错位相减法求和附问题详解91318
- 格式:docx
- 大小:388.58 KB
- 文档页数:15
数列求和公式错位相减法公式数列求和公式,听上去就有点儿复杂对吧?但别急,咱们慢慢来,今天就给大家讲讲一个超好用的技巧——错位相减法。
乍一听,可能有点懵,但你放宽心,一旦弄明白了,分分钟让你觉得数列求和其实没啥难度。
你想啊,谁不想让看似难搞的数学题变得简单呢?对吧?就像是你去超市买东西,拿到结账单时,发现所有打折的商品都给你算得特别清楚,省了不少钱。
今天这招,保准让你在求和的路上少走很多弯路。
咱们从最简单的数列讲起。
你想求一个简单的等差数列的和,通常大家都会背那些公式。
嗯,好像也不难,直接套用公式就行了。
但很多时候,公式也有它的局限,尤其是当数列比较复杂,或者我们想要更高效地解决问题的时候,就得学点儿新招数了。
而这招“错位相减法”,就像是给数列加了一双隐形的翅膀,飞起来不费劲。
说白了,错位相减法就是把两个数列“合并”在一起,然後相减,结果会让你大吃一惊。
听起来有点儿抽象?那就举个例子。
比如你有一个数列1 + 2 + 3 + … + n,咱们现在的目标就是求它的和。
你可以这样操作:写下这个数列,然后把它倒过来再写一次。
比如:1 +2 +3 + … + nn + (n1) + (n2) + … + 1。
好像没啥特别的对吧?但重点来了:你把它们相加——每一项的和都是一样的。
举个例子,第一项1加最后一项n,第二项2加倒数第二项(n1),以此类推。
结果呢,每一对加起来的结果都是n+1。
那么你就可以轻松得出,整个数列的和是(n+1)乘以n,然后再除以2!是不是一下子就变得清晰明了,省时又省力。
是不是有点“豁然开朗”的感觉?这个方法简直就是数学的“撒手锏”,不仅效率高,而且其实背后的道理也不难理解。
你想,原本一个长长的数列,把它拆成两个“对称”的部分,再相加就能搞定。
多么聪明的招数!就像你去买东西,店员总会问你“要不要礼品包装”,一看就是已经帮你考虑好了怎么样更方便、更高效。
咱们可以稍微升级一下这个技巧。
假如你遇到的不是等差数列,而是更复杂一点的数列,怎么办呢?别怕!这时候错位相减法依然能派上用场。
题型-函数求和之错位相减法概述:错位相减法是一种常见的数学求和方法,特别适用于函数求和。
在该方法中,函数的值在相邻的位置上进行错位,并相互相减得到一个新的函数值序列,然后对这个新的函数值序列进行求和。
这种方法可以帮助我们简化函数求和的过程,尤其适用于一些具有递推关系的数列。
步骤:1. 将函数的值按照位置进行错位,即将第1个位置处的函数值与第2个位置处的函数值相减;将第2个位置处的函数值与第3个位置处的函数值相减;以此类推。
2. 得到一个新的函数值序列,即错位相减后的函数值序列。
3. 对新的函数值序列进行求和,即将序列中的所有函数值相加。
注意事项:1. 错位相减法适用于具有递推关系的函数求和,即函数的值与前一个位置的函数值有一定的关系。
2. 求和结果可能与直接对函数的值进行求和得到的结果有所差异,因此需要注意计算的准确性。
3. 在使用该方法时,需要确保函数值序列的长度足够大,以保证错位相减后的函数值序列能够稳定收敛。
例子:假设有一个函数 f(n) = n^2,我们想要计算 f(1)+f(2)+f(3)+...+f(n) 的值。
使用错位相减法,我们可以进行如下操作:f(1) - f(2) + f(2) - f(3) + f(3) - f(4) + ... + f(n-1) - f(n)。
得到的结果正好是 f(1) - f(n),即 n^2 - n。
注意,这里的例子只是为了简单说明错位相减法的原理,实际应用中需要根据具体情况进行调整和推导。
总结:错位相减法是一种简化函数求和的方法,特别适用于具有递推关系的函数。
通过将函数值进行错位相减,并对新的函数值序列进行求和,我们可以得到函数求和的结果。
在实际应用中,需要注意计算的准确性和函数值序列的收敛性。
题型-统计求和之错位相减法
概述
统计求和是数学中常用的一种求解方法,常用于求解一系列数值的总和。
在统计求和过程中,错位相减法是一种简单而有效的方法,它能够快速求得一组连续数值的总和。
本文将介绍错位相减法的基本原理和具体操作步骤。
基本原理
错位相减法是基于数列的性质和数学等式的特点进行推导的。
当求解一组连续数值的总和时,可以利用序号之间的差值和首末项之和的关系,将求和问题转化为相减问题,从而简化计算过程。
具体操作步骤
1. 确定数列的首项和末项,记为a和b。
2. 计算数列的项数n,并计算首末项的和s,即s = a + b。
3. 利用数列项数和首末项之和的关系,得出求和公式为:总和= (n + 1) * s / 2。
4. 进行计算,并得出最终结果。
示例
假设要求解从1到100的所有整数之和,按照错位相减法的步
骤进行计算:
1. 首项a = 1,末项b = 100。
2. 项数n = b - a + 1 = 100 - 1 + 1 = 100,首末项之和s = a + b =
1 + 100 = 101。
3. 根据求和公式,总和 = (100 + 1) * 101 / 2 = 5050。
4. 因此,1到100的所有整数之和为5050。
总结
错位相减法是一种简单且有效的统计求和方法,适用于求解一
组连续数值的总和。
它通过转化问题,将求和过程简化为一系列相
减操作,提高计算效率。
使用错位相减法可以避免繁琐的循环累加,提升数学求解的速度。
题型-多项式求和之错位相减法多项式求和是数学中常见的计算方法之一,而错位相减法是多项式求和的一种特殊方法。
在这种方法中,我们通过相邻项之间错位相减的方式来简化求和表达式。
下面将详细介绍错位相减法的步骤和应用。
1. 步骤错位相减法的步骤如下:1. 将多项式按照相邻项错位排列;2. 从左到右逐个相邻项相减;3. 进行简化和合并。
2. 示例以多项式求和的例子来说明错位相减法的应用:假设我们需要求解以下多项式的和:$1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10$按照错位相减法的步骤,我们可以将这个多项式重新排列如下:$(1 + 2) + (3 + 4) + (5 + 6) + (7 + 8) + (9 + 10)$然后逐个相邻项相减并简化:$3 + 7 + 11 + 15 + 19$最后,将得到的结果进行合并:$55$因此,$1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10$的和为$55$。
3. 应用错位相减法在数学中有广泛的应用,尤其在多项式求和和等差数列求和中常被使用。
通过使用错位相减法,我们可以简化复杂的求和计算,减少计算错误的可能性。
同时,错位相减法也有助于培养学生的计算思维和观察能力。
通过运用错位相减法,学生可以发现多项式之间的规律并加深对数学概念的理解。
4. 总结错位相减法是一种多项式求和的特殊方法,通过相邻项之间的错位相减,可以简化求和表达式,并减少计算错误的可能性。
它在数学中有广泛的应用,是培养学生计算思维和观察能力的有效方法。
通过掌握错位相减法的步骤和应用,我们可以更加灵活地解决各类多项式求和问题,提高计算效率和准确性。
专题31 数列中错位相减法求和问题【高考真题】 2022年没考查 【方法总结】 错位相减法求和错位相减法:错位相减法是在推导等比数列的前n 项和公式时所用的方法,适用于各项由一个等差数列和一个等比数列对应项的乘积组成的数列.把S n =a 1+a 2+…+a n 两边同乘以相应等比数列的公比q ,得到qS n =a 1q +a 2q +…+a n q ,两式错位相减即可求出S n .用错位相减法求和时,应注意:(1)要善于识别题目类型,特别是等比数列公比为负数的情形.(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”,以便于下一步准确地写出“S n -qS n ”的表达式.(3)在应用错位相减法时,注意观察未合并项的正负号;结论中形如a n ,a n +1的式子应进行合并.【题型突破】1.已知等差数列{a n }的前n 项和为S n ,a 1=2,且S 1010=S 55+5.(1)求a n ;(2)若b n =a n ·4S n a n求数列{b n }的前n 项的和T n .1.解析 (1)设等差数列{a n }的公差为d ,因为S 1010=S 55+5,所以10(a 1+a 10)210-5(a 1+a 5)25=5,所以a 10-a 5=10,所以5d =10,解得d =2.所以a n =a 1+(n -1)d =2+(n -1)×2=2n ;(2)由(1)知,a n =2n ,所以S n =n (2+2n )2=n 2+n .所以b n =a n ·4Sn an=2n ·4n 2+n 2n =2n ·2n +1=n ·2n +2,所以T n =1×23+2×24+2×25+…+n ·2n +2①,所以2T n =1×24+2×25+3×26+…+(n -1)·2n +2+n ·2n +3②, ①-②,得-T n =23+24+…+2n +2-n ×2n +3=23(1-2n )1-2-n ×2n +3=2n +3-8-n ×2n +3所以T n =(n -1)×2n +3+8.2.(2020·全国Ⅰ)设{a n }是公比不为1的等比数列,a 1为a 2,a 3的等差中项. (1)求{a n }的公比;(2)若a 1=1,求数列{na n }的前n 项和.2.解析 (1)设{a n }的公比为q ,∵a 1为a 2,a 3的等差中项,∴2a 1=a 2+a 3=a 1q +a 1q 2,a 1≠0,∴q 2+q -2=0,∵q ≠1,∴q =-2. (2)设{na n }的前n 项和为S n ,a 1=1,a n =(-2)n -1,S n =1×1+2×(-2)+3×(-2)2+…+n (-2)n -1,①-2S n =1×(-2)+2×(-2)2+3×(-2)3+…+(n -1)·(-2)n -1+n (-2)n ,② ①-②得,3S n =1+(-2)+(-2)2+…+(-2)n -1-n (-2)n=1-(-2)n 1-(-2)-n (-2)n=1-(1+3n )(-2)n3,∴S n =1-(1+3n )(-2)n9,n ∈N *.3.(2017·天津)已知{a n }为等差数列,前n 项和为S n (n ∈N *),{b n }是首项为2的等比数列,且公比大于0, b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4. (1)求{a n }和{b n }的通项公式;(2)求数列{a 2n b 2n -1}的前n 项和(n ∈N *).3.解析 (1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q . 由已知b 2+b 3=12,得b 1(q +q 2)=12,而b 1=2,所以q 2+q -6=0. 又因为q >0,解得q =2,所以b n =2n .由b 3=a 4-2a 1,可得3d -a 1=8,① 由S 11=11b 4,可得a 1+5d =16,②联立①②,解得a 1=1,d =3,由此可得a n =3n -2(n ∈N *).所以数列{a n }的通项公式为a n =3n -2(n ∈N *),数列{b n }的通项公式为b n =2n (n ∈N *).(2)设数列{a 2n b 2n -1}的前n 项和为T n ,由a 2n =6n -2,b 2n -1=2×4n -1,得a 2n b 2n -1=(3n -1)×4n , 故T n =2×4+5×42+8×43+…+(3n -1)×4n ,③4T n =2×42+5×43+8×44+…+(3n -4)×4n +(3n -1)×4n +1,④ ③-④,得-3T n =2×4+3×42+3×43+…+3×4n -(3n -1)×4n +1 =12×(1-4n )1-4-4-(3n -1)×4n +1=-(3n -2)×4n +1-8,得T n =3n -23×4n +1+83(n ∈N *).所以数列{a 2n b 2n -1}的前n 项和为3n -23×4n +1+83(n ∈N *).4.已知数列{a n }的前n 项和为S n ,a 1=1,当n ≥2时,2S n =(n +1)a n -2. (1)求a 2,a 3和通项a n ;(2)设数列{b n }满足b n =a n ·2n -1,求{b n }的前n 项和T n . 4.解析 (1)当n =2时,2S 2=2(1+a 2)=3a 2-2,则a 2=4, 当n =3时,2S 3=2(1+4+a 3)=4a 3-2,则a 3=6, 当n ≥2时,2S n =(n +1)a n -2, 当n ≥3时,2S n -1=na n -1-2,所以当n ≥3时,2(S n -S n -1)=(n +1)a n -na n -1=2a n ,即2a n =(n +1)a n -na n -1,整理可得(n -1)a n =na n -1,所以a n n =a n -1n -1,因为a 33=a 22=2,所以a n n =a n -1n -1=…=a 33=a 22=2,因此,当n ≥2时,a n =2n ,而a 1=1,故a n =⎩⎪⎨⎪⎧1,n =1,2n ,n ≥2.(2)由(1)可知b n =⎩⎪⎨⎪⎧1,n =1,n ·2n ,n ≥2,所以当n =1时,T 1=b 1=1,当n ≥2时,T n =b 1+b 2+b 3+…+b n ,则 T n =1+2×22+3×23+…+(n -1)×2n -1+n ×2n , 2T n =2+2×23+3×24+…+(n -1)×2n +n ×2n +1,作差得T n =1-8-(23+24+…+2n )+n ×2n +1=(n -1)×2n +1+1, 易知当n =1时,也满足上式, 故T n =(n -1)×2n +1+1(n ∈N *).5.已知数列{a n }的前n 项和为S n ,且满足S n -n =2(a n -2)(n ∈N *). (1)证明:数列{a n -1}为等比数列;(2)若b n =a n ·log 2(a n -1),数列{b n }的前n 项和为T n ,求T n .5.解析 (1)∵S n -n =2(a n -2),当n ≥2时,S n -1-(n -1)=2(a n -1-2), 两式相减,得a n -1=2a n -2a n -1,∴a n =2a n -1-1,∴a n -1=2(a n -1-1), ∴a n -1a n -1-1=2(n ≥2)(常数).又当n =1时,a 1-1=2(a 1-2),得a 1=3,a 1-1=2,∴数列{a n -1}是以2为首项,2为公比的等比数列. (2)由(1)知,a n -1=2×2n -1=2n ,∴a n =2n +1, 又b n =a n ·log 2(a n -1),∴b n =n (2n +1),∴T n =b 1+b 2+b 3+…+b n =(1×2+2×22+3×23+…+n ×2n )+(1+2+3+…+n ), 设A n =1×2+2×22+3×23+…+(n -1)×2n -1+n ×2n , 则2A n =1×22+2×23+…+(n -1)×2n +n ×2n +1, 两式相减,得-A n=2+22+23+…+2n -n ×2n +1=2(1-2n )1-2-n ×2n +1, ∴A n =(n -1)×2n +1+2.又1+2+3+…+n =n (n +1)2,∴T n =(n -1)×2n +1+2+n (n +1)2(n ∈N *).6.已知数列{a n }的前n 项和是S n ,且S n +12a n =1(n ∈N *).数列{b n }是公差d 不等于0的等差数列,且满足:b 1=32a 1,b 2,b 5,b 14成等比数列.(1)求数列{a n },{b n }的通项公式;(2)设c n =a n ·b n ,求数列{c n }的前n 项和T n .6.解析 (1)n =1时,a 1+12a 1=1,a 1=23,n ≥2时,⎩⎨⎧S n =1-12a n ,Sn -1=1-12a n -1,S n -S n -1=12()a n -1-a n ,∴a n =13a n -1(n ≥2),{a n }是以23为首项,13为公比的等比数列,a n =23×⎝⎛⎭⎫13n -1=2⎝⎛⎭⎫13n.b 1=1,由b 25=b 2b 14得,()1+4d 2=()1+d ()1+13d ,d 2-2d =0,因为d ≠0,解得d =2,b n =2n -1(n ∈N *). (2)c n =4n -23n ,T n =23+632+1033+…+4n -23n ,①13T n =232+633+1034+…+4n -63n +4n -23n +1,② ①-②得,23T n =23+4⎝⎛⎭⎫132+133+ (13)-4n -23n +1=23+4×19-13n +11-13-4n -23n +1=43-23n -4n -23n +1, 所以T n =2-2n +23n (n ∈N *).7.已知首项为2的数列{a n }的前n 项和为S n ,且S n +1=3S n -2S n -1(n ≥2,n ∈N *). (1)求数列{a n }的通项公式;(2)设b n =n +1a n,求数列{b n }的前n 项和T n .7.解析 (1)因为S n +1=3S n -2S n -1(n ≥2),所以S n +1-S n =2S n -2S n -1(n ≥2), 即a n +1=2a n (n ≥2),所以a n +1=2n +1,则a n =2n ,当n =1时,也满足, 故数列{a n }的通项公式为a n =2n . (2)因为b n =n +12n =(n +1)⎝⎛⎭⎫12n, 所以T n =2×12+3×⎝⎛⎭⎫122+4×⎝⎛⎭⎫123+…+(n +1)×⎝⎛⎭⎫12n ,① 12T n =2×⎝⎛⎭⎫122+3×⎝⎛⎭⎫123+4×⎝⎛⎭⎫124+…+n ×⎝⎛⎭⎫12n +(n +1)×⎝⎛⎭⎫12n +1,② ①-②得12T n =2×12+⎝⎛⎭⎫122+⎝⎛⎭⎫123+…+⎝⎛⎭⎫12n -(n +1)⎝⎛⎭⎫12n +1 =12+⎝⎛⎭⎫121+⎝⎛⎭⎫122+⎝⎛⎭⎫123+…+⎝⎛⎭⎫12n -(n +1)⎝⎛⎭⎫12n +1=12+12⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12-(n +1)⎝⎛⎭⎫12n +1 =12+1-⎝⎛⎭⎫12n -(n +1)⎝⎛⎭⎫12n +1=32-n +32n +1.故数列{b n }的前n 项和为T n =3-n +32n .8.已知数列{a n }满足a 1=12,a n +1=a n2a n +1.(1)证明数列⎩⎨⎧⎭⎬⎫1a n 是等差数列,并求{a n }的通项公式;(2)若数列{b n }满足b n =12n ·a n,求数列{b n }的前n 项和S n .8.解析 (1)因为a n +1=a n 2a n +1,所以1a n +1-1a n=2,所以⎩⎨⎧⎭⎬⎫1a n 是等差数列,所以1a n =1a 1+2(n -1)=2n ,即a n =12n .(2)因为b n =2n 2n =n 2n -1,所以S n =b 1+b 2+b 3+…+b n =1+22+322+…+n2n -1,则12S n =12+222+323+…+n2n , 两式相减得12S n =1+12+122+123+…+12n -1-n 2n =2⎝⎛⎭⎫1-12n -n2n ,所以S n =4-2+n 2n -1. 9.(2020·全国Ⅲ)设数列{a n }满足a 1=3,a n +1=3a n -4n . (1)计算a 2,a 3,猜想{a n }的通项公式并加以证明; (2)求数列{2n a n }的前n 项和S n .9.解析 (1)a 2=5,a 3=7.猜想a n =2n +1.证明如下:由已知可得a n +1-(2n +3)=3[a n -(2n +1)],a n -(2n +1)=3[a n -1-(2n -1)],…,a 2-5=3(a 1-3). 因为a 1=3,所以a n =2n +1.(2)由(1)得2n a n =(2n +1)2n ,所以S n =3×2+5×22+7×23+…+(2n +1)×2n .① 从而2S n =3×22+5×23+7×24+…+(2n +1)×2n +1.②①-②得-S n =3×2+2×22+2×23+…+2×2n -(2n +1)×2n +1, 所以S n =(2n -1)2n +1+2.10.在等差数列{a n }中,已知a 6=16,a 18=36.(1)求数列{a n }的通项公式a n ;(2)若________,求数列{b n }的前n 项和S n .在①b n =4a n a n +1,②b n =(-1)n ·a n ,③b n =2a n ·a n 这三个条件中任选一个补充在第(2)问中,并对其求解.注:若选择多个条件分别解答,按第一个解答计分.10.解析 (1)由题意,⎩⎪⎨⎪⎧a 1+5d =12,a 1+17d =36,解得d =2,a 1=2.∴a n =2+(n -1)×2=2n .(2)选条件①:b n =42n ·2(n +1)=1n (n +1),S n =11×2+12×3+…+1n (n +1)=⎝⎛⎭⎫11-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1n +1=1-1n +1=nn +1.选条件②:∵a n =2n ,b n =(-1)n a n ,∴S n =-2+4-6+8-…+(-1)n ·2n , 当n 为偶数时,S n =(-2+4)+(-6+8)+…+[-2(n -1)+2n ]=n2×2=n ;当n 为奇数时,n -1为偶数,S n =(n -1)-2n =-n -1.∴S n =⎩⎪⎨⎪⎧n ,n 为偶数,-n -1,n 为奇数.选条件③:∵a n =2n ,b n =2a n ·a n ,∴b n =22n ·2n =2n ·4n , ∴S n =2×41+4×42+6×43+…+2n ×4n ,①4S n =2×42+4×43+6×44+…+2(n -1)×4n +2n ×4n +1,② 由①-②得,-3S n =2×41+2×42+2×43+…+2×4n -2n ×4n +1 =8(1-4n )1-4-2n ×4n +1=8(1-4n )-3-2n ×4n +1,∴S n =89(1-4n )+2n 3·4n +1.11.在①b n =na n ,②b n =⎩⎪⎨⎪⎧a n ,n 为奇数,log 2a n ,n 为偶数,③b n =1(log 2a n +1)(log 2a n +2)这三个条件中任选一个,补充在下面问题中,并解答.问题:已知数列{a n }是等比数列,且a 1=1,其中a 1,a 2+1,a 3+1成等差数列. (1)求数列{a n }的通项公式;(2)记________,求数列{b n }的前2n 项和T 2n .11.解析 (1)设数列{a n }的公比为q ,因为a 1,a 2+1,a 3+1成等差数列,所以2(a 2+1)=a 1+a 3+1.又因为a 1=1,所以2(q +1)=2+q 2,即q 2-2q =0,所以q =2或q =0(舍去),所以a n =2n -1. (2)由(1)知a n =2n -1,若选择条件①,则b n =n ·2n -1, 所以T 2n =1×20+2×21+…+2n ×22n -1, 则2T 2n =1×21+2×22+…+2n ×22n , 两式相减得-T 2n=1×20+1×21+…+1×22n -1-2n ×22n =1-22n1-2-2n ×22n =(1-2n )×22n -1, 所以T 2n =(2n -1)·22n +1. 由(1)知a n =2n -1,若选择条件②,则b n =⎩⎪⎨⎪⎧2n -1,n 为奇数,n -1,n 为偶数,所以T 2n =(20+1)+(22+3)+…+(22n -2+2n -1)=(20+22+…+22n -2)+(1+3+…+2n -1) =1-4n 1-4+n (1+2n -1)2=4n 3+n 2-13.由(1)知a n =2n -1,若选择条件③,则b n =1n (n +1),所以T 2n =11×2+12×3+…+12n (2n +1)=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫12n -12n +1=1-12n +1=2n2n +1. 12.在①b 2n =2b n +1,②a 2=b 1+b 2,③b 1,b 2,b 4成等比数列这三个条件中选择符合题意的两个条件,补充在下面的问题中,并求解.已知数列{a n }中a 1=1,a n +1=3a n .公差不等于0的等差数列{b n }满足________,________,求数列⎩⎨⎧⎭⎬⎫b n a n 的前n 项和S n .注:如果选择不同方案分别解答,按第一个解答计分.12.解析 因为a 1=1,a n +1=3a n ,所以{a n }是以1为首项,3为公比的等比数列,所以a n =3n -1.选①②时,设数列{b n }的公差为d ,因为a 2=3,所以b 1+b 2=3. 因为b 2n =2b n +1,所以n =1时,b 2=2b 1+1,解得b 1=23,b 2=73,所以d =53,所以b n =5n -33,满足b 2n =2b n +1.所以b n a n =5n -33n .S n =b 1a 1+b 2a 2+…+b n a n =231+732+1233+…+5n -33n ,(1)所以13S n =232+733+1234+…+5n -83n +5n -33n +1,(2)(1)-(2),得23S n =23+5⎝⎛⎭⎫132+133+…+13n -5n -33n +1=23+56-152×3n +1-5n -33n +1=32-10n +92×3n +1, 所以S n =94-10n +94×3n.选②③时,设数列{b n }的公差为d ,因为a 2=3,所以b 1+b 2=3,即2b 1+d =3.因为b 1,b 2,b 4成等比数列,所以b 22=b 1b 4,即(b 1+d )2=b 1(b 1+3d ),化简得d 2=b 1d ,因为d ≠0,所以b 1=d ,从而d =b 1=1,所以b n =n ,所以b n a n =n3n -1,S n =b 1a 1+b 2a 2+…+b n a n =130+231+332+…+n3n -1,(1)所以13S n =131+232+333+…+n -13n -1+n 3n ,(2)(1)-(2),得23S n =1+131+132+133+…+13n -1-n 3n =32⎝⎛⎭⎫1-13n -n 3n =32-2n +32×3n ,所以S n =94-2n +34×3n -1.选①③时,设数列{b n }的公差为d ,因为b 2n =2b n +1,所以n =1时,b 2=2b 1+1,所以d =b 1+1. 又因为b 1,b 2,b 4成等比数列,所以b 22=b 1b 4,即(b 1+d )2=b 1(b 1+3d ),化简得d 2=b 1d ,因为d ≠0,所以b 1=d ,从而无解,所以等差数列{b n }不存在,故不符合题意.13.在①已知数列{a n }满足:a n +1-2a n =0,a 3=8;②等比数列{a n }中,公比q =2,前5项和为62,这两个条件中任选一个,并解答下列问题: (1)求数列{a n }的通项公式;(2)设b n =na n ,数列{b n }的前n 项和为T n ,若2T n >m -2 022对n ∈N *恒成立,求正整数m 的最大值.注:如果选择两个条件分别解答,则按第一个解答计分. 13.解析 (1)选择条件①,设等比数列{a n }的首项为a 1,公比为q .由a n +1-2a n =0,a 3=8,得{a n }为等比数列,q =2,a 1=2,所以a n =2n . 选择条件②,设等比数列{a n }的首项为a 1,由公比q =2,前5项和为62,得a 1(1-25)1-2=62,解得a 1=2,所以a n =2n . (2)因为b n =n a n =n2n ,所以T n =12+222+323+…+n2n ,①12T n =122+223+324+…+n2n +1,② ①-②得12T n =12+122+123+124+…+12n -n 2n +1=1-12n -n2n +1,所以T n =2-2+n 2n .因为T n +1-T n =⎝ ⎛⎭⎪⎫2-2+n +12n +1-⎝⎛⎭⎫2-2+n 2n =n +12n +1>0,所以数列{T n }单调递增,T 1最小,最小值为12.所以2×12>m -2 022.所以m <2 023.故正整数m 的最大值为2 022.14.(2021·全国乙)设{a n }是首项为1的等比数列,数列{b n }满足b n =na n3.已知a 1,3a 2,9a 3成等差数列.(1)求{a n }和{b n }的通项公式;(2)记S n 和T n 分别为{a n }和{b n }的前n 项和.证明:T n <S n2.14.解析 (1)设{a n }的公比为q ,则a n =q n -1.因为a 1,3a 2,9a 3成等差数列,所以1+9q 2=2×3q ,解得q =13,故a n =13n -1,b n =n3n .(2)由(1)知S n =1×⎝⎛⎭⎫1-13n 1-13=32⎝⎛⎭⎫1-13n ,T n =13+232+333+…+n3n ,①13T n =132+233+334+…+n -13n +n3n +1,② ①-②得23T n =13+132+133+…+13n -n 3n +1,即23T n =13⎝⎛⎭⎫1-13n 1-13-n 3n +1=12⎝⎛⎭⎫1-13n -n3n +1, 整理得T n =34-2n +34×3n ,则2T n -S n =2⎝ ⎛⎭⎪⎫34-2n +34×3n -32⎝⎛⎭⎫1-13n =-n 3n <0,故T n<S n 2.15.已知数列{a n }的首项a 1=3,前n 项和为S n ,a n +1=2S n +3,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =log 3a n ,求数列⎩⎨⎧⎭⎬⎫b n a n 的前n 项和T n ,并证明:13≤T n <34.15.解析 (1)由a n +1=2S n +3,得a n =2S n -1+3(n ≥2),两式相减得a n +1-a n =2(S n -S n -1)=2a n ,故a n +1=3a n (n ≥2), 所以当n ≥2时,{a n }是以3为公比的等比数列.因为a 2=2S 1+3=2a 1+3=9,a 2a 1=3,所以{a n }是首项为3,公比为3的等比数列,a n =3n .(2)a n =3n ,故b n =log 3a n =log 33n =n ,b n a n =n3n =n ·⎝⎛⎭⎫13n , T n =1×13+2×⎝⎛⎭⎫132+3×⎝⎛⎭⎫133+…+n ×⎝⎛⎭⎫13n ,① 13T n =1×⎝⎛⎭⎫132+2×⎝⎛⎭⎫133+3×⎝⎛⎭⎫134+…+(n -1)×⎝⎛⎭⎫13n +n ×⎝⎛⎭⎫13n +1.② ①-②,得23T n =13+⎝⎛⎭⎫132+⎝⎛⎭⎫133+…+⎝⎛⎭⎫13n -n ×⎝⎛⎭⎫13n +1=13-⎝⎛⎭⎫13n +11-13-n ×⎝⎛⎭⎫13n +1=12-32+n ⎝⎛⎭⎫13n +1, 所以T n =34-12⎝⎛⎭⎫32+n ⎝⎛⎭⎫13n. 因为⎝⎛⎭⎫32+n ⎝⎛⎭⎫13n >0,所以T n <34.又因为T n +1-T n =n +13n +1>0, 所以数列{T n }单调递增,所以(T n )min =T 1=13,所以13≤T n <34.16.已知函数f (x )满足f (x +y )=f (x )·f (y )且f (1)=12.(1)当n ∈N *时,求f (n )的表达式;(2)设a n =n ·f (n ),n ∈N *,求证:a 1+a 2+a 3+…+a n <2.16.解析 (1)因为函数f (x )满足f (x +y )=f (x )·f (y ),所以令y =1,得f (x +1)=f (x )·f (1),所以f (n +1)=f (n )·f (1).又因为f (1)=12,所以f (n +1)f (n )=12,所以f (n )=⎝⎛⎭⎫12n(n ∈N *). (2)由(1)得a n =n ·⎝⎛⎭⎫12n,设T n =a 1+a 2+a 3+…+a n -1+a n , 则T n =1×12+2×⎝⎛⎭⎫122+3×⎝⎛⎭⎫123+…+(n -1)×⎝⎛⎭⎫12n -1+n ×⎝⎛⎭⎫12n ,① 所以12T n =1×⎝⎛⎭⎫122+2×⎝⎛⎭⎫123+…+(n -2)⎝⎛⎭⎫12n -1+(n -1)×⎝⎛⎭⎫12n +n ×⎝⎛⎭⎫12n +1,② 所以由①-②得12T n =12+⎝⎛⎭⎫122+⎝⎛⎭⎫123+…+⎝⎛⎭⎫12n -1+⎝⎛⎭⎫12n -n ·⎝⎛⎭⎫12n +1=12⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12-n ·⎝⎛⎭⎫12n +1=1-⎝⎛⎭⎫12n -n ·⎝⎛⎭⎫12n +1=1-2+n 2n +1,所以T n =2-n +22n <2,即a 1+a 2+a 3+…+a n -1+a n <2.17.已知各项均不相等的等差数列{a n }的前4项和为14,且a 1,a 3,a 7恰为等比数列{b n }的前3项.(1)分别求数列{a n },{b n }的前n 项和S n ,T n ;(2)设K n 为数列{a n b n }的前n 项和,若不等式λS n T n ≥K n +n 对一切n ∈N *恒成立,求实数λ的最小值.17.解析 (1)设数列{a n }的公差为d ,则⎩⎪⎨⎪⎧4a 1+6d =14,(a 1+2d )2=a 1(a 1+6d ),解得d =1或d =0(舍去),a 1=2, 所以a n =n +1,S n =n (n +3)2.b n =2n ,T n =2n +1-2.(2)由题意得K n =2×21+3×22+…+(n +1)×2n ,① 则2K n =2×22+3×23+…+n ×2n +(n +1)×2n +1,②①-②得-K n =2×21+22+23+…+2n -(n +1)×2n +1,∴K n =n ×2n +1.要使λS n T n ≥K n +n 对一切n ∈N *恒成立,即λ≥K n+n S n T n =2n +1+1(n +3)(2n -1)恒成立,设g (n )=2n +1+1(n +3)(2n -1),因为g (n +1)g (n )=(n +3)(2n -1)(2n +2+1)(n +4)(2n +1-1)(2n +1+1)=(n +3)(22n +2-1-3·2n )(n +4)(22n +2-1)<(n +3)(22n +2-1)(n +4)(22n +2-1)<1, 所以g (n )随n 的增加而减小,所以g (n )max =g (1)=54,所以当λ≥54时不等式恒成立,因此λ的最小值为54.18.(2021·浙江)已知数列{a n }的前n 项和为S n ,a 1=-94,且4S n +1=3S n -9(n ∈N *).(1)求数列{a n }的通项公式;(2)设数列{b n }满足3b n +(n -4)a n =0(n ∈N *),记{b n }的前n 项和为T n .若T n ≤λb n 对任意n ∈N *恒成立,求实数λ的取值范围.18.解析 (1)因为4S n +1=3S n -9,所以当n ≥2时,4S n =3S n -1-9,两式相减可得4a n +1=3a n ,即a n +1a n =34. 当n =1时,4S 2=4⎝⎛⎭⎫-94+a 2=-274-9,解得a 2=-2716,所以a 2a 1=34. 所以数列{a n }是首项为-94,公比为34的等比数列,所以a n =-94×⎝⎛⎭⎫34n -1=-3n +14n . (2)因为3b n +(n -4)a n =0,所以b n =(n -4)·⎝⎛⎭⎫34n .所以T n =-3×34-2×⎝⎛⎭⎫342-1×⎝⎛⎭⎫343+0×⎝⎛⎭⎫344+…+(n -4)·⎝⎛⎭⎫34n ,① 所以34T n =-3×⎝⎛⎭⎫342-2×⎝⎛⎭⎫343-1×⎝⎛⎭⎫344+0×⎝⎛⎭⎫345+…+(n -5)·⎝⎛⎭⎫34n +(n -4)·⎝⎛⎭⎫34n +1,② ①-②得14T n =-3×34+⎝⎛⎭⎫342+⎝⎛⎭⎫343+…+⎝⎛⎭⎫34n -(n -4)·⎝⎛⎭⎫34n +1 =-94+916⎣⎢⎡⎦⎥⎤1-⎝⎛⎭⎫34n -11-34-(n -4)·⎝⎛⎭⎫34n +1=-n ·⎝⎛⎭⎫34n +1, 所以T n =-4n ·⎝⎛⎭⎫34n +1. 因为T n ≤λb n 对任意n ∈N *恒成立,所以-4n ·⎝⎛⎭⎫34n +1≤λ(n -4)·⎝⎛⎭⎫34n 恒成立,即-3n ≤λ(n -4)恒成立. 当n <4时,λ≤-3n n -4=-3-12n -4,此时λ≤1; 当n =4时,-12≤0恒成立;当n >4时,λ≥-3n n -4=-3-12n -4,此时λ≥-3. 所以-3≤λ≤1,即实数λ的取值范围为[-3,1].19.已知递增的等比数列{a n }满足:a 2+a 3+a 4=28,且a 3+2是a 2和a 4的等差中项.(1)求数列{a n }的通项公式;(2)若b n =a n 12log a n ,S n =b 1+b 2+…+b n ,求使S n +n ·2n +1>62成立的正整数n 的最小值.19.解析 (1)由题意,得⎩⎪⎨⎪⎧ a 1q +a 1q 2+a 1q 3=28,a 1q +a 1q 3=2a 1q 2+2,解得⎩⎪⎨⎪⎧ a 1=2,q =2或⎩⎪⎨⎪⎧ a 1=32,q =12,∵{a n }是递增数列,∴a 1=2,q =2,∴数列{a n }的通项公式为a n =2·2n -1=2n .(2)∵b n =a n 12log a n =2n ·12log 2n =-n ·2n ,∴S n =b 1+b 2+…+b n =-(1×2+2×22+…+n ·2n ), ① 则2S n =-(1×22+2×23+…+n ·2n +1),②②-①,得S n =(2+22+…+2n )-n ·2n +1=2n +1-2-n ·2n +1, 则S n +n ·2n +1=2n +1-2,解2n +1-2>62,得n >5,∴n 的最小值为6.20.已知单调递增的等比数列{a n }满足:a 2+a 3+a 4=28,且a 3+2是a 2,a 4的等差中项.(1)求数列{a n }的通项公式;(2)若b n =12log n n a a ,S n =b 1+b 2+…+b n ,求使S n +n ×2n +1>30成立的正整数n 的最小值.20.解析 (1)设等比数列{a n }的首项为a 1,公比为q .由题意知2(a 3+2)=a 2+a 4,代入a 2+a 3+a 4=28,可得a 3=8,所以a 2+a 4=20,所以⎩⎪⎨⎪⎧ a 1q 2=8,a 1q +a 1q 3=20,解得⎩⎪⎨⎪⎧ q =2,a 1=2或⎩⎪⎨⎪⎧ q =12,a 1=32.又数列{a n }单调递增,所以q =2,a 1=2,所以数列{a n }的通项公式为a n =2n .(2)因为b n =1122log 2log 2n n n n a a ==-n ×2n ,所以S n =-(1×2+2×22+…+n ×2n ),2S n =-[1×22+2×23+…+(n -1)×2n +n ×2n +1],两式相减,得S n =2+22+23+…+2n -n ×2n +1=2n +1-2-n ×2n +1. 又S n +n ×2n +1>30,可得2n +1-2>30,即2n +1>32=25, 所以n +1>5,即n >4.所以使S n +n ×2n +1>30成立的正整数n 的最小值为5.。
数列求和错位相减数列求和错位相减随着数学技能的不断提高,我们经常会遇到各种数列问题。
其中,求和问题是最基本的一种问题,而本文将介绍的是一种特殊的求和方法——数列求和错位相减。
一、什么是数列求和错位相减数列求和错位相减是一种求解数列问题的方法。
它的具体方法是将数列按照一定的规律错位相减,然后将差值加起来得到求和结果。
这一方法通常适用于一些存在周期性变化的数列问题。
例如,对于一个等差数列:1, 3, 5, 7, 9…如果采用传统的求和方法,其公式为:Sn = n(2a+(n-1)d)/2其中,Sn为前n项和,a为首项,d为公差。
则该序列前5项之和为:S5 = 5(2*1+(5-1)*2)/2=25而采用数列求和错位相减的方法,则可以按照如下步骤进行:1. 将数列分成两部分,如下所示:1, 5, 9…3, 7, 11…2. 对两部分数列进行相减:(5-1) + (9-5) + … = 4 + 4 + … = 2n-1(7-3) + (11-7) + … = 4 + 4 + … = 2n+13. 将两部分差值相加:(2n-1) + (2n+1) = 4n得出的结果为求和结果的n倍,因此需要除以n得到真正的结果:Sn = 4n/n = 4二、数列求和错位相减的应用数列求和错位相减在实际问题中常常会被应用。
比如,我们常常会遇到以下类型的问题:1. 求一个周期性变化的数列的前n项和。
2. 求某个阶段内两个连续数相邻的差值之和。
3. 求某个阶段内两个连续数相邻的比值之和。
这些问题都可以通过数列求和错位相减来解决。
下面我们以一个例子来说明其应用:假设有以下数列:1, 5, 9, 13, 17, 21, 25, 29, 33现在需要求出该数列中,连续两项之间的差值之和。
按照数列求和错位相减的方法,我们可以将数列分成两部分:1, 9, 17, 25, 335, 13, 21, 29对两部分进行相减:8 + 8 + 8 + 8 = 324 + 4 + 4 = 12将两部分相加:32 + 12 = 44得到的结果即为连续两项之间的差值之和。
题型-数列求和之错位相减法数列求和之错位相减法一、题型要求:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法(这也是等比数列前n和公式的推导方法)。
二、例题讲解:1、求和:$S_n=1+3x+5x^2+7x^3+。
+(2n-1)x^{n-1}$,其中$x=2$。
2、求数列$2,3.n$前$n$项的和。
三、练巩固:1、(2012-信宜二模)设$\{a_n\}$为等比数列,$T_n=na_1+(n-1)a_2+。
+2a_{n-1}+a_n$,已知$T_1=1$,$T_2=4$。
1)求数列$\{a_n\}$的首项和公比;2)求数列$T_n$的通项公式;2、(2015-漳浦校级模拟)等差数列$\{a_n\}$中,$a_7=4$,$a_{19}=2a_9$。
数列$\{b_n\}$满足$b_n=a_n\times2$。
1)求数列$\{a_n\}$的通项公式;2)求数列$\{b_n\}$的前$n$项和$S_n$;4、(2014-肇庆高三期末)已知数列$\{a_n\}$满足$a_1=1$,$a_{n+1}=2a_n+1$($n\in N^*$)。
1)求数列$\{a_n\}$的通项公式;2)设$b_n=\frac{a_{2n}}{n}$,数列$\{b_n\}$的前$n$项和为$T_n$,求$T_n$;5、(2014-惠州调研)已知数列$\{a_n\}$的前$n$项和为$S_n$,且有$S_n=1-a_n$。
数列$\{b_n\}$满足$2b_n=(2n-7)a_n$。
1)求数列$\{a_n\}$和$\{b_n\}$的通项公式;2)求数列$\{b_n\}$的前$n$项和$T_n$;6、(2014-珠海六校联考)已知数列$\{a_n\}$为等差数列,且$a_5=14$,$a_7=20$,数列$\{b_n\}$的前$n$项和为$S_n$,且满足$3S_n=S_{n-1}+2$($n\geq2$,$n\in N^*$),$b_1=$。
数列07 数列的求和(错位相减法求和)、具体目 1. 掌握等差、等比数列的求2. 掌握等非差、等比数列求和的几种常见方法考纲解读:会用公式法、倒序相加法、错位相减法、裂项相消法、分组转化法求解不同类型数列的和,非 等差、等比数列的求和是高考的热点,特别是错位相减法和裂项相消法求和 .二、知识概述: 求数列前 n 项和的基本方法 (1)直接用等差、等比数列的求和公式求和;35等差:Sn n(a 1 a n ) 2 na 1n(n 1)d2 d ;等比: Sn na 1a 1(1 q n) (q 1q(q 1) 公比是字母时需要讨论 .1)( 理 ) 无穷递缩等比数列时, a11q 2) 掌握一些常见的数列的前 n 项和公式:23n 21 ;2 4 62nn ;12222232n n 1 2n 1 ;13 23332n 2;3)倒序相加法求和:如果一个数列a n,与首末两端等“距离”的两项的和相等或等于同一个常数, 那么求这个数列的前 n 项和即可用倒序相加法 .(4)错位相减法求和:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么 这个数列的前 n 项和即可用此法来求 . q 倍错位相减法: 若数列 c n 的通项公式 c n a nb n ,其中 a n 、b n 中一个是等差数列,另一个是等比数列,求和时一般可在已知和式的两边都乘以组成这个数列的等比数列 的公比,然后再将所得新和式与原和式相减,转化为同倍数的等比数列求和.这种方法叫 q 倍错位相减法. 温馨提示: 1. 两个特殊数列等差与等比的乘积或商的组合 .2. 关注相减的项数及没有参与相减的项的保留 .(5)分组求和:有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,把数列的每一 项分成若干项,使其转化为等差或等比数列,先分别求和,再合并 .f n ,n 2k 1,k N 形如: a n b n 其中 a n是等差数列, a nb 是等比数列g n ,n 2k,k N2 2 2 2 226)合并求和:如求 100299298297222 12的和 .7)裂项相消法求和:把数列的通项拆成两项之差,正负相消剩下首尾若干项 常见拆项:错位相减法例题解析】2n【解析】由 S n 11 2 1 31 n24 8111得: 1 2 2 3 3 n22223两边同乘以 1 得:21 111 1S n 1 12 23 34 (n2 222324将( 1)—( 2)得: 1 S n 1 11L22 22 231. 【2018 优选题】求和:S n 1 1 2 214 11 12n11 n 21n (1)1 11) n nn 1 (22 211n2n2n 12n1 1 1 n(n 1) n n 11(2n 1)(2n1)1 1 12 2n 1 2n 11 n(n 1)(n 2) 112 n(n 1) 1 (n 1)(n2) n .关注:参与相减的项1311 Snn12n 1n12n2 2n 12n 1所以可得: S n 3 2n 12 2n 11nn N2n11 1n12 2n 整理得: 1Sn222n12n1,所以求得:S n12n12n变式】求和: S n (2n 1)12n解析】由 S n 1(2n 1) 12n两边同乘以 将( 1)— 得: 1得, 1S 22n 12n( 1)12n 1(2)2) 得:12Sn1 2212312n2n12S n222n111 22n 12n1 15 8 4S n(2n1 (2n112n1a 1 b1 3,b2 a3,b3 4a2 3.设{a n} 是等差数列,{b n} 是等比数列,公比大于0,已知1) 求{a n} 和{b n} 的通项公式;2) 1, n为奇数 ,设数列{c n}满足c n b,n为偶数 .求a1c1 a2c2 L a2n c2n(n2N).解析】1)设等差数列a n 的公差为d ,等比数列b n 的公比为q依题意,3q 3 2d,3q215 4d, 解得d q3,3,故a n 3 3(n 1) 3n, b n n3 3n1 3n.所以,a n 的通项公式为a n3n,b n 的通项公式为b n3n.2) a1c1a2c2L a2nc2na1a3a5a2n 1 a2b1a4b2a6b3 L a2n b n 3n(n 1) 1(6 3112 32 18 33 6n 3n)记T n 3n261 31 32 Ln 3n1 312 32 3n,① 则3T n32 33n 3n1,②② - ①得,2Tn 32 33 3n 3n 131 3n133n 1(2n 1)3n 132所以,a1c1a2c2a2nc2n 3n26T n 3n23(2n 1)3n 1 3 (2n 1)3n 2 6n2 92nN 答案】(1) a n 3n,b n 3n;(2n 1)3n 2 6n2 91)326n 9(n N)2.【2018 年高考浙江卷】已知等比数列 { a n}的公比 q>1,且 a3+a4+a5=28,a4+2 是 a3,a5 的等差中项.数列{b n}满足 b1=1,数列 { ( b n+1- b n)a n}的前 n 项和为 2n2+n.( 1)求 q 的值;(2)求数列 { b n}的通项公式.【解析】本题主要考查等差数列、等比数列、数列求和等基础知识,同时考查运算求解能力和综合应用能力.(1)由a4 2是a3,a5的等差中项得a3 a5 2a4 4,所以a3 a4 a5 3a4 4 28,解得a4 8.1由a3 a5 20得8(q ) 20,因为q 1,所以q 2.qS1,n 1,(2)设c n (b n 1 b n )a n ,数列{c n} 前 n项和为S n.由c n S1S ,n 2.解得c n 4n 1.SnSn 1,n 2.由( 1)可知a n 2n 1,所以b n 1b n(4n 1) (1)n 1,故b n b n 1(4n 5) (1)n 2,n 2,22b n b1 (b n b n 1) (b n 1 b n 2) L (b3 b2) (b2 b1)1n 2 1n 31(4n 5) (2)n 2 (4n 9) (2)n 3 L 723.1 1 1设T n 3 7 11 ( )2 L (4n 5) ( )n 2,n 2 ,2 2 21Tn3 1 7 (1)2 L (4n 9) (1)n 2 (4n 5) (1)n 12 2 2 2 21 1 1 1 1 1所以1T n 3 4 1 4 (1)2 L 4 (1)n 2 (4n 5) (1)n 1,因此T n 14 (4n 3) (1)n 2,n 2,2 2 2 2 2 2又b1 1,所以b n 15 (4n 3) (1)n 2.21【答案】( 1) q 2 ;( 2) b n 15 (4n 3) ( )n 2.3.【2017 年高考天津卷】已知{a n} 为等差数列,前 n项和为S n(n N ),{b n} 是首项为 2的等比数列,且公比大于0,b2 b3 12,b3 a4 2a1,S11 11b4 .(1)求{a n} 和{b n} 的通项公式;( 2)求数列{ a2n b2n 1} 的前 n 项和(n N ) .【解析】(1)设等差数列{a n} 的公差为d ,等比数列{b n} 的公比为q.22由已知b2 b3 12,得b1(q q2) 12,而b1 2,所以q2 q 6 0.又因为 q 0,解得 q 2.所以, b n 2n.由 b 3 a 4 2a 1,可得 3d a 1 8 ①.由 S 11 =11b 4 ,可得 a 1 5d 16 ②, 联立①②,解得 a 1 1,d 3,由此可得 a n 3n 2 .所以,数列 {a n }的通项公式为 a n 3n 2,数列 { b n }的通项公式为 b n 2n. (2)设数列 {a 2n b 2n1}的前n 项和为 T n ,由a 2n 6n 2,b 2n12 4n1 ,有a 2n b 2n 1 (3n 1) 4n ,故 T n 2 4 542 8 43L (3n 1) 4n ,4T n 2 425438 44L (3n4) 4n(3n 1) 4n 1,上述两式相减,得 3T n 2 4 3 423 43L 3 4n(3n 1) 4n 1 12 (14 )4 (3n14n 1 n 13n 2 n 1 8 1) 4n 1 (3n 2) 4n 18 ,得 T n4 . 33所以,数列 {a 2n b 2n1} 的前n 项和为 3n 24n1 8.33【答案】(1) a n 3n 2,b n 2n;(2)3n 24n 1 8.334.【2017 年高考山东卷文数】已知 {a n } 是各项均为正数的等比数列,且 a 1 a 2 6,a 1a 2 a 3 .2)由题意知:S 2n1(2n1)(b 21b2n 1)(2n 1)b n 1,又S 2n 1 b n b n1,b n1 0,所以b n 2n 1,所以a n2n令c n b a nn ,则c n因此 T n c 1 c 2 L22232n 1 2n 12n 12n又12T n22 23 24L2n 1 2n2n2n 11) 求数列 {a n } 的通项公式;2) {b n } 为各项非零的等差数列,其前 n 项和 S n ,已知 S 2n b n b n 1 ,求数列 { bn } 的前 n 项和 T n .解析】21)设{ a n } 的公比为 q ,由题意知 a 1(1 q) 2a 1q .又 a n解得 a 1 2,q 2 ,2n 12n13 1 1 两式相减得 1T n 3 (1 122 n 2 2 22所以T n 5 2n n 52n{x n } 是各项均为正数的等比数列,且x 1+x 2=3,x 3-x 2=2.1)求数列 { x n }的通项公式;q 2,x1 1,因此数列 {x n } 的通项公式为 x n 2n 2)过P 1,P 2,P 3,⋯,P n 1向x 轴作垂线,垂足分别为Q 1,Q 2,Q 3,答案】(1) a n 2n;(2)T n2n 52n因为 q 0,所以由 (1)得 x n 1 x n 2n 2n 12n 1记梯形 P n P n 1Q n 1Q n 的面积为 b n.由题意b n(n n 1) 2n 122n2(2n 1) 2n 2所以T n b1b2b 3 ⋯+b n=3 2 1 20 1 n 3 7 2 ⋯+(2n 1) 2n 3n2 (2n 1) 2n 2 ①, 又 2T n 3 20 12 5 21 7 22 ⋯+(2n 1)2n 2 (2n 1) 2n 1 ②, 1) 2n 1,2n 1)2n 1 ,5.【 2017 年高考山东卷理数】已知 xOy 中,依次连接点 P 1(x 1, 1),P 2(x 2, 2),⋯, P n+1(x , n+1)得到折线由题意得x 1q x 1q2)如图,在平面直角坐标系T n .x1 2 x 1q32,所以 3q 2 5q 2 0,① -②得T n 3 2 1 (2 22 L 2n 1) (2n1) 2n 1n1=322(1122) (2n 1) 2n1. 所以T n数列{c n}满足c n a n b n .1)求证:{b n} 是等差数列;2)求数列{c n} 的前 n 项和 S n;【解析】本题考点是等差数列的定义、等比数列的通项、以及数列求和的综合运用题. 要求对数列的相关知识能熟练应用 .1(1)由题意知,a n()n(n N*)4∴数列{b n}是首项 b1 1,公差 d 3的等差数列1n(2)由( 1)知,a n ( )n ,b n 3n 2(n N*)41nc n (3n 2) (1)n,(n N*)4Sn1 1 4 (1)2 7 (1)3(3n 5) 1)n 1答案】(1)x n 2n 1;(2)T n(2n 1) 2n 121【. 2019 优选题】已知数列{ a n }是首项为 a11, 公比 q 1的等比数列,设bn2443log 1 a n(n4N*),1a1gna1gna1gna1g(2n 1) 2n 121n(3n 2) (1)n,41 n 1 n 14 4 4 41 1 1 1于是1S n 1 (1) 4 (1) 7 (1) (3n 5) 44 4 4 41 n 1 n 1 1 1n 1(41)n ] (3n 2) (14)n 1 12 (3n 2) (41)n 1.2.已知等比数列a n 的公比 q 1,且 a 3 a 4 a 528a 4 2 ,是a 3,a 5 a 3的等差中项. 数列 b nⅠ)求 q 的值;(Ⅱ)求数列 b n 的通项公式. 解析】分析 : (Ⅰ)根据条件、等差数列的性质及等比数列的通项公式即可求解公比,2b n 1 b n a n 的前 n 项和为 2n 2n求通项,解得b n1 b n ,再通过叠加法以及错位相减法求 b n .解析】(Ⅰ)由a 4 2是 a 3,a 5 的等差中项得 a 3 a 5 2a 4 4,所以1a 3 a 4 a 5 3a 4 4 28,解得 a 4 8.由a 3 a 5 20得8 q20,因为 q1.q所以 q 2 .所以 S n 2 3n 2 33满足b 11 ,数列 b n12b na n的前 n 项和为2n 2n .n211n31 3.=4n 54n 9722271 2 21212n2设T n 3 114n 5 ,n 2,23n11 1 111T n 3 7114n 52n2 2222两式相减得: 1T n34 1 4 14n 512n222b n b 1b n b n 1bn 1bn 2 b 3 b 2 b 2 b 1n2两式相减得 3Sn 1 3[(1) 2(1)34 4 4 4Ⅱ)先根据数列Ⅱ)设 c nb n 1 b n a n ,数列c n 前 n 项和为 S n .由c nS 1 ,n 1 S n S n 1,n解得 c n2n4n 1.由(Ⅰ)可知 a n 2n 1,所以 b n 1 b nn114n 1 ,故b nb n 1n21 4n 5 , n2,1因此得 T n 14 4n 3,n 2.又 b 1 1,所以 b n 15 4n 3 41 n2Ⅰ)求数列 b n 的通项公式;(a 1)n 1Ⅱ)令 cn ((a b n n 12))n. 求数列减法”k5 [4 4(22 11) (n 1) 2n 2] 3n 2n3.【 2016 高考山东理数】已知数列的前 n 项和 S n =3n 2+8n , b n 是等差数列,且a nbn 1.分析】(Ⅰ)根据 a n S n S n 1 及等差数列的通项公式求解;Ⅱ)根据(Ⅰ)知数列 c n 再用错位相减法求其前 n 项和 . 考点: 1. 等差数列的通项公式; 2. 等差数列、等比数列的求和; 的通项公式, 3. “错位相当 n 1 时, a 1S 1 11,所以 a n 6n 5.设数列 b n 的公差为d ,a 1b 1 b 211 2b 1 d由1 1 2,,可解得 b 1 4,d a 2 b 2 b 317 2b 1 3d所以 b n 3n 1.(Ⅱ)由(Ⅰ)知cn(6n 6)n 1n 3(n 1) 2n 1,(3n 3)n又T n c 1 c 2c 3c n ,2得 T n 3 [2 223 254 26(n 1) 2n1] ,3 2T n 3 [2 233 24 4 25 (n 1) 2n 2] ,两式作差,得T n 3 [2 222324 2n 1(n 1) 2n 2]解析】(Ⅰ)由题意知当 n 2时,3,anSnSn n2的前 n 项和 T n .5,16n13 31 18k 5 k(9k 4) L2 2 2 2S3k 2S3k 1 a3k 1k(4 9k)n1,n3 6故Sn(n 1)(1 3n),n6n(3n 4), n6S 3n 9n 4,(2) b nn nn 4n2 4n1 13 22 9n 4 T n [ 2Ln ],2 4 42 4(3k 1)71 3k2 1两式相减得:7 2 3 6所以T n3n 2n答案】(Ⅰ) bn 3n 1 ;(Ⅱ) T n 3n 2n * 2*4. 数列 {a n }的通项 a nn 2 (cos 2 n 3 2n sin 2 n3 ) ,其前n 项和为 S n .(1) 求 Sn ; (2) b nS3nn,求数列{ b n }的前 n 项和T n .n 4n2n 2n 解析】 (1) 由于 cos 2 sin 233 2ncos 3,故S3k(a 1 a2a 3) (a 4 a 5 a 6) L(a3k 2a 3k 1a 3k)12 2232)(425262) L(3k 2)2 (3k 1)22 (3k)2))k(4 9k)24T n1[13 222 9n 4],4n 1 ],223T n 12[1394n 9n 4]4n 1[13 2994 4n 9n 4]4n ]122n 39n, 22n 1 ,Tn 3 22n 33n. 22n 1.5.已知数列 {a n }的首项 a1 23, an 2a n1 1,2,3,⋯.anⅠ)证明:数列 { 11}a n 是等比数列; Ⅱ)数列 { n} 的前 n 项和S n . an 解析】Ⅰ) Q an2a n a n 1an 1an2a n11 2 a n1 an 1112(a n1) 又a 1 2,3 a11,2设T n数列 { 1an1} 是以为 12首项,1为公比的等比数列.2由(Ⅰ)知an11 2 1 2n1 11 21n ,即 a 1n21n1,ann2nn .12 2 22323n2n则 1T n 122n22223n12nn2n 1 ,由① ②得1 11Tn22n 2 2212(1 2n2n 1112n 1 2n 2n 1T n 2 21n 1 2nn.又 1 2 3n(n 1)137.已知数列 { a n }满足a 1 1,且 a n 2a n1 2n(n 2,且n N *). (Ⅰ)求 a 2 , a 3;(Ⅱ)证明数列 { ann }是等差数列;2 32n(Ⅲ)求数列 { a n }的前n 项之和 S n【解析】(Ⅰ) a 2 2a 1 226, a 3 2a 2 2320.(Ⅱ) a n2a n 1 2n(n 2,且n N *),数列 { n} 的前 n 项和 S n 2ann2 n n(n 1)2nn2 n 4 2n22n6.设数列 an 满足 a1 23a 2 32a 33n 1a naN Ⅰ)求数列 a n 的通项;设 b nna n ,求数列bn的前 n 项和 S n .解析】 (I ) a 13a 2 32a 3 ...3 1annn 3, a1 3a2 2a3...3n 2a n 1n 31(n 2),3n 1a nn1 313(n 2).an31n(n 2).N ).1 时也满足上式,验证n31n(n an31n311n3na n2nan 12n 11(n 2,且nN *) ,即2a n n a 2n n 111(n 2,且n N *).∴数列{2an n } 是首项为 2a111,公差为 d 2 1的等差数列. Ⅲ) 由(Ⅱ) 得a n 1 2n2 (n 1)d(n 1) 1 ∴a n (n 12) 2n .S n2S n1 212 1 2 223 2 3 2 22 23 5 2 5 2 23 (n 2n (1) (2)得 S n 1 22 23 2n (n24 (n 12) 1 12) 2n (n 12) 2n (1) 1 (2) 12) 2n1 22 23 2n (n 1) 2n 11 2 2(1 2n) 12 (n 12)2n 1 (3 2n) 2n 3. ∴S n(2n 3)2n3.8. 数列a n的前 n 项和为 Sn , a 1 1, an 2S n (n N)Ⅰ)求数列 a n 的通项 a n Ⅱ)求数列 na n 的前 n项和 Tn 解析】(Ⅰ) Q a n 1 2S n , S n 1 S n 2Sn , S nn 1 *又Q S 1 a 1 1, 数列 S n 是首项为 1,公比为 3的等比数列, S n3n 1(n N * ) 当 n≥2时, a n 2S n 1 2g3n 2(n≥ 2), an 1, n 1,g3n 2,n≥ 2.Ⅱ) T n a 1 2a 2 3a 3 L nan , 当 n 1时, T1 1; 当 n ≥ 2时, T n 1 4g30 6g31 L 2ng3n 21 2 n 1 3T n 3 4g316g32L 2ng3n 1,① ② 得: 2T n122 4 2(3132Ln 2 n 13n 2)2ng3n 1n23(1 3n 2) 2 2g 2ng3nn11 (1 2n)g3n 1131 1 n 1T nn 3n 1(n≥ 2) 又Q T 1 a 1 1也满足上式, 22T n 21n 12 3n 1(n ≥ 2)n11 a n 是公比为 的等比数列, a nn2 n 2T n 33k 1 ( k N * ) 3k9. 已知数列1 a ,a an 1 2 n n 1项和 s n n 2, T n a 1b 1 a 2b 2 a 3b 3 La nb n ,求证:T n 3 。
数列错位相减法形如An=BnCn,其中{Bn}为等差数列,通项公式为bn=b1+(n-1)*d;{Cn}为等比数列,通项公式为cn=c1*q^(n-1);对数列An进展求和,首先列出Sn,记为式〔1〕;再把所有式子同时乘以等比数列的公比q,即q·Sn,记为式〔2〕;形如An=BnCn,其中{Bn}为等差数列,通项公式为bn=b1+(n-1)*d;{Cn}为等比数列,通项公式为cn=c1*q^(n-1);对数列An进展求和,首先列出Sn,记为式〔1〕;再把所有式子同时乘以等比数列的公比q,即q·Sn,记为式〔2〕;然后错开一位,将式〔1〕与式〔2〕作差,对从而简化对数列An的求和。
这种数列求和方法叫做错位相减法。
经典例题数列{an}中,a1=3,点(an,an+1)在直线y=x+2上。
(1)求数列{an}的通项公式;(2)假设bn=an`3n,求数列{bn}的前n项和Tn。
解:(1)∵点〔an,an+1)在直线y=x+2上∴an+1=an+2,即an+1-an=2∴数列{an}是以3为首项,以2为公差的等差数列∴an=3+2(n-1)=2n+1(2)∵bn=an·3n∴bn=(2n+1)·3n∴Tn=3×3+5×32+7×33+…+(2n-1)·3n-1+(2n+1)·3n①3Tn=3×32+5×33+…+(2n-1)·3n+(2n+1)·3n+1②由①-②得-2Tn=3×3+2(32+33+…+3n)-(2n+1)·3n+1=9+2×9(1-3n-1)/(1-3)-(2n+1)·3n+1=-2n·3n+1∴Tn=n·3n+1。
错位相减法求和专项错位相减法求和适用于{a n`b n }型数列,其中{a n},{b n}分别是等差数列和等比数列,在应用过程中要注意:①项的对应需正确;②相减后应用等比数列求和部分的项数为(n-1)项;③若等比数列部分的公比为常数,要讨论是否为11. 已知二次函数的图象经过坐标原点,其导函数,数列的前项和为,点均在函数的图象上.(Ⅰ)求数列的通项公式;(Ⅰ)设,是数列的前项和,求.[解析]考察专题:2.1,2.2,3.1,6.1;难度:一般[答案] (Ⅰ)由于二次函数的图象经过坐标原点,则设,,Ⅰ,Ⅰ,又点均在函数的图象上,Ⅰ.Ⅰ当时,,又,适合上式,Ⅰ............(7分)(Ⅰ)由(Ⅰ)知,,Ⅰ,Ⅰ,上面两式相减得:.整理得..............(14分)2.已知数列的各项均为正数,是数列的前n项和,且.(1)求数列的通项公式;(2)的值.[答案]查看解析[解析] (1)当n = 1时,解出a1 = 3,又4S n = a n2 + 2a n-3①当时4s n-1 = + 2a n-1-3②①-②, 即,Ⅰ ,(),是以3为首项,2为公差的等差数列,6分.(2)③又④④-③=12分3.(2013年四川成都市高新区高三4月月考,19,12分)设函数,数列前项和,,数列,满足.(Ⅰ)求数列的通项公式;(Ⅰ)设数列的前项和为,数列的前项和为,证明:. [答案] (Ⅰ) 由,得是以为公比的等比数列,故.得(Ⅰ)由,…,记…+,用错位相减法可求得:. (注:此题用到了不等式:进行放大. )4.已知等差数列中,;是与的等比中项.(Ⅰ)求数列的通项公式:(Ⅰ)若.求数列的前项和[解析](Ⅰ)因为数列是等差数列,是与的等比中项.所以,又因为,设公差为,则,所以,解得或,当时, ,;当时,.所以或.(6分)(Ⅰ)因为,所以,所以,所以,所以两式相减得,所以.(13分)5.已知数列的前项和,,,等差数列中,且公差.(Ⅰ)求数列、的通项公式;(Ⅰ)是否存在正整数,使得若存在,求出的最小值,若不存在,说明理由.[解析](Ⅰ)时,相减得:,又,,数列是以1为首项,3为公比的等比数列,.又,,. (6分)(Ⅰ)令………………①…………………②①-②得:,,即,当,,当。
等比数列求和错位相减法《神奇的等比数列求和错位相减法》哎呀呀,同学们,你们知道吗?数学世界里有一个超级神奇的方法,叫等比数列求和错位相减法!这玩意儿可有趣啦!就拿一个简单的例子来说吧。
比如说有一个等比数列:1,2,4,8,16…… 那怎么求它的前n 项和呢?这时候,错位相减法就闪亮登场啦!我们先设这个等比数列的前n 项和为Sₙ,Sₙ = 1 + 2 + 4 + 8 + 16 + …… +2ⁿ⁻¹ ①然后呢,我们给这个式子两边同时乘以公比2 ,得到2Sₙ = 2 + 4 + 8 + 16 + 32 + …… + 2ⁿ②接下来神奇的操作来啦!用②式减去①式,哇塞!2Sₙ - Sₙ = (2 + 4 + 8 + 16 + 32 + …… + 2ⁿ)- (1 + 2 + 4 + 8 + 16 + …… + 2ⁿ⁻¹ )这不就变成了Sₙ = 2ⁿ - 1 嘛!是不是很神奇?我一开始学的时候,脑袋都晕啦,心里想:“这都是啥呀?怎么这么复杂!” 可是后来,我多做了几道题,慢慢就搞懂啦。
就好像我们玩拼图,一开始觉得乱七八糟的,但是只要耐心一点,一块一块地拼,最后就能拼出完整的图案!等比数列求和错位相减法不也是这样嘛!我还和同桌一起讨论过这个方法呢。
我问他:“你能搞明白不?” 他皱着眉头说:“哎呀,我还晕着呢!” 然后我俩就一起研究,互相讲,最后都弄明白啦!老师上课讲的时候,还说:“同学们,这个方法可是数学里的宝贝,学会了它,很多难题都能迎刃而解!” 我当时就在想,真的有这么厉害吗?后来自己做题的时候发现,还真是!你们说,数学是不是很神奇?一个小小的等比数列求和,居然有这么巧妙的方法!反正我觉得,只要我们不怕困难,多思考,多练习,数学里的这些难题都能被我们攻克!这等比数列求和错位相减法,就是我们在数学世界里的一把利剑,能帮我们打败好多难题呢!。
专题3 错位相减求和一、解答题 1.(2022·全国·模拟预测)已知等差数列{}n a 的前n 项和为n S ,数列{}n b 为等比数列,且111a b ==,32312S b ==.(1)求数列{}n a ,{}n b 的通项公式;(2)若1n n n c a b +=,求数列{}n c 的前n 项和n T .【答案】(1)32n a n =-,14n n b -=(2)()1414n n T n +=+-【解析】【分析】(1)求出公差和公比,得到通项公式;(2)利用错位相减法求和. (1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q , 由题意得:13312a d +=,解得:3d =, 所以()13132n a n n =+-=-, 由2312b =得:24b =,所以214a q a ==,所以14n n b -= (2)()1324nn n n c a b n +==-⋅, 则()2344474324n n T n =+⨯+⨯++-①, ()2341444474324n n T n +=+⨯+⨯++-①,两式相减得:()23413434343434324n n n T n +-=+⨯+⨯+⨯++⨯--()()111164433241233414n n n n n +++-=+⨯--=-+--,所以()1414n n T n +=+-2.(2022·浙江湖州·模拟预测)已知数列{}n a 满足2n n a qa +=(q 为实数,且1q ≠),N n *∈,11a =,22a =,且23a a +,34a a +,45a a +成等差数列. (1)求q 的值和{}n a 的通项公式; (2)设2221log ,nn n a b a -=N n *∈ ,记数列{}n b 的前n 项和为n S ,若对任意的N n *∈,满足()4(1)n n n n b n b nS λλ+-+>,试求实数λ的取值范围.【答案】(1)2q , 12222n n n n a n -⎧⎪=⎨⎪⎩,为奇数,为偶数(2)1λ≥ 【解析】 【分析】(1)先根据23a a +,34a a +,45a a +成等差数列以及11a =,22a =计算出q ,再根据奇偶项分别写出{}n a 的通项公式即可(2)根据题意先求出{}n b 的通项公式,再根据错位相减法求出{}n b 的前n 项和为n S ,最后根据()4(1)n n n n b n b nS λλ+-+>列出关于λ的不等式,解出λ即可 (1)由己知,有()()()()34234534a a a a a a a a +-+=+-+,即4253a a a a -=-,所以23(1)(1)a q a q -=-,又因为1q ≠,所以322a a ==.由31a a q =,得2q,当()21N n k n *=-∈时,1122122n k n k a a ---===,当()2N n k n *=∈时,2222nk n ka a ===,所以{}n a 的通项公式为12222n n nn a n -⎧⎪=⎨⎪⎩,为奇数,为偶数 (2)由(1)得22121log 2n n n n a nb a --==, 设数列{}n b 的前n 项和为n S ,则012111111232222n n S n -=⨯+⨯+⨯+⋯+⨯, 1231111112322222n n S n =⨯+⨯+⨯+⋯+⨯, 两式相减,得23111111112212122222222212n n n n n n n n n n S --=++++⋯+-=-=---,整理得1242n n n S -+=-,所以数列{}n b 的前n 项和为1242n n -+-. ①111124(1)4222n n n n n n n n n λλ---+⎛⎫⎛⎫+-⋅+>- ⎪ ⎪⎝⎭⎝⎭,即41511(2)22n n n λ-<+-=-+++,又5112n ->-+,①1λ-≤-,①1λ≥ 3.(2022·全国·模拟预测)已知数列{}n p 是首项为2的等差数列,{}n q 是公比为2的等比数列,且满足32p q =,73p q =.设数列{}n a 满足n n n a p q =⋅.(1)求{}n a 的通项公式;(2)在①1n n n b a n =+;①4log 2n n a b n =+;①()132n n n n n b a a ++⋅=这三个条件中任选一个补充在下面横线上,并加以解答.已知数列{}n b 满足______,求{}n b 的前n 项和n T .【答案】(1)()12nn a n =+⋅(2)答案见解析【解析】 【分析】设出数列{}n p 的公差d 及数列{}n q 的首项1q ,由题列方程可求出d ,1q ,利用等差数列和等比数列的通项公式,即可求解;(2)结合(①)若选①,利用错位相减法即可求解;若选①,利用分组求和法即可求解;若选①,利用裂项相消法即可求解. (1)设数列{}n p 的公差为d ,数列{}n q 的首项为1q . 由题意得1222dq +=,1264d q +=,解得1d =,12q =,则1n p n =+,2n n q =,所以()12nn a n =+⋅.(2) 若选①1n n nb a n =+, 即()1221n n n nb n n n =⋅+⋅=⋅+, 所以1231222322nn T n =⨯+⨯+⨯+⋅⋅⋅+⨯, 则234121222322n n T n +=⨯+⨯+⨯+⋅⋅⋅+⨯, 两式相减得123122222n n n T n +-=+++⋅⋅⋅+-⨯()1122212n n n ++-=-⨯-()1122n n +=--所以()1122n n T n +=-⨯+.若选①4log 2nn a b n =+, 即44411log log 2log 222n n n n nb n n ++=+=+++, 所以()4442311log log log 123422n n T n n +⎛⎫=++⋅⋅⋅++++⋅⋅⋅+ ⎪+⎝⎭()41231log 3424n n n n ++⎛⎫=⨯⨯⋅⋅⋅⨯+⎪+⎝⎭ ()412log 24n n n +=++. 若选①()132n n n nn b a a ++⋅=,即()113211n nn nn n n b a a a a +++⋅==-, 所以12231111111n n n T a a a a a a +⎛⎫⎛⎫⎛⎫=-+-+⋅⋅⋅+- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭1111n a a +=-()111422n n +=-+.4.(2022·福建省福州第一中学三模)设数列{}n a 的前n 项和为n S ,10a =,21a =,11(21)(1)10(2)n n n nS n S n S n +--+++-=.(1)证明:{}n a 为等差数列;(2)设2n an b =,在n b 和1n b +之间插入n 个数,使这2n +个数构成公差为n d 的等差数列,求1n d ⎧⎫⎨⎬⎩⎭的前n 项和.【答案】(1)证明见解析 (2)116(3)2n n T n -⎛⎫=-+ ⎪⎝⎭【解析】 【分析】(1)根据11,1,2n n n S n a S S n -=⎧=⎨-≥⎩,即可得到*1(1)10,N n n na n a n +-+-=∈,从而得到1(1)10,2n n n a na n ----=,作差即可得到112,2n n n a a a n +-+=,从而得证; (2)由(1)可得{}n a 的通项公式,从而得到1112n n n d -+=,再利用错位相减法计算可得; (1)证明:因为2n 时,11(21)(1)10n n n nS n S n S +--+++-=, 则()()11(1)10n n n n n S S n S S +---+--=, 即1(1)10n n na n a +-+-=,2n ,· 因为21210a a --=,·则*1(1)10,N n n na n a n +-+-=∈⋅⋅⋅⋅⋅⋅⋅⋅⋅①, 所以1(1)10,2n n n a na n ----=⋅⋅⋅⋅⋅⋅⋅⋅⋅①, 则①-①得1120,2n n n na na na n +--+=, 即112,2n n n a a a n +-+=,· 所以{}n a 为等差数列. (2)解:由(1)可得{}n a 的首项为10a =,公差为211a a -=,所以1n a n =-,所以12n n b -=,所以111222111n n n n n n b b d n n n --+--===+++,则1112n n n d -+=,记1n d ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,则01211111234(1)2222n n T n -⎛⎫⎛⎫⎛⎫⎛⎫=⋅+⋅+⋅+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⋅⋅⋅⋅⋅⋅⋅⋅⋅①,所以1231111111234(1)222222n nn T n n -⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⋅+⋅+⋅++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⋅⋅⋅⋅⋅⋅⋅⋅⋅①,则①-①得21111112(1)22222n nn T n -⎛⎫⎛⎫⎛⎫⎛⎫=++++-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,·所以1111121(1)3(3)122212nn nn T n n ⎛⎫- ⎪⎛⎫⎛⎫⎝⎭=+-+=-+ ⎪ ⎪⎝⎭⎝⎭-,·所以116(3)2n n T n -⎛⎫=-+ ⎪⎝⎭.·5.(2022·全国·模拟预测(理))已知等比数列{}n a 满足1330a a +=,2490a a +=,其前n 项和为n S .数列{}n b 满足3n n nb a =⨯. (1)求1321n na a a S -++.(2)求数列{}n b 的前n 项和n T .【答案】(1)314n + (2)121344nn -+⋅ 【解析】 【分析】(1)列方程组求得等比数列{}n a 的首项1a 公比q ,进而利用等比数列前n 项和公式即可求得1321n na a a S -++的值;(2)先求得数列{}n b 的通项公式,再利用错位相减法去求其前n 项和n T 即可. (1)设等比数列{}n a 首项为1a ,公比为q ,则2113113090a a q a q a q ⎧+=⎨+=⎩,解之得133a q =⎧⎨=⎩, 则3nn a =,()()313331132n nn S --==-,()()1321319391198n n n a aa ---++==-,则()()()13213919131843314312n n n n n n n a a a S --++-+===--(2)由3nn a =,可得133n n n nb a n -=⋅=⋅ 则数列{}n b 的前n 项和()01221132333133n n n T n n --=⨯+⨯+⨯++-⋅+⋅()12313132333133n n n T n n -=⨯+⨯+⨯++-⋅+⋅则()1123131321333331313n n nn n T n n ---⎡⎤-=+++++-⋅=+-⋅⎣⎦-则()131311213324244n n n n n n T ---=-++⋅=+⋅ 6.(2022·全国·模拟预测(文))若数列{}n a 满足221n n n a a a ++=,13a =,23243a a =.(1)求{}n a 的通项公式;(2)若3log n n b a =,求数列{}n n a b 的前n 项和n S .【答案】(1)3n n a =(2)()132134n n S n ++-=【解析】 【分析】(1)利用等比中项法判断出{}n a 为等比数列,设其公比为q (0q ≠),由23243a a =,求出3q =,得到{}n a 的通项公式;(2)先得到3n nn a b n =⋅,利用错位相减法求和.(1)因为数列{}n a 满足221n n n a a a ++=,13a =,23243a a =,所以0n a ≠.所以数列{}n a 为等比数列,设其公比为q (0q ≠).所以22323113243a a a q a q q =⨯=⨯=,解得:3q =. 所以113n nn a a q -==. 即{}n a 的通项公式为3nn a =.(2)由(1)可知:33l 3log og n n n b a n ===,所以3n nn a b n =⋅,所以1122n n n S a b a b a b =+++1213233n n =⋅+⋅++⋅ ①3⨯①得:231313233n n n S +=⋅+⋅++⋅ ①①-①得:()123111313131333n n n S n +-⋅=⋅+⋅+++⋅-⋅()1133331133nn n n S +-⋅=-⋅--所以()132134n n S n ++-=7.(2022·宁夏·银川一中模拟预测(文))已知数列{}n a 是等差数列,{}n b 是等比数列,且22b =,34b =,11a b =,851a b +=.(1)求数列{}n a 、{}n b 的通项公式; (2)设11n n n a c b ++=,数列{}n c 的前n 项和为n S ,求n S . 【答案】(1)21n a n =-,12n n b -=;(2)1242n n n S -+=-. 【解析】 【分析】(1)求出等比数列{}n b 的公比即可得其通项公式,再求出等差数列{}n a 的公差,求出其通项作答. (2)利用(1)的结论求出n c ,再利用错位相减法求解作答. (1)依题意,等比数列{}n b 的公比322b q b ==,则有2122n n n b b q --==,因此,111a b ==, 由851a b +=得85115a b =-=,等差数列{}n a 的公差81281a a d -==-,1(1)21n a a n d n =+-=-, 所以数列{}n a 、{}n b 的通项公式分别为:21n a n =-,12n n b -=.(2)由(1)知,111222n n n n n a n nc b -++===, 则23123412222n n nS -=+++++, 于是得23111231222222n n nn nS --=+++++, 两式相减得:23111()11112212122222211222nn n n nn n n S n --+=+++++-=-=--, 所以1242n n n S -+=-. 8.(2021·全国·高考真题(文))设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a 成等差数列.(1)求{}n a 和{}n b 的通项公式;(2)记n S 和n T 分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <.【答案】(1)11()3n n a -=,3n nn b =;(2)证明见解析. 【解析】 【分析】(1)利用等差数列的性质及1a 得到29610q q -+=,解方程即可; (2)利用公式法、错位相减法分别求出,n n S T ,再作差比较即可. 【详解】(1)因为{}n a 是首项为1的等比数列且1a ,23a ,39a 成等差数列,所以21369a a a =+,所以211169a q a a q =+,即29610q q -+=,解得13q =,所以11()3n n a -=,所以33n n n na nb ==. (2)[方法一]:作差后利用错位相减法求和211213333n n nn nT --=++++, 012111111223333-⎛⎫=++++ ⎪⎝⎭n n S , 230121123111112333323333n n n n S n T -⎛⎫⎛⎫-=++++-++++= ⎪ ⎪⎝⎭⎝⎭012111012222333---++++111233---+n nn n .设0121111101212222Γ3333------=++++n n n , ① 则1231111012112222Γ33333-----=++++n nn . ①由①-①得1121113312111113322Γ13233332313--⎛⎫--- ⎪⎛⎫⎝⎭=-++++-=-+- ⎪⎝⎭-n n n n n n n . 所以211312Γ432323----=--=-⨯⨯⨯n n n n n n . 因此10232323--=-=-<⨯⨯n n n n n S n n nT . 故2nn S T <. [方法二]【最优解】:公式法和错位相减求和法证明:由(1)可得11(1)313(1)12313n n n S ⨯-==--,211213333n n n n nT --=++++,① 231112133333n n n n nT +-=++++,① ①-①得23121111333333n n n n T +=++++- 1111(1)1133(1)1323313n n n n n n ++-=-=---,所以31(1)4323n n nnT =--⋅,所以2n n S T -=3131(1)(1)043234323n n n n n n ----=-<⋅⋅,所以2nn S T <. [方法三]:构造裂项法由(①)知13⎛⎫= ⎪⎝⎭n n b n ,令1()3αβ⎛⎫=+ ⎪⎝⎭n n c n ,且1+=-n n n b c c ,即1111()[(1)]333αβαβ+⎛⎫⎛⎫⎛⎫=+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭n n n n n n ,通过等式左右两边系数比对易得33,24αβ==,所以331243nn c n ⎛⎫⎛⎫=+⋅ ⎪ ⎪⎝⎭⎝⎭.则12113314423nn n n n T b b b c c +⎛⎫⎛⎫=+++=-=-+ ⎪⎪⎝⎭⎝⎭,下同方法二.[方法四]:导函数法 设()231()1-=++++=-n nx x f x x x x x x,由于()()()()()()1221'111'11(1)'1(1)1n n n n nx x x x x x x x nx n x x x x +⎡⎤⎡⎤⎡⎤----⨯--+-+⎣⎦⎣⎦⎢⎥==---⎢⎥⎣⎦, 则12121(1)()123(1)+-+-+=++++='-n nn nx n x f x x x nxx .又1111333-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭n n n b n n ,所以2112311111233333n n n T b b b b n -⎡⎤⎛⎫⎛⎫=++++=+⨯+⨯++⋅=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦12111(1)11133333113n nn n f +⎛⎫⎛⎫+-+ ⎪ ⎪⎛⎫⎝⎭⎝⎭⋅=⨯ ⎪⎝⎭⎛⎫- ⎪⎝⎭' 13113311(1)4334423n nnn n n +⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+-+=-+⎢⎥ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,下同方法二. 【整体点评】本题主要考查数列的求和,涉及到等差数列的性质,错位相减法求数列的和,考查学生的数学运算能力,是一道中档题,其中证明不等式时采用作差法,或者作商法要根据式子得结构类型灵活选择,关键是要看如何消项化简的更为简洁.(2)的方法一直接作差后利用错位相减法求其部分和,进而证得结论;方法二根据数列的不同特点,分别利用公式法和错位相减法求得,n n S T ,然后证得结论,为最优解;方法三采用构造数列裂项求和的方法,关键是构造1()3αβ⎛⎫=+ ⎪⎝⎭nn c n ,使1+=-n n n b c c ,求得n T 的表达式,这是错位相减法的一种替代方法,方法四利用导数方法求和,也是代替错位相减求和法的一种方法.9.(2022·湖南·长沙县第一中学模拟预测)已知数列{n a }为等差数列,23a =,1453a a =,数列{n b }的前n 项和为n S ,且满足231n n S b =-. (1)求{n a }和{n b }的通项公式;(2)若n n n c a b =⋅,数列{n c }的前n 项和为n T ,且()31n n n T n m -⋅-<⋅对n *∈N 恒成立,求实数m 的取值范围.【答案】(1)()21n a n n N +=-∈;()13n n b n N -+=∈(2)()82m ∈-,【解析】 【分析】(1)求解等差数列{n a }通项公式,只需设参数1a ,d 列方程组即可求解,数列{n b }通过已知前n 项和n S 求解通项公式n b ;(2)需要先用错位相减法求得数列{n c }的前n 项和为n T ,代入不等式中对n 分类讨论,转化为最值问题,求出m 范围即可. (1)解:等差数列{n a }中,设公差为d ,则211451133313312a a d a a a d a d =+=⎧⎧⇒⎨⎨=+=+⎩⎩()111312122n a d a a n n N a d d ++==⎧⎧⇒⇒⇒=-∈⎨⎨==⎩⎩数列{n b }中的前n 项和为n S ,且231n n S b =-① 当1n =时,11b =当2n ≥时,11231n n S b --=-① ①-①得:132)(n n b b n -=≥故数列{n b }是以1为首项,3为公比的等比数列,所以()13n n b n N -+=∈.(2)解:数列{n c }中,()1213n n n n c a b n -=⋅=-⋅.则()()01211333233213n n n T n n --=⨯+⨯++-⋅+-⋅ 所以()()12131333233213n n n T n n -=⨯+⨯++-⋅+-⋅故()()()11110221233...321312333n n n n T n ---=++++--⋅=-++++()()()1321312213223213nnn n n n n ---⋅=-+⋅--⋅=-⋅--所以()131nn T n =-⋅+①()1313nn n n m T n -⋅>-⋅=-对n *∈N 恒成立.当n 为奇数时,()()1min 1133131312nn n n m m m m -⋅=->-⇒<-⇒<-=-=,当n 为偶数时,()()22max 11313138n n m m m -⋅=>-⇒>-=-=-综上:实数m 的取值范围为()82m ∈-,. 10.(2022·浙江·镇海中学模拟预测)已知数列{}n a 的前n 项和n S 满足242340,n n a S n n n N *-+--=∈.数列{}n b 满足11b =,12,n n n n b a b n N *+=∈.(1)求证:数列{}-n a n 为等比数列,并求数列{}n a 的通项公式; (2)求证:1113,2n n n n b b n N *+-+>≥-∈. 【答案】(1)证明见解析,2nn a n =+(2)证明见解析 【解析】 【分析】(1)由公式当2n ≥时,1n n n a S S -=-可得n a 与1n a -的关系式,进而可证数列{}-n a n 为等比数列,并求得数列{}n a 的通项公式;(2)由题意得112n n n n b b +⎛⎫=+ ⎪⎝⎭,所以1n b +与n b 同号,又数列{}n b 为递增数列,又122n n n n n n n b b b +-=≥,累加得121121222n n n b b ---≥+++1122n n -+=-所以n b 1132n n -+≥- (1)当1n =时,13a =;当2n ≥时,21142(1)3(1)40,n n a S n n n N *---+----=∈,所以()142240n n n a a a n ---+-=,整理得122n n a a n -=-+. 所以[]12(1)n n a n a n --=--,又1120a -=≠,故0n a n -≠.所以12(1)n n a na n --=--,即{}-n a n 为等比数列.所以2,2n n n n a n a n -==+(2)由题意得112n n n n b b +⎛⎫=+ ⎪⎝⎭,所以1n b +与n b 同号,又因为110b =>,所以0n b >,即102n n n n nb b b +-=>,即1n n b b +>. 所以数列{}n b 为递增数列,所以11n b b ≥=, 即122n n n n n n n b b b +-=≥,累加得121121222n n n b b ---≥+++. 令21121222n n n T --=+++,,所以2311212222n nn T -=+++, 两式相减得:12311111111111221222222212n n n n n n n T --⎛⎫- ⎪--⎝⎭=++++-=--, 所以1122n n n T -+=-,所以1132n n n b -+≥-,所以11132n nn n b b +-+>≥-. 11.(2022·宁夏·银川一中模拟预测(理))已知数列{}n a 是等差数列,{}n b 是等比数列,且22b =,34b =,11a b =,851a b +=.(1)求数列{}n a 、{}n b 的通项公式; (2)设11n n n a c b ++=,数列{}n c 的前n 项和为n S ,若不等式12n n nS λ-<+对任意的*n ∈恒成立,求实数λ的取值范围.【答案】(1)21n a n =-,12n n b -=;(2)(),2-∞. 【解析】 【分析】(1)利用等差数列()11n a a n d +-=,等比数列11n n b b q -=代入计算;(2)利用错位相减法可得1242n n n S -+=-,令2142nn c -=-,由{}n c 为递增数列,结合恒成立思想可得答案. (1)解:因为数列{}n b 是等比数列,则可得2123124b b q b b q ==⎧⎨==⎩,解得112b q =⎧⎨=⎩, 所以12n n b -=.因为数列{}n a 是等差数列,且111a b ==,8117116a a d +=++=,则公差2d =, 所以()12121n a n n =+-=-.故21n a n =-,12n n b -=;(2)解:由(1)得:1112n n n n a nc b -++==, 数列{}n c 的前n 项和为121231222n n nS -=+++⋅⋅⋅+① 所以22111231222222n n n n nS --=+++⋅⋅⋅++①由①-①得:121111112121222222222n n n n n n n n n S -+⎛⎫=+++⋅⋅⋅+-=--=- ⎪⎝⎭,所以1242n n n S -+=-. 不等式12n n n S λ-<+恒成立,化为不等式2142n λ-<-恒成立,令2142n n c -=-且{}n c 为递增数列,即转化为()min n c λ<当1n =时,()12min 1422n c -=-=,所以2λ<. 综上可得:实数λ的取值范围是(),2-∞.12.(2022·江苏·南京师大附中模拟预测)已知正项数列{}n a 的前n 项和nn S Aq B =+,其中A ,B ,q 为常数.(1)若0A B +=,证明:数列{}n a 是等比数列; (2)若11a =,24n n a a +=,求数列{}n na 的前n 项和n T . 【答案】(1)证明见解析; (2)1(1)2n n +-⋅ 【解析】 【分析】(1)由退位相减法求得数列{}n a 的通项公式,再由等比数列的定义进行判断即可; (2)先由24n n a a +=求得2q ,再由314a a =求得1A =,即得数列{}n a 的通项公式,再由错位相减求和即可. (1)当2n ≥时,11n n S Aq B --=+,则()()1111n n n n n n a S S Aq B Aq B A q q ----=+--=+=,又正项数列{}n a ,则0q ≠且1q ≠,当1n =时,11a S Aq B ==+,又0A B +=,则()11a A q =-,也符合()11n n a A q q -=-,则()11n n a A q q -=-,()11nn A q q a +=-,则1n na q a +=,故数列{}n a 是以()1A q -为首项,q 为公比的等比数列;(2)由(1)知:当2n ≥时,()11n n a A q q -=-,则()121n n A q q a ++-=,由24n n a a +=可得24q =,又正项数列{}n a 可得0q >,则2q ,12(2)n n a A n -⋅≥=,则34a A =,又11a =,314a a =可得1A =,则12(2)n n a n -=≥,1n =时也符合,则12n na ,则01211222322n n T n -=⨯+⨯+⨯++⋅,12321222322n n T n =⨯+⨯+⨯++⋅,两式相减得()0123112222222212112n n nn n n T n n n ---=+++++-⋅=-⋅=-⋅--,则()112nn T n =+-⋅.13.(2022·天津·耀华中学一模)设数列{}()*n a n ∈N 是公差不为零的等差数列,满足369a a a +=,25796a a a +=.数列{}()*n b n ∈N 的前n 项和为n S ,且满足423n n S b +=.(1)求数列{}n a 和{}n b 的通项公式;(2)在1b 和2b 之间插入1个数11x ,使1b ,11x ,2b 成等差数列;在2b 和3b 之间插入2个数21x ,22x ,使2b ,21x ,22x ,3b 成等差数列;……;在n b 和1n b +之间插入n 个数1n x ,2n x ,…,nn x ,使n b ,1n x ,2n x ,…,nn x ,1n b +成等差数列.(i )求()()()11212231323312n n n nn T x x x x x x x x x =++++++++++;(ii )是否存在正整数m ,n ,使12m n ma T a +=成立?若存在,求出所有的正整数对(),m n ;若不存在,请说明理由.【答案】(1)n a n =;11123n n b -⎛⎫=⨯ ⎪⎝⎭.(2)(i )n T 123343n n +⎛⎫=- ⎪⎝⎭;(ii )存在;(9,2)和(3,3).【解析】 【分析】(1)设}n a {的公差为d ,根据题意列式求出1a 和d 即可求出n a ;根据11n n n b S S ++=-可求出n b ; (2)(i )根据等差中项的性质得到()123411357(21)2n n n T b b b b n b nb +=+++++-+,再根据错位相减法可求出n T ;(ii )根据n T 和{}n a 的通项公式得到23213n n m +=-,推出211,13m ⎡⎫-∈⎪⎢⎣⎭,令233n nn c +=,推出{}n c 的单调性,根据单调性可知,只有2c 和31,13c ⎡⎫∈⎪⎢⎣⎭,由此可求出结果.(1)设}n a {的公差为d ,0d ≠, 则()111211125846648a d a d a d a d a d a d+++=+⎧⎪⎨+++=+⎪⎩,解得11a d ==, 所以1(1)11n a a n d n n =+-=+-=.由423n n S b +=得11423b b +=,得112b =, 11423n n S b +++=,所以114()2()330n n n n S S b b ++-+-=-=,所以11422n n n b b b +++=,即113n n b b +=,所以11123n n b -⎛⎫=⨯ ⎪⎝⎭.综上所述:n a n =;11123n n b -⎛⎫=⨯ ⎪⎝⎭.(2)(i )依题意得12112b b x +=,2321222()2b b x x ++=,343132333()2b b x x x +++=, 45414243444()2b b x x x x ++++=,,123n n n nn x x x x ++++1()2n n n b b ++=, 所以()()()11212231323312n n n nn T x x x x x x x x x =++++++++++2334451122()3()4()()22222n n b b b b b b n b b b b ++++++=+++++()123411357(21)2n n b b b b n b nb +=+++++-+012311111111111111()3()5()7()(21)()()2232323232323n n n n -⎛⎫=⨯+⨯⨯+⨯⨯+⨯⨯++-⋅⨯+⋅⨯ ⎪⎝⎭012311111111()3()5()7()(21)()()4333333n n n n -⎛⎫=+⨯+⨯+⨯++-⋅+⋅ ⎪⎝⎭令0123111111()3()5()7()(21)()33333n n R n -=+⨯+⨯+⨯++-⋅,则1234111111()3()5()7()(21)()333333n n R n =+⨯+⨯+⨯++-⋅,所以13n n R R -=12311111112()()()()(21)()33333n n n -⎛⎫+++++--⋅ ⎪⎝⎭, 所以1111()213312(21)()13313n n n R n -⎛⎫- ⎪⎝⎭=+⨯--⋅-,所以113(1)()3n n R n -=-+⋅,所以11()43n n n T R n ⎛⎫=+⋅ ⎪⎝⎭1113433n n n n -+⎛⎫=-+ ⎪⎝⎭123343n n +⎛⎫=- ⎪⎝⎭,(ii )假设存在正整数m ,n ,使12m n m a T a +=,即12313432n n m m ++⎛⎫-= ⎪⎝⎭,即23213n n m+=-成立, 因为210m->,所以2m >,所以3m ≥,所以211,13m ⎡⎫-∈⎪⎢⎣⎭,令233n nn c +=,则1125253233(23)3n n n nn c n n c n ++++==++2512544n n n +=<+++, 所以数列{}n c 单调递减,1513c =>,279c =,313c =,当4n ≥时,4111813n c c ≤=<,所以由27219c m ==-,得9m =;由31213c m==-,得3m =, 所以存在正整数m ,n ,使12m n ma T a +=,且所有的正整数对(,)m n 为:(9,2)和(3,3). 14.(2022·浙江·海宁中学模拟预测)设数列{}n a 的前n 项和为n S ,若点()n n a S ,在直线5410x y --=上. (1)求数列{}n a 的通项公式n a ;(2)设数列{}n b 满足()514log 3n n n b a a +=⋅-,求数列{}n b 的前n 项和.n T【答案】(1)15n n a -=(2)()115nn T n =+-⋅【解析】 【分析】(1)根据点在直线上建立数列递推关系式,通过化简后结合等比数列的定义确定数列是等比数列,并求得首项与公比,即可得到其通项公式;(2)先根据数列{}n a 的通项公式表示得到n b ,然后利用错位相减法求数列的和. (1)解:因为点()n n a S ,在直线5410x y --=上,所以()*5410n n a S n N --=∈,当1n =时,11154110a S a --=-=, 解得1 1.a =当*2n n N ≥∈,时,115410n n a S ----=, 所以111554450n n n n n n a a S S a a -----+=-=, 所以15nn a a -=, 所以可知数列{}n a 是首项为1,公比为5的等比数列,所以15n n a -=.(2)由(1)可知,15nn a +=,所以514log 343n a n +-=-,所以()1435n n b n -=-⋅.所以()0121155595435n n T n -=⨯+⨯+⨯++-⋅,则()()12315155595475435n n n T n n -=⨯+⨯+⨯++-⋅+-⋅,两式相减,可得()()121414555435n n n T n --=++++--⋅()()15151443515n n n --=+--⋅-()4445nn =-+-+,化简得()115nn T n =+-⋅.15.(2022·黑龙江·哈尔滨三中模拟预测(理))已知数列{}n a ,13a =,点()1,n n a a +在曲线5823x y x -=-上,且12n n b a =-. (1)求证:数列{}n b 是等差数列; (2)已知数列{}n c 满足122n b n n c b +=⋅,记n S 为数列{}n c 的前n 项和,求n S ,并证明:当2n ≥时,6n S >.【答案】(1)证明见解析(2)16(23)2n n S n +=+-⋅;证明见解析 【解析】 【分析】(1)根据题意得15823n n n a a a +-=-,由1111222n nn n b b a a ++-=-=--,结合等差数列的定义可证结论成立; (2)利用错位相减法求出n S ,根据n S 的解析式可证当2n ≥时,6n S >. (1)因为点()1,n n a a +在曲线5823x y x -=-上,所以15823n n n a a a +-=-, 因为13a =,所以11111232b a ===--, 因为11111158222223n n n n n n n b b a a a a a ++-=-=-------231222n n n a a a -=-=--, 所以数列{}n b 是首项为1,公差为2的等差数列. (2)由(1)得1(1)221n b b n n =+-⋅=-, 所以1221)22(n n b n n c b n +=⋅=-⋅,所以123123252(212)n n n S =⨯+⨯+⨯++-⋅,3124123252(21)22n n S n +=⨯+⨯+⨯++-⋅, 所以231222(222)(21)2n n n n S S n +-=++++--⋅,所以114(12)22(21)212n n n S n -+--=+⨯--⋅-16(32)2n n +=-+-⋅,所以16(23)2n n S n +=+-⋅,当2n ≥时,230n ->,所以6n S >.16.(2022·天津河西·二模)已知数列{}n a 的首项13a =,且满足*122()n n n a a n N +=+∈.(1)证明数列12n n a -⎧⎫⎨⎬⎩⎭是等差数列,并求数列{}n a 的通项公式;(2)求1nk k a =∑的值;(3)设()242221(1)210132n n n n n n n b a a -+-⋅++⋅=⋅,数列{}n b 的前n 项和为n T ,求n T 的最大值和最小值.【答案】(1)证明见解析;1(2)2n n a n -=+⋅.(2)1(1)21nnk k a n ==+⋅-∑ (3)n T 有最小值25144-,最大值16225-. 【解析】 【分析】(1)等式两边同除以2n 得11122n nn n a a +--=即可证明结论,再根据等差数列的定义求通项公式; (2)结合(1),根据错位相减法求解即可;(3)由题知2211(1)(2)(3)n n b n n ⎡⎤=-+⎢⎥++⎣⎦,进而裂项求和,并分n 的奇偶性讨论单调性求解最值即可. (1)解:因为*122()n n n a a n N +=+∈,所以,等式两边同除以2n 得11122n nn n a a +--=, 又因为1103,32a a ==, 所以,数列12n n a -⎧⎫⎨⎬⎩⎭是等差数列,公差为1,首项为3.所以,122nn a n -=+,即1(2)2n n a n -=+⋅. (2)解:设01221324252(1)2(2)2n n n S n n --=⨯+⨯+⨯+++++⋅,则12123242(1)2(2)2n n n S n n -=⨯+⨯+++++,所以,两式作差得:123132222(2)2n n n S n --=+++++-+,整理得:()1223(11122)2(1)2n nn n S n n --=+-++-=--,即(1)12nn S n =-+.所以,1(1)21nnk k a n ==+⋅-∑(3)解:由(1)知24224222222221(1)(21013)2(1)(21013)2(2)2(3)2n n n n n n n n n n n n n b a a n n ---+-⋅++⋅-⋅++⋅==⋅+⋅⋅+⋅ 22222(1)(21013)11(1)(2)(3)(2)(3)n n n n n n n n ⎡⎤-⋅++==-+⎢⎥++++⎣⎦, 所以,222222211111111()()(1)(1)3445(2)(3)(3)9n nn T n n n ⎡⎤=-+++-+-+=--⎢⎥+++⎣⎦, 所以,当n 为奇数时,211(3)9n T n =--+,随着n 的增大而增大,故当1n =时,nT 有最小值25144-; 当n 为偶数时,211(3)9n T n =-+,随着n 的增大而减小,故当2n =时,n T 有最大值16225-; 综上所述,n T 有最小值25144-,最大值16225-. 17.(2022·全国·南京外国语学校模拟预测)已知数列{}n a 的前n 项和为n S ,且211122n S n n =++,*N n ∈.(1)求{}n a 的通项公式; (2)若数列{}n b 满足11223113322n n n b b b a a a ++++⋅⋅⋅+=⨯-,*N n ∈,求数列{}n b 的前n 项和n T . 【答案】(1)2,1,, 2.n n a n n =⎧=⎨≥⎩ (2)1213344n n n T ++=⨯- 【解析】 【分析】(1)利用数列中n a 与n S 的关系即可求得{}n a 的通项公式;(2)先利用题给条件求得数列{}n b 的通项公式,再利用错位相减法去求数列{}n b 的前n 项和n T . (1)当1n =时,11111222a S ==++=; 当2n ≥时,()()221111111112222n n n a S S n n n n n -=-=++-----=.综上,2,1,, 2.n n a n n =⎧=⎨≥⎩ (2)因为11223113322n n n b b b a a a ++++⋅⋅⋅+=⨯-, 所以当1n =时,1293322b a =-=,所以16b =.当2n ≥时,由11223111223133,2213322n n n n n n b b b a a a b b b a a a ++-⎧++⋅⋅⋅+=⨯-⎪⎪⎨⎪++⋅⋅⋅+=⨯-⎪⎩ 得1113133332222n n n n n b a ++=⨯--⨯+=,所以()13n n b n =+⋅. 又当1n =时,()116113b ==+⋅,所以()13n n b n =+⋅. 所以()212233313nn n T b b b n =++⋅⋅⋅+=⨯+⨯+⋅⋅⋅++⋅,()2313233313n n T n +=⨯+⨯+⋅⋅⋅++⋅, 所以()23122333313nn n T n +-=⨯+++⋅⋅⋅+-+⋅()()11191332161331322n n n n n -++-+=+-+⋅=-⨯-, 所以1213344n n n T ++=⨯-. 18.(2022·天津市武清区杨村第一中学模拟预测)已知等差数列{}n a 的前n 项和为n S ,公差为1,且满足836S =.数列{}n b 是首项为2的等比数列,公比不为1,且3b 、232b 、12b 成等差数列,其前n 项和为n T .(1)求数列{}n a 和{}n b 的通项公式;(2)若()12224n n n n S T T T a b +++⋅⋅⋅+=+,求正整数n 的值;(3)记*35(1)](N [)(1)(2)n an n n n n na n c nb a a b +=-+∈++,求数列{}nc 的前n 项和n R . 【答案】(1)n a n =,2nn b =;(2)4; (3)3211)()913(8212n n n R n ++⋅-+=-+. 【解析】 【分析】(1)由836S =求出{}n a 的首项,由3b 、232b 、12b 成等差数列求出{}n b 的公比,再求出它们的通项作答.(2)求出n S ,n T ,再求出数列{}n T 前n 项和,代入给定等式求解即得. (3)利用(1)的结论求出n c ,再借助分组求和法、错位相减法求解作答. (1)依题意,183781682a S ⨯⨯==+,解得11a =,则1(1)1n a n n =+-⨯=,设数列{}n b 的公比为q ,因3b ,232b ,12b 成等差数列,则31223b b b +=,有22640q q -+=,而1q ≠,解得2q,2n n b =,所以数列{}n a 和{}n b 的通项公式分别为:n a n =,2nn b =.(2)由(1)知,(1)2n n n S +=,12(12)2212n n n T +-==--,213122(222)2242n n n T T n n T ++=++++⋅⋅⋅-++=--,依题意,2(1)242242n n n n n n +++--=+⨯,整理得2340n n --=,而N n *∈,解得4n =, 所以正整数n 的值是4. (3)由(1)知351(1)2(2)(1)]()(1)2(1)(2)22(1)(2)2[nn n n n n nn n n n c n n n n n ++++=-+=-+-++⋅++⋅1111()(1)[]22(1)2(2)n n n n n n n -=-+-+++,令数列1{()}2n n -的前n 项和为n A ,数列111{(1)[]}2(1)2(2)nn n n n --+++的前n 项和为n B , 则2311111()2()3()()2222n n A n =⋅-+⋅-+⋅-++⋅-,于是得231111111()2()(1)()()22222n n n A n n +-=⋅-+⋅-++-⋅-+⋅-,两式相减得:231111[1()]311111122()()()()()()122222221()2n n n n n A n n ++---=-+-+-++---=----11321()332n n ++=--⋅-,因此,2321()992n n n A +=-+⋅-, 0112233411111111()()()()2232324242525262n B =-+++-++++⨯⨯⨯⨯⨯⨯⨯⨯1111(1)(1)[]2(1)2(2)22(2)n nn n n n n n ---++=-++++,数列{}n c 的前n 项和2321(1)13(22(2)113211())()9928922n n n n n n n n n n n R A B ++=+=-+⋅-+⋅-+-++--=+. 【点睛】方法点睛:如果数列{}n a 是等差数列,{}n b 是等比数列,求数列{}n n a b 的前n 项和时,可采用错位相减法求和,一般是和式两边同乘以等比数列{}n b 的公比,然后作差求解.19.(2022·浙江·绍兴一中模拟预测)已知正项数列{}n a 满足()221113,33*--=-=+∈n n n n a a a a a n N ,数列{}n b 的前n 项和为n S 且满足22=-n n S b .(1)求数列{}n a ,{}n b 的通项公式; (2)设()24*+=∈-nn n a C n N b ,证明:1294n C C C +++<. 【答案】(1)3n a n =;2nn b =.(2)证明见解析. 【解析】 【分析】(1)将221133n n n n a a a a ---=+移项后化简可轻易得出{}n a 为等差数列,通过()12n n n b S S n -=-≥将已知条件22=-n n S b 代入后易得{}n b 为等比数列,再分别通过等差数列与等比数列的通项公式即可求解.(2)将n C 化简后,可判断出3142n n n C +<⋅,设将此式的前n 项和为n T ,错位相消后可求出n T 的表达式,通过判断出94n T <即可证明1294++⋯+<n C C C .(1)由已知条件,可化为221133n n n n a a a a ---=+{}n a 为正项数列,①13n n a a --=,所以{}n a 为等差数列,则()1313n a a n n =+-=.22n n S b =-①,1122(2)n n S b n --=-≥①1n =时,得12b =,由①-①得12n n b b -=,所以{}n b 为等比数列1222-∴=⋅=n nn b .(2)证明:由题意,2324+=-n n nC ,233312442142n n nn n n ++=⋅<⋅--,设3142n n +⋅的前n 项和为n T , 1233112131142222n n n T ++++⎛⎫∴=++++⎪⎝⎭① 23113112+11++242222n n n n n T +++⎛⎫=++ ⎪⎝⎭①,①-①得,2311131111113332422222422n n n n n n T +++++⎛⎫⎛⎫=++++-=-⎪ ⎪⎝⎭⎝⎭, 3393424n n n T +⎛⎫∴=-< ⎪⎝⎭,1294n n C C C T ∴+++<<. 20.(2021·天津·高考真题)已知{}n a 是公差为2的等差数列,其前8项和为64.{}n b 是公比大于0的等比数列,1324,48b b b =-=. (I )求{}n a 和{}n b 的通项公式;(II )记2*1,n n nc b b n N =+∈,(i )证明{}22nn c c -是等比数列;(ii )证明)*nk n N =∈ 【答案】(I )21,n a n n N *=-∈,4,n n N b n *=∈;(II )(i )证明见解析;(ii )证明见解析.【解析】 【分析】(I )由等差数列的求和公式运算可得{}n a 的通项,由等比数列的通项公式运算可得{}n b 的通项公式;(II )(i )运算可得2224nn n c c =⋅-,结合等比数列的定义即可得证;(ii )放缩得21222422n n n n n a n c a c +<-⋅,进而可得112n n k k k -==,结合错位相减法即可得证. 【详解】(I )因为{}n a 是公差为2的等差数列,其前8项和为64. 所以12818782642a a a a ⨯++⋅⋅⋅+=+⨯=,所以11a =, 所以()12121,n n n n N a a *=+-=-∈;设等比数列{}n b 的公比为(),0q q >,所以()221321484q b b b q q b q ==-=--,解得4q =(负值舍去), 所以114,n n n b q n N b -*==∈;(II )(i )由题意,221441n n nn n b c b =++=,所以22224211442444n n nn nnn c c ⎛⎫⎛⎫=+-+=⋅ ⎪ ⎪⎝⎭⎝⎭-, 所以220nn c c ≠-,且212222124424n n n n nn c c c c +++⋅==⋅--, 所以数列{}22nn c c -是等比数列; (ii )由题意知,()()22122222121414242222n n n n n n n n n a n n c c a +-+-==<-⋅⋅⋅,12n n-,所以112nn k k k k-==, 设10121112322222nn k n k k nT --===+++⋅⋅⋅+∑, 则123112322222n n n T =+++⋅⋅⋅+,两式相减得21111111122121222222212nn n n nn n n n T -⎛⎫⋅- ⎪+⎝⎭=+++⋅⋅⋅+-=-=--, 所以1242n n n T -+=-,所以1112422nn k n k k n --==+⎫-<⎪⎭ 【点睛】 关键点点睛:最后一问考查数列不等式的证明,因为nk =可得证.。
错位相减法求和专项错位相减法求和适用于{a n`b n }型数列,其中{a n},{b n}分别是等差数列和等比数列,在应用过程中要注意:项的对应需正确;相减后应用等比数列求和部分的项数为(n-1)项;若等比数列部分的公比为常数,要讨论是否为11. 已知二次函数的图象经过坐标原点,其导函数,数列的前项和为,点均在函数的图象上.(Ⅰ)求数列的通项公式;(Ⅰ)设,是数列的前项和,求.[解析]考察专题:2.1,2.2,3.1,6.1;难度:一般[答案] (Ⅰ)由于二次函数的图象经过坐标原点,则设,,Ⅰ,Ⅰ,又点均在函数的图象上,Ⅰ.Ⅰ当时,,又,适合上式,Ⅰ............(7分)(Ⅰ)由(Ⅰ)知,,Ⅰ,Ⅰ,上面两式相减得:.整理得..............(14分)2.已知数列的各项均为正数,是数列的前n项和,且.(1)求数列的通项公式;(2)的值.[答案]查看解析[解析] (1)当n = 1时,解出a1 = 3,又4S n = a n2 + 2a n-3①当时4s n-1 = + 2a n-1-3②①-②, 即,Ⅰ ,(),是以3为首项,2为公差的等差数列,6分.(2)③又④④-③=12分3.(2013年市高新区高三4月月考,19,12分)设函数,数列前项和,,数列,满足.(Ⅰ)求数列的通项公式;(Ⅰ)设数列的前项和为,数列的前项和为,证明:. [答案] (Ⅰ) 由,得是以为公比的等比数列,故.(Ⅰ)由得,…,记…+,用错位相减法可求得:. (注:此题用到了不等式:进行放大. )4.已知等差数列中,;是与的等比中项.(Ⅰ)求数列的通项公式:(Ⅰ)若.求数列的前项和[解析](Ⅰ)因为数列是等差数列,是与的等比中项.所以,又因为,设公差为,则,所以,解得或,当时, ,;当时,.所以或.(6分)(Ⅰ)因为,所以,所以,所以,所以两式相减得,所以.(13分)5.已知数列的前项和,,,等差数列中,且公差.(Ⅰ)求数列、的通项公式;(Ⅰ)是否存在正整数,使得若存在,求出的最小值,若不存在,说明理由.[解析](Ⅰ)时,相减得:,又,,数列是以1为首项,3为公比的等比数列,.又,,. (6分)(Ⅰ)令………………①…………………②①-②得:,,即,当,,当。
一、解答题1.已知等差数列{a n}的前n项和为S n,且a2=3,S6=36.(Ⅰ)求数列{a n}的通项公式;(Ⅰ)若数列{b n}满足b n=2n⋅a n,n∈N∗,求数列{b n}的前n项和T n.【详解】(Ⅰ)a 2=3,Ⅰa1+d=3S6=36,Ⅰ6a1+15d=36则a1=1,d=2a n=2n−1.(Ⅰ)由(Ⅰ)可知,b n=2n(2n−1)T n=1×2+3×22+5×23+⋯+(2n−3)×2n−1+(2n−1)×2n,2T n=1×22+3×23+5×24+⋯+(2n−3)×2n+(2n−1)×2n+1-T n=2+2×22+2×23+2×24.....+2×2n−(2n−1)×2n+1−(2n−1)⋅2n+1=2+2×4(1−2n−1)1−2=−6+2n+2−(2n−1)⋅2n+1=−6+2n+1(3−2n)ⅠT n=6+(2n−3)⋅2n+12.已知数列{a n}的前n项和为S n,且a1=2,a n+1=S n+2,n∈N∗(1)求数列{a n}的通项公式;(2)设b n=n⋅a n,求数列{a n}的前n项和T n.【答案】(1)a n=2n(2)2+(n−1)×2n+1【详解】(1)∵a n+1=S n+2,n∈N∗,∴S n=a n+1−2,即S n+1=2a n+1−2,∴S n+2=2a n+2−2,两式相减,得a n+2=2a n+2−2a n+1,即a n+2=2a n+1,又∵a 1=2,∴a 2=S 1+2=2+2=4, 即数列是首项为2,公比为2的等比数列, 所以a n =2n ;(2)设b n =n ⋅a n ,则b n =n ×2n ,∴T n =1×2+2×22+3×23+⋯+(n −1)×2n−1+n ×2n , 2T n =1×22+2×23+3×24+⋯+(n −1)×2n +n ×2n+1,两式相减,得:T n =−1×2−1×22−1×23−⋯−1×2n−1−1×2n +n ×2n+1=n ×2n+1−(2+22+23+⋯+2n−1+2n )=n ×2n+1−2×(1−2n )1−2=2+(n −1)×2n+1. 【点睛】本题考查数列的递推关系,通项公式,前n 项和,错位相减法,利用错位相减法是解决本题的关键,属于中档题.3.已知等差数列{a n }的前n 项和为S n ,满足S n =(a n +12)2(n ∈N ∗)。
错位相减法求和专项错位相减法求和适用于{a n`b n }型数列,其中{a n},{b n}分别是等差数列和等比数列,在应用过程中要注意:项的对应需正确;相减后应用等比数列求和部分的项数为(n-1)项;若等比数列部分的公比为常数,要讨论是否为11. 已知二次函数的图象经过坐标原点,其导函数,数列的前项和为,点均在函数的图象上.(Ⅰ)求数列的通项公式;(Ⅰ)设,是数列的前项和,求.[解析]考察专题:2.1,2.2,3.1,6.1;难度:一般[答案] (Ⅰ)由于二次函数的图象经过坐标原点,则设,,Ⅰ,Ⅰ,又点均在函数的图象上,Ⅰ.Ⅰ当时,,又,适合上式,Ⅰ............(7分)(Ⅰ)由(Ⅰ)知,,Ⅰ,Ⅰ,上面两式相减得:.整理得..............(14分)2.已知数列的各项均为正数,是数列的前n项和,且.(1)求数列的通项公式;(2)的值.[答案]查看解析[解析] (1)当n = 1时,解出a1 = 3,又4S n = a n2 + 2a n-3①当时4s n-1 = + 2a n-1-3②①-②, 即,Ⅰ ,(),是以3为首项,2为公差的等差数列,6分.(2)③又④④-③=12分3.(2013年市高新区高三4月月考,19,12分)设函数,数列前项和,,数列,满足.(Ⅰ)求数列的通项公式;(Ⅰ)设数列的前项和为,数列的前项和为,证明:. [答案] (Ⅰ) 由,得是以为公比的等比数列,故.(Ⅰ)由得,…,记…+,用错位相减法可求得:. (注:此题用到了不等式:进行放大. )4.已知等差数列中,;是与的等比中项.(Ⅰ)求数列的通项公式:(Ⅰ)若.求数列的前项和[解析](Ⅰ)因为数列是等差数列,是与的等比中项.所以,又因为,设公差为,则,所以,解得或,当时, ,;当时,.所以或.(6分)(Ⅰ)因为,所以,所以,所以,所以两式相减得,所以.(13分)5.已知数列的前项和,,,等差数列中,且公差.(Ⅰ)求数列、的通项公式;(Ⅰ)是否存在正整数,使得若存在,求出的最小值,若不存在,说明理由.[解析](Ⅰ)时,相减得:,又,,数列是以1为首项,3为公比的等比数列,.又,,. (6分)(Ⅰ)令………………①…………………②①-②得:,,即,当,,当。
的最小正整数为4.(12分)6. 数列满足,等比数列满足.(Ⅰ)求数列,的通项公式;(Ⅰ)设,求数列的前项和.[解析] (Ⅰ)由,所以数列是等差数列,又,所以,由,所以,,所以,即,所以.(6分)(Ⅰ)因为,所以,则,所以,两式相减的,所以. (12分)7. 已知数列满足,其中为数列的前项和.(Ⅰ) 求的通项公式;(Ⅰ) 若数列满足:() ,求的前项和公式.[解析]Ⅰ) Ⅰ,①Ⅰ②②-①得,,又时,,,.(5分)(Ⅰ) Ⅰ,,,两式相减得,.(13分)8.设d为非零实数, a n=[d+2d2+…+(n-1) d n-1+n d n](nⅠN*) .(Ⅰ) 写出a1, a2, a3并判断{a n}是否为等比数列. 若是, 给出证明;若不是, 说明理由; (Ⅰ) 设b n=nda n(nⅠN*) , 求数列{b n}的前n项和S n.当n≥2, k≥1时, =, 因此a n=.由此可见, 当d≠-1时, {a n}是以d为首项, d+1为公比的等比数列;当d=-1时, a1=-1, a n=0(n≥2) , 此时{a n}不是等比数列. (7分)(Ⅰ) 由(Ⅰ) 可知, a n=d(d+1) n-1,从而b n=nd2(d+1) n-1,S n=d2[1+2(d+1) +3(d+1) 2+…+(n-1) (d+1) n-2+n(d+1) n-1]. ①当d=-1时, S n=d2=1.当d≠-1时, ①式两边同乘d+1得(d+1) S n=d2[(d+1) +2(d+1) 2+…+(n-1) (d+1) n-1+n(d+1) n]. ②①, ②式相减可得-dS n=d2[1+(d+1) +(d+1) 2+…+(d+1) n-1-n(d+1) n]=d2.化简即得S n=(d+1) n(nd-1) +1.综上, S n=(d+1) n(nd-1) +1. (12分)9. 已知数列{a n}满足a1=0, a2=2, 且对任意m, nⅠN*都有a2m-1+a2n-1=2a m+n-1+2(m-n) 2. (Ⅰ) 求a3, a5;(Ⅰ) 设b n=a2n+1-a2n-1(nⅠN*) , 证明:{b n}是等差数列;(Ⅰ) 设c n=(a n+1-a n) q n-1(q≠0, nⅠN*) , 求数列{c n}的前n项和S n.再令m=3, n=1可得a5=2a3-a1+8=20. (2分)(Ⅰ) 证明:当nⅠN*时, 由已知(以n+2代替m) 可得a2n+3+a2n-1=2a2n+1+8.于是[a2(n+1) +1-a2(n+1) -1]-(a2n+1-a2n-1) =8, 即b n+1-b n=8.所以, 数列{b n}是公差为8的等差数列. (5分)(Ⅰ) 由(Ⅰ) 、(Ⅰ) 的解答可知{b n}是首项b1=a3-a1=6, 公差为8的等差数列. 则b n=8n-2, 即a2n+1-a2n-1=8n-2.另由已知(令m=1) 可得, a n=-(n-1) 2.那么, a n+1-a n=-2n+1=-2n+1=2n.于是,=2nq n-1.当q=1时, S n=2+4+6+…+2n=n(n+1) .当q≠1时, S n=2·q0+4·q1+6·q2+…+2n·q n-1.两边同乘q可得qS n=2·q1+4·q2+6·q3+…+2(n-1) ·q n-1+2n·q n.上述两式相减即得(1-q) S n=2(1+q1+q2+…+q n-1) -2nq n=2·-2nq n=2·,所以S n=2·.综上所述, S n=(12分)10.已知数列{a n}是公差不为零的等差数列,a1=2,且a2,a4,a8成等比数列.(1)求数列{a n}的通项公式;(2)求数列{a n·}的前n项和.[答案] (1)设数列{a n}的公差为d(d≠0),由条件可知:(2+3d)2=(2+d)·(2+7d),解得d=2.(4分)故数列{a n}的通项公式为a n=2n(nⅠN*).(6分)(2)由(1)知a n·=2n×32n,设数列{a n·}的前n项和为S n,则S n=2×32+4×34+6×36+…+2n×32n,32S n=2×34+4×36+…+(2n-2) ×32n+2n×32n+2,故-8S n=2(32+34+36+…+32n)-2n×32n+2,(8分)所以数列{a n·}的前n项和S n=.(12分)11.已知等差数列满足又数列中,且.(1)求数列,的通项公式;(2)若数列,的前项和分别是,且求数列的前项和;(3)若对一切正整数恒成立,数的取值围.[答案]( 1)设等差数列的公差为,则有解得,,,数列是以为首项,公比为的等比数列.…………4分(2)由(1)可得,Ⅰ得,…………10分(3),Ⅰ当时, 取最小值,,,即,当时,恒成立;当时,由,解得,即实数的取值围是. …………14分12.设为数列的前项和,对任意的,都有为常数,且.(1)求证:数列是等比数列;(2)设数列的公比,数列满足,求数列的通项公式;(3)在满足(2)的条件下,求数列的前项和.[答案] 188.(1)当时,,解得.当时,,即.又为常数,且,Ⅰ.Ⅰ数列是首项为1,公比为的等比数列.………………4分(2)由(1)得,,.Ⅰ,Ⅰ,,Ⅰ,Ⅰ.Ⅰ是首项为,公差为1的等差数列.Ⅰ,Ⅰ().…………………9分(3)由(2)知,则.Ⅰ,①,②②-①得,Ⅰ.………………14分13.设等差数列{a n}的前n项和为S n, 且S4=4S2, a2n=2a n+1.(Ⅰ) 求数列{a n}的通项公式;(Ⅰ) 设数列{b n}的前n项和为T n, 且T n+=λ(λ为常数), 令c n=b2n(nⅠN*), 求数列{c n}的前n 项和R n.[答案] (Ⅰ) 设等差数列{a n}的首项为a1, 公差为d.由S4=4S2, a2n=2a n+1得解得a1=1, d=2.因此a n=2n-1, nⅠN*.(Ⅰ) 由题意知: T n=λ-,所以n≥2时, b n=T n-T n-1=-+=.故c n=b2n==(n-1) , nⅠN*.所以R n=0×+1×+2×+3×+…+(n-1) ×,则R n=0×+1×+2×+…+(n-2) ×+(n-1) ×,两式相减得R n=+++…+-(n-1) ×=-(n-1) ×=-,整理得R n=.所以数列{c n}的前n项和R n=.。