7,4).一.填空题(共5小题)21.若实数x、y满足:y=++,则xy=2.【分析】根据二次根式有意义的条件求出x的值,进而求出y,计算即可.【解答】解:由题意得,x﹣4≥0,4﹣x≥0,解得,x=4,则y=,∴xy=4×=2,故答案为:2.22.的整数部分为a,的小数部分为b,那么(b+2)2﹣a的值是11﹣2.【分析】求出a、b的值,代入计算即可.【解答】解:因为3<<4,的整数部分为a,的小数部分为b,所以a=3,b=﹣3,所以(b+2)2﹣a=(﹣3+2)2﹣3=14﹣2﹣3=11﹣2,故答案为:11﹣2.23.若关于x、y的二元一次方程组的解满足x+y<1,则a的取值范围为a <﹣4.【分析】将方程两个方程相加可得3x+3y=7+a,由x+y<1知3x+3y<3,据此可得7+a <3,解之即可.【解答】解:,①+②,得:3x+3y=7+a,∵x+y<1,∴3x+3y<3,则7+a<3,解得a<﹣4,故答案为:a<﹣4.24.如图,长方形ABCD中,AD=4,AB=3,点P是AB上一点,AP=1,点E是BC上一动点,连接PE,将△BPE沿PE折叠,使点B落在B',连接DB',则PB'+DB'的最小值是.【分析】连接DP.利用勾股定理求出DP,根据DB′+PB'≥DP,由此可得结论.【解答】解:如图,连接DP.∵四边形ABCD是矩形,∴∠A=90°,∵AP=1,AD=4,∴DP===,∵PB'+DB′≥DP,∴PB'+DB′≥,∴PB'+DB′的最小值为.25.已知:k为正数,直线l1:y=kx+k﹣1与直线l2:y=(k+1)x+k及x轴围成的三角形的面积为S k,则S2=,S1+S2+S3+…+S2020的值为.【分析】利用一次函数图象上点的坐标特征可求出直线l1、l2与x轴的交点坐标,联立两函数解析式成方程组,通过解方程组可求出两直线的交点坐标,利用三角形的面积公式可得出S k=S k=(﹣),将其代入S1+S2+S3+…+S2020中即可求出结论.【解答】解:当y=0时,有kx+k﹣1=0,解得:x=,∴直线l1与x轴的交点坐标为(,0);当y=0时,有(k+1)x+k=0,解得:x=﹣,∴直线l2与x轴的交点坐标为(﹣,0).联立两直线解析式成方程组,,解得:,∴两直线的交点坐标为(﹣1,﹣1).∴S k=×|﹣﹣|×|﹣1|==(﹣),∴S2=(﹣)=×(﹣)=,∴S1+S2+S3+…+S2020=×(1﹣)+×(﹣)+×(﹣)+…+×(﹣),=×(1﹣+﹣+﹣+…+﹣),=×(1﹣),=×,=.故答案为:,.二.解答题(共3小题)26.学校准备租用一批汽车,现有甲、乙两种大客车,甲种客车每辆载客量45人,乙种客车每辆载客量30人.已知1辆甲种客车和3辆乙种客车共需租金1240元,3辆甲种客车和2辆乙种客车共需租金1760元.(1)求1辆甲种客车和1辆乙种客车的租金分别是多少元?(2)学校计划租用甲、乙两种客车共8辆,送330名师生集体外出活动,最节省的租车费用是多少?【分析】(1)可设1辆甲种客车的租金是x元,1辆乙种客车的租金是y元,根据等量关系:①1辆甲种客车和3辆乙种客车共需租金1240元,②3辆甲种客车和2辆乙种客车共需租金1760元,列出方程组求解即可;(2)由于求最节省的租车费用,可知租用甲种客车6辆,租用乙客车2辆,进而求解即可.【解答】解:(1)设1辆甲种客车的租金是x元,1辆乙种客车的租金是y元,依题意有,解得.故1辆甲种客车的租金是400元,1辆乙种客车的租金是280元;(2)方法1:租用甲种客车6辆,租用乙客车2辆是最节省的租车费用,400×6+280×2=2400+560=2960(元).方法2:设租用甲种客车x辆,依题意有45x+30(8﹣x)≥330,解得x≥6,租用甲种客车6辆,租用乙客车2辆的租车费用为:400×6+280×2=2400+560=2960(元);租用甲种客车7辆,租用乙客车1辆的租车费用为:400×7+280=2800+280=3080(元);2960<3080,故最节省的租车费用是2960元.27.已知:等边三角形ABC,直线l过点C且与AB平行,点D是直线l上不与点C重合的一点,连接线段DB,并将射线DB绕点D顺时针转动60°,与直线AC交于点E(即∠BDE=60°).(1)如图1,点E在AC的延长线上时,求证:DE=DB;(2)如图2,AB=2,CD=4,依题意补全图2,试求出DE的长.(3)当点D在点C右侧时,直接写出线段CE、BC和CD之间的数量关系.【分析】(1)过点D作DF∥AC,交CB的延长线于点F,证明△CDF为等边三角形,由等边三角形的性质得出∠CDF=60°,CD=DF,证明△CDE≌△FDB(ASA),由全等三角形的性质得出DE=DB;(2)分两种情况:当点D在点C的右侧时,当点D在点C左侧时,作DF∥BC,交CA 的延长线于点F,由全等三角形的性质及勾股定理可得出答案;(3)分两种情况:当点E在AC的延长线上时,当点E在线段AC上时,过点D作DF ∥AC,交CB于点F,由全等三角形的性质可得出答案.【解答】解:(1)过点D作DF∥AC,交CB的延长线于点F,∵AB∥直线l,DF∥AC,∴∠ABC=∠BCD=60°,∠ACB=∠CFD=60°,∴△CDF为等边三角形,∴∠CDF=60°,CD=DF,∵∠BDE=60°,∴∠BDF=∠EDC,又∵∠BFD=∠ECD=60°,CD=DF,∴△CDE≌△FDB(ASA),∴DE=DB;(2)∵∠ADE<∠BDE,∴∠ADE不可能是直角,当点D在点C的右侧时,在四边形BCED中,∠BCE=120°,∠BDE=60°,∴∠CBD=90°,在Rt△BCD中,BC=2,CD=4,∴BD===2,由(1)可知DE=BD=2,当点D在点C左侧时,作DF∥BC,交CA的延长线于点F,∵AB∥直线l,DF∥BC,∴∠BAC=∠DCF=60°,∠BCA=∠DFC=60°,∴△CDF为等边三角形,∴∠CDF=60°,CD=DF=CF,∵∠BDE=60°,∴∠BDC=∠EDF,又∵∠DFE=∠DCB=120°,CD=DF,∴△BDC≌△EDF(ASA),∴EF=BC=2,∵CD=CF=4,∴AE=CE﹣AC=EF+CF﹣AC=4,在Rt△ACD中,AD==2,在Rt△ADE中,DE==2.综合以上可得,DE=2或2.(3)①如图3,当点E在AC的延长线上时,过点D作DF∥AC,交CB的延长线于点F,由(1)可知△CDE≌△FDB,∴CE=BF,CD=DF,∴CD=BC+BF=BC+CE;②如图4,当点E在线段AC上时,过点D作DF∥AC,交CB于点F,由(1)可知△CDE≌△FDB,∴CD=DF,CE=BF,∴CD=CF=BC﹣BF=BC﹣CE.28.如图,直线y=kx+2(k<0)与x轴、y轴分别交于点A、B.(1)如图1,点P(﹣1,3)在直线y=kx+2(k<0)上,求点A、B坐标;(2)在(1)的条件下,如图2,点A'是点A关于x轴的对称点,点Q是第二象限内一点,连结AQ、PQ、QA'和P A',如果△PQA'和△AA'Q面积相等,且∠P AQ=∠AP A',求点Q的坐标;(3)如图3,点C和点D是该直线在第一象限内的两点,点C在点D左侧,且两点的横坐标之差为1,且CD=k+2,作CE⊥x轴,垂足为点E,连结DE,若∠OAB=2∠DEB,求k的值.【分析】(1)由直线y=kx+2(k<0),当x=0时,y=2,得A(0,2),把点P(﹣1,3)代入y=kx+2(k<0)得k=﹣1,则y=﹣x+2,当y=0时,x=2,则B(2,0);(2)过点A'作A'Q∥AB,设AQ与A'P交点为M,延长QP交y轴于点N,先证△PQA'≌△AA'Q(SAS),得∠PQA'=∠AA'Q,PQ=AA',再由得出的性质得PQ=AA'=4,然后证∠QNO=90°,即可解决问题;(3)过D作DF⊥CE于F,先证CE=CD=k+2,再求出点C(1,k+2),D(2,2k+2),则DF=1,CF=﹣k,CE=k+2,然后在Rt△CDF中,由勾股定理得出方程,解方程即可.【解答】解:(1)当x=0时,y=2,∴A(0,2),把点P(﹣1,3)代入直线y=kx+2(k<0)得:﹣k+2=3,解得:k=﹣1,∴直线AB的解析式为y=﹣x+2,当y=0时,﹣x+2=0,解得:x=2,∴B(2,0);(2)过点A'作A'Q∥AB,设AQ与A'P交点为M,延长QP交y轴于点N,如图2所示:∵平行线间的距离处处相等,且QA'为公共底边,∴△PQA'和△AA'Q面积相等,∵∠P AQ=∠AP A',∴MA=MP,∵A'Q∥AB,∴∠P AQ=∠AQA',∠AP A'=∠P A'Q,∴∠AQA'=∠P A'Q,∴A'M=QM,∴AQ=A'P,∴△PQA'≌△AA'Q(SAS),∴∠PQA'=∠AA'Q,PQ=AA',∵点A'是点A关于x轴的对称点,A(0,2),∴A'(0,﹣2),∴PQ=AA'=2+2=4,由(1)可知OA=OB,∴∠BAO=45°,∵A'Q∥AP,∴∠PQA'=∠AA'Q=45°,∴∠QNO=90°,∴QN⊥y轴,∵P(﹣1,3),∴PN=1,ON=3,∴QN=PQ+PN=5,∴Q(﹣5,3);(3)过D作DF⊥CE于F,如图3所示:∵∠CEB=90°,∴∠CED=90°﹣∠DEB,∵CE∥OA,∴∠OAB=∠ECD,∵∠OAB=2∠DEB,∴∠ECD=2∠DEB,∴∠CDE=180°﹣∠ECD﹣∠CED=180°﹣2∠DEB﹣(90°﹣∠DEB)=90°﹣∠DEB,∴∠CDE=∠CED,∴CE=CD=k+2,∵点C在直线y=kx+2上,∴当y=k+2时,有k+2=kx+2,∴x=1,∴点C(1,k+2),D(2,2k+2),∴DF=1,CF=﹣k,CE=k+2,在Rt△CDF中,由勾股定理得:CF2+DF2=CD2,∴CF2+DF2=CE2,即(﹣k)2+12=(k+2)2,解得:k=﹣.。
北师大版八年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、下列各组数据中的三个数,可作为三边长构成直角三角形的是()A.4,5,6B.2,3,4C.11,12,13D.8,15,172、计算的结果是()A.±2B.2C.-2D.43、在-、、、π、3.1415和0六个数中,无理数的个数是()A.4个B.3个C.2个D.1个4、下列四个点中在函数y=2x-3的图象上有()个.(1,2) , (3,3) , (-1, -1), (1.5,0)A.1B.2C.3D.45、小珍用12. 4元恰好买了单价为0.8元和1.20元两种贺卡共12张,则其中单价为0.8元的贺卡有()A.5张B.7张C.6张D.4张6、如图,△ABC是等边三角形,P是∠ABC的平分线BD上一点,PE⊥AB于点E,线段BP的垂直平分线交BC于点F,垂足为点Q.若BF=2,则PE的长为()A.2B.2C.D.37、如图,菱形对角线,相交于点,点,分别在线段,上,且.以为边作一个菱形,使得它的两条对角线分别在线段,上,设,新作菱形的面积为,则反映与之间函数关系的图象大致是()A. B. C. D.8、下列图象中,表示y不是x的函数的是()A. B. C. D.9、对于实数,规定新运算:x※y=ax+by﹣xy,其中a、b是常数,等式右边是通常的加减乘除运算.已知:※1=﹣,(﹣3)※=8 ,则a※b的值为()A.6﹣2B.6+2C.4+D.4﹣310、甲、乙两人以相同路线前往距离单位10km的培训中心参加学习.图中l甲、l乙分别表示甲、乙两人前往目的地所走的路程S(km)随时间t(分)变化的函数图象.以下说法:①乙比甲提前12分钟到达;②甲的平均速度为15千米/小时;③乙走了8km后遇到甲;④乙出发6分钟后追上甲.其中正确的有()A.4个B.3个C.2个D.1个11、如图,在半径为13cm的圆形铁片上切下一块高为8cm的弓形铁片,则弓形弦AB的长为()A.10cmB.16cmC.24cmD.26cm12、方程组的解是()A. B. C. D.13、若直线经过第一、二、四象限,则化简的结果是()A.2 + kB.2 - kC.k - 2D.不能确定14、下列各表达式不是表示y与x的函数的是()A.y=3x 2B.y=C.y=±(x>0)D.y=3x+115、如图,在△ABC中,∠BDC=110°,点D是∠ABC和∠ACB角平分线的交点,则∠A=()A. B. C. D.二、填空题(共10题,共计30分)16、如图,正方形ABCD的边长为4cm,以正方形的一边BC为直径在正方形ABCD内作半圆,过A作半圆的切线,与半圆相切于F点,与DC相交于E点,则△ADE的面积为________.17、如图,将一个长方形纸条折成如图的形状,若已知∠1=130°,则∠2=________ 度.18、如图,∠A+∠B+∠C+∠D+∠E=________.19、将一副直角三角尺所示放置,已知,则的度数是________.20、已知点A(3a+5,a﹣3)在二、四象限的角平分线上,则a=________21、如图,已知直线l:y= x,过点M(2,0)作x轴的垂线交直线l于点N,过点N作直线l的垂线交x轴于点M1;过点M1作x轴的垂线交直线l于N 1,过点N1作直线l的垂线交x轴于点M2,…;按此作法继续下去,则点M8坐标为________.22、如图,在平面直角坐标系中有一边长为1的正方形OABC,边OA、OC分别在x轴、y轴上,如果以对角线OB为边作第二个正方形OBB1C1,再以对角线OB1为边作第三个正方形OB1B2C2,照此规律作下去,则点B2020的纵坐标为________23、如图,已知A(﹣2,3)、B(6,﹣1),AB交x轴于点C,交y轴于点D.点D的坐标为________.24、如图,直线l1∥l2,∠A=125°,∠B=105°,则∠1+∠2=________°.25、如图,在平面直角坐标系中,A(1,1),B(-1,1),C(-1,-2),D (1,-2)。
最新北师大版数学八年级上册期末试卷(含答案)最新北师大版数学八年级上册期末试卷(含答案)说明:本卷共七大题,全卷共24题,满分120分,考试时间为100分钟。
一、选择题(本大题共6小题;每小题3分;共18分)1.16的平方根是A。
2B。
4C。
±2D。
±42.P1 (x1.y1);P2 (x2.y2)是正比例函数y=-x图象上的两点;下列判断中,正确的是A。
y1.y2B。
y1 < y2C。
当x1 < x2时,y1 < y2D。
当x1.y23.在某次体育测试中,九(1)班6位同学的立定跳远成绩(单位:m)分别为:1.71;1.85;1.85;1.95;2.10;2.31;则这组数据的众数是A。
1.71B。
1.85C。
1.90D。
2.314.下列长度的各组线段能组成一个直角三角形的是A。
4cm;6cm;11cmB。
4cm;5cm;1cmC。
3cm;4cm;5cmD。
2cm;3cm;6cm5.如图AB=AC,则数轴上点C所表示的数为A。
5+1B。
5-1C。
-5+1D。
-5-16.XXX去距县城28千米的旅游点游玩,先乘车,后步行。
全程共用了1小时。
已知汽车速度为每小时36千米,步行的速度每小时4千米,则XXX乘车路程和步行路程分别是A。
26千米,2千米B。
27千米,1千米C。
25千米,3千米D。
24千米,4千米二、填空题(本大题共8小题;每小题3分;共24分)7.计算:8-2=6.8.已知点A(l,-2),若A、B两点关于x轴对称,则B点的坐标为(l,2)。
9.若a<1,则(a-1)-1=1-a。
10.某校八年级(1)班共有男生30名,女生20名,若测得全班平均身高为1.56米,其中男生平均身高为1.6米,则女生平均身高为1.48米。
11.若一次函数y=2x+6与y=kx图象的交点到x轴的距离为2,则k的值为4.12.若关于x,y的方程组2x-y=mx+my=n的解是(x。
新北师大版八年级数学(上册)期末测试卷含答案八年级数学试卷命题:双柏县教研室 郎绍波 一、选择题(本大题共8个小题,每小题只有一个正确选项,每小题3分,满分24分)1.计算- )A .-3B .3C .-9D .9 2.下列几组数能作为直角三角形的三边长的是( ) A .1,2,3 B .2,3,4 C .3,4,5 D .4,5,6 3.下列说法正确的是( )A .所有无限小数都是无理数B .所有无理数都是无限小数C .有理数都是有限小数D .不是有限小数的不是有理数 4.已知一组数据:12,5,9,5,14,下列说法不正确的是( ) A .平均数是9 B .中位数是9 C .众数是5 D .极差是55.在平面直角坐标系中,已知点P 的坐标是(-1,-2),则点P 关于x 轴对称的点的坐标是( )A .(-1,2)B .(1,-2)C .(1,2)D .(2,1) 6.如图,AB ∥CD,∠D =∠E =35°,则∠B 的度数为( )A .60°B .65°C .70°D .75° 7.一次函数y kx b =-,当k <0,b <0时的图象大致位置是( )B ACD EA .B .C .D .8.下列计算正确的是( )A. BC.2+ D.49-二、填空题(本大题共6个小题,每小题3分,满分18分)9.25的算术平方根是 .10.化简:= . 11.某水池有水15m 3,现打开进水管进水,进水速度5m 3/ h ;x h 后这个水池内有水y m 3,则y 关于x 的关系式为 . 12.命题“对顶角相等”的条件是 ,结论是 .13.如果a 、b 同号,则点P (a ,b )在 象限.14.方程组521x y x y +=⎧⎨-=⎩的解是 .三、解答题(本大题共有9个小题,满分58分)15.(本小题4分)计算:)16.(本小题5分)已知13x y =⎧⎨=⎩ 和02x y =⎧⎨=-⎩都是方程ax -y=b 的解,求a 与b 的值.O ABD F3 4 1 2 C E17.(本小题6分)如图,直线CD 、EF 被直线OA 、OB 所截,∠1 +∠2 =180°.求证:∠3=∠4.18.(本小题5分)长方形的两条边长分别为4,6,建立适当的直角坐标系,使它的一个顶点的坐标为(-2,-3).请你写出另外三个顶点的坐标.19.(本小题5分)某中学为了绿化校园,计划购买一批榕树和香樟树,经市场调查榕树的单价比香樟树少20元,购买3棵榕树和2棵香樟树共需340元.请问榕树和香樟树的单价各多少?20.(本小题6分)已知直线y=2x与y=-x+b的交点为(1,a),试确定方程组2y0+y0xx b-=⎧⎨-=⎩的解和a、b的值.21.(本小题9分)已知一次函数y=kx-3的图象与正比例函数12y x=的图象相交于点(2,a).(1)求a的值.(2)求一次函数的表达式.(3)在同一坐标系中,画出这两个函数的图象.x22.(本小题9分)甲、乙两名工人同时加工同一种零件,现根据两人7天产品中每天出现的次品数情况绘制成如下不完整的统计图和表,依据图、表信息,解答下列问题: 相关统计量表:众数 中位数 平均数 方差甲 2 107 乙11147次品数量统计表: 第1天 第2天 第3天 第4天 第5天 第6天 第7天 甲(件) 2 2 0 3 1 2 4 乙(件)1211(1)补全图、表.(2)判断谁出现次品的波动小.(3)估计乙加工该种零件30天出现次品多少件?甲 乙数量23.(本小题9分)汽车出发前油箱有油50L,行驶若干小时后,在加油站加油若干升.图象表示的是从出发后,油箱中剩余油量y(L)与行驶时间t(h)之间的关系.(1)汽车行驶h后加油,中途加油L;(2)求加油前油箱剩余油量y与行驶时间t的函数关系式;(3)已知加油前、后汽车都以70km/h匀速行驶,如果加油站距目的地210km,那么要到达目的地,油箱中的油是否够用?请说明理由.O 2 4 6 8 t/hOABDF342C E1 52013-2014学年上学期末综合素质测评八年级数学 参考答案一、选择题(每小题只有一个正确的选项,每小题3分,共24分)1.A 2.C 3.B 4.D 5.A 6.C 7.C 8.A二、填空题(每小题3分,共18分)9.5 10.2 11.y=5x +15 12.如果两个角是对顶角,那么它们相等13.一或三 14.2y 3x =⎧⎨=⎩ 三、解答题(共58分)15.(每小题4-×(-= -616.(本小题5分)解:因为13x y =⎧⎨=⎩ 和02x y =⎧⎨=-⎩都是方程ax -y=b 的解 所以,35,22a b a b b -==⎧⎧⎨⎨==⎩⎩解得 17.(本小题6分)证明:∵∠2与∠5是对顶角∴∠2=∠5∵∠1 +∠2 =180° ∴∠1 +∠5 =180° ∴CD ∥EF ∴∠3=∠4 18.(本小题5分)解:如图建立直角坐标系, 因为长方形的一个顶点的 坐标为A (-2,-3)所以长方形的另外三个顶点 的坐标分别为:B (2,-3),C (2,3),D (-2,3) (答案不唯一)19.(本小题5分)解:设榕树的单价为x 元/棵,香樟树的单价是y 元/棵,则:y 203+2y 340x x =-⎧⎨=⎩,解得60y 80x =⎧⎨=⎩ 答:榕树和香樟树的单价分别是60元/棵,80元/棵 20.(本小题6分)解:因为直线y=2x 与y=-x +b 的交点为(1,a ),所以221+3a a ab b ==⎧⎧⎨⎨=-=⎩⎩,解得 则有 2y 02y 01,,+y 30+y 3y 2x x x x x -=-==⎧⎧⎧⎨⎨⎨-===⎩⎩⎩即解得 因此,方程组2y 0+y 0x x b -=⎧⎨-=⎩ 的解是1y 2x =⎧⎨=⎩,a 、b21.(本小题9分) 解:(1)∵ 正比例函数12y x =的图象过点(2,a ) ∴ a =1(2)∵一次函数y=kx -3的图象经过点(2,1)∴1=2k -3 ∴k =2∴y=2x -3 (3)函数图像如右图22.(本小题9分)解:(1)补全的图如下.(2)从表(2)可以看出,甲的第一天、第二天、都六天都是是2, 则2出现了3次,出现的次数最多,因此,甲的众数是2,把这组数据从小到大排列为0,1,2,2,2,3,4,最中间的数是2,则甲的中位数是2, 因为乙的平均数是1,则乙的第7天的数量是1×7﹣1﹣0﹣2﹣1﹣1﹣0=2; (2)∵S 甲2=107,S 乙2=47, ∴S 甲2>S 乙2,∴乙出现次品的波动小.(3)∵乙的平均数是1,∴30天出现次品是1×30=30(件).x甲 乙数量23.(本小题9分) 解:(1)从图象中可以看出,汽车行驶3小时后加油,中途加油45-14=31升 (2)因为函数图象过点(0,50)和(3,14) 所以设函数关系式为y=kt +b ,则5012143+50b t t b b ==-⎧⎧⎨⎨==⎩⎩,解得 因此,y= -12t +50(3)油箱中的油够用.因为汽车加油前行驶了3小时,行驶了3×70=210(km ),用去了50-14=36升油,而目的地距加油站还有210 km,所以要达到目的地还需36升油,而中途加油31升后有油45升,即油箱中的剩余油量是45升,所以够用.因此,要到达目的地油箱中的油够用.。
期末测试卷(满分120分,时间90分钟)题号一二三总分得分一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合要求的)1.4 的算术平方根是( )A.2B.-2C.±2 D .±22.如图,两个较大正方形的面积分别为225、289,则字母A 所代表的正方形的边长为( )A.4 B.8 C.16 D.643.在实数 ―15,3―27,π2,16,8,中,无理数的个数为( )A.1B.2C.3D.44.将直角坐标系中的点(-1,-3)向上平移4个单位,再向右平移2个单位后的点的坐标为( )A.(3,-1) B.(-5,-1) C.(-3,1) D.(1,1)5.某一次函数的图象经过点(1,2),且y 随x 的增大而减小,则这个函数的表达式可能是( ) A. y=2x+4 B. y=3x--1 C. y=-3x+1 D. y=-2x+46.估算 24+3的值是( )A.在5与6之间B.在6与7 之间C.在7 与8之间D.在8 与9之间7.如图,将直尺与含 30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是( )A.30° B.40° C.50° D.60°8.小明家1至 6月份的用水量统计图如图所示,关于这组数据,下列说法错误的是( ) A.众数是6 B.中位数是5 C.平均数是5 D.方差是 439.如果点P(x-4,x+3)在平面直角坐标系的第二象限内,那么x 的取值范围在数轴上可表示为( )10.下列命题中,是真命题的是( )A.算术平方根等于自身的数只有1B.斜边和一条直角边分别相等的两个直角三角形全等C.只有一个角等于60°的三角形是等边三角形 D .12是最简二次根式11.关于x,y 的方程组 {x +my =0,x +y =3的解是 {x =1y =,其中y 的值被盖住了.不过仍能求出m ,则m 的值是( )A .―12 B. 12 C .―14 D .1412.如图,正方形网格中的△ABC,若每个小方格边长都为1,则 △ABC 的形状为( )A.锐角三角形B.直角三角形C.钝角三角形D.以上答案都不对二、填空题(本大题共6小题,每小题4分,共24分.本题要求把正确结果填在规定的横线上,不需要解答过程)13.若点 M(a,-1)与点 N(2,b)关于y 轴对称,则a+b 的值是 .14.若关于x ,y 的二元一次方程组 {x +y =3k ,x ―y =k 的解也是二元一次方程 x +2y =8的解,则 k 的值为15.已知一组数据1,2,3,5,x ,它的平均数是3,则这组数据的方差是 .16.写出“全等三角形的面积相等”的逆命题 .17.如图,Rt△OA ₀A ₁ 在平面直角坐标系内, ∠OA₀A₁=90°,∠A₀OA₁=30°,以 OA₁为直角边向外作Rt△OA ₁A ₂,使 ∠OA₁A₂=90°,∠A₁OA₂=30°,,以OA ₂为直角边向外作 Rt △OA₂A₃,使 ∠OA₂A₃=90°, ∠A₂OA₃=30°,,按此方法进行下去,得到 RtOA 3A 4,RtOA 4A 5,⋯,RtOA 2017A 2018,若点 A₀(1,0),则 点 A ₂₀₁₈的横坐标为 .18.如图,在 △ABC 中, AB =AC ,D 、E 两点分别在AC 、BC 上,BD 是 ∠ABC 的平分线, DE‖AB ,若 BE = 5cm ,CE=3c m,则 △CDE 的周长是 .三、解答题(本大题共8小题,满分60分.解答应写出文字说明、证明过程或演算步骤)19.(6分)计算: (1)48―27+13; (2)8+182―(32―1)220.(6分)若a,b为实数,且b=a2―1+1―a2+aa+1,求―a+b―3的值.21.(8分)阅读理解,补全证明过程及推理依据.已知:如图,点 E 在直线DF 上,点 B 在直线AC 上,∠1=∠2,∠3=∠4.求证:∠A=∠F.证明:∵∠1=∠2(已知),∠2=∠DGF( ),∴∠1=∠DGF(等量代换),∴∥ ( ),∴∠3+∠=180°(),又∵∠3=∠4(已知),∴∠4+∠C=180°(等量代换),∴∥ ( ),∴∠A=∠F( ).22.(8分)解方程组:(1){2x+5y=30,2x―5y=―10;(2){3x―y=5, x+2y=11.23.(8分)如图,一条直线分别与直线 BE、直线CE、直线 CF、直线 BF 相交于点A,G,D,H且∠1=∠2,∠B=∠C.(1)找出图中相互平行的线,说说它们之间为什么是平行的;(2)证明:∠A=∠D.24.(8分)某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核.甲、乙、丙各项得分如下表:笔试面试体能甲837990乙858075丙809073(1)根据三项得分的平均分,从高到低确定三名应聘者的排名顺序.(2)该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,并按60%,30%,10%的比例计入总分.根据规定,请你说明谁将被录用.25.(8分))某大酒店客房部有三人间、双人间和单人间客房,收费数据如下表(例如三人间普通间客房每人每天收费50元).为吸引客源,在“十一黄金周”期间进行优惠大酬宾,凡团体入住一律五折优惠.一个50人的旅游团在十月二号到该酒店住宿,租住了一些三人间、双人间普通客房,并且每个客房正好住满,一天一共花去住宿费 1 510 元.普通间/(元/人/天)豪华间/(元/人/天)贵宾间/(元/人/天)三人间50100500双人间70150800单人间1002001500(1)三人间、双人间普通客房各租了多少间?(2)设三人间共住了x人,则双人间住了人,一天一共花去住宿费用y元表示,写出y与x的函数关系式;(3)如果你作为旅游团团长,你认为上面这种住宿方式是不是费用最少?为什么?26.(8分)如图,在平面直角坐标系中,过点 B(6,0)的直线AB 与直线OA 相交于点A(4,2),动点 M沿路线O→A→C运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)当△OMC的面积是△OAC的面积的14时,求出这时点 M的坐标.期末测试卷1. A2. B3. B4. D5. D6. C7. C8. B9. C 10. B11. A 12. B 13.-3 14.2 15.2 16.面积相等的三角形全等 17.―220173102918.13 cm 19.解(1)原式 =433;(2).原式 =62―14.20.解因为a,b 为实数,且 a ²―1≥0,1―a ²≥0,所以 a ²―1= 1―a ²=0.所以a=±1.又因为a+1≠0,所以a=1.代入原式,得 b =12,所以 ―a +b ―3=―3.21.解∵∠1=∠2(已知),∠2=∠DGF(对顶角相等),∴∠1=∠DGF(等量代换),∴BD ∥C E(同位角相等,两直线平行),∴∠3+∠C=180°(两直线平行,同旁内角互补).又∵∠3=∠4(已知),∴∠4+∠C =180°(等量代换),∴DF ∥AC(同旁内角互补,两直线平行),∴∠A=∠F(两直线平行,内错角相等).22.解(1){x=5,4,(2,y ₁=3,23.解 (1)CE‖BF ,AB‖CD .理由:∵∠1=∠2, ∴CE‖FB , ∴∠C =∠BFD . ∵∠B =∠C , ∴∠B =∠BFD ,∴AB∥CD;(2)由(1)可得AB∥CD,∴∠A=∠D.24.解 (1)x g =(83+79+90)÷3=84, x 2=(85+80+75)÷3=80,x y 3=(80+90+73)÷3=81.从高到低确定三名应聘者的排名顺序为:甲,丙,乙;(2)由该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,则甲淘汰.乙成绩=85×60%+80×30%+75×10%=82.5,丙成绩=80×60%+90×30%+73×10%=82.3.故乙将被录取.25.解(1)设三人间普通客房租了x 间,双人间普通客房租了y 间.根据题意得{3x +2y =50,50×50%×3x +70×50%×2y =1510,解得 {x =8,y =13.因此,三人间普通客房租了8间,双人间普通客房租了13间.(2)(50-x)根据题意得:y=25x+35(50-x),即y=-10x+1750.(3)不是,由上述一次函数可知,y 随x 的增大而减小,当三人间住的人数大于24人时,所需费用将少于1510元.26.解(1)设直线AB 的解析式是y=kx+b,根据题意得: {4k +b =2,6k +b =0,解得: {k =―1,b =6.则直线的解析式是:y=-x+6.(2)在y=-x+6 中,令x=0,解得:y=6,S AAC =12×6×4=12.(3)设OA 的解析式是y=mx,则4m=2,解得: m =12,则直线的解析式是: y =12x ,∵当△OMC 的面积是△OAC 的面积的 14时,∴M 的横坐标是 14×4=1,在 y =12x 中,当x=1时, y =12,则M 的坐标是 (1,12);在y=-x+6中,x=1则y=5,则M 的坐标是(1,5).则M 的坐标是: M 1(1,12)或M ₂(1,5).。
万佳超市八年级数学上学期期末考试一、选择题(本大题共6小题,每小3分,共18分)1.下列四组数据中,不能..作为直角三角形的三边长是( ) A .6,8,1 B .7,24,25 C .2,5,7 D .9,12,152.在算式((的中填上运算符号,使结果最大的运算符号是( )A .加号B .减号C .乘号D .除号3.下列数据是2013年3月7日6点公布的中国六大城市的空气污染指数情况:则这组数据的中位数和众数分别是( )A .164和163B .163和164C .105和163D .105和164 4.下列各式中计算正确的是( )A .9)9(2-=-B .525±=C .1)1(33-=- D .2)2(2-=-5.右图中点P 的坐标可能是( )A .(-5,3)B .(4,3)C .(5,-3)D .(-5,-3) 6.一次函数1y kx b =+与2y x a =+的图象如图,则下 列结论①0k <;②0a >;③当3x <时,12y y <中, 正确的个数是( ) A .0 B .1 C .2 D .3b第6题第11题1EDCB A二、填空题(本大题共8小题,每小3分,共24分)7. 9的平方根是 .8. 函数y=x -1中,自变量x 的取值范围是 .9.万安县某单位组织34人分别到井冈山和兴国进行革命传统教育,到井冈山的人数是 到兴国的人数的2倍多1人,求到两地的人数各是多少?设到井冈山的人数为x 人,到 兴国的人数为y 人,请列出满足题意的方程组 .10.一个一次函数的图象交y 轴于负半轴,且y 随x 的增大而减小,请写出满足条件的 一个函数表达式: . 11.如图,△ABC 中,∠A=90°,点D 在AC 边上,DE ∥BC ,若∠1=155°,则∠B 的度数为 .12.如图,已知函数y ax b =+和y kx =的图象交于点P ,则二元一次方程组,y ax b y kx =+⎧⎨=⎩的解是 .13.甲、乙两人分别从A 、B 两地相向而行,y 与x 的函数关系如图所示,其中x 表示 乙行走的时间(时),y 表示两人与A 地的距离(千米),甲的速度比乙每小时 快 千米.14.某学习小组五名同学在期末模拟考试(满分为120)的成绩如下:100、100、x 、x 、 80.已知这组数据的中位数和平均数相等,那么整数x 的值可以是 .(时)y=kxy=ax+bP-4O -2第12题ED CBA 三、(本大题共2小题,每小5分,共10分)15.解方程组:⎩⎨⎧-==-+16)1(2y x y x 16.计算:2163)1526(-⨯-四、(本大题共2小题,每小6分,共12分)17.如图,点B 是△ADC 的边AD 的延长线上一点,若︒=∠50C ,︒=∠60BDE ,︒=∠70ADC .求证:DE ∥AC18.如图所示,一段街道的两边缘所在直线分别为AB ,PQ ,并且AB ∥PQ .建筑物的 一端DE 所在的直线MN ⊥AB 于点M ,交PQ 于点N ,步行街宽MN 为13.4米,建筑 物宽DE 为6米,光明巷宽EN 为2.4米.小亮在胜利街的A 处,测得此时AM 为12米, 求此时小明距建筑物拐角D 处有多远?五、(本大题共2小题,每小8分,共16分)19.我县为加快美丽乡村建设,建设秀美幸福万安,对A 、B 两类村庄进行了全面改建. 根据预算,建设一个A 类美丽村庄和一个B 类美丽村庄共需资金300万元;甲镇建设 了2个A 类村庄和5个B 类村庄共投入资金1140万元.NPQ(1)建设一个A 类美丽村庄和一个B 类美丽村庄所需的资金分别是多少万元? (2)乙镇3个A 类美丽村庄和6个B 类村庄改建共需资金多少万元?20.如图,在平面直角坐标系中,过点B (6,0)的直线AB 与直线OA 相交于点 A (4,2),动点M 沿路线O →A →C 运动.(1)求直线AB 的解析式. (2)求△OAC 的面积.(3)当△OMC 的面积是△OAC 的面积的41时, 求出这时点M 的坐标.六、(本大题共2小题,每小9分,共18分)21.如图是规格为8×8的正方形网格,请在所给网格中......按下列要求操作: (1)在网格中建立平面直角坐标系, 使A 点坐标为(-2,4),B 点坐标为(-4,2);(2)在第二象限内的格点上..........画一点C, 使点C 与线段AB 组成一个以AB 为底的等腰三角形, 且腰长是无理数, 则C 点坐标是 ;(3)△ABC 的周长= (结果保留根号); (4)画出△ABC 关于关于y 轴对称的的△A′B′C′.22.万安县开发区某电子电路板厂到井冈山大学从2014年应届毕业生中招聘公司职员, 对应聘者的专业知识、英语水平、参加社会实践与社团活动等三项进行测试或成果认定, 三项的得分满分都为100分,三项的分数分别按5∶3∶2的比例记入每人的最后总分, 有4位应聘者的得分如下表所示.xyCBAO(页)(1)分别算出4位应聘者的总分;(2)表中四人“专业知识”的平均分为85分,方差为12.5,四人“英语水平” 的平均分为87.5分,方差为6.25,请你求出四人“参加社会实践与社团活动等” 的平均分及方差;(3)分析(1)和(2)中的有关数据,你对大学生应聘者有何建议?七、(本大题共2小题,第23小题10分,第24小题12分,共22分)23.为了减轻学生课业负担,提高课堂效果,我县教体局积极推进 “高效课堂”建设. 某学校的《课堂检测》印刷任务原来由甲复印店承接,其每月收费y (元)与复印页 数x (页)的函数关系如图所示: ⑴从图象中可看出:每月复印超过 500页部分每页收费 元;⑵现在乙复印店表示:若学校先按 每月付给200元的月承包费,则可按 每页0.15元收费.乙复印店每月收费y (元)与复印页数x (页)的函数关系为 ;⑶在给出的坐标系内画出(2)中的函数图象,并结合函数图象回答每月复印在3000页左右应选择哪个复印店?24.平面内的两条直线有相交和平行两种位置关系.(1)如图1,若AB ∥CD ,点P 在AB 、CD 内部,∠B =50,∠D=30°,求∠BPD.(2)如图2,将点P 移到AB 、CD 外部,则∠BPD 、∠B 、∠D 之间有何数量关系?请证明你的结论.(2)如图3,写出∠BPD ﹑∠B ﹑∠D ﹑∠BQD 之间的数量关系?(不需证明). (3)如图4,求出∠A+∠B+∠C+∠D+∠E+∠F 的度数.图2PDCBA 图1PDCBA图3QCAPDB 图4BCDEFA八年级数学参考答案一、选择题(本大题共6小题,每小3分,共18分) 1.C 2.D 3.A 4.C 5.D 6.B二、填空题(本大题共8小题,每小3分,共24分)7.±3 8.x ≤1 9. ⎩⎨⎧+==+1234y x y x 10. k ﹤0、b ﹤0 均可11.65° 12. ⎩⎨⎧-=-=24y x 13. 0.4 14.110,60三、(本大题共2小题,每小5分,共10分)15.∴原方程组的解为⎩⎨⎧==65y x 16. 原式 = -65四、(本大题共2小题,每小6分,共12分)17. 求得 ∠A=60°或∠ CDE=50 ° 证得 DE ∥AC 18. 求得MD=5(米)利用勾股定理求出AD=13米五、(本大题共2小题,每小8分,共16分)19.(1)解设:建设一个A 类美丽村庄和一个B 类美丽村庄所需的资金分别是x 、y 万元⎩⎨⎧=+=+114052300y x y x 解得⎩⎨⎧==180120y x (2)1440万元20.(1)y=-x+6(2)12 (3)M 1(1,0.5)或M 2(1,5)六、(本大题共2小题,每小9分,共18分)21. (1)建立平面直角坐标系 ……2分(2)(-1,1) ……4分 (3)22+210 ……7分2222231[(9070)(7070)(7070)(5070)]2004S =-+-+-+-=22. 解:(1)应聘者甲总分为86分;应聘者乙总分为82分;应聘者丙总分为81分;应聘者丁总分为82分. …2分(2) 4人参加社会实践与社团活动等的平均分数:70=x…4分方差:2S …7分 (3)对于应聘者的专业知识、英语水平的差距不大,但参加社会实践与社团活动等方面的差距较大,影响学生的最后成绩,将影响学生就业.学生不仅注重自己的文化知识的学习,更应注重社会实践与社团活动的开展,从而促进学生综合素质的提升.七、(本大题共2小题,第23小题10分,第24小题12分,共22分)23.解:⑴0.2 ⑵()020015.0≥+=x x y ⑶画图象 由图像可知,当每月复印3000页左右,选择乙店更合算 ……10分24.解: (1)80° (2)∠BPD=∠B-∠D 证明方法多样,方法正确即可给分(3)结论:∠BPD=∠BQD+∠B+∠D. (4)360° 连结AD 利用三角形内角和或四边形的内角和计算(页)。
新北师大版八年级数学上册期末试卷及答案【完美版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.6的相反数为( )A .-6B .6C .16-D .162.若()(1)x m x +-的计算结果中不含x 的一次项,则m 的值是( )A .1B .-1C .2D .-2.3.对于函数y =2x ﹣1,下列说法正确的是( )A .它的图象过点(1,0)B .y 值随着x 值增大而减小C .它的图象经过第二象限D .当x >1时,y >04.把38a 化为最简二次根式,得 ( )A .22a aB .342aC .322aD .24a a5.已知一个多边形的内角和为1080°,则这个多边形是( )A .九边形B .八边形C .七边形D .六边形6.下列对一元二次方程x 2+x ﹣3=0根的情况的判断,正确的是( )A .有两个不相等实数根B .有两个相等实数根C .有且只有一个实数根D .没有实数根7.四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件不能判定这个四边形是平行四边形的是( )A .AB ∥DC ,AD ∥BCB .AB=DC ,AD=BC C .AO=CO ,BO=DOD .AB ∥DC ,AD=BC8.如图,在△ABC 中,AB=AC ,∠BAC=100°,AB 的垂直平分线DE 分别交AB 、BC 于点D 、E ,则∠BAE=( )A .80°B .60°C .50°D .40°9.如图,能判定EB ∥AC 的条件是( )A .∠C=∠1B .∠A=∠2C .∠C=∠3D .∠A=∠110.如图在△ABC 中,BO ,CO 分别平分∠ABC ,∠ACB ,交于O ,CE 为外角∠ACD 的平分线,BO 的延长线交CE 于点E ,记∠BAC=∠1,∠BEC=∠2,则以下结论①∠1=2∠2,②∠BOC=3∠2,③∠BOC=90°+∠1,④∠BOC=90°+∠2正确的是( )A .①②③B .①③④C .①④D .①②④二、填空题(本大题共6小题,每小题3分,共18分)1.已知a ,b ,c 是△ABC 的三边长,a ,b 满足|a ﹣7|+(b ﹣1)2=0,c 为奇数,则c=________.2.以正方形ABCD 的边AD 作等边△ADE ,则∠BEC 的度数是__________.3.如果不等式组841x x x m +<-⎧⎨>⎩的解集是3x >,那么m 的取值范围是________. 4.如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()0,4,点C 的坐标为()4,3,点D 在第二象限,且ABD 与ABC 全等,点D 的坐标是______.5.如图所示,把一张长方形纸片沿EF 折叠后,点D C ,分别落在点D C '',的位置.若65EFB ︒∠=,则AED '∠等于________.6.如图,已知点E 在正方形ABCD 的边AB 上,以BE 为边向正方形ABCD 外部作正方形BEFG ,连接DF ,M 、N 分别是DC 、DF 的中点,连接MN.若AB=7,BE=5,则MN=________.三、解答题(本大题共6小题,共72分)1.解方程:(1)12111x x x -=-- (2)31523162x x -=--2.先化简,再求值:2443(1)11m m m m m -+÷----,其中22m =.3.已知2a ﹣1的平方根为±3,3a +b ﹣1的算术平方根为4,求a +2b 的平方根.4.如图,已知AC 平分∠BAD ,CE ⊥AB 于E ,CF ⊥AD 于F ,且BC=CD .(1)求证:△BCE ≌△DCF ;(2)求证:AB+AD=2AE.5.如图,直线l1:y1=﹣x+2与x轴,y轴分别交于A,B两点,点P(m,3)为直线l1上一点,另一直线l2:y2=12x+b过点P.(1)求点P坐标和b的值;(2)若点C是直线l2与x轴的交点,动点Q从点C开始以每秒1个单位的速度向x轴正方向移动.设点Q的运动时间为t秒.①请写出当点Q在运动过程中,△APQ的面积S与t的函数关系式;②求出t为多少时,△APQ的面积小于3;③是否存在t的值,使△APQ为等腰三角形?若存在,请求出t的值;若不存在,请说明理由.6.某开发公司生产的 960 件新产品需要精加工后,才能投放市场,现甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用 20 天,而甲工厂每天加工的数量是乙工厂每天加工的数量的23,公司需付甲工厂加工费用为每天 80 元,乙工厂加工费用为每天120 元.(1)甲、乙两个工厂每天各能加工多少件新产品?(2)公司制定产品加工方案如下:可以由每个厂家单独完成,也可以由两个厂家合作完成.在加工过程中,公司派一名工程师每天到厂进行技术指导,并负担每天 15 元的午餐补助费,请你帮公司选择一种既省时又省钱的加工方案,并说明理由.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、A3、D4、A5、B6、A7、D8、D9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、72、30°或150°.3、3m≤.4、(-4,2)或(-4,3)5、50°6、13 2三、解答题(本大题共6小题,共72分)1、(1)2x3=;(2)10x9=.2、22mm-+1.3、±34、略5、(1)b=72;(2)①△APQ的面积S与t的函数关系式为S=﹣32t+272或S=32t﹣272;②7<t<9或9<t<11,③存在,当t的值为3或或9﹣或6时,△APQ为等腰三角形.6、(1)甲工厂每天加工 16 件产品,乙工厂每天加工 24 件产品. (2)甲、乙两工厂合作完成此项任务既省时又省钱.见解析.。
北师大版数学八年级上册期末考试试卷一、选择题(共12题每题3分共36分)题号123456789101112答案1.已知a 、b 、c 是△ABC 的三边的长,则下列结论一定成立的是()A .a+b=cB .a 2+b 2=c 2C .a+b≥cD .a+b>c2.如图,有两棵树,一棵高10m ,另一棵树高4m ,两树相距8m .一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行()A .12mB .13mC .14mD .19m3.下列运算中正确的个数是()①532=+;②5)5(2=-;③6)6((2±=-;④23535(22=-=-;⑤31227=-.A .4个B .3个C .2个D .1个4.甲、乙两人沿相同的路线由A 地到B 地匀速前进,A 、B 两地间的路程为20km .他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是()A.甲的速度是8km/h B .乙的速度是16km/h C .乙出发2/3小时追上甲D .甲比乙晚到B 地3h5.若点M(a ,b)满足(a+b)2=(a-b)2-3,则点M 所在象限是()A .第一象限或第三象限B .第二象限或第四象限C .第一象限或第二象限D .不能确定6.下列命题中是真命题的有()A.不相交的两条直线叫做平行线B.两条直线被第三条直线所截,同位角相等C.垂直于同一条直线的两条直线互相平行D.平行于同一条直线的两条直线互相平行第2题图第4题图7.小颖同学统计了今年1~8月份,她所在的单元10户业主用水总量情况(单位:吨),并绘制了如图折线统计图,下列说法正确的是()A .极差是55B .众数是100C .中位数是130D .平均数为1358.如图,将△ABC 纸片的∠A 沿DE 折叠,使点A 落在△ABC 的外部A 处,则∠A 、∠1、∠2的等量关系为()A .∠1-∠2=2∠AB .∠1=∠2+∠AC .∠1+∠2=2∠AD .∠1+∠2=∠A9.已知关于a ,b 的二元一次方程组⎩⎨⎧+=+-=-172315123k b a kb a .则a+b 的值为()A .kB .2C .2kD .-210.已知直线l:y=kx+b 与直线y=-3x-7平行,与直线y=5x+4相交于y 轴,则直线l 的函数表达式为()A .y=3x+4B .y=4x-3C .y=-3x-4D .y=-3x+411.如图,点A 的坐标是(3,4),若点P 在x 轴上,且△APO 是等腰三角形,关于点P 的坐标不正确的是()A .(-6,0)B .(6,0)C .(-5,0)D .(67,0)12.如图,已知△ABC 中,AB=AC ,AD 是∠BAC 的平分线,AE 是∠BAC 的外角平分线,ED ∥AB 交AC 于点G .下列结论:①AD ⊥AE ;②AE ∥BC ;③AE=AG ;④AG=21DE .正确的是()A .①②③B .①②④C .②③④D .①②③④二、填空题(共10题每题3分共30分)13.如果x x -=-5)5(2,那么x 的取值范围是;若51=+x x ,则=-xx 1.某小区某单元1~8月份10户业主用水总量折线统计图第7题图第8题图第11题图第12题图14.在已知点P(3,-4),在x 轴上有一点A 与P 的距离为5,则A 点的坐标为.15.“一根弹簧原长10cm ,在弹性限度内最多可挂质量为5kg 的物体,挂上物体后弹簧伸长的长度与所挂物体的质量成正比,,则弹簧的总长度y(cm)与所挂物体质量x(kg)之间的函数关系式为y=10+0.5x(0≤x≤5).”王刚同学在阅读上面材料时发现部分内容被墨迹污染,被污染的部分是确定函数关系式的一个条件,你认为该条件可以是(只需写出1个).16.已知a 、b 、c 是△ABC 的三边长,且a 、b 满足bb b b a 124161622++-+-=,c=2)5(-,则△ABC 的形状是.17.把一组数据中的每一个数据都减去50,得到一组新数据,若求得这组数据的平均数是2.6,方差是3.2,则原来那组数据的平均数为,方差为.18.如图(1),BP ,CP 分别是△ABC 中∠ABC 和外角∠ACE 的平分线,∠A=80°,(1)则∠BPC 的度数;(2)如图(2),若BP 1,CP 1分别平分∠PBC ,∠PCE ,BP 2,CP 2分别平分∠P 1BC ,∠P 1CE ,BP 3、CP 3分别平分∠P 2BC ,∠P 2CE ,…,BP n ,CP n ,分别平分∠P n-1BC ,∠P n-1CE ,则∠BP 1C=°,∠BP 2C=°,∠BP n C=°.三、解答题(共8题共66分)19.(6分)计算:54818)2021(628)36(02-+-++--π;20.(8分)解方程(组)⎩⎨⎧=+=+②①202420212020201720202021y x y x .第18题图(1)第11题图(2)21.(8分)已知12-=x ,求代数式x 3-5x+1的值.22.(10分)(1)设直角三角形的两条直角边a=26+,b=26-,求斜边c 的长;(2)a a a =-+-20212020,求a-20202的值.23.(8分)如图所示,点B 、E 分别在AC 、DF 上,BD 、CE 均与AF 相交,∠1=∠3,∠C=∠D ,求证:∠A=∠F .24.(8分)一艘轮船在相距180千米的甲、乙两地之间匀速航行,从甲地到乙地顺流航行用10小时,逆流航行比顺流航行多用5小时.(1)求该轮船在静水中的速度和水流速度;(2)若在甲、乙两地之间建立丙码头,使该轮船从甲地到丙地和从乙地到丙地所用的航行时间相同,问甲、丙两地相距多少干米?第23题图26.(10分)如图,在平面直角坐标系中△AOB 是等腰直角三角形,且AB=26.(1)求斜边AB 所在直线的函数关系式;(2)若直线343-=x y 与直线AB 相交于点C ,且与x 轴,y 轴分别相交于点D 、E ,①请问直线7341-=x y 是否也经过点C ?②求四边形BODC 的面积S.参考答案一、选择题(共12小题每题3分共36分)第26题图题号123456789101112答案DBCCBDCABDAB二、填空题(共6小题每题3分共18分)13.x≤5,±114.(6,0),(0,0)15.每增加1千克重物弹簧伸长0.5cm16.直角三角形17.52.6,3.218.(1)40°;(2)20,10,1280+n 三、解答题(共8题共66分)19.(6分)计算:54818)2021(628)36(02-+-++--π;解:原式=6928281)26)(26()26(863⨯-⨯++-+---=6342814)26(863-++---=22631226263-+++--=4.20.(8分)解方程(组)⎩⎨⎧=+=+②①202420212020201720202021y x y x .解:由①+②得4041x+4041y=4041,解x+y=1③,由①-②得x-y=-7④,解由方程③④组成的方程组⎩⎨⎧-=-=+④③71y x y x 得,⎩⎨⎧=-=43y x .所以方程组的解为⎩⎨⎧=-=43y x .21.(8分)已知12-=x ,求代数式x 3-5x+1的值.解:∵12-=x ,∴22)2()1(=+x ,∴x 2+2x+1=2,∴x 2=1-2x ,∴x 3-5x+1=x 2·x-5x+1=x(1-2x)-5x+1=x-2x 2-5x+1=-2x 2-4x+1=-2(1-2x)-4x+1=-2+4x-4x+1=-1.22.(10分)(1)设直角三角形的两条直角边a=26+,b=26-,求斜边c 的长;(2)a a a =-+-20212020,求a-20202的值.解:(1)∵直角三角形的两条直角边a=26+,b=26-,∴根据勾股定理得:22b a c +=22)26()26(-++==128128-++=416=;(2)由题意得a-2021≥0,∴a≥2021,∴原式变化为a a a =-+-20212020∴20202021=-a ,∴a-2021=20202∴a-20202=2021.23.(8分)如图所示,点B 、E 分别在AC 、DF 上,BD 、CE 均与AF 相交,∠1=∠3,∠C=∠D ,求证:∠A=∠F .证明:∵∠2=∠3,∠1=∠3,∴∠1=∠2,∴BD ∥CE ,∴∠C=∠ABD ;又∵∠C=∠D ,∴∠D=∠ABD ,∴AB ∥EF ,∴∠A=∠F .24.(8分)一艘轮船在相距180千米的甲、乙两地之间匀速航行,从甲地到乙地顺流航行用10小时,逆流航行比顺流航行多用5小时.(1)求该轮船在静水中的速度和水流速度;(2)若在甲、乙两地之间建立丙码头,使该轮船从甲地到丙地和从乙地到丙地所用的航行时间相同,问甲、丙两地相距多少干米?解:(1)设该轮船在静水中的速度是x 千米/小时,水流速度是y 千米/小时,依题意,得:⎩⎨⎧=-+=+180))(510(180)(10y x y x ,解得:⎩⎨⎧==315y x .第23题图经检验x=15,y=3是方程组的解,且符合题意.答:该轮船在静水中的速度是15千米/小时,水流速度是3千米/小时.(2)设甲、丙两地相距a 千米,则乙、丙两地相距(180-a)千米,依题意,得:315180315--=+aa ,解得:a=108.经检验a=108是方程的解,且符合题意.答:甲、丙两地相距108千米.AB 所在直线的函数关系式;(2)若直线343-=x y 与直线AB 相交于点C ,且与x 轴,y 轴分别相交于点D 、E ,①请问直线7341-=x y 是否也经过点C?②求四边形BODC 的面积S.解:(1)∵△AOB 是等腰直角三角形,且AB=26,∴OA=OB=62)26(2=,∴点A 的坐标为(6,0),点B 的坐标为(0,6),设AB 所在直线的函数关系式为y=kx+b ,把点A(6,0),B(0,6),代入y=kx+b ,得⎩⎨⎧==+606b b k 解得⎩⎨⎧=-=61b k .∴设AB 所在直线的函数关系式为6+-=x y ;(2)①解方程组⎪⎩⎪⎨⎧-=+-=3436x y x y 得⎪⎪⎩⎪⎪⎨⎧==76736y x ,∴点C 的坐标为76736(,,把736=x 代入7341-=x y ,解得76=y ,∴直线7341-=x y 经过点C ;②令y=0,则0343=-x ,解得x=4,∴点D 的坐标为(4,0),∴OD=4,∵OA=6,∴AD=AO-DO=2,∵点C 的坐标为76736(,,∴点C 到x 轴的距离为76,∵S 四边形BODC =S △AOB -S △ACD=AD OB OA 762121⨯-⋅=7117276216621=⨯⨯-⨯⨯.第26题图。
最新北师大新版八年级上学期数学期末考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、点P(﹣2022,2023)在第()象限.A.一B.二C.三D.四2、下列几组数中,可以作为直角三角形的三条边的是()A.6,15,17B.7,12,15C.13,15,20D.7,24,253、若点A(m,n)和点B(5,﹣7)关于x轴对称,则m+n的值是()A.2B.﹣2C.12D.﹣124、已知一个多边形的内角和是900°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形5、直线y=kx+b经过一、三、四象限,则直线y=bx﹣k的图象只能是图中的()A.B.C.D.6、小明在计算一组数据的方差时,列出的算式如下:s2=[(7﹣)2+(8﹣)2+(8﹣)2+(8﹣)2+(9﹣)2],根据算式信息,下列说法中,错误的是()A.数据个数是5B.数据平均数是8C.数据众数是8D.数据的方差是07、如图,一个长为5m的梯子斜靠在墙上,梯子的顶端离地面的垂直距离为4m,则梯子的底端离墙的距离是()A.3m B.4mC.5m D.8、估算的值在()A.4到5之间B.5到6之间C.6到7之间D.7到8之间9、下列长度的各组线段能组成一个直角三角形的是()A.4cm,6cm,11cm B.4cm,5cm,1cmC.3cm,4cm,5cm D.2cm,3cm,6cm10、如图,分别以Rt△ACB的直角边AB和斜边AC为边向外作正方形ABGF和正方形ACDE,连结EF.已知CB=6,EF=10,则△AEF的面积为()A.B.C.24D.12二、填空题(每小题3分,满分18分)11、甲、乙两个芭蕾舞团各选出10名女演员参加芭蕾舞比赛,两个团女演员的平均身高均为1.65m,其方差分别是=1.5,=2.5,则参赛演员身高比较整齐的舞团是团.12、点P(9,4)到x轴的距离是.13、若关于x,y的二元一次方程组的解也是二元一次方程x+2y=8的解,则k的值为k=.14、已知直线l1:y=﹣3x+b与直线l2:y=﹣kx+m在同一坐标系中的图象交于点(1,﹣2),那么方程组的解是15、等腰三角形的底角是15°,腰长为10,则其腰上的高为.16、一次函数,当1≤x≤4时,3≤y≤6,则这个一次函数的表达式为.最新北师大新版八年级上学期数学期末考试试卷(答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算题:.18、解二元一次方程组:.19、已知一次函数y=ax﹣5与y=2x+b的图象的交点坐标为A(1,﹣2).(1)直接写出关于x,y的方程组的解;(2)求a,b的值.20、为了解某校八年级体育科目训练情况,从八年级学生中随机抽取了部分学生进行了一次体育科目测试(把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如图两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)图1中∠α的度数是,并把图2条形统计图补充完整.(2)抽取的这部分的学生的体育科目测试结果的中位数是在级;(3)依次将优秀、良好、及格、不及格记为80分、70分、60分、50分,请计算抽取的这部分学生体育的平均成绩.21、如图,已知△ABC的顶点分别为A(﹣2,2),B(﹣4,5),C(﹣5,1).(1)作出△ABC关于x轴对称的图形△A1B1C1.(2)点P在x轴上运动,当AP+CP的值最小时,直接写出点P的坐标.(3)求△ABC的面积.22、如图,在△ACD中,点B在边CD上,连接AB,已知AB=10,AC=8,BC=6,AD+BD=26.(1)求证:∠C=90°;(2)求AD和BD的长.23、运输公司要把120吨物资从A地运往B地,有甲、乙、丙三种车型供选择,每种型号的车辆的运载量和运费如表所示.车型甲乙丙运载量(吨/辆)5810运费(元/辆)450600700解答下列问题:(假设每辆车均满载)(1)若全部物资仅用甲、乙型车一次运完,需运费9600元,则甲、乙型车分别需要多少辆?(2)若用甲、乙、丙型车共14辆同时参与运送,且一次运完全部物资,其中甲型车有2辆,则乙、丙型车分别需要多少辆?此时的总运费是多少?24、如图,∠AOB=40°,OC平分∠AOB,点D,E在射线OA,OC上,点P是射线OB上的一个动点,连接DP交射线OC于点F,设∠ODP=x°.(1)如图1,若DE∥OB.①∠DEO的度数是°,当DP⊥OE时,x=;②若∠EDF=∠EFD,求x的值;(2)如图2,若DE⊥OA,是否存在这样的x的值,使得∠EFD=4∠EDF?若存在,求出x的值;若不存在,说明理由.25、如图,直线y=2x﹣6分别交x轴,y轴于点A,E,点B(m,10)在直线y=2x﹣6上,点E关于x轴的对称点为E′,连接AE′,BE′.(1)求直线AE′的表达式;(2)求△ABE′的面积;(3)点Q(1,a)为第一象限内一动点,点P在x轴上,连接QA,QE′,PQ,BQ,若△QAE′的面积与△ABE'的面积相等,求PQ+BP的最小值.。
北师大版八年级上册数学《期末》考试(必考题) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.12-的相反数是( ) A .2- B .2 C .12- D .122.(-9)2的平方根是x ,64的立方根是y ,则x+y 的值为( )A .3B .7C .3或7D .1或73.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a+b 的值为( ) A .﹣4 B .4 C .﹣2 D .24.如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为( ) A .-3 B .-1 C .1 D .35.已知一个多边形的内角和为1080°,则这个多边形是( )A .九边形B .八边形C .七边形D .六边形6.如果2a a 2a 1+-+=1,那么a 的取值范围是( )A .a 0=B .a 1=C .a 1≤D .a=0a=1或7.如图,在数轴上表示实数15的点可能是( )A .点PB .点QC .点MD .点N8.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .809.如图,菱形ABCD的周长为28,对角线AC,BD交于点O,E为AD的中点,则OE的长等于()A.2 B.3.5 C.7 D.1410.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A.12B.1 C.2D.2二、填空题(本大题共6小题,每小题3分,共18分)1.已知1<x<5,化简2(1)x-+|x-5|=________.2.若式子x1x+有意义,则x的取值范围是__________.3.分解因式:3x-x=__________.4.如图,将三个同样的正方形的一个顶点重合放置,那么1∠的度数为__________.5.如图,OP平分∠MON,PE⊥OM于点E,PF⊥ON于点F,OA=OB,则图中有__________对全等三角形.6.如图,在平行四边形ABCD中,连接BD,且BD=CD,过点A作AM⊥BD于点M ,过点D 作DN ⊥AB 于点N ,且DN =32,在DB 的延长线上取一点P ,满足∠ABD =∠MAP +∠PAB ,则AP =________.三、解答题(本大题共6小题,共72分)1.解下列方程组:(1)257320x y x y -=⎧⎨-=⎩ (2)134342x y x y ⎧-=⎪⎨⎪-=⎩2.先化简,再求值:22121244x x x x x x +-⎛⎫-÷ ⎪--+⎝⎭,其中3x =3.已知关于x 的一元二次方程2(3)0x m x m ---=.(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为1x ,2x ,且2212127x x x x +-=,求m 的值.4.如图,在Rt △ABC 中,∠ACB=90°,∠A=40°,△ABC 的外角∠CBD 的平分线BE 交AC 的延长线于点E .(1)求∠CBE 的度数;(2)过点D 作DF ∥BE ,交AC 的延长线于点F ,求∠F 的度数.5.我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH 的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)6.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、D3、B4、D5、B6、C7、C8、C9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、42、x 1≥-且x 0≠3、x (x+1)(x -1)4、20°.5、36、6三、解答题(本大题共6小题,共72分)1、(1)55x y =⎧⎨=⎩;(2)64x y =⎧⎨=⎩.2、3x3、(1)略(2)1或24、(1) 65°;(2) 25°.5、(1)略;(2)四边形EFGH 是菱形,略;(3)四边形EFGH 是正方形.6、(1)一个足球的单价103元、一个篮球的单价56元;(2)学校最多可以买9个足球.。
北师大版八年级数学上册期末测试题(附参考答案)一、选择题:本题共12个小题,每小题3分,共36分。
每小题只有一个选项符合题目要求。
1.下列各数中为无理数的是( )A.√2B.1.5C.0 D.-12.△ABC的三边长a,b,c满足(a-b)2+√2a−b−3+|c-3√2|=0,则△ABC 是( )A.等腰三角形B.直角三角形C.锐角三角形D.等腰直角三角形3.如图,在△ABC中,∠BAC=90°,AD⊥BC,垂足为点D,E是边BC上的中点,AD=ED=3,则BC的长为( )A.3√2B.3√3C.6 D.6√24.下列说法错误的是( )A.1的平方根是1B.4的算术平方根是2C.√2是2的平方根D.-√3是√(−3)2的平方根−√45,则实数m所在的范围是( )5.若实数m=5√15A.m<-5 B.-5<m<-4C.-4<m<-3 D.m>-36.甲、乙两位同学放学后走路回家,他们走过的路程s(km)与所用的时间t(min)之间的函数关系如图所示.根据图中信息,下列说法错误的是( )A.前10 min,甲比乙的速度慢B.经过20 min,甲、乙都走了1.6 kmC.甲的平均速度为0.08 km/minD.经过30 min,甲比乙走过的路程少7.某油箱容量为60升的汽车,加满汽油后行驶了100千米时,油箱中的汽油大约消耗了15.若加满汽油后汽车行驶的路程为x千米,油箱中剩余油量为y升,则y与x之间的函数表达式是( )A.y=0.12xB.y=60+0.12xC.y=-60+0.12xD.y=60-0.12x8.在同一平面直角坐标系中,一次函数y1=ax+b(a≠0)与y2=mx+n(m≠0)的图象如图所示,则下列结论错误的是( )A.y1随x的增大而增大B.b<nC.当x<2时,y1>y2D.关于x,y的方程组{ax−y=−b,mx−y=−n的解为{x=2,y=39.已知方程组{2x+y=1,kx+(k−1)y=19的解满足x+y=3,则( )A.k=-8 B.k=2C.k=8D.k=-210.甲、乙、丙、丁4名同学参加跳远测试各10次,他们的平均成绩及其方差如表:A.甲B.乙C.丙D.丁11.如图,直线AB∥CD,GE⊥EF于点E.若∠BGE=60°,则∠EFD的度数是( )A.60°B.30°C.40°D.70°12.如图,在平面直角坐标系中,每个网格小正方形的边长均为1个单位长度,以点P为位似中心作正方形P A1A2A3,正方形P A4A5A6,…,按此规律作下去,所作正方形的顶点均在格点上,其中正方形P A1A2A3的顶点坐标分别为P(-3,0),A1(-2,1),A2(-1,0),A3(-2,-1),则顶点A100的坐标为( )A.(31,34) B.(31,-34)C.(32,35) D.(32,0)二、填空题:本题共6个小题,每小题3分,共18分。
最新北师大新版八年级上学期数学期末考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟 一、选择题(每题只有一个正确选项,每小题3分,满分30分) 1、在实数﹣1.414,,π,3.14,,3.1212212221…(相邻两个1之间依次增加一个2),中,无理数的个数是( )个. A .1B .2C .3D .42、一次函数y =x ﹣2的图象不经过( ) A .第一象限B .第二象限C .第三象限D .第四象限3、甲、乙、丙、丁四支女子花样游泳队的人数相同,且平均身高都是1.68m ,身高的方差分别是S 2甲=0.15,S 2乙=0.12,S 2丙=0.10,S 2丁=0.12,则身高比较整齐的游泳队是( ) A .甲B .乙C .丙D .丁4、下列图形中,由∠1=∠2,能得到AB ∥CD 的是( )A .B .C .D .5、下列命题中的真命题是( ) A .相等的角是对顶角B .内错角相等C .全等三角形的面积相等D .若m 2=n 2,则m =n6、△ABC 中,∠A ,∠B ,∠C 的对边分别记为a ,b ,c ,下列条件不能判定△ABC 为直角三角形的是( ) A .∠A +∠B =∠C B .C .a :b :c =32:42:52D .a :b :c =5:12:137、在同一坐标系中,函数y =kx 与y =3x ﹣k 的图象大致是( )A .B .C .D .8、在平面直角坐标系中,P (1,2),点Q 在x 轴下方,PQ ∥y 轴,若PQ =5,则点Q 的坐标为( ) A .(﹣4,2)B .(6,2)C .(1,﹣3)D .(1,7)9、如图,已知∠1=∠2=∠3=55°,则∠4的度数是( ) A .55° B .95°C .115°D .125°10、如图,直线与x 轴,y 轴分别交于点A 和点B ,点C 在线段AB 上,且点C 坐标为(m ,2),点D 为线段OB 的中点,点P 为OA 上一动点,当△PCD 的周长最小时,点P 的坐标为( ) A .(﹣3,0)B .C .D .二、填空题(每小题3分,满分18分)11、若直线y =﹣2x +1经过(3,y 1),(﹣2,y 2),则y 1,y 2的大小关系是 . 12、在平面直角坐标系中,直线y =2x ﹣1过点P (a ,b ),则6a ﹣3b +2020的值为 .13、已知平面直角坐标系第四象限内的点P (3﹣m ,2m +6)到两坐标轴的距离相等,则m 的值为 .14、直角三角形两条直角边的长分别为8和6,则斜边上的高为 . 15、一只蚂蚁从圆柱体的下底面A 点沿着侧面爬到上底面B 点,已知圆柱的底面半径为2cm ,高为8cm (π取3),则蚂蚁所走过的最短路径的长是 16、如图,在平面直角坐标系中,长方形AOBC 的边OB 、OA 分别在x 轴、y 轴上,点D 在边BC 上,将该长方形沿AD 折叠,点C 恰好落在边OB 上的E 处,若点A (0,4),OB =5,则点D 的坐标是 .第9题图第10题图 第15题图第16题图最新北师大新版八年级上学期数学期末考试试卷(答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________一、选择题题号12345678910答案二、填空题11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算(3﹣π)0﹣++|﹣4|.18、我市河边的景观区内有一块四边形空地,如图所示,景区管理人员想在这块空地上铺满观赏草坪,需要测量其面积,经技术人员测量,∠ABC=90°,AB=20米,BC=15 米,CD=7 米,AD=24 米.请用你学过的知识帮助管理员计算出这块空地的面积.19、已知一次函数的图象过A(﹣3,﹣5),B(1,3)两点.(1)求这个一次函数的表达式;(2)试判断点P(﹣2,1)是否在这个一次函数的图象上.20、阳光中学积极开展课后延时服务活动,提供了“有趣的生物实验,虚拟机器人竞赛,国际象棋大赛,趣味篮球训练,经典影视欣赏……”等课程供学生自由选择一个学期后,该校为了解学生对课后延时服务的满意情况,随机对部分学生进行问卷调查,并将调查结果按照“A.非常满意;B.比较满意;C.基本满意;D.不满意”四个等级绘制成了如图所示的两幅不完整的统计图.请根据图中信息,解答下列问题:(1)该校抽样调查的学生人数为人,请补全条形统计图;(2)样本中,学生对课后延时服务满意情况的“中位数”所在等级为,“众数”所在等级为;(填“A,B,C或D”)(3)若该校共有学生2000人,估计全校学生对课后延时服务满意的(包含A,B,C三个等级)有多少人?21、如图,在平面直角坐标系中,△ABC在坐标系中A(1,1),B(4,2),C(3,4).(1)在图中画出△ABC关于x轴的对称图形△A1B1C1,并分别写出对应点A1,B1,C1的坐标.(2)求S.22、如图,已知∠1+∠2=180°,∠B=∠E.(1)试猜想AB与CE之间有怎样的位置关系?并说明理由.(2)若CA平分∠BCE,∠B=50°,求∠A的度数.23、某商场代销甲、乙两种商品,其中甲种商品进价为120元/件,售价为130元/件,乙种商品进价为100元/件,售价为150元/件.(1)若商场用39000元购进这两种商品若干,销售完后可获利润9500元,则该商场购进甲、乙两种商品各多少件?(2)现商场需购进这两种商品共200件,设购进甲种商品a件,两种商品销售完后可获总利润为w元,如果购进甲种商品的数量至少100件,求销售完这批商品获得的最大利润.24、如图,在平面直角坐标系中,点A在x轴上,且A(4,0),点B在y轴上,且B(0,4).(1)若点E在线段AB上,OE⊥OF,且OE=OF,①试证明:△BOE≌△AOF;②求AE+AF的值;(2)在(1)的条件下,过点O作OM⊥EF,交AB于点M,试证明:AM2+BE2=EM2.25、如图,直线l1:y=x+2和直线l2与x轴分别相交于A,B两点,且两直线相交于点C,直线l2与y轴相交于点D(0,﹣4),OA=2OB.(1)求点A的坐标及直线l2的函数表达式;(2)求△ABC的面积;(3)试探究在x轴上是否存在点P,使得∠BDP=45°,若存在,请求出点P的坐标;若不存在,请说明理由.最新北师大新版八年级上学期数学期末考试试卷(参考答案)一、选择题题号12345678910答案D B C D C C B D D B二、填空题11、y1<y2 12、2023 13、-9 14、4.8 15、10 16、(5,1.5)三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、9﹣4.18、四边形ABCD的面积为234平方米.19、(1)一次函数解析式为:y=2x+1;(2)点P(﹣2,1)不在一次函数图象上.20、(1)校抽样调查的学生人数为(人),图略(2)答案为:B,A;(3))有1800人.21、解:(1)如图1,△A1B1C1即为所求;A1(1,﹣1),B1(4,﹣2),C1(3,﹣4);(2)S=3×3﹣×1×3×1×2﹣×2×3=3.5;22、解:(1)(略)(2)65°.23、解:(1)该商场购进甲种商品200件,乙种商品150件.(2)最大利润为6000元.24、(1)①略②4;(2)证明:连接FM.证明略25、(1)y=2x﹣4;(2)△ABC的面积为:;(3)点P的坐标为(12,0)或(﹣,0).。
2016-2017学年度第一学期八年级期中数学试题
一.选择题(每题3分,计30分) 1.在下列各数中是无理数的有( ) 36、
7
1
、0 、π-、311、3.1415、51、2.010101…(相邻两个1之间有1个0)。
A.1个
B.2个
C.3个
D.4个
2.下列函数中,一次函数为( )
A.
(2)y a x b =-+ B. y = -2x + 1 C. y =
x
2 D. y = 2x 2
+ 1 3.已知点(-2,y 1),(-1,y 2),(1,y 3)都在直线y=-x+b 上,则y 1,y 2,y 3的值的大小 关系是 ( )
A .y 1>y 2>y 3
B .y 1<y 2<y 3
C .y 3>y 1>y 2
D .y 3<y 1<y 2 4.如果方程组⎩
⎨
⎧=-+=+5)1(210
73y a ax y x 的解中的x 与y 的值相等,那么a 的值是( )
A .1
B .2
C .3
D .4
5.人数相等的甲、乙两班学生参加同一次数学测验,班平均分和方差分别为=甲x 82分,
=乙x 82分,=2甲s 245分,=2
乙s 190分,成绩较为整齐的是 ( )
A .甲班
B .乙班
C .两班一样整齐
D .无法确定
6.如图,在折纸活动中,小明制作了一张△ABC 纸片,点D 、E 分别是边AB 、 AC 上,将△ABC 沿着DE 折叠压平,A 与A′重合,若∠A=75°,则∠1+ ∠2=( )
A .150°
B .210°
C .105°
D .75°
7.下列式子正确的是( ) A.16=±4 B.±16 =4 C.2)4(- =-4 D.±2)4(- =±4 8.如果点),(n m A 在第二象限,那么点,(m B -│n │)在( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限 9.如下图,一块直角三角形的纸片,两直角边6cm AC =,8cm BC =. 现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合, 则CD 等于( )
A .2cm
B .3cm
C .4cm
D .5cm
10.如图,点A 的坐标为(-1,0),点B 在直线y =x 上运动,当线段AB 最短时, 点B 的坐标为 ( )
A .(0,0)
B .(
22,22-) C .(-21,-2
1
) D .(-22,-22) 二.填空题(每题3分,计18分)
11. 若P (2,6)m n m n +-+和点Q (2,-6)关于x 轴对称,则m= ,n=
初 级 班 姓名 考号
C D
B
E
A
12.若a 、b 为实数,且47
112
2++-+-=
a a a
b ,则b a +的值为
13.如图所示,两条直线l 1,l 2的交点坐标可以看作方程组_________的解.
14.如图,已知AB//CD ,BE 平分∠ABC ,DE 平分∠ADC ,∠BAD=70O ,∠BCD=40O
,则∠BED 的度数为
15.若方程组326
9573x y m x y m
-=+⎧⎨+=--⎩( m 为常数)的解满足53x y +=-,则m =
16.如图,把直线2y x =-向上平移后,分别交y 轴、x 轴于A 、B 两点,直线AB 经过点(,m n )
且26m n +=,则点O 到线段AB 的距离为
(13题图) (14题图) (16题图) 三.解答题(共72分,解答时应写出必要过程) 17.计算(每题3分,计6分)
7002871+- 2
)2
12()62)(62(---+
18.解方程组(每题5分,计8分)
332
320
x y
y x y -⎧+=⎪
⎨⎪-=⎩
y x
y=2x
B
A O
()134451826
12m n n m
n m +-⎧+=-⎪⎪⎨
++⎪-=⎪⎩
19. △ABC 在平面直角坐标系中的位置如图所示. (1)将△ABC 向右平移6个单位,作出平移后
的△A 1B 1C 1,并写出△A 2B 2C 2各顶点的坐标; (2)在y 轴上是否存在点M ,使得CM+BM 最小, 若存在,求出点M 坐标:若不存在,请说
明理由.(7分)
20.如图,在△ABC 中,∠B=90°,∠ACB 、∠CAF 的平分线所在的直线交于点H ,求∠H 的度数.(7分)
21.某同学进行社会调查,随机抽查了某个地区的20个家庭的年收人情况,并绘制了统计 图.请你根据统计图给出的信息回答: (1)填写完成下表:
(1)这20个家庭的年平均收入为 万元. (2)样本中的中位数是 万元,众数是 万元. (3)在平均数、中位数两数中, 更能 反映这个 地区家庭的年收入水平.(8分)
年收入(万元) O.6 O.9 1.O 1.1 1.2 1.3 1.4 9.7 户 数
A
B C
1 2 3 4 5 6 7 -1 -2 -3 1
O 2
x
y
22. 生态公园计划在园内的坡地上造一片有A、B两种树的混合林,需要购买这两种树苗
2000棵。
种植A、B两种树苗的相关信息如下表:
品种项目单价(元/棵)成活率劳务费(元/棵)
A 15 95% 3
B 20 99% 4
设购买A种树苗x棵,造这片林的总费用为y元。
解答下列问题:
(1)写出y(元)与x(棵)之间的函数关系式;
(2)假设这批树苗种植后成活1960棵,则造这片林的总费用需多少元?(9分)
23.如图,CB∥OA,∠B=∠A=100°,E、F在CB上,且满足∠FOC=∠AOC,OE平分∠BOF.(1)求∠EOC的度数;
(2)若平行移动AC,那么∠OCB:∠OFB的值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值;
(3)在平行移动AC的过程中,是否存在某种情况,使∠OEB=∠OCA?若存在,求出∠OCA度数;若不存在,说明理由.(9分)
y
A
D
O B C
24.用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成。
硬
纸板以如图两种方式裁剪(裁剪后边角料不再利用)
A方法:剪6个侧面; B方法:剪4个
侧面和5个底面。
现有19张硬纸板,裁
剪时x张用A方法,其余用B方法。
(1)用x的代数式分别表示裁剪出的侧面
和底面的个数;
(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?(9分)
25.如图,长方形ABCD中,点A(-4,1)、B(0,1)、C(0,3),
(1)过O的直线l和经过AC的直线平行,求直线l表达式
(2)已知在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成矩形的周长与面积相等,则这个点叫做和谐点.在直线l上是否存在点P为和谐点?若存
在,求出点P坐标,若不存在,请说明理由。
(9分)
x。