当前位置:文档之家› 原油高压物性实验方法

原油高压物性实验方法

原油高压物性实验方法

原油高压物性(PVT)实验描述在不同压力下,油藏流体的相平衡状态会发生变化。一个油田在开发早期,最好就抓紧取样,开展原油高压物性(PVT)实验,使样品能尽量接近原始油藏流体。通过PVT实验,掌握油藏流体及其在不同压力下的体积特征,为我们对油田动态预测奠定一个坚实的基础。原油高压物性(PVT)实验有两类:

一类是等组分膨胀实验,它是把烃类流体样品在油藏温度及超过油藏原始压力下放入PVT容器中,在等温条件下逐步减少容器的压力,测量烃类体积在每个压力下的变化。这项实验的目的在于确定:

(1)饱和压力(泡点压力,原油内的溶解气开始分离出去时的压力);

(2)高于饱和压力时在油藏温度条件下的单相流体的压缩系数;

(3)总烃类体积与压力的函数关系。

另一类是差异分离实验,它是在油藏开发过程中,随着压力降低,从原油中分离出来的溶解气不断地被采出来,在油藏中气与液相也不断重新建立新的平衡,这项实验的目的在于确定:

(1)溶解气与压力的函数关系;

(2)原油体积的收缩率与压力的关系;

(3)分离气体的组成、压缩系数和相对密度;

(4)剩余油的密度、黏度与压力的函数关系。

高压物性

中国石油大学渗流物理实验报告 实验日期: 成绩: 班级: 学号: 姓名: 教师: 同组者: 不可压缩流体平面径向稳定渗流实验 一、实验目的 1、平面径向渗流实验是达西定律在径向渗流方式下的体现,通过本实验加深对达西定律的理解; 2、要求熟悉平面径向渗流方式下的压力降落规律,并深刻理解该渗流规律与单向渗流规律的不同,进而对渗透率突变地层、非均质地层等复杂情况下的渗流问题及其规律深入分析和理解。 二、实验原理 平面径向渗流实验以稳定渗流理论为基础,采用圆形填砂模型,以流体在模型中的流动模拟水平均质地层中不可压缩流体平面径向稳定渗流过程。保持填砂模型内、外边缘压力恒定,改变出口端流量,在稳定条件下测量填砂模型不同位置处的水头高度,可绘制水头高度或压力随位置的变化曲线(压降漏斗曲线);根据平面径向稳定渗流方程的解计算填砂模型的流动系数及渗透率。 三、实验流程 图2-1 平面径向流实验流程图

1-测压管(模拟井);2~16-测压管(共16根);18―圆形边界(填砂模型);19-排液管(生产井筒);20—量筒; 21—进水管线;22—供液筒;23-溢流管;24—排水阀;25—进水阀;26—供水阀。 四、实验步骤 1、记录填砂模型半径、填砂模型厚度,模拟井半径、测压管间距等数据。 2、打开供水阀“26”,打开管道泵电源,向供液筒注水,通过溢流管使供液筒内液面保持恒定。 3、关闭排水阀“24”,打开进水阀“25”向填砂模型注水。 4、当液面平稳后,打开排水阀“24”,控制一较小流量。 5、待液面稳定后,测试一段时间内流入量筒的水量,重复三次。; 6、记录液面稳定时各测压管内水柱高度。 7、调节排水阀,适当放大流量,重复步骤5、6;在不同流量下测量流量及各测压管高度,共测三组流量。 8、关闭排水阀24、进水阀25,结束实验。 注:待学生全部完成实验后,先关闭管道泵电源,再关闭供水阀26。 五、实验要求及数据处理 1、实验要求 (1)将原始数据记录于测试数据表中,根据记录数据将每组的3个流量求平均值,并计算测压管高度、压力;绘制三个流量下压力随位置的变化曲线(压降漏斗曲线),说明曲线形状及其原因。 (2)根据平面径向稳定渗流方程,计算填砂模型平均渗透率、不同半径范围的渗透率,评价砂体的均匀性。 (3)写出填砂模型流量与总压差的关系表达式,并绘出流量与总压差的关系曲线。 2、数据处理 流量与总压差的关系表达式: () w e w e R R P P Kh ln 2Q μπ-= (2-1) 任意半径范围的渗透率计算公式:

地球物理测井课程实验报告

《地球物理测井》课程实验报告 院系:地球科学与工程学院 班级:地质1401 姓名:周天宇 学号: 0130 指导老师:赵军龙 2016年11月9日

1、课程实验的目的 《地球物理测井》课程安排8个学时的上机实验,使学生了解测井数据基本格式、测井曲线基本类型、学会用有关专业软件绘制测井综合曲线图;就实际资料开展岩性、物性及含油气性定性分析,从而为测井资料定量处理奠定基础。 2、课程实验主要内容 常规测井曲线类型 常规测井曲线类型包括:岩性测井系列(包括自然电位、自然伽马、井径测井),孔隙度测井系列(包括声波时差测井、密度测井、中子测井)和电阻率测井系列(包括深中浅探测的普通视电阻率测井、侧向测井以及感应测井等)。 测井资料定性分析方法 1.对于岩性分析,可以根据“表格1”来进行 表格 1 主要岩石的岩性分析测井特征 2.对于砂岩段的物性分析 ⑴声波时差测井值越大,密度测井值越小,中子测井值越大,则物性越好即砂岩的空隙度越发育;(2)如果AC、CNL、DEN变化幅度比较大,则该砂岩段物性不均匀;(3)如果下层物性比上层物性好,则该砂岩段为正韵律地层;(4)如果GR值与AC值增大,则此处为泥质夹层;如果AC值减小且AT值增大,则此处为物性夹层;如果GR值减小,AC值增大,AT 值增大,则此处含钙质夹层;(5)泥岩的声波时差约为280μs/m,泥质砂岩的声波时差约为177μs/m,渗透砂岩的声波时差为400-220μs/m。 3.含油气性分析 在已找到物性较好的砂岩段进行分析,并结合深中浅感应测井和电阻率测井曲线的变化:一般来说,含油砂岩段的电阻率值会明显增大。 测井综合曲线图模板的生成及测井数据的加载

卤族元素实验报告

卤族元素性质 复习重点 1。卤素单质在物理性质和化学性质上的主要差异及递变规律; 2。卤族元素的化合物性 质的递变性; 3。卤化银的性质、用途及碘与人体健康的关系。 4。重点考查卤素性质的变化规律。 1。 氯气 [氯气的物理性质] (1)常温下,氯气为黄绿色气体。加压或降温后液化为液氯,进一步加压或降温则变 成固态氯。(2)常温下,氯气可溶于水(1体积水溶解2体积氯气)。 (3)氯气有毒并具有强烈的刺激性,吸入少量会引起胸部疼痛和咳嗽,吸入大量则会 中毒死亡。因此,实验室闻氯气气味的正确方法为:用手在瓶口轻轻扇动,仅使少量的氯气 飘进鼻孔。 [氯气的化学性质] 氯原子在化学反应中很容易获得1个电子。所以,氯气的化学性质非常活泼,是一种强 氧化剂。(1)与金属反应:cu + c12 cucl2 ? 实验现象:铜在氯气中剧烈燃烧,集气瓶中充满了棕黄色的烟。一段时间后,集气瓶 内壁附着有棕黄色的固体粉末。向集气瓶内加入少量蒸馏水,棕黄色固体粉末溶解并形成绿 色溶液,继续加水,溶液变成蓝色。 2na + cl 2 2nacl 实验现象:有白烟产生。 说明:①在点燃或灼热的条件下,金属都能与氯气反应生成相应的金属氯化物。其中, 变价金属如(cu、fe)与氯气反应时呈现高价态(分别生成cucl2、fecl3)。 ②在常温、常压下,干燥的氯气不能与铁发生反应,故可用钢瓶储存、运输液氯。 ③“烟”是固体小颗粒分散到空气中形成的物质。如铜在氯气中燃烧,产生的棕黄色的 烟为cucl2晶体小颗粒;钠在氯气中燃烧,产生的白烟为nacl晶体小颗粒;等等。 (2)与氢气反应。h2 + cl2 2hcl 注意:①在不同的条件下,h2与c12均可发生反应,但反应条件不同,反应的现象也不 同。点燃时,纯净的h2能在c12中安静地燃烧,发出苍白色的火焰,反应产生的气体在空气 中形成白雾并有小液滴出现;在强光照射下,h2与c12的混合气体发生爆炸。 ②物质的燃烧不一定要有氧气参加。任何发光、发热的剧烈的化学反应,都属于燃烧。 如金属铜、氢气在氯气中燃烧等。 ③“雾”是小液滴悬浮在空气中形成的物质;“烟”是固体小颗粒分散到空气中形成的物 质。要注意“雾”与“烟”的区别。 ④h2与cl2反应生成的hcl气体具有刺激性气味,极易溶于水。hcl的水溶液叫氢氯酸, 俗称盐酸。(3)与水反应。 c12 + h2o =hcl + hclo 离子方程式: cl2 + h2o =h + + cl- + hclo 说明:①c12与h2o的反应是一个c12的自身氧化还原反应。其中,cl2 既是氧化剂又是还原剂,h2o只作反应物。 ②在常温下,1体积水能溶解约2体积的氯气,故新制氯水显黄绿色。同时,溶解于水 中的部分c12与h2o反应生成hcl和hclo,因此,新制氯水是一种含有三种分子(c12、hclo、 h2o)和四种离子(h+、cl-、clo-和水电离产生的少量oh-)的混合物。所以,新制氯 水具有下列性质:酸性(h+),漂白作用(含hclo),cl-的性质,c12的性质。

化工原理实验实验报告

篇一:化工原理实验报告吸收实验 姓名 专业月实验内容吸收实验指导教师 一、实验名称: 吸收实验 二、实验目的: 1.学习填料塔的操作; 2. 测定填料塔体积吸收系数kya. 三、实验原理: 对填料吸收塔的要求,既希望它的传质效率高,又希望它的压降低以省能耗。但两者往往是矛盾的,故面对一台吸收塔应摸索它的适宜操作条件。 (一)、空塔气速与填料层压降关系 气体通过填料层压降△p与填料特性及气、液流量大小等有关,常通过实验测定。 若以空塔气速uo[m/s]为横坐标,单位填料层压降?p[mmh20/m]为纵坐标,在z ?p~uo关系z双对数坐标纸上标绘如图2-2-7-1所示。当液体喷淋量l0=0时,可知 为一直线,其斜率约1.0—2,当喷淋量为l1时,?p~uo为一折线,若喷淋量越大,z ?p值较小时为恒持z折线位置越向左移动,图中l2>l1。每条折线分为三个区段, 液区,?p?p?p~uo关系曲线斜率与干塔的相同。值为中间时叫截液区,~uo曲zzz ?p值较大时叫液泛区,z线斜率大于2,持液区与截液区之间的转折点叫截点a。 姓名 专业月实验内容指导教师?p~uo曲线斜率大于10,截液区与液泛区之间的转折点叫泛点b。在液泛区塔已z 无法操作。塔的最适宜操作条件是在截点与泛点之间,此时塔效率最高。 图2-2-7-1 填料塔层的?p~uo关系图 z 图2-2-7-2 吸收塔物料衡算 (二)、吸收系数与吸收效率 本实验用水吸收空气与氨混合气体中的氨,氨易溶于水,故此操作属气膜控制。若气相中氨的浓度较小,则氨溶于水后的气液平衡关系可认为符合亨利定律,吸收姓名 专业月实验内容指导教师平均推动力可用对数平均浓度差法进行计算。其吸收速率方程可用下式表示: na?kya???h??ym(1)式中:na——被吸收的氨量[kmolnh3/h];?——塔的截面积[m2] h——填料层高度[m] ?ym——气相对数平均推动力 kya——气相体积吸收系数[kmolnh3/m3·h] 被吸收氨量的计算,对全塔进行物料衡算(见图2-2-7-2): na?v(y1?y2)?l(x1?x2) (2)式中:v——空气的流量[kmol空气/h] l——吸收剂(水)的流量[kmolh20/h] y1——塔底气相浓度[kmolnh3/kmol空气] y2——塔顶气相浓度[kmolnh3/kmol空气] x1,x2——分别为塔底、塔顶液相浓度[kmolnh3/kmolh20] 由式(1)和式(2)联解得: kya?v(y1?y2)(3) ??h??ym 为求得kya必须先求出y1、y2和?ym之值。 1、y1值的计算:

高压物性实验报告

中国石油大学(油层物理)实验报告 实验日期: 2011-11-2 成绩: 班级: 中石化0903—26 学号: 09133206 姓名: 冯延苹 教师: 张俨彬 同组者: 金超林 、胡星杰、吕超 实验七 地层油高压物性测定 一、 实验目的 1.掌握地层油高压物性仪的结构及工作原理; 2.掌握地层油的饱和压力、单次脱气的测定方法; 3.掌握地层油溶解汽油比、体积系数、密度等参数的确定方法; 4.掌握落球法测量地层油粘度的原理及方法。 二、 实验原理 1.绘制地层油的体积随压力的关系、在泡点压力前后,曲线的斜率不同,拐点处对应的应力即为泡点压力。 2.使PVT 筒内的压力保持在原始压力,保持压力不变将PVT 筒内一定量的地层油放入分离瓶中,记录放出的地下体积,记录分离瓶中分出的油、气的体积,便可计算地层油的溶解气油比、体积系数等数据。 3.在地层条件下,钢球在光滑的盛有地层油的标准管中自由下落,通过记录钢球的下落时间,由下式计算原油的粘度: t k )(21ρρμ-= 其中 μ—原油动力粘度,mPa ·s ; t —钢球下落时间,s ; 1ρ、2ρ—钢球和原油的密度,3/cm g ; k —粘度计常数,与标准管的倾角、钢球的尺寸及密度有关。 三、实验流程 四、实验步骤 1.泡点压力测定 (1)粗测泡点压力 从地层压力起点以恒定的速度退泵,压力以恒定速度降低,当压力下降速度减慢或不下降甚至回升时,停止退泵。稳定后的压力即为粗测的泡点压力。 (2)细测泡点压力 A .升压至地层压力,让析出的气体完全溶解到油中。从地层压力开始降压,每降低一定压力(如2.0MPa )记录压力稳定后的泵体积读数; B .当压力降至泡点压力以下时,油气混合物体积每次增大一定值(如5cm 3),

2020年近代物理实验教程的实验报告

近代物理实验教程的实验报告 时间过得真快啊!我以为自己还有很多时间,只是当一个睁眼闭眼的瞬间,一个学期都快结束了,现在我们为一学期的大学物理实验就要画上一个圆满的句号了,本学期从第二周开设了近代物理实验课程,在三个多月的实验中我明白了近代物理实验是一门综合性和技术性很强的课程,回顾这一学期的学习,感觉十分的充实,通过亲自动手,使我进一步了解了物理实验的基本过程和基本方法,为我今后的学习和工作奠定了良好的实验基础。我们所做的实验基本上都是在物理学发展过程中起到决定性作用的著名实验,以及体现科学实验中不可缺少的现代实验技术的实验。它们是我受到了著名物理学家的物理思想和探索精神的熏陶,激发了我的探索和创新精神。同时近代物理实验也是一门包括物理、应用物理、材料科学、光电子科学与技术等系的重要专业技术基础物理实验课程也是我们物理系的专业必修 课程。 我们本来每个人要做共八个实验,后来由于时间关系做了七个实验,我做的七个实验分别是:光纤通讯,光学多道与氢氘,法拉第效应,液晶物性,非线性电路与混沌,高温超导,塞满效应,下面我对每个实验及心得体会做些简单介绍: 一、光纤通讯:本实验主要是通过对光纤的一些特性的探究(包括对光纤耦合效率的测量,光纤数值孔径的测量以及对塑料光纤光纤损耗的测量与计算),了解光纤光学的基础知识。探究相位调制型温度传感器的干涉条纹随温度的变化的移动情况,模拟语电话光通信,

了解光纤语音通信的基本原理和系统构成。老师讲的也很清楚,本试验在操作上并不是很困难,很易于实现,易于成功。 二、光学多道与氢氘:本实验利用光学多道分析仪,从巴尔末公式出发研究氢氘光谱,了解其谱线特点,并学习光学多道仪的使用方法及基本的光谱学技术通过此次实验得出了氢原子和氘原子在巴 尔末系下的光谱波长,并利用测得的波长值计算出了氢氘的里德伯常量,得到了氢氘光谱的各光谱项及巴耳末系跃迁能级图,计算得出了质子和电子的质量之比。个人觉得这个实验有点太智能化,建议锻炼操作的部分能有所加强。对于一些仪器的原理在实验中没有体现。如果有所体现会比较容易使学生深入理解。数据处理有些麻烦。不过这也正是好好提高自己的分析数据、处理数据能力的好时候、更是理论联系实际的桥梁。 三、法拉第效应:本实验中,我们首先对磁场进行了均匀性测定,进一步测量了磁场和励磁电流之间的关系,利用磁场和励磁电流之间的线性关系,用电流表征磁场的大小;再利用磁光调制器和示波器,采用倍频法找出ZF6、MR3-2样品在不同强度的旋光角θ和磁场强度B的关系,并计算费尔德常数;最后利用MR3样品和石英晶体区分自然旋光和磁致旋光,验证磁致旋光的非互易性。 四﹑液晶物性:本实验主要是通过对液晶盒的扭曲角,电光响应曲线和响应时间的测量,以及对液晶光栅的观察分析,了解液晶在外电场的作用下的变化,以及引起的液晶盒光学性质的变化,并掌握

液晶物性实验报告

液晶物性实验报告 摘要 本实验主要是对液晶的基本物理性质进行探究。在实验中测量了透过液晶盒的光强随入射光偏振方向与液晶分子主方向间角度的变化,了解了双折射效应的机制;观察液晶盒的旋光效应,测量出液晶盒的扭曲角为120度;分别测量了液晶在常黑模式和常白模式下响应时间;观察了液晶的衍射现象;并在常黑模式下设计测量了对应升压和降压过程的电光响应曲线。 关键词 液晶物性、电光效应、响应时间、液晶衍射 引言 19世纪末奥地利植物学家莱尼兹尔在测定有机化合物熔点时发现了液晶。到了20世纪20年代随着更多液晶材料的发现及技术的发展,人们对液晶进行了系统深入的研究,并将液晶分类。30年代到50年代人们对液晶的各向异性、液晶材料的电光效应等进行深入的研究。到了60年代液晶步入了使用研究阶段。自1968年海尔曼等人研制出世界上第一台液晶显示器以来,在四十年的时间里,液晶显示器以由最初在手表、计算器等“小、中型”显示器发展到各种办公自动化设备、高清晰的大容量平板显示器领域。 本实验通过对液晶盒的扭曲角,电光响应曲线和响应时间的测量,以及对液晶光栅的观察分析,了解液晶在外电场的作用下的变化,以及引起的液晶盒光学性质的变化,并掌握对液晶电光效应测量的方法。 实验原理 液晶态与普通的物质三态不同,不是所有的物质都具有这种性质。那些有较大的分子且分子的形状是杆状的物质容易形成液晶。对由杆状分子形成的液晶,根据分子排列的平移和取向的有序性可以分成三类:近晶相,向列相,胆缁相。 近晶相:分子排成层,层内分子平行排列,既有取向有序性又有重心平移周期性。 向列相:液晶分子保持平行排列状态,但分子重心混乱无序。 胆缁相:分子排列成层,层内分子取向有序,但不同层分子取向稍有变化,沿层的法线方向排列成螺旋结构。 1、液晶的介电各向异性 当外电场平行于或者垂直于分子长轴时,分子极化率不同表示为α、α⊥。当一个任意取向的分子被外电场极化时,由于α、α⊥的区别,造成分子感生电极矩的方向和外电场的方向不同,从而使分子发生转动。如果考虑到液晶内各个分子之间的相互作用以及分子与基片表面的作用,旋转将引起类似于弹性恢复力造成的反方向力矩,使得分子在转动一个角度后不再转动。因此产生电场对液晶分子的取向作用。

实验六地层原油饱和压力的测定

实验六地层原油饱和压力的测定 一.实验目的 1.掌握地层油饱和压力的测定原理及方法; 2.掌握地层油的单次脱气的方式及方法; 3.掌握原油体积系数、溶解气油比等参数的计算方法; 4.掌握落球法测量地层油粘度的原理及方法。 二.实验原理 (1)地层油的体积随压力的降低而增加。在泡点压力前后,体积-压力曲线的斜率不同,拐点处对应的应力即为泡点压力。 (2)使PVT 筒内的压力保持在原始压力,保持压力不变,将PVT 筒内一定量的地层油放入 分 离瓶中,记录放油的地下体积。从量气瓶中测量分出气体体积,测量分离瓶中脱气油的体积,便可计算地层油的溶解气油比、体积系数等数据。 (3)在层流条件下,钢球在光滑盛液标准管中自由下落,液体的粘度计算公式如下: μ= k (ρ 1 ?ρ 2 )t 其中μ—绝对粘度,mPa.s;t—钢球下落时间,s; ρ1、ρ2—钢球和原油的密度,g/cm3;k—粘度计常数。 三.实验流程 图6-1 高压物性试验装置流程 图 1.恒温水浴; 2.计量泵; 3.压力表; 4.储液罐; 5.保温套; 6.阀门; 7.分离瓶; 8.量气瓶; 9.盐水口瓶

四.实验步骤 1.泡点压力测定 (1)粗测泡点压力。从地层压力起退泵降压(以恒定的速度退泵),并注意观察压力表指针变 化,当压力表指针降 低速度减慢或不下降甚至回升时,停止退泵。压力表指针稳定后的压力数值即为粗测饱和压力值。 (2)细测泡点压力 A.升压至地层压力,让析出的气体完全溶解到油中。从地层压力开始降压,每降低一定压力(如1.0MP)记录压力稳定后的体积(注意升压、降压过程中应不断搅拌PVT 筒); B.当压力降至泡点压力以下时,每降低一定体积(如3ml),记录稳定以后的压力(泡点压力前后至少安排四个测点)。 C.最后一点测完后,升压到地层压力,进行搅拌,使分出的气体重新溶解到原油中,为原油脱气做好准备。 2.一次脱气 A.将PVT 筒中的地层原油加压至地层压力,搅拌原油样品使温度、压力均衡,记录泵的读数。 B.准备干燥洁净已称重的分离瓶3-5 个,检查量气瓶密封情况,并充满饱和盐水。 C.将分离瓶安装在橡皮塞上,慢慢打开阀门⑥,维持在地层压力下排油脱气。当量气瓶液面下降到一半刻度左右,关闭阀门⑥,停止排油。记录计量泵读数。 D.提升盐水瓶,使盐水瓶液面高于量气瓶液面,然后再降到和量气瓶液面在同一水平面后读 出气体体积,同时记录室温、大气压。 E.取下分离瓶,用天平称重并记录。 F.按上述步骤重复进行两次实验。 3.地层油粘度测量 A.将地层油样转到落球粘度计的标准管中,用超级恒温水浴将温度保持在地层温度; B.转动落球粘度计上部朝下,使钢球吸到上部磁铁上; C.转动落球粘度计上部朝上,固定一个倾角。打开开关,钢球开始下落,同时计时开始,当钢球落到底部时自动停止计时,记录钢球下落时间t。重复试验3 次以上,直到所测的时间基本相同为止; D.改变倾角,重复试验。 五.数据处理与计算 1.泡点压力计算:根据测定的一系列压力P 和相应的体积差累积值V(或地层油体积),绘制 P-V 关系图,由曲线的拐点求出泡点压力值。 2.地层油物性参数计算: (1)计算脱气原油体积V0:根据脱气原油的质量G o 和密度ρos ,由下式进行计算地面脱气油的体积: V = G o oρ (cm3)o (2)计算标准状况下分离出气体的体积V gsc :将在室温条件下测得的分出的气量V gL ,用下式转换成标准状态(20℃,760 毫米汞柱)下的体积V gsc :

地层原油高压物性测定

中国石油大学 油层物理 实验报告 实验日期: 成绩: 班级: 学号: 姓名: 教师: 同组者: 实验七 地层原油高压物性测定 一.实验目的 1.掌握地层油高压物性仪的结构及工作原理; 2.掌握地层油的饱和压力、单次脱气的测定方法; 3.掌握地层油溶解气油比、体积系数、密度等参数的确定方法; 4.掌握落球法测量地层油粘度的原理及方法。 二.实验原理 (1) 绘制地层油的体积随压力的关系,在泡点压力前后,曲线的斜率不同,拐点处对应的压力即为泡点压力。 (2)使PVT 筒内的压力保持在原始压力,保持压力不变,将PVT 筒内一定量的地层油放入分离瓶中,记录放油的地下体积。从量气瓶中测量分出气体体积,测量分离瓶中脱气油的体积,便可计算地层油的溶解气油比、体积系数等数据。 (3) 在地层条件下,钢球在光滑的盛有地层油的标准管中自由下落,通过记录钢球的下落时间,由下式计算原有的粘度: 12()k t μρρ=- 其中:μ—原油动力粘度,mPa.s ; t —钢球下落时间,s ;

21ρρ、—钢球和原油的密度,g/cm 3; k —粘度计常数。 三.实验流程 高压物性试验装置流程图 1.恒温水浴; 2.计量泵; 3.压力表; 4.储液罐; 5.保温套; 6.阀门; 7.分离瓶; 8.量 气瓶;9.盐水口瓶 四.实验步骤 1.泡点压力测定 (1)粗测泡点压力。 从地层压力起退泵降压(以恒定的速度退泵),并注意观察压力表指针变化,当压力表指针降低速度减慢或不下降甚至回升时,停止退泵。压力表指针稳定后的压力数值即为粗测饱和压力值。 (2)细测泡点压力 A.升压至地层压力,让析出的气体完全溶解到油中。从地层压力开始降压,

液晶物性实验报告资料

液晶物性 【摘要】本实验主要观察了液晶盒的旋光现象、双折射现象、衍射现象和电光效应。先在不加电压的情况下,观测液晶盒的旋光性和双折射现象。在对液晶盒加电压观察响应时间和响应曲线,最后观察液晶盒的衍射现象并计算光栅常数。通过对液晶这些现象的观察,了解液晶在电场作用下的变化,及液晶盒的性质。 关键词:液晶、双折射、旋光性、电光效应、衍射 一、引言 1888年,奥地利布拉格德国大学的植物生理学家莱尼茨尔在测定有机化合物熔点时,观察到胆甾醇苯酸酯(简称CB )在热熔时的特殊性质。它在145.5℃(熔点)时熔化成浑浊的液体,温度升到178.5℃(清亮点)后,浑浊的液体会突然变成各向同性的清亮的液体。在熔点和清亮点之间的温度范围内,CB 处于不同于各向同性液体的中介相。莱尼茨尔将这一现象告诉德国物理学家莱曼。经过系统研究,莱曼发现物质在中介相具有强烈的各向异性物理特征,同时又具有普通流体那样的流动性。因此这种中介相被称为液晶相,可以出现液晶相的物质被称为液晶。本实验主要观察了液晶盒的旋光现象、双折射现象、衍射现象和电光效应。先在不加电压的情况下,观测液晶盒的旋光性和双折射现象。 二、实验原理 1.液晶形态与组成结构 液晶态不是所有物质都具有的,只有分子量较大、分子成杆状(轴宽比在4:1~8:1)的物质比较容易具有液晶态。液晶可根据分子排列的平移和取向分为三大类:近晶相、向列相、胆甾相。 图1 液晶分子的三种不同排列方式 2.液晶的介电各向异性 液晶的各向异性是决定液晶分子在电场中行为的主要参数。若用//ε、⊥ε分别表示液晶

平行、垂直于分子取向的介电常数,介电各向异性可用

食品品质评价实验报告

食品品质评价 —火腿肠质地评价 一、实验目的 本实验采用评分检验法对四种不同配方的猪肉香肠的质地进行感官评价,用TA.XT Plus 物性测试仪测定进行猪肉香肠的质地测定。通过实验了解感官检验方法—评分检验法的定义、特点及其应用;初步学会食品评分检验的方法和质地的仪器测定方法、感官评定与仪器测定结果的相关性分析,学习食品物性测定仪器选择的方法。 二、样品及器具 1. 样品:四种不同配方的猪肉香肠A、B、C、D。 2. 器具:一次性水杯,品评托盘、叉子、笔、抽纸、标签。 3. 仪器:物性测试仪(TA.XT Plus 质构仪)。 三、方法步骤 (一)仪器测定 用物性仪的P/100探头测定进行四种猪肉香肠质地分析(TPA测定);用A/WEG 探头测定四种猪肉香肠的硬度。 (二)感官评定 1. 评价组长按评分检验法程序做好样品猪肉香肠的“评分检验问卷” ;2四种猪肉香肠 样品以随机三位数编号,放在托盘内,呈递给评价员; 3. 评价员在熟悉香肠产品的评价品质标准要求的基础上独立品评,主要评价 香肠的硬度、咀嚼性两个品质特性,并填写问卷表; (三)数据处理 (1)对本组(21—30 号)的实验结果进行统计分析。 (2)用方差分析法分析样品之间的差异。 (3)根据统计感官评价结果数据及仪器分析结果数据,分别进行主、客观质地评价结果的相关性(注:进行相关分析时,将感官分析数据按大小进行排序,否则不利于相关性的分析)。 四、实验结果报告 1. 检验目的:利用评分检验法对四种不同配方的猪肉香肠进行感官分析,并分析感官评定与仪器测定的相关性。 2. 样品情况:四个不同配方制作的四种猪肉香肠。 3. 评价员数:每组10 名,共4 组。 4. 检验结果:第三组的结果如下表。

油藏流体高压物性实验报告

中国石油大学油层物理实验报告 实验日期: 2012.11.26 成绩: 班级:石工10-15班 学号: 10131504 姓名: 于秀玲 教师: 张俨彬 同组者: 秘荣冉 张振涛 宋文辉 地层油高压物性测定 一、实验目的 1.掌握地层油高压物性仪的结构及工作原理; 2.掌握地层油的饱和压力、单次脱气的测定方法; 3.掌握地层油溶解气油比、体积系数、密度等参数的确定方法; 4.掌握落球法测量地层油粘度的原理及方法。 二、实验原理 1.绘制地层油的体积随压力的关系,在泡点压力前后,曲线的斜率不同,拐 点对应的应力即为泡点压力。 2.使PVT 筒内的压力保持在原始压力,保持压力不变将PVT 筒内一定量的地层油放入分离瓶中,记录放出油的地下体积,记录分离瓶中分出的油、气的体积,便可计算地层油的溶解气油比、体积系数等数据。 3.在地层条件下,钢球在光滑的盛有地层油的标准管中自由下落,通过记录钢球的下落时间,由下式计算原油的粘度: t k )(21ρρμ-= 其中 μ- 原油动力粘度,mPa ·s; t- 钢球下落时间,s ; ρ1、ρ2- 钢球和原油的密度,g/cm 3; k- 粘度计常数,与标准管的倾角、钢球的尺寸及密度有关。 三、实验流程 图一 高压物性试验装置流程图

四、实验步骤 1.泡点压力测定 ⑴粗测泡点压力 从地层压力起以恒定的速度退泵,压力以恒定速度降低,当压力下降到速度减慢或不下降甚至回升时,停止退泵。稳定后的压力即为粗测的泡点压力。 ⑵细测泡点压力 A.升压至地层压力,让析出的气体完全溶解到油中。从地层压力开始降压,每降低一定压力(如2.0MPa)记录压力稳定后的泵体积读数。 B.当压力降至泡点压力以下时,油气混合物体积每次增大一定值(如5cm3),记录稳定后的压力(泡点压力前后至少安排四个测点)。 2.一次脱气 ⑴将PVT筒中的地层原油加压至地层压力,搅拌原油样品使温度、压力均衡,记录泵的读数; ⑵取一个干燥洁净的分离瓶称重,将量气瓶充满饱和盐水; ⑶将分离瓶安装在橡皮塞上,慢慢打开放油阀门,保持地层压力不变排出一定体积的地层油,当量气瓶液面下降200ml左右时,关闭放油阀门,停止排油。记录计量泵的读数; ⑷提升盐水瓶,使盐水瓶液面与量气瓶液面平齐,读取分离出的气体体积,同时记录室温、大气压; ⑸取下分离瓶,称重并记录。 3.地层油粘度测量 ⑴将地层油样转到落球粘度计的标准管中,加热至地层温度; ⑵转动落球粘度计使带有阀门的一端(上部)朝下,按下“吸球”开关,使钢球吸到上部的磁铁上; ⑶转动落球粘度计使其上部朝上,固定在某一角度。按下“落球”开关,钢球开始下落,同时计时开始。当钢球落到底部时自动停止计时,记录钢球下落时间。重复3次以上,直到测得的时间基本相同。 五、数据处理与计算 1.泡点压力的确定: 根据测定的一系列压力P和相应的累积体积差ΔV,绘制P-ΔV关系图,由曲线拐点求出泡点压力值。 表一压力与体积关系测定原始记录 地层温度:40.0℃地层压力:12MPa 粗测泡点压力P b=2.6 MPa 由P和ΔV的数据得出P-ΔV关系图,如图2所示:

材料基本物理性质试验报告

《土木工程材料》试验报告 项目名称:材料基本物理性质试验 报告日期:2011-11-02 小组成员:

材料基本物理性质试验 - 2 - 1. 密度试验(李氏比重瓶法) 1.1 试验原理 石料密度是指石料矿质单位体积(不包括开口与闭口孔隙体积)的质量。 石料试样密度按下式计算(精确至0.01g /cm 3): gfdgfbg 感d 式中: t ρ──石料密度,g /cm 3; 1m ──试验前试样加瓷皿总质量,g ; 2m ──试验后剩余试样加瓷皿总质量,g ; 1V ──李氏瓶第一次读数,mL (cm 3); 2V ──李氏瓶第二次读数,mL (cm 3)。 1.2 试验主要仪器设备 李氏比重瓶(如图1-1)、筛子(孔径0.25mm )、烘箱、干燥器、天平(感量0.001g )、温度计、恒温水槽、粉磨设备等。 1.3 试验步骤 (1)将石料试样粉碎、研磨、过筛后放入烘箱中,以100℃±5℃的温度烘干至恒重。烘干后的粉料储放在干燥器中冷却至室温,以待取用。 (2)在李氏瓶中注入煤油或其他对试样不起反应的液体至突颈下部的零刻度线以上,将李氏比重瓶放在温度为(t ±1)℃的恒温水槽内(水温必须控制在李氏比重瓶标定刻度时的温度),使刻度部分进入水中,恒温0.5小时。记下李氏瓶第一次读数V 1(准确到0.05mL ,下同)。 (3)从恒温水槽中取出李氏瓶,用滤纸将李氏瓶内零点起始读数以上的没有的部分擦净。 (4)取100g 左右试样,用感量为0.001g 的天平(下同)准确称取瓷皿和试样总质量m 1。用牛角匙小心将试样通过漏斗渐渐送入李氏瓶内(不能大量倾倒,因为这样会妨碍李氏瓶中的空气排出,或在咽喉部分形成气泡,妨碍粉末的继续下落),使液面上升至20mL 刻度处(或略高于20mL 刻度处) ,注意勿使石粉粘附于液面以上的瓶颈内壁上。摇动李氏瓶,排出其中空气,至液体不再发生气泡为止。再放入恒温 咽喉部分 2 12 1V V m m t --= ρ比重瓶

实习十一实验地质制图综合实验实验报告

实习十一实验地质制图综合实验 实验报告 学生姓名: 专业班级: 指导教师: 时间:2014-06-04

1.实验目的 用图表示地质研究成果是地质工作的传统,制图作业是地质研究的主要内容之一。大量的资料整理和图件编制工作是耗费地质工作者时间和精力的两个环节,计算机绘图能显著提高这两个环节的工作效率,有效减轻地质工作者的制图负担。 实验要求综合应用Microsoft Excel、Grapher、SURFER、CorelDRAW或Supermap GIS等软件,自主设计实验方案,以小层为作图单元完成储层物性数据的分析处理、图件制作和图件编辑,提交规范的储层物性平面等值线图。 2.实验方案 通过Microsoft Excel对储层物性数据进行筛选,分类汇总等操作得到实验所需的数据;将得到的数据通过Grapher 中的worksheet以dat的文件形式另存;应用SURFER将dat的文件网格化并生成相应的等值线矢量图、通过CorelDRAW 对SURFER中生成的矢量图进行编辑,最终得到符合石油领域作图规范的成果图。 3、关键步骤描述 3.1 步骤一 在Microsoft Excel中打开储层物性数据,通过【数据】—【筛选】提取出xc2小层的物性参数,新建一个工作表将筛选出的xc2小层的数据复制过去。将xc2小层的砂层总厚度、渗透率、泥质含量、含油饱和度以及小层号这些列删除。选择【数据】—【排序】以井号进行排序,通过【分类汇总】(以井号为分类字段,平均值为分类方式,以横坐标X(米)、纵坐标Y(米)、孔隙度为分类选项)求出每口井的坐标平均值和孔隙度平均值。将汇总后的数据以文本形式进行保存,新建一个工作表,将文本数据复制到工作表中。通过【数据】—【筛选】,筛选出井名包含“平均值”的井;新建一个工作表,将筛选出的井名包含“平均值”的井数据复制到工作表中,通过【查找和替换】将“平均值”替换为空白。将最后的工作表进行保存,这便是实验所需的数据文件。 - 2 -

天然气高压物性参数

2 计算方法介绍 2.1 天然气临界参数计算 2.1.1 天然气平均分子量 天然气是混合气体,分子量不是一成不变的,其平均分子量按Key 规则计算: g i i M y M =∑ (2.1) 式中 M g —天然气的平均分子量kg/mol ; M i 、y i —天然气中i 组分的分子量和摩尔分数。 2.1.2 天然气的相对密度 首先假定空气和天然气都取同一标准状态,天然气的相对密度可用下式表示: 28.97 29g g g g g a i r a i r M M M r M ρρ= ==≈ (2.2) 式中 r g —天然气的相对密度; g ρair ρ—同一标准状态下,天然气、空气的密度kg/m 3; g M air M —天然气、空气的平均分子量kg/mol 。 2.1.3 拟临界压力P PC 和拟临界温度T PC ① 组分分析方法 p c i c i p y p =∑ p c i ci T y T =∑ (2.3) g i i M y M =∑ 式中 ci p —— 天然气组分i 的临界压力(绝),MPa ; ci T —— 天然气组分i 的临界温度,(273+t)°K 。 ② 相关经验公式方法 在缺乏天然气组分分析数据的情况下,可引用Standing 在1941年发表的相关经

验公式 对于干气 2pc 2 pc 4.6660.1030.2593.31817g g g g p T γγγγ=+-=+- (2.4) 对于湿气 2pc 2 pc 4.8680.35639.7103.9183.339.7g g g g p T γγγγ=+-=+- (2.5) 也可以用下面经验关系式进行计算 对于干气 pc pc pc pc 4.88150.386192.2222176.66670.74.77800.248292.2222176.66670.7 g g g g g g p T p T γγγγγγ=-=+≥=-=+< (2.6) 对于湿气 pc pc pc pc 5.10210.6895132.2222176.66670.74.77800.2482106.1111152.22220.7 g g g g g g p T p T γγγγγγ=-=+≥=-=+< (2.7) 注意:上式是对于纯天然气适用,而对于含非烃CO 2 、H 2S 等可以用Wichert 和Aziz 修正。修正常数的计算公式为: ()() () ()() 2222 2 22pc pc 4.75460.21020.03 1.158310 3.06121084.9389188.49440.9333 1.4944g CO N H S g CO N p T γφφφγφφ--=-+-?+?=+-- (2.8) 2.1.4 拟对比压力P Pr 和拟对比温度T Pr 的计算 对比参数就是指某一参数与其应对应的临界参数之比:即 pr pc p p p = Pr pc T T T = (2.9)

中国石油大学(华东)油层物理考试复习资料

油层物理考试复习资料 一、名词解释 1、粒度组成:指构成砂岩的各种大小不同颗粒的所占的百分含量。(常用重量百分数表示) 2、比面:单位体积的岩石内,岩石骨架的总表面积。(用S表示) 3、孔隙度:岩石孔隙体积Vp与岩石的外表体积Vb之比。(用φ表示) 4、岩石的压缩系数Cf:当储层压力下降单位压力时,单位体积的岩石中孔隙体积的减少量。 5、渗透性:岩石在一定压差下,允许流体通过的性质。(渗透性大小用渗透率表示) 6、绝对渗透率:当岩石孔隙为一种不与岩石发生反应的流体100%饱和,层流流动时测得的渗透率。 7、有效渗透率:多相渗流时,其中某一相流体在岩石中通过能力的大小,称为该相流体的有效渗透率或相渗透率,用K i表示。 8、相对渗透率:多相渗流时,某相流体的相渗透率与岩石绝对渗透率之比。 流体饱和度:储层岩石孔隙体积中某种流体所占的体积百分数。(用Si表示) 9、残余油饱和度:以某一开发方式开发油气田结束时,还残余(剩余)在孔隙中的油所占据的体积百分数。 10、流度:多相渗流时某相流体的相渗透率与其粘度之比。 11、流度比(M):多相流动时,驱替相流度与被驱替相流度之比。 12、气体滑脱现象:低压气体渗流时,其流速在毛孔断面上的分布偏离粘性流体流动特性,出现气体分子在管壁处速度不等于0 的流动现象。 13、泡点压力:在温度一定的情况下,开始从液相中分离出第一个气泡的压力。

14、露点压力:在温度一定的情况下,开始从气相中凝结出第一滴液滴的压力。 15、等温反凝析:在温度不变的条件下,随压力降低而从气相中凝析出液体的现象。 16、凝析气藏:地下原始条件为气态,随压力下降或到地面后有油析出的气藏。 17、天然气溶解系数α:温度一定时,每增加单位压力时,单位体积液体中溶解天然气气量的增加值。 19、偏差系数(压缩因子z):给定温、度压力、下实际气体所占体积与同温同压下相同数量的理想气体所占体积之比。 20、微观指进现象:指不同孔道中油水界面的推进位置差异随排驱时间越来越大的现象。 21、天然气的体积系数Bg:油藏条件下(p地、T地)天然气的体积与其在地面标准状态下(20℃、0.1MPa)的体积之比。 22、天然气的等温压缩系数Cg :在等温条件下,天然气随压力变化的体积变化率。 23、天然气的粘度μg:当天然气分子层间相对运动时,相邻分子层间单位接触面积上的剪切力与其速度梯度的比值。 24、地层原油的溶解气油比RS:某T、p 下的地层原油在地面脱气后,得到1m3 脱气原油时所分离出的气量。 25、地层原油的体积系数Bo :原油在地下的体积与其在地面脱气后体积之比。 26、地层油气两相体积系数Bt:当p

油高压物性测定

油层物理 实验报告 地层油高压物性测定 一、实验目的 1.掌握地层油高压物性仪的结构及工作原理; 2.掌握地层油的饱和压力、单次脱气的测定方法; 3.掌握地层油溶解气油比、体积系数、密度等参数的确定方法; 4.掌握落球法测量地层油粘度的原理及方法。 二、实验原理 1.底层油的体积随压力变化,在泡点压力前后,压力曲线的斜率不同,拐点出对应的压力即为泡点压力。 2.使PVT 筒内的压力保持在原始压力,保持压力不变,将PVT筒内一定量的底层油放入分离筒内,记录放油的地下体积。从量气瓶中测量分出气体体积,测量分离瓶中脱气原油的体积,便可计算地层油的溶解气油比、体积系数数据。 3.在地层条件下,钢球在光滑的盛有地层油的标准管中自由下落,通过记录钢球的下落时间,由下式计算粘度: 12()k t μρρ=- 其中 μ―原油动力粘度,m Pa ﹒s ; t ―钢球下落时间,s ; 1ρ、2ρ―分别为钢球和原油的密度,g / cm 3; k ―粘度计常数,与标准管的倾角、钢球的尺寸及密度有关。 三、实验流程 高压物性实验流程图 四、实验步骤

1、泡点压力计算 (1)粗侧泡点压力从地层压力起退泵降压,并注意观察低速度减慢或不下降甚至回升时,停止退泵。压力表指针稳定后的压力数值即为粗侧泡点压力。 (2)细侧泡点压力 1、升压至地层压力。从地层压力开始降压,每降一定压力记录压力稳定后的体积:2、当压力降至泡点压力以下时,每降至一定体积,记录稳定以后的压力:3、最后一点压力测完后,升压至地层压力,进行搅拌,是分离出的气体重新溶解到原油中,为原油脱气做好准备。 2、一次脱气 (1)将PVT筒中的底层原油加压至地层压力,搅拌原油样品使温度、压力均衡,记录泵的读数。 (2)取一个干燥洁净的分离瓶,将量气瓶充满饱和盐水。 (3)将分离瓶安装在橡胶塞上,慢慢打开放油阀;保持地层压力不变,排出一定体积的地层油,当量气瓶液面下降100ml至150ml时,关闭放油阀,记录计量泵的读数。 (4)提升盐水瓶,使盐水瓶液面与量气瓶液面平齐,读取分离出的气体体积,同时记录室温、大气压。 (5)取下分离瓶,称重并记录。 3、地层油的粘度测量 (1)将地层油样转到落球粘度计的标准管中,加热至底层温度; (2)转动萝球粘度计使带有阀门的一端朝上,按下“吸球”开关,使钢球吸到上部的磁铁上。 (3)转动萝球粘度计,固定一定角度。按下“落球”开关,钢球开始落下,同时计时开始。当钢球落到底部时自动停止计时,记录钢球下落时间。重复3次以上,直至所测时 间基本相同为止。 五、数据处理与计算 1.泡点压力确定: 根据测定的一系列压力P和相应的累积体积差?V(或地 层油体积),绘制P-?V 关系图,由曲线的拐点求出泡点压力 值。 P-?V关系曲线示意图2.地层油物性参数计算:

天然气高压物性参数计算

摘要 天然气的压缩因子、体积系数、压缩系数、粘度等高压物性参数随气藏压力和温度的变化而变化,定量描述和预测这些参数的变化规律具有十分重要的实际意义。通过电脑程序将天然气高压物性的相关经验公式转变为程序计算,能够很快的得到计算结果以及对计算结果的图形分析,通过最后的图形分析我们能很直观的看出高压物性参数之间的关系,有利于确定合理的开发速度和规模,节省投资,将资金投向回报率高的方案上。 本文中首先介绍了天然气高压物性参数的相关经验及半经验公式,再利用excelVBA 实现公式的程序计算,只要输入原始数据,点击相应的高压物性计算按钮就能得到计算结果,数据分析窗体能够自动输出高压物性与相关参数的图形。 关键字:高压物性偏差系数粘度压力温度

ABSTRACT Gas compressibility factor, volume factor, compressibility, viscosity and other physical parameters with high pressure gas reservoir pressure and temperature changes, quantitatively describe and predict the variation of these parameters has a very important practical significance. Through a computer program related to the physical properties of high pressure natural gas into a program to calculate the empirical formula, can quickly get the results and the calculation results of the graphical analysis, graphical analysis through the last we can see the pressure very intuitive relationship between the physical parameters will help determine a reasonable pace and scale of development, reduce investment, high return on the capital investment program on. This paper first introduces the gas pressure in the physical parameters relevant experience and semi.empirical formulas to achieve reuse excelVBA program calculates the formula, as long as the input raw data, click on the appropriate button to be able to calculate the physical properties of high pressure to get results, analysis of data form can be automatically output pressure properties and related parameters graphics. Keywords: PVT variation ;coefficient of viscosity;pressure ;temperature ;coefficient of volume.

相关主题
文本预览
相关文档 最新文档