八年级数学下册16.1二次根式教案新版新人教版
- 格式:doc
- 大小:125.00 KB
- 文档页数:3
课题:16.1二次根式1 课型:新授 一、学习目标1、了解二次根式的概念,能判断一个式子是不是二次根式。
2、掌握二次根式有意义的条件。
3、掌握二次根式的基本性质:)0(0≥≥a a 和)0()(2≥=a a a二、学习重点、难点重点:二次根式有意义的条件;二次根式的性质.难点:综合运用性质)0(0≥≥a a 和)0()(2≥=a a a 。
三、学习过程(一)自学导航(课前预习)(1)已知a x =2,那么a 是x 的______;x 是a 的______, 记为_____,a 一定是____数。
(2)4的算术平方根为2,用式子表示为=__________;正数a 的算术平方根为_______,0的算术平方根为_______;式子)0(0≥≥a a 的意义是 。
(二)合作交流(小组互助) (1)16的平方根是 ;(2)一个物体从高处自由落下,落到地面的时间是t (单位:秒)与开始下落时的高度h (单位:米)满足关系式25t h =。
如果用含h 的式子表示t ,则t = ; (3)圆的面积为S ,则圆的半径是 ; (4)正方形的面积为3-b ,则边长为 。
思考:16,5h ,πs ,3-b 等式子的实际意义.说一说他们的共同特征.定义: 一般地我们把形如a (0≥a )叫做二次根式,a 叫做_____________。
1、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?3,16-,34)0(3≥a a ,12+x2、当a 为正数时a 指a 的 ,而0的算术平方根是 ,负数 ,只有非负数a 才有算术平方根。
所以,在二次根式a 中,字母a 必须满足 ,4a 才有意义。
3、根据算术平方根意义计算 :(1) 2)4( (2)(3)2)5.0( (4)2)31( 根据计算结果,你能得出结论: ,其中0≥a ,4、由公式)0()(2≥=a a a ,我们可以得到公式a =2)(a ,利用此公式可以把任意一个非负数写成一个数的平方的形式。
人教版数学八年级下册16.1第1课时《二次根式的概念》教学设计一. 教材分析人教版数学八年级下册16.1第1课时《二次根式的概念》是初中数学的重要内容,主要让学生了解二次根式的概念,理解二次根式与有理数、实数之间的关系,为后续学习二次根式的运算和应用打下基础。
本节课的内容包括二次根式的定义、性质和运算方法,通过学习,让学生能够熟练掌握二次根式的相关知识,提高他们的数学素养。
二. 学情分析学生在学习本节课之前,已经掌握了实数、有理数等相关知识,具备一定的逻辑思维能力和运算能力。
但二次根式作为新的数学概念,对于部分学生来说可能较为抽象,难以理解。
因此,在教学过程中,要注重引导学生从实际问题中抽象出二次根式的概念,帮助他们建立直观的认识,从而更好地理解和掌握二次根式的相关知识。
三. 教学目标1.让学生了解二次根式的定义、性质和运算方法。
2.培养学生从实际问题中抽象出二次根式的能力。
3.提高学生的数学素养,培养他们的逻辑思维能力和运算能力。
四. 教学重难点1.二次根式的定义和性质。
2.二次根式的运算方法。
3.引导学生从实际问题中抽象出二次根式。
五. 教学方法1.情境教学法:通过创设实际问题情境,引导学生从实际问题中抽象出二次根式。
2.讲授法:讲解二次根式的定义、性质和运算方法。
3.实践操作法:让学生通过实际操作,掌握二次根式的运算方法。
4.小组讨论法:分组讨论,共同解决问题,提高学生的合作能力。
六. 教学准备1.教学课件:制作精美的课件,辅助讲解和展示二次根式的相关知识。
2.实际问题:准备一些与生活实际相关的问题,用于引导学生从实际问题中抽象出二次根式。
3.练习题:准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用实际问题情境,引导学生从实际问题中抽象出二次根式。
例如,讲解一个物体从地面上升到最高点再下降到地面的过程,上升和下降的距离分别是3米和4米,求物体的最大高度。
2.呈现(10分钟)讲解二次根式的定义、性质和运算方法。
八年级数学下册第16章二次根式16.1二次根式(2)教案新版新人教版一、教材分析与处理(一)教材的地位和作用:《二次根式》是人教版义务教育课程标准实验教科书《数学》八年级下册第十六章第一节.二次根式是在学习平方根基础上将具体数字抽象化,并且基于学习二次根式定义的基础上对二次根式的性质进行进一步的探究,本节课为学习二次根式的计算等知识做好了铺垫.(二)教学目标:知识与技能目标:(a ≥0)是一个非负数,)2=a (a ≥0)和a a =2,并利用它们进行计算和化简.过程与方法目标:a ≥0)是一个非负数,用具体数据结合算术平方根的意义导出)2=a (a ≥0),运用结论解题;通过具体数据的解答,(a ≥0),并利用这个结论解决具体问题.情感与价值目标:通过本节课的学习培养学生准确计算和化简的严谨的学习精神,培养学生观察、分析、发现问题的能力,并且通过探究感受学习的乐趣和获得成果的成就感,进一步增强学生自主参与意识. .(三)教学重点与难点:1.重点:a ≥0)是一个非负数,掌握()()02≥=a a a 、a a =2,并利用它们进行计算和化简.2.难点:引导学生自主探究推导得出()()02≥=a a a 、a a =2.二、学生情况分析及对策八年级学生已经学习了算数平方根,而且基本能够理解算数平方根的意义,并且能根据算数平方根进一步扩展探究二次根式的定义及二次根式有意义的条件,但是对于二次根式的意义及运算结果探究不深,而且有些同学不能深入理解二次根式的意义,这样学习本节课就产生了一定的困难.根据学生的实际情况和特点,我采取由特殊到一般,有简到难逐一探究、突破难点的教学方法进行本节课的教学.三、教法与学法1.教法:回顾旧知探究新知,教师设计情境,提出问题,引导学生通过观察,由具体到抽象,得到二次根式的性质,培养学生由特殊到一般的思想方法,先大胆猜想,再进一步探究,最终得到结论,并借助多媒体演示教学,增强课堂实例的直观性和启发性.2.学法:通过观察、猜想、分析、自主探究,得出二次根式的性质,增强数学思维能力.3.教学手段:借助电脑多媒体课件及视频辅助教学。
初二数学二次根式教案【篇一:新人教版八年级数学下册第16章二次根式教案】课题:16.1二次根式1 课型:新授一、学习目标1、了解二次根式的概念,能判断一个式子是不是二次根式。
2、掌握二次根式有意义的条件。
3、掌握二次根式的基本性质:a?0(a?0)和(a)?a(a?0)二、学习重点、难点重点:二次根式有意义的条件;二次根式的性质.难点:综合运用性质a?0(a?0)和(a)?a(a?0)。
三、学习过程(一)自学导航(课前预习)(1)已知x?a,那么a是x的______;x是a的______, 记为_____,a一定是____数。
(2)4的算术平方根为2,用式子表示为;正数a的算术平方根为4_______,0的算术平方根为_______;式子a?0(a?0)的意义是。
(二)合作交流(小组互助)(1)的平方根是;(2)一个物体从高处自由落下,落到地面的时间是t(单位:秒)与开始下落时的高度h(单位:米)满足关系式h?5t。
如果用含h的式子表示t,则t;(3)圆的面积为s,则圆的半径是;(4)正方形的面积为b?3,则边长为。
思考:,2222hs ,,?3等式子的实际意义.说一说他们的共同特征. ?5a(a?0)叫做二次根式,a叫做_____________。
定义: 一般地我们把形如1、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?,?,4a(a?0),x2?1 32、当a为正数时a指a的,而0的算术平方根是,负数,只有非负数a才有算术平方根。
所以,在二次根式a中,字母a必须满足 , 1a才有意义。
3、根据算术平方根意义计算: (1) (4)2 (2)((3)(.5) (4)()2根据计算结果,你能得出结论:(a)2?________,其中a?0,4、由公式(a)?a(a?0),我们可以得到公式a=(a)2 ,利用此公式可以把任意一个非负数写成一个数的平方的形式。
如()=5;也可以把一个非负数写成一个数的平方形式,如5=(). 22212) 32练习:(1)把下列非负数写成一个数的平方的形式:6 0.35(2)在实数范围内因式分解x2?74a2-11(三)展示提升(质疑点拨)例:当x是怎样的实数时,x?2在实数范围内有意义?解:由x?2?0,得x?2当x?2时,x?2在实数范围内有意义。
16.1 二次根式(第一课时)【教学内容】二次根式的概念及其运用【教学目标】1、理解二次根式的概念;2(a≥0)的概念解答具体问题;3、培养学生举一反三的能力,提高综合能力。
【教学重难点】重点:二次根式的概念;难点:利用二次根式概念解决具体问题。
【教学过程】一、复习引入(学生活动)请同学们独立完成课本第2页三个问题。
二、探索新知1、概念些正数的算术平方根的式子,我们就把它称为二次根式.因此,一般(a ≥0)•的式子叫做二次根式,次根号.(学生活动)议一议:1.-1有算术平方根吗?2.0的算术平方根是多少?3.当a<0有意义吗?老师点评:(略)2、例题精讲例1.下列式子,哪些是二次根式,哪些不是二次根式:、(x>0)、、(x ≥0,y •≥0).分析:二次根式应满足两个条件:(1)”;(2)被开方数是正数或0.1x 1x y +例2.当x在实数范围内有意义?分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0,•才能有意义.解:由3x-1≥0,得:x≥ 当x ≥在实数范围内有意义. 课堂练习:教材P3练习1、2.三、巩固提高例3.当x +在实数范围内有意义? 分析+在实数范围内有意义,必须同时满足中的2x+3≥0和中的x+1≠0. 例4(1)已知+5,求的值.(答案: ) (2)=0,求a 2004+b 2004的值.(答案: 2)四、学习小结(学生活动,老师点评)131311x +11x +11x +x y 25本节课要掌握:1.a≥0)的式子叫做二次根式,”称为二次根号.2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.五、布置作业1.教材P5复习巩固 1。
2.课后作业:《长江作业》同步练习。
【板书设计】左边黑板书写二次根式的概念及其有意义的条件;右边黑板用于例题精讲。
【教学反思】本节课是二次根式的第一节课,这节课主要让学生理解二次根式的概念及其有意义的条件,这是学习二次根式的基础。
16.1 二次根式第一课时教学内容二次根式的概念及其运用教学目标理解二次根式的概念,并利用(a≥0)的意义解答具体题目.提出问题,根据问题给出概念,应用概念解决实际问题.教学重难点关键1.重点:形如(a≥0)的式子叫做二次根式的概念;2.难点与关键:利用“(a≥0)”解决具体问题.教学过程一、问题引入1.完成书上第二页的第一个思考题,采用小组讨论的形式2.选择一个小组进行汇报。
3.教师进行点评4.完成练习题1二、探索新知观察这些题计算的结果有什么特点1.形式上都含有“”2.被开方的数是数或者含有字母的式子3.(a≥0)因此,一般地,我们把形如(a≥0)•的式子叫做二次根式,其中“”称为二次根号.(学生活动)议一议:1.-1有算术平方根吗?2.0的算术平方根是多少?3.当a<0,有意义吗?为什么?老师点评:(略)例1.下列式子,哪些是二次根式,哪些不是二次根式:、、、(x>0)、、、-、、(x≥0,y•≥0).分析:二次根式应满足两个条件:第一,有二次根号“”;第二,被开方数是正数或0.解:二次根式有:、(x>0)、、-、(x≥0,y≥0);不是二次根式的有:、、、.例2.当x是多少时,在实数范围内有意义?分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0,•才能有意义.解:由3x-1≥0,得:x≥当x≥时,在实数范围内有意义.三、展示交流教材P3练习2题.四、堂清巩固例3.当x是多少时,+在实数范围内有意义?分析:要使+在实数范围内有意义,必须同时满足中的≥0和中的x+1≠0.解:依题意,得由①得:x≥-由②得:x≠-1当x≥-且x≠-1时,+在实数范围内有意义.例4(1)已知y=++5,求的值.(答案:2)(2)若+=0,求a2004+b2004的值.(答案:)五、课堂小结(学生活动,老师点评)本节课要掌握:1.形如(a≥0)的式子叫做二次根式,“”称为二次根号.2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.六、布置作业1.教材16.1第1题和第7题2.选用课时作业设计.3.课后作业:《练习册》中的相关内容七、板书设计16.1二次根式(1)一、二次根式定义二、二次根式有意义条件以及应用八、课后回顾第一课时作业设计一、选择题 1.下列式子中,是二次根式的是()A.- B. C. D.x2.下列式子中,不是二次根式的是()A. B. C. D.3.已知一个正方形的面积是5,那么它的边长是()A.5 B. C. D.以上皆不对二、填空题1.形如________的式子叫做二次根式.2.面积为a的正方形的边长为________.3.负数________平方根.三、综合提高题1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,•底面应做成正方形,试问底面边长应是多少?2.当x是多少时,+x2在实数范围内有意义?3.若+有意义,则=_______.4.使式子有意义的未知数x有()个.A.0 B.1 C.2 D.无数5.已知a、b为实数,且+2=b+4,求a、b的值.第一课时作业设计答案:一、1.A 2.D 3.B二、1.(a≥0)2. 3.没有三、1.设底面边长为x,则0.2x2=1,解答:x=.2.依题意得:,∴当x>-且x≠0时,+x2在实数范围内没有意义.3.4.B5.a=5,b=-416.1 二次根式(2)第二课时教学内容1.(a≥0)是一个非负数;2.()2=a(a≥0).教学目标理解(a≥0)是一个非负数和()2=a(a≥0),并利用它们进行计算和化简.通过复习二次根式的概念,用逻辑推理的方法推出(a≥0)是一个非负数,用具体数据结合算术平方根的意义导出()2=a(a≥0);最后运用结论严谨解题.教学重难点关键1.重点:(a≥0)是一个非负数;()2=a(a≥0)及其运用.2.难点、关键:用分类思想的方法导出(a≥0)是一个非负数;•用探究的方法导出()2=a(a≥0).教学过程一、复习引入(学生活动)口答1.什么叫二次根式?2.当a≥0时,叫什么?当a<0时,有意义吗?老师点评(略).二、探究新知议一议:(学生分组讨论,提问解答)(a≥0)是一个什么数呢?老师点评:根据学生讨论和上面的练习,我们可以得出(a≥0)是一个非负数.做一做:根据算术平方根的意义填空:()2=_______;()2=_______;()2=______;()2=_______;()2=______;()2=_______;()2=_______.老师点评:是4的算术平方根,根据算术平方根的意义,是一个平方等于4的非负数,因此有()2=4.同理可得:()2=2,()2=9,()2=3,()2=,()2=,()2=0,所以()2=a(a≥0)例1计算1.()2 2.(3)2 3.()2 4.()2 分析:我们可以直接利用()2=a(a≥0)的结论解题.解:()2 =,(3)2 =32·()2=32·5=45,()2=,()2=.三、展示交流计算下列各式的值:()2()2()2()2(4)2四、堂清巩固例2 计算1.()2(x≥0)2.()2 3.()24.()2分析:(1)因为x≥0,所以x+1>0;(2)a2≥0;(3)a2+2a+1=(a+1)≥0;(4)4x2-12x+9=(2x)2-2·2x·3+32=(2x-3)2≥0.所以上面的4题都可以运用()2=a(a≥0)的重要结论解题.解:(1)因为x≥0,所以x+1>0()2=x+1(2)∵a2≥0,∴()2=a2(3)∵a2+2a+1=(a+1)2又∵(a+1)2≥0,∴a2+2a+1≥0 ,∴=a2+2a+1(4)∵4x2-12x+9=(2x)2-2·2x·3+32=(2x-3)2又∵(2x-3)2≥0∴4x2-12x+9≥0,∴()2=4x2-12x+9例3在实数范围内分解下列因式:(1)x2-3 (2)x4-4 (3) 2x2-3分析:(略)五、课堂小结本节课应掌握:1.(a≥0)是一个非负数;2.()2=a(a≥0);反之:a=()2(a≥0).六、布置作业1.教材第五页4题2.选用课时作业设计.3.课后作业:《练习册》中的相关内容七、板书设计16.1二次根式(2)1.(a≥0)是一个非负数;2.()2=a(a≥0);反之:a=()2(a≥0).八、课后回顾第二课时作业设计一、选择题1.下列各式中、、、、、,二次根式的个数是().A.4 B.3 C.2 D.12.数a没有算术平方根,则a的取值范围是().A.a>0 B.a≥0 C.a<0 D.a=0二、填空题1.(-)2=________.2.已知有意义,那么是一个_______数.三、综合提高题1.计算(1)()2(2)-()2(3)()2(4)(-3)2(5)2.把下列非负数写成一个数的平方的形式:(1)5 (2)3.4 (3)(4)x(x≥0)3.已知+=0,求x y的值.4.在实数范围内分解下列因式:(1)x2-2 (2)x4-9 3x2-5第二课时作业设计答案:一、1.B 2.C二、1.3 2.非负数三、1.(1)()2=9 (2)-()2=-3 (3)()2=×6=(4)(-3)2=9×=6 (5)-62.(1)5=()2(2)3.4=()2(3)=()2(4)x=()2(x≥0)3. x y=34=814.(1)x2-2=(x+)(x-)(2)x4-9=(x2+3)(x2-3)=(x2+3)(x+)(x-)(3)略16.1 二次根式(3)第三课时教学内容=a(a≥0)教学目标理解=a(a≥0)并利用它进行计算和化简.通过具体数据的解答,探究=a(a≥0),并利用这个结论解决具体问题.教学重难点关键1.重点:=a(a≥0).2.难点:探究结论.3.关键:讲清a≥0时,=a才成立.教学过程一、复习引入老师口述并板收上两节课的重要内容;1.形如(a≥0)的式子叫做二次根式;2.(a≥0)是一个非负数;3.()2=a(a≥0).那么,我们猜想当a≥0时,=a是否也成立呢?下面我们就来探究这个问题.二、探究新知(学生活动)填空:=_______;=_______;=______;=________;=________;=_______.(老师点评):根据算术平方根的意义,我们可以得到:=2;=0.01;=;=;=0;=.因此,一般地:=a(a≥0)例1 化简(1)(2)(3)(4)分析:因为(1)9=-32,(2)(-4)2=42,(3)25=52,(4)(-3)2=32,所以都可运用=a(a≥0)•去化简.解:(1)==3 (2)==4(3)==5 (4)==3三、展示交流教材P7练习2.四、堂清巩固例2 填空:当a≥0时,=_____;当a<0时,=_______,•并根据这一性质回答下列问题.(1)若=a,则a可以是什么数?(2)若=-a,则a可以是什么数?(3)>a,则a可以是什么数?分析:∵=a(a≥0),∴要填第一个空格可以根据这个结论,第二空格就不行,应变形,使“()2”中的数是正数,因为,当a≤0时,=,那么-a≥0.(1)根据结论求条件;(2)根据第二个填空的分析,逆向思想;(3)根据(1)、(2)可知=│a│,而│a│要大于a,只有什么时候才能保证呢?a<0.解:(1)因为=a,所以a≥0;(2)因为=-a,所以a≤0;(3)因为当a≥0时=a,要使>a,即使a>a所以a不存在;当a<0时,=-a,要使>a,即使-a>a,a<0综上,a<0例3当x>2,化简-.分析:(略)五、课堂小结本节课应掌握:=a(a≥0)及其运用,同时理解当a<0时,=-a的堂清巩固.六、布置作业1.教材P8习题16.1 5、6、8.9.102.选作课时作业设计.3.课后作业:《练习册》中的相关内容七、板书设计16.1二次根式(3)1.=a(a≥0)及其运用2. 当a<0时,=-a八、课后回顾第三课时作业设计一、选择题1.的值是().A.0 B. C.4 D.以上都不对2.a≥0时,、、-,比较它们的结果,下面四个选项中正确的是(). A.=≥- B.>>-C.<<- D.->=二、填空题1.-=________.2.若是一个正整数,则正整数m的最小值是________.三、综合提高题1.先化简再求值:当a=9时,求a+的值,甲乙两人的解答如下:甲的解答为:原式=a+=a+(1-a)=1;乙的解答为:原式=a+=a+(a-1)=2a-1=17.两种解答中,_______的解答是错误的,错误的原因是__________.2.若│1995-a│+=a,求a-19952的值.(提示:先由a-2000≥0,判断1995-a•的值是正数还是负数,去掉绝对值)3. 若-3≤x≤2时,试化简│x-2│++。
16.1.1二次根式教学内容二次根式的概念及其运用教学目标知识与技能目标:a ≥0)的意义解答具体题目. 过程与方法目标:提出问题,根据问题给出概念,应用概念解决实际问题.情感与价值目标:通过本节的学习培养学生:发展学生观察、分析、发现问题的能力. 教学重难点1.重点:理解二次根式的概念;2.难点:确定二次根式中字母的取值范围教法:讲练结合法: 在例题教学中,引导学生阅读,与平方根进行类比,获得解决问题的方法后配以精讲,并进行分层练习,培养学生的阅读习惯和规范的解题格式。
学法:1、类比的方法 通过观察、类比,使学生感悟二次根式的模型,形成有效的学习策略。
2、练习法 采用不同的练习法,巩固所学的知识;利用教材进行自检,小组内进行他检,提高学生的素质。
媒体设计:PPT 课件,展台。
学习过程一、展示学习目标:1. 二次根式的概念2.二次根式有意义的条件3二次根式的双重非负性二.设置问题情境,引入新课:1求下列各数的平方根和算术平方根(1)9(2)0.64(3)0总结:a (a ≥0)的平方根是a (a ≥02.解决问题(1) 面积为 S 的正方形边长为________。
(2).面积为 b -5 的正方形边长为________。
(3). 圆桌的面积为 S ,则半径为________(4).若圆桌的面积为 S +3,则半径为________(5)关系式 h = 5t 2 (t > 0)中,用含有 h 的式子表示 t ,则 t = ________。
总结以上式子有何特征二次根式的概念:a像这样一些正数的算术平方根的式子,我们就把它称二次根式。
因此,一般地,我们把形如(a≥0三.探究新课1.指出二次根式有意义的条件被开方数大于等于零。
提问:二次根式在什么情况下无意义学生讨论后得出:被开方数小于零2.指出下列哪些是二次根式?学生自主完成小练习:辨别下列式子,哪些是二次根式?三.练习四.小结1. 二次根式的概念2.二次根式有意义的条件3二次根式的双重非负性五.作业课本第5页第一题。
16.1.1 二次根式教学内容二次根式的概念及其运用教学目标理解二次根式的概念,并利用a(a≥0)的意义解答具体题目.提出问题,根据问题给出概念,应用概念解决实际问题.教学重难点关键1.重点:形如a(a≥0)的式子叫做二次根式的概念;2.难点与关键:利用“a(a≥0)”解决具体问题.教学过程一、复习引入(学生活动)请同学们独立完成下列三个课本P2的三个思考题:二、探索新知很明显3、10、,都是一些正数的算术平方根.像这样一些正数的算术平方根的式子,我们就把它称二次根式.因此,一般地,我们把形如a(a≥0)•的式子叫做二次根式,“”称为二次根号.(学生活动)议一议:1.-1有算术平方根吗?2.0的算术平方根是多少?3.当a<0,a有意义吗?老师点评:(略)例1.下列式子,哪些是二次根式,哪些不是二次根式:2、33、、x(x>0)、0、42、+(x≥0,y•≥0).-2、、x y分析:二次根式应满足两个条件:第一,有二次根号“”;第二,被开方数是正数或0.+(x≥0,y≥0);不是二次根式的有:解:二次根式有:2、x(x>0)、0、-2、x y33、、42、.x-在实数范围内有意义?例2.当x是多少时,31x-才能有意义.分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0,•31解:由3x-1≥0,得:x≥当x ≥时,31x -在实数范围内有意义. 三、巩固练习 教材P5练习1、2、3.四、应用拓展例3.当x 是多少时,23x ++在实数范围内有意义? 分析:要使23x ++在实数范围内有意义,必须同时满足23x +中的≥0和中的x+1≠0.解:依题意,得由①得:x ≥-由②得:x ≠-1当x ≥-且x ≠-1时,23x ++在实数范围内有意义.例4(1)已知y=2x -+2x -+5,求的值.(答案:2)(2)若1a ++1b -=0,求a 2004+b 2004的值.(答案:)五、归纳小结(学生活动,老师点评)本节课要掌握:1.形如a (a ≥0)的式子叫做二次根式,“”称为二次根号.2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.六、布置作业1.教材P5 1,2,3,42.选用课时作业设计.第一课时作业设计一、选择题1.下列式子中,是二次根式的是( )A .-7B .37C .xD .x2.下列式子中,不是二次根式的是( )A .4B .16C .8D .3.已知一个正方形的面积是5,那么它的边长是( )A .5B .5C .D .以上皆不对二、填空题1.形如________的式子叫做二次根式.2.面积为a 的正方形的边长为________.3.负数________平方根.三、综合提高题1.某工厂要制作一批体积为1m 3的产品包装盒,其高为0.2m ,按设计需要,•底面应做成正方形,试问底面边长应是多少?2.当x 是多少时,+x 2在实数范围内有意义?3.若3x -+3x -有意义,则2x -=_______.4.使式子有意义的未知数x 有( )个.A .0B .1C .2D .无数5.已知a 、b 为实数,且5a -+2102a -=b+4,求a 、b 的值.第一课时作业设计答案:一、1.A 2.D 3.B二、1.a (a ≥0) 2.a 3.没有三、1.设底面边长为x ,则0.2x 2=1,解答:x=5.2.依题意得:,∴当x>-且x ≠0时,+x 2在实数范围内没有意义.3.4.B5.a=5,b=-42019-2020学年初二下学期期末数学模拟试卷一、选择题(每题只有一个答案正确)1.关于函数21y x =--,下列结论正确的是( )A .图像必经过()2,1-B .若两点()()1122,,,A x y B x y 在该函数图像上,且12x x <,12y y >C .函数的图像向下平移1个单位长度得2y x =的图像D .当0.5x >时,0y >2.如图,点A 在双曲线1y x =上,点B 在双曲线3y x=上,且AB//x 轴,C 、D 在x 轴上,若四边形ABCD 为矩形,则它的面积为( )A .1B .2C .3D .43.下列式子中,表示y 是x 的正比例函数的是( )A .5y x =+B .3y x =C .23y x =D .23y x =4.为增强学生体质,某中学在体育课中加强了学生的长跑训练.在一次女子800米耐力测试中,小静和小茜在校园内200米的环形跑道上同时起跑,同时到达终点;所跑的路程S (米)与所用的时间t (秒)之间的函数图象如图所示,则她们第一次相遇的时间是起跑后的第( )秒A .80B .105C .120D .1505.如图,在四边形ABCD 中,∠A+∠D=α,∠ABC 的平分线与∠BCD 的平分线交于点P ,则∠P=( )A .90°-12αB .90°+ 12αC .2αD .360°-α 6.若a b >,则下列不等式正确的是( )A .a b 0-<B .a 8b 8+<-C .5a 5b -<-D .a b 44< 7.某市的夏天经常台风,给人们的出行带来很多不便,小明了解到去年8月16日的连续12个小时的风力变化情况,并画出了风力随时间变化的图象(如图),则下列说法正确的是( )A .20时风力最小B .8时风力最小C .在8时至12时,风力最大为7级D .8时至14时,风力不断增大 8.下列是最简二次根式的为( )A .3B .13C .8D .33a (a >0)9.如图,已知四边形ABCD 是边长为4的正方形,E 为AB 的中点,将△ADE 绕点D 沿逆时针方向旋转后得到△DCF ,连接EF ,则EF 的长为( )A .3B .5C .6D .1010. “龟兔首次赛跑”之后,输了比赛的兔子总结惨痛教训后.决定和乌龟再赛一场.图中的函数图象刻画了“龟兔再次赛跑”的故事(x 表示乌龟从起点出发所行的时间,1y 表示乌龟所行的路程,2y 表示兔子所行的路程.下列说法中:①“龟兔再次赛跑”的路程为1000米;②兔子和乌龟同时从起点出发;③乌龟在途中休息了10分钟;④兔子在途中750米处上了乌龟.正确的有:( )A .1个B .2个C .3个D .4个二、填空题 11.如图,在菱形ABCD 中,点E 为AB 上一点,DE AD =,连接EC .若36ADE ∠=,则BCE ∠的度数为__________.12.如图,点D 是Rt △ABC 斜边AB 的中点,AC =1,CD =1.5,那么BC =_____.13.如图,在ABCD 中,对角线AC ,BD 相交于点O ,添加一个条件判定ABCD 是菱形,所添条件为__________(写出一个即可).14.如图,一只蚂蚁从棱长为1的正方体纸箱的A 点沿纸箱表面爬到B 点,那么它所爬行的最短路线的长是_____.15.已知一元二次方程x 2-4x -3=0的两根为m ,n ,则2m -mn +2n = .16.已知:如图,在△ABC 中,∠ACB =90°,D 、E 、F 分别是AC 、AB 、BC 的中点,若CE=8,则DF 的长是________.17.如图,直线y kx b =+经过点()1,2--A 和点()2,0B -,直线2y x =经过点A ,则不等式组20x kx b <+<的解集是______.三、解答题18.如图1,将线段AB 平移至DC ,使点A 与点D 对应,点B 与点C 对应,连接AD 、BC . (1)填空:AB 与CD 的位置关系为 ,BC 与AD 的位置关系为 .(2)如图2,若G 、E 为射线DC 上的点,AGE GAE ∠=∠,AF 平分DAE ∠交直线CD 于F ,且30FAG ∠=,求B 的度数.19.(6分)(1)解分式方程:23111x x x=---;(2)化简:2221211a a a a a a +⎛⎫÷- ⎪-+-⎝⎭ 20.(6分)如图,在平行四边形ABCD 中,BE 平分∠ABC ,且与AD 边交于点E ,∠AEB =45°,证明:四边形ABCD 是矩形.21.(6分)如图,在矩形ABCD 中,,.将矩形ABCD 沿过点C 的直线折叠,使点B 落在对角线AC 上的点E 处,折痕交AB 于点F .(1)求线段AC 的长.(2)求线段EF 的长.(3)点G 在线段CF 上,在边CD 上存在点H ,使以E 、F 、G 、H 为顶点的四边形是平行四边形,请画出,并直接写出线段DH 的长.22.(8分)暑假期间,小明和父母一起开车到距家200千米的景点旅游.出发前,汽车油箱内储油45升;当行驶150千米时,发现油箱剩余油量为30升.(1)已知油箱内余油量y(升)是行驶路程x(千米)的一次函数,求y 与x 的函数关系式;(2)当油箱中余油量少于3升时,汽车将自动报警.如果往返途中不加油,他们能否在汽车报警前回到家?请说明理由. 23.(8分)如图,ABCD 的对角线AC BD ,相交于点OE F ,,分别为OC OA ,的中点.求证:BE DF =.24.(10分)解分式方程: (1) 416x x=+ (2) 311(1)(2)x x x x -=--+ 25.(10分)已知如图,抛物线26y ax bx =++与x 轴交于点A 和点C (2,0),与y 轴交于点D ,将△DOC绕点O 逆时针旋转90°后,点D 恰好与点A 重合,点C 与点B 重合.(1)直接写出点A 和点B 的坐标;(2)求a 和b 的值;(3)已知点E 是该抛物线的顶点,求证:AB ⊥EB .参考答案一、选择题(每题只有一个答案正确)1.B【解析】【分析】根据一次函数的性质,依次分析选项可得答案.【详解】根据一次函数的性质,依次分析可得,A 、x=-2时,y=-2×(-2)-1=3,故图象必经过(-2,3),故错误,B 、k <0,则y 随x 的增大而减小,12x x <时,12y y >,故正确,C 、函数的图像向下平移1个单位长度得22y x =--的图像,故错误;D 、由y=-2x-1得12y x +=-,∵x >0.5, ∴10.52y +->解得,y <0,故选项D 错误.故选B .【点睛】本题考查一次函数的性质,注意一次函数解析式的系数与图象的联系.2.B【解析】【分析】根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的矩形的面积S的关系S=|k|即可判断.【详解】解:过A点作AE⊥y轴,垂足为E,∵点A在双曲线y=1x上,∴四边形AEOD的面积为1,∵点B在双曲线y=3x上,且AB∥x轴,∴四边形BEOC的面积为3,∴四边形ABCD为矩形,则它的面积为3−1=2.故选B.3.B【解析】分析:根据正比例函数y=kx的定义条件:k为常数且k≠0,自变量次数为1,判断各选项,即可得出答案.详解:A、y=x+5,是和的形式,故本选项错误;B、y=3x,符合正比例函数的含义,故本选项正确;C、y=3x2,自变量次数不为1,故本选项错误;D、y2=3x,函数次数不为1,故本选项错误,故选:B.点睛:本题考查了正比例函数的定义,难度不大,注意基础概念的掌握.4.C【解析】【分析】如图,分别求出OA、BC的解析式,然后联立方程,解方程就可以求出第一次相遇时间.【详解】设直线OA 的解析式为y=kx ,代入A (200,800)得800=200k ,解得k=4,故直线OA 的解析式为y=4x ,设BC 的解析式为y 1=k 1x+b ,由题意,得1136060540150k b k b =+⎧⎨=+⎩, 解得:12240k b =⎧⎨=⎩, ∴BC 的解析式为y 1=2x+240,当y=y 1时,4x=2x+240,解得:x=120,则她们第一次相遇的时间是起跑后的第120秒,故选C.【点睛】本题考查了一次函数的运用,一次函数的图象的意义的运用,待定系数法求一次函数的解析式的运用,解答时认真分析求出一次函数图象的数据意义是关键.5.C【解析】试题分析:∵四边形ABCD 中,∠ABC+∠BCD=360°﹣(∠A+∠D )=360°﹣α,∵PB 和PC 分别为∠ABC 、∠BCD 的平分线,∴∠PBC+∠PCB=(∠ABC+∠BCD )=12(360°﹣α)=180°﹣12α, 则∠P=180°﹣(∠PBC+∠PCB )=180°﹣(180°﹣12α)=12α. 故选C .考点:1.多边形内角与外角2.三角形内角和定理.【分析】根据不等式的基本性质,逐个分析即可.【详解】若a b >,则 a b 0->,a 8b 8+>-,5a 5b -<-,a b 44>. 故选C【点睛】本题考核知识点:不等式的性质.解题关键点:熟记不等式的基本性质.7.A【解析】【分析】根据函数图象可以判断各个选项中的结论是否正确,本题得以解决.【详解】解:由图象可得,20时风力最小,故选项A 正确,选项B 错误,在8时至12时,风力最大为4级,故选项C 错误,8时至11时,风力不断增大,11至12时,风力在不断减小,在12至14时,风力不断增大,故选项D 错误,故选:A .【点睛】本题考查函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.8.A【解析】【分析】【详解】是最简二次根式;===本题考查最简二次根式:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.9.D【解析】【分析】先利用勾股定理计算出DE ,再根据旋转的性质得∠EDF=∠ADC=90°,DE=DF ,则可判断△DEF 为等腰直角三角形,然后根据等腰直角三角形的性质计算EF 的长.【详解】∵E 为AB 的中点,AB=4,∴AE=2,∴∵四边形ABCD 为正方形,∴∠A=∠ADC=90°,∴∠ADE +∠EDC=90°.∵△ADE 绕点D 沿逆时针方向旋转后得到△DCF ,∴∠ADE=∠CDF ,DE=DF ,∴∠CDF +∠EDC=90°,∴△DEF为等腰直角三角形,∴.故选D .【点睛】本题主要考查了旋转的性质、正方形的性质一勾股定理的应用,熟练掌握相关知识是解题的关键. 10.C【解析】【分析】根据题意和函数图象中的数据可以判断各个小题是否正确,从而可以解答本题.【详解】解:由图可得,“龟兔再次赛跑”的路程为1000米,故①正确;乌龟先出发,兔子在乌龟出发40分钟时出发,故②错误;乌龟在途中休息了:40-30=10(分钟),故③正确;当40≤x≤60,设y 1=kx+b ,由题意得40600601000k b k b +=⎧⎨+=⎩,k=20,b=-200,∴y 1=20x-200(40≤x≤60).当40≤x≤50,设y 2=mx+n ,由题意得400501000m n m n +=⎧⎨+=⎩, 解得m=100,n=-4000,∴y 2=100x-4000(40≤x≤50).当y 1=y 2时,兔子追上乌龟,此时20x-200=100x-4000,解得:x=47.5,y 1=y 2=750米,即兔子在途中750米处追上乌龟,故④正确.故选:C .【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.二、填空题11.18【解析】【分析】由菱形的性质可得AD=CD ,∠A=∠BCD ,CD ∥AB ,由等腰三角形的性质可得∠DAE=∠DEA=72°,∠DCE=54°,即可求解.【详解】解:∵四边形ABCD 是菱形,∴AD=CD ,∠A=∠BCD ,CD ∥AB,∵DE=AD ,∠ADE=36°,∴∠DAE=∠DEA=72°,∵CD ∥AB,∴∠CDE=∠DEA=72°,且DE=DC=DA,∴∠DCE=54°,∵∠DCB=∠DAE=72°,∴∠BCE=∠DCB-∠DCE=18°.故答案为:18.【点睛】本题考查了菱形的性质,等腰三角形的性质,熟练运用菱形的性质是本题的关键.12.2【解析】【分析】首先根据直角三角形斜边中线定理得出AB,然后利用勾股定理即可得出BC.【详解】∵在Rt△ABC中,∠ACB=90°,D是AB的中点,∴AB=2CD=17,∴BC=2,故答案为:2.【点睛】此题主要考查直角三角形斜边中线定理以及勾股定理的运用,熟练掌握,即可解题.13.AD=AB【解析】【分析】根据菱形的判定定理即可求解.【详解】∵四边形ABCD为平行四边形,所以可以添加AD=AB,即可判定ABCD是菱形,故填:AD=AB.【点睛】此题主要考查菱形的判定,解题的关键是熟知菱形的判定定理.14【解析】【分析】把此正方体的一面展开,然后在平面内,利用勾股定理求点A和点B间的线段长,即可得到蚂蚁爬行的最短距离.在直角三角形中,一条直角边长等于棱长,另一条直角边长等于两条棱长,利用勾股定理可求得.【详解】解:∵展开后由勾股定理得:AB 2=12+(1+1)2=5,∴AB =5.故答案为5【点睛】本题考查了平面展开﹣最短路径问题,“化曲面为平面”是解决“怎样爬行最近”这类问题的关键. 15.1【解析】试题分析:由m 与n 为已知方程的解,利用根与系数的关系求出m+n=4,mn=﹣3,将所求式子利用完全平方公式变形后,即2m ﹣mn+2n =()2m n +﹣3mn=16+9=1.故答案为1.考点:根与系数的关系.16.1【解析】【分析】根据直角三角形的性质得到AB=2CE=16,根据三角形中位线定理计算即可.【详解】∵∠ACB=90°,E 是AB 的中点,∴AB=2CE=16, ∵D 、F 分别是AC 、BC 的中点,∴DF=12AB=1. 【点睛】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.17.21x -<<-【解析】【分析】解不等式2x <kx+b <0的解集,就是指函数图象在A ,B 之间的部分的自变量的取值范围.【详解】解:根据题意得到y=kx+b 与y=2x 交点为A (-1,-2),解不等式2x <kx+b <0的解集,就是指函数图象在A ,B 之间的部分,又B (-2,0),此时自变量x 的取值范围,是-2<x <-1.即不等式2x <kx+b <0的解集为:-2<x <-1.故答案为:-2<x <-1.【点睛】本题主要考查一次函数与一元一次方程及一元一次不等式之间的内在联系.根据函数图象即可得到不等式的解集.三、解答题18.(1)//AB CD ,//AD BC ;(2)120°【解析】【分析】(1)根据平移的性质,即可判定;(2)根据平行和角平分线的性质进行等角转换,即可得解.【详解】(1)由平移的性质,得//AB CD ,AB=CD∴四边形ABCD 为平行四边形∴//AD BC(2)∵//AB CD∴BAG G ∠=∠∵G EAG ∠=∠∴EAG BAG ∠=∠∵AF 平分DAE ∠∴FAE FAD ∠=∠∴2BAD FAG ∠=∠∵30FAG ∠=∴60BAD ∠=∵//BC AD∴180B BAD ∠+∠=∴120B ∠=【点睛】此题主要考查平移的性质、平行四边形的判定与性质以及角平分线的性质,熟练掌握,即可解题.19.(1)14x =-;(2)2a a 1-. 【解析】【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解可得x 的值,经检验是分式方程的解; (2)原式括号中两项通分并进行同分母减法计算,同时利用除法法则变形、约分即可求解.【详解】(1)解:()231x x =---14x =- 经检验:14x =-是原方程的解,所以原方程的解为14x =-. (2)原式()()()212111a a a a a a a +-+=÷-- ()()()21111a a a a a a +-=⋅+- 2a a 1=-. 【点睛】本题考查了解分式方程以及分式方程的混合运算,熟练掌握运算法则是正确解题的关键.20.见解析【解析】【分析】利用平行线性质得到∠EBC=∠AEB=45°,因为BE 平分∠ABC ,所以∠ABE=∠EBC=45°,所以∠ABC=90°,所以四边形ABCD 是矩形【详解】∵AD∥BC∴∠EBC=∠AEB=45°∵BE 平分∠ABC∴∠ABC=∠ABE +∠EBC =90°又∵四边形ABCD是平行四边形∴四边形ABCD是矩形【点睛】本题主要考查角平分线性质、平行四边形性质、矩形的判定定理,本题关键在于能够证明出∠ABC是直角21.(1);(2);(3)见解析,.【解析】【分析】(1)根据勾股定理计算AC的长;(2)设EF=x,在Rt△AEF中,由勾股定理列方程可解答;(3)先正确画图,根据折叠的性质和平行线的性质证明CH=GH可解答.【详解】解:(1)∵四边形ABCD矩形,.在中,;(2)设EF的长为x.由折叠,得,,,,,,在中,,即,解得..(3)如图,∵四边形EFGH是平行四边形,∴EF∥GH,EF=GH=3,∴∠EFC=∠CGH,∵AB∥CD,由折叠得:∠BFC=∠EFC ,∴∠CGH=∠DCF ,∴CH=GH=3,∴DH=CD-CH=8-3=1.故答案为:(1);(2);(3)见解析,. 【点睛】本题是四边形的综合题目,考查了矩形的性质、折叠的性质、平行四边形的性质、平行线的性质、勾股定理等知识;熟练掌握矩形的性质和折叠的性质,由勾股定理得出方程是解决问题的关键.22.(1)设y=kx+b,当x=0时,y=2,当x=150时,y=1.∴ 150k+b=1 b="2" 解得∴y=x+2.(2)当x=400时,y=×400+2=5>3. ∴他们能在汽车报警前回到家.【解析】(1)先设出一次函数关系式,再根据待定系数法即可求得函数关系式;(2)把x=400代入一次函数关系式计算出y 的值即可得到结果.23.见解析【解析】【分析】利用平行四边形得到OA OC OB OD ==,,由E 、F 分别为OC 、OA 的中点得到OE=OF ,由此证明△OBE ≌△ODF ,得到BE=DF.【详解】∵四边形ABCD 是平行四边形,∴OA OC OB OD ==,.∵E F ,分别是OC OA ,的中点, ∴1122OE OC OF OA ==,, ∴OE OF =.在OBE △和ODF △中,OB OD BOE DOF OE OF =⎧⎪∠=∠⎨⎪=⎩,,,∴()OBE ODF SAS ≌,∴BE DF =.【点睛】此题考查平行四边形的对角线相等的性质,线段中点的性质,利用SAS 证明三角形全等,将所证明的等量线段放在全等三角形中证明三角形全等的思路很关键,解题中注意积累方法.24.(1)2x =;(2)无解【解析】【分析】(1)最简公分母为x (x+6).方程两边都乘最简公分母,可以把分式方程转化为整式方程求解.结果需检验(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】(1)416x x=+ 解:方程两边同乘以(6)x x +得64x x +=解这个方程得,2x =检验:当2x =时,(6)0x x +≠所以原方程的解是2x =(2)311(1)(2)x x x x -=--+ 解:方程两边同乘以(1)(2)x x -+得22223x x x x +--+=解这个方程得,1x =检验:当1x =时,(1)(2)0x x -+=所以1x =是增根,分式方程无解【点睛】此题考查解分式方程,解题关键在于掌握运算法则25.(1)A (-6,0)、B (0,2);(2)12a =-,2b =-;(3)E(-2,8) . 【解析】试题分析: (1)由题意易得点D 的坐标为(0,6),结合AOB 是由△DOC 绕点O 逆时针旋转90°得到的,即可得到OA=6,OB=OC=2,由此即可得到点A 和点B 的坐标;(2)将点A 和点C 的坐标代入26y ax bx =++列出关于a b 、的二元一次方程组,解方程组即可求得a b 、的值;(3)由(2)中所得a b 、的值可得二次函数的解析式,把解析式配方即可求得点E 的坐标,结合点A 和点B 的坐标即可求得AE 2、AB 2、BE 2的值,这样由勾股定理的逆定理即可得到∠ABE=90°,从而可得AB ⊥BE.试题解析:(1)∵在26y ax bx =++中,当0x =时,6y =,∴点D 的坐标为(0,6),∵△AOB 是由△DOC 绕点O 逆时针旋转90°得到的,∴OA=OD=6,OB=OC=2,∴点A 的坐标为(-6,0),点B 的坐标为(0,2);(2)∵点A (-6,0)和点C (2,0)在26y ax bx =++的图象上, ∴366604260a b a b -+=⎧⎨++=⎩ ,解得:122a b ⎧=-⎪⎨⎪=-⎩ ; (3)如图,连接AE ,由(2)可知1 22a b =-=-,, ∴221126(2)822y x x x =--+=-++, ∴点E 的坐标为(-2,8),∵点A (-6,0),点B (0,2),∴AE 2=22[2(6)]880---+=,AB 2=22(60)(20)40--+-=,BE 2=22(20)(82)40--+-=, ∴AE 2=AB 2+BE 2,∴∠ABE=90°,∴AB ⊥EB.2019-2020学年初二下学期期末数学模拟试卷一、选择题(每题只有一个答案正确)1.函数20182019x y x+=-的自变量的取值范围是( ) A .2018x ≠B .2018x ≠-C .2019x ≠D .2019x ≠- 2.如果一个正多边形内角和等于1080°,那么这个正多边形的每一个外角等于( )A .45B .60C .120D .1353.如图,□ABCD 的周长是28㎝,△ABC 的周长是22㎝,则AC 的长为( ) A .6㎝ B .12㎝ C .4㎝ D .8㎝4.将以此函数y=2x-1的图像向上平移2个单位长度后,得到的直线解析式为( )A .y=2x+2B .y=2x+1C .y=2x+3D .y=2x-55.下列事件为必然事件的是( )A .抛掷一枚硬币,落地后正面朝上B .篮球运动员投篮,投进篮筐;C .自然状态下水从高处流向低处;D .打开电视机,正在播放新闻.6.下列根式中,不是最简二次根式的是( )A .B .C .D .7.一个纳米粒子的直径是 1 纳米(1 纳米= 0.000 000 001米),则该纳米粒子的直径 1 纳米用科学记数法可表示为( )A .0.1⨯10-8米B .1⨯109米C .10 ⨯10-10米D .1⨯10-9米8.下列命题中,不正确...的是( ). A .平行四边形的对角线互相平分B .矩形的对角线互相垂直且平分C .菱形的对角线互相垂直且平分D .正方形的对角线相等且互相垂直平分9.如图,正方形ABCD 中,3DC DF =,连接AF 交对角线BD 于点E ,那么:DEF AEB S S ∆∆=( )A .1:2B .1:3C .1:4D .1:910.如图,在平行四边形ABCO 中,A (1,2),B (5,2),将平行四边形绕O 点逆时针方向旋转90°得平行四边形ABCO ,则点B 的坐标是( )A .(-2,4)B .(-2,5)C .(-1,5)D .(-1,4)二、填空题 11.某汽车生产厂对其生产的A 型汽车进行油耗试验,试验中汽车为匀速行驶汽在行驶过程中,油箱的余油量y (升)与行驶时间t (小时)之间的关系如下表: t (小时) 1 1 2 3 y (升) 111 92 84 76由表格中y 与t 的关系可知,当汽车行驶________小时,油箱的余油量为1.12.若关于x 的分式方程32ax x--=32x -+2有正整数解,则符合条件的非负整数a 的值为_____. 13.一个多边形的各内角都相等,且内外角之差的绝对值为60°,则边数为__________.14.如图,DE 为△ABC 的中位线,点F 在DE 上,且∠AFB =90°,若AB =10,BC =16,则EF 的长为___________.15.已知关于x 的一元二次方程(a 2﹣1)x 2+3ax ﹣3=0的一个解是x =1,则a 的值是_____.16.在等腰ABC △中,3AB AC ==,2BC =,则底边上的高等于__________.17.如图,菱形ABCD 中,AE 垂直平分BC ,垂足为E ,2AB cm =.那么菱形ABCD 的对角线BD 的长是_____cm .三、解答题18.如图,将矩形纸片ABCD 折叠,使点C 与点A 重合,折痕EF 分别与AB 、DC 交于点E 和点F ,AD =12,DC =1.(1)证明:△ADF ≌△AB′E ;(2)求线段AF的长度.(3)求△AEF的面积.19.(6分)先化简,再求值,211111xx x-⎛⎫⨯+⎪-+⎝⎭从-1、1、2中选择一个你喜欢的且使原式有意义的x的值代入求值.20.(6分)小红同学经常要测量学校旗杆的高度,她发现旗杆的绳子刚好垂到地面上,当她把绳子下端拉开5m后,发现这时绳子的下端正好距地面1m,学校旗杆的高度是()A.21m B.13m C.10m D.8m21.(6分)如图,在平面直角坐标系中,△ABC的顶点A、B分别落在x轴、y轴的正半轴上,顶点C在第一象限,BC与x轴平行.已知BC=2,△ABC的面积为1.(1)求点C的坐标.(2)将△ABC绕点C顺时针旋转90°,△ABC旋转到△A1B1C的位置,求经过点B1的反比例函数关系式.22.(8分)如图,已知直线1l与2l交x轴于点A,1l,2l分别交y轴于点B,C,1l,2l的表达式分别为131 2y x=-+,211 46y x=-.(1)求ABC∆的周长;(2)求12y y >时,x 的取值范围.23.(8分)在一只不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20个,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,然后把它放回袋中,不断重复,下表是活动进行中的一组统计数据:(1)上表中的a= ;(2)“摸到白球”的概率的估计值是 (精确到0.1)(3)试估算口袋中黑、白两种颜色的球各有多少个?24.(10分)已知BD 垂直平分AC ,∠BCD=∠ADF ,AF ⊥AC ,(1)证明ABDF 是平行四边形;(2)若AF=DF=5,AD=6,求AC 的长.25.(10分)如图,正比例函数2y x =的图象与反比例函数(0)k y k x=≠的图象交于A ,B 两点,其中点B 的横坐标为1-.(1)求k 的值.(2)若点P 是x 轴上一点,且6ABP S ∆=,求点P 的坐标.参考答案一、选择题(每题只有一个答案正确)1.C【解析】【分析】根据分母不为零分式有意义,可得答案.【详解】解:由题意,得2019-x≠0,解得x≠2019,故选:C.【点睛】本题考查了函数自变量的取值范围,利用分母不能为零得出不等式是解题关键.2.A【解析】【分析】首先设此多边形为n边形,根据题意得:180(n-2)=1080,即可求得n=8,再由多边形的外角和等于360°,即可求得答案.【详解】设此多边形为n边形,根据题意得:180(n-2)=1080,解得:n=8,∴这个正多边形的每一个外角等于:360°÷8=45°.故选A.【点睛】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.3.D【解析】∵ □的周长是28 cm,∴(cm).∵△的周长是22 cm,∴(cm).4.B【解析】【分析】直接根据一次函数图象与几何变换的有关结论求解.【详解】解:直线y=2x-1向上平移2个单位后得到的直线解析式为y=2x-1+2,即y=2x+1,故选B.【点睛】本题考查了一次函数图象与几何变换:一次函数y=kx+b(k、b为常数,k≠0)的图象为直线,当直线平移时k不变,当向上平移m个单位,则平移后直线的解析式为y=kx+b+m.5.C【解析】【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A、抛掷一枚硬币,落地后正面朝上是随机事件;B、篮球运动员投篮,投进篮筺是随机事件;C、自然状态下水从高处流向低处是必然事件;D、打开电视机,正在播放新闻是随机事件;故选:C.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.C【解析】【分析】根据最简二次根式的概念即可求出答案.【详解】C.原式=2,故C不是最简二次根式,故选:C.【点睛】此题考查最简二次根式,解题关键在于掌握其概念.7.D【解析】【分析】用科学记数法表示比较小的数时,n的值是第一个不是1的数字前1的个数的相反数,包括整数位上的1.【详解】1.111 111 111= 1 11-9米.故选D.【点睛】本题主要考查了科学记数法表示较小的数,n值的确定是解答本题的难点.8.B【解析】【分析】【详解】A. ∵平行四边形的对角线互相平分,故正确;B. ∵矩形的对角线互相平分且相等,故不正确;C. ∵菱形的对角线互相垂直且平分,故正确;D. ∵正方形的对角线相等且互相垂直平分,故正确;故选B.9.D【解析】【分析】根据正方形的性质易证S△DEF∽S△AEB,再根据相似三角形的面积比为相似比的平方即可得解.【详解】解:∵四边形ABCD为正方形,∴∠EDF=∠EBA,∠EFD=∠EAB,AB=DC,∴DEF AEB,∵DC=3DF,∴DF:AB=1:3∴S △DEF:S△AEB=1:9.故选:D.【点睛】本题主要考查相似三角形的判定与性质,正方形的性质,解此题的关键在于熟练掌握其知识点.10.B【解析】【分析】直接利用旋转的性质B点对应点到原点距离相同,进而得出坐标.【详解】解:∵将▱ABCO绕O点逆时针方向旋转90°到▱A′B′C′O的位置,B(5,2),∴点B′的坐标是:(-2,5).故选:B.【点睛】此题主要考查了平行四边形的性质以及旋转的性质,正确掌握平行四边形的性质是解题关键.二、填空题11.12.2【解析】【分析】由表格可知,开始油箱中的油为111L,每行驶1小时,油量减少8L,据此可得y与t的关系式.【详解】解:由题意可得:y=111-8t,当y=1时,1=111-8t解得:t=12.2.故答案为:12.2.【点睛】本题考查函数关系式.注意贮满111L汽油的汽车,最多行驶的时间就是油箱中剩余油量为1时的t的值.12.1【解析】【分析】先解分式方程得x=42a+,由分式方程有正整数解,得出a+1=4,或a+1=1,且a≠0,解出a的值,最后根据a为非负整数即可得出答案.【详解】解:方程两边同时乘以x﹣1,得:3﹣ax=3+1(x﹣1),解得x=42a+,。
人教版数学八年级下册16.1第2课时《二次根式的性质》教学设计一. 教材分析人教版数学八年级下册16.1第2课时《二次根式的性质》是初中数学的重要内容,主要让学生了解和掌握二次根式的性质。
教材通过引入实际问题,引导学生探究二次根式的性质,从而培养学生的抽象思维能力和解决问题的能力。
本节课的内容为后续学习二次根式的运算和应用打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了实数、有理数和无理数的基本概念,具备了一定的代数基础。
同时,学生已经学习了二次根式的概念和简单的运算。
但学生在理解和运用二次根式的性质方面还存在一定的困难,因此,教师在教学过程中要注重引导学生理解和运用二次根式的性质。
三. 教学目标1.理解二次根式的性质,并能熟练运用。
2.培养学生的抽象思维能力和解决问题的能力。
3.提高学生运用数学知识解决实际问题的能力。
四. 教学重难点1.二次根式的性质及其运用。
2.引导学生理解和运用二次根式的性质。
五. 教学方法1.情境导入:通过实际问题引入二次根式的性质,激发学生的学习兴趣。
2.自主探究:引导学生独立思考,探究二次根式的性质。
3.合作交流:分组讨论,让学生在讨论中理解和掌握二次根式的性质。
4.巩固练习:设计有针对性的练习,让学生在实践中运用二次根式的性质。
5.总结提升:引导学生总结二次根式的性质,并展望后续学习。
六. 教学准备1.准备相关的实际问题,用于导入新课。
2.准备PPT,展示二次根式的性质及相关例题。
3.准备练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)教师通过呈现一个实际问题,引导学生思考二次根式的性质。
例如:一个正方形的对角线长度为8,求正方形的边长。
2.呈现(10分钟)教师通过PPT展示二次根式的性质,引导学生理解和掌握。
例如:二次根式√a的性质有:(1)√a2=a(a≥0);(2)√a⋅√b=√ab(a≥0,b≥0);(3)√a√b =√ab(a≥0,b>0)。
人教版数学八年级下册教案 16.1《二次根式》一. 教材分析人教版数学八年级下册第16.1节《二次根式》是初中数学的重要内容,主要让学生了解二次根式的概念、性质和运算。
本节内容为后续学习二次根式的应用和二次方程等知识打下基础。
教材通过引入二次根式,让学生体会数学与实际生活的联系,培养学生的数学应用能力。
二. 学情分析学生在学习本节内容前,已掌握了实数、有理数和无理数的基本知识,具备一定的代数运算能力。
但学生对二次根式这一概念的理解和应用尚存困难,因此,在教学过程中,要注重引导学生通过实例认识二次根式,感悟数学与生活的联系,激发学习兴趣。
三. 教学目标1.理解二次根式的概念,掌握二次根式的性质。
2.学会二次根式的运算,提高学生的数学运算能力。
3.培养学生的数学思维能力,提高学生解决实际问题的能力。
四. 教学重难点1.二次根式的概念和性质。
2.二次根式的运算方法。
五. 教学方法1.情境教学法:通过生活实例引入二次根式,让学生感受数学与生活的联系。
2.启发式教学法:引导学生探究二次根式的性质和运算方法,培养学生的独立思考能力。
3.小组合作学习:学生进行小组讨论,共同解决问题,提高学生的合作能力。
六. 教学准备1.教学课件:制作课件,展示二次根式的概念、性质和运算方法。
2.练习题:准备适量练习题,巩固学生对二次根式的理解和应用。
七. 教学过程1.导入(5分钟)利用生活实例,如求物体长度、面积等,引出二次根式的概念。
2.呈现(10分钟)讲解二次根式的定义,让学生通过实例理解二次根式。
3.操练(15分钟)让学生进行二次根式的基本运算,如加减乘除,巩固学生对二次根式的掌握。
4.巩固(10分钟)出示练习题,让学生独立解答,检查学生对二次根式的理解和运用。
5.拓展(10分钟)讲解二次根式的性质,如二次根式的乘除法、化简等,引导学生运用性质解决问题。
6.小结(5分钟)对本节课的主要内容进行总结,让学生明确二次根式的概念、性质和运算方法。
人教版数学八年级下册16.1《二次根式》教学设计1一. 教材分析人教版数学八年级下册16.1《二次根式》是学生在学习了实数、有理数和无理数的基础上,进一步研究根式的一种拓展。
这一节内容主要介绍了二次根式的定义、性质和运算规则。
通过学习二次根式,学生能够更好地理解数学中的根式概念,提高解决实际问题的能力。
教材通过丰富的例题和练习题,帮助学生巩固知识,提高解题技能。
二. 学情分析学生在学习本节内容前,已经掌握了实数、有理数和无理数的基本概念,对数的运算规则有一定的了解。
但学生对二次根式的理解可能还存在一定的困难,需要通过具体例题和实际问题来引导学生理解和掌握二次根式的相关概念和运算规则。
三. 教学目标1.了解二次根式的定义和性质;2.掌握二次根式的运算规则;3.能够运用二次根式解决实际问题;4.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.二次根式的定义和性质;2.二次根式的运算规则;3.二次根式在实际问题中的应用。
五. 教学方法采用问题驱动法、案例教学法和小组合作法进行教学。
通过设置问题引导学生思考,提供具体案例让学生动手操作,小组讨论促进学生合作交流。
六. 教学准备2.教学PPT;3.练习题;4.教学工具(如黑板、粉笔等)。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾实数、有理数和无理数的概念,为新课的学习做好铺垫。
2.呈现(10分钟)讲解二次根式的定义和性质,通过PPT展示相关例题,让学生直观地理解二次根式的概念。
3.操练(10分钟)让学生动手解决一些简单的二次根式运算题目,巩固所学知识。
4.巩固(10分钟)提供一些实际问题,让学生运用二次根式进行解决,加深对二次根式的理解。
5.拓展(10分钟)引导学生思考二次根式在实际生活中的应用,提出一些综合性的问题,激发学生的学习兴趣。
6.小结(5分钟)对本节课的主要内容进行总结,强调二次根式的定义、性质和运算规则。
7.家庭作业(5分钟)布置一些有关二次根式的练习题,让学生课后巩固所学知识。
16.1 二次根式(1)教学目的:1、了解二次根式的概念;2、了解二次根式的基本性质;3、通过二次根式原概念和性质的探究,提高数学探究能力和归纳表达能力。
重点:二次根式的概念和基本性质难点:二次根式的基本性质的灵活运用。
教学过程:例1.(1)当x 是怎样的实数时,2-x 在实数范围内有意义?(2)当x 是怎样的实数时,2x 在实数范围内有意义? (3)当x 是怎样的实数时,3x 在实数范围内有意义? 归纳总结:n x :当n 为奇数时,x ≥0时nx 有意义当n 为偶数时,x 为任意实数时n x 都有意义1. 求下列二次根式中字母k 的取值范围:(1 (2 (3 (42. 当x 分别取下列值时,的值:()10x =; ()21x =; ()31x =-.检测:求二次根式中x 的取值范围: (1)4-x (2)12+x (3)25+x (4)xx -42附加题:(5)22x x - (6)42-x (7)42+-x x 教学目的:1、理解二次根式的性质:(1)a (a ≥0)是非负数;(2)(a )2=a (a ≥0);(3)2a =a (a ≥0)2、会运用其进行相关计算。
重点:会运用a (a ≥0)是非负数、(a )2=a (a ≥0)、2a =a (a ≥0)进行相关运算。
难点:理解a (a ≥0)是非负数、(a )2=a (a ≥0)、2a =a (a ≥0)。
教学过程:阅读P69-P71内容,完成两个探究填空,理解、识记两个公式。
公式1 : 公式2 : 例1计算:(1)(5.1)2 (2)(52)2练习:1、(32)2 2、(23)2 3、(52)2 4、(25)2 例2化简:(1)16 (2)2)5(-16.1 二次根式(2)教学目的:复习二次根式的概念、二次根式的基本性质a (a ≥0)是非负数、(a )2=a (a ≥0)、2a =a (a ≥0),能熟练运用其进行相关计算。
义务教育课程标准人教版数学教案九年级下册科任老师二次根式16.1二次根式⑴一、学习目标1、了解二次根式的概念,能判断一个式子是不是二次根式。
2、掌握二次根式有意义的条件。
3、掌握二次根式的基本性质:,a 0(a 0)和(._a)2 a(a 0)二、学习重点、难点重点:二次根式有意义的条件;二次根式的性质.难点:综合运用性质 " 0(a 0)和(、a)2 a(a 0)。
三、学习过程(一)复习引入:(1)已知x2 = a,那么a是x的_________; x 是a 的____________ , 记为________a 一定是___________ o _(2)4的算术平方根为2,用式子表示为仏 __________________ ;正数a的算术平方根为____________ ,0的算术平方根为___________ ;式子■, a 0(a 0)的意义是________________________o(二)提出问题1、式子a表示什么意义?2、什么叫做二次根式?3、式子、a 0(a 0)的意义是什么?4、(、a)2 a(a 0)的意义是什么?5、如何确定一个二次根式有无意义?(三)自主学习自学课本第2页例前的内容,完成下面的问题:1、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?_ _ 运律—V3 訥6 3:yJ~53心)V x212、计算:⑵(-3)2⑴(.4)2(3)(..0.5)2(4) ( )2V3根据计算结果,你能得出结论:(尉 ___________________ 其中a 0,( a)2 a(a 0)的意义是__________________________ 。
3、当a为正数时指a的___________________________ ,而0的算术平方根是________ ,负数__________ ,只有非负数a才有算术平方根。
所以,在二次根式中,字母a必须满足, 才有意义。
16.1 二次根式
一、内容和内容解析
1.内容
二次根式的概念.
2.内容解析
本节课是在学生学习了平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根,知道开方与乘方互为逆运算的基础上,来学习二次根式的概念. 它不仅是对前面所学知识的综合应用,也为后面学习二次根式的性质和四则运算打基础.
教材先设置了三个实际问题,这些问题的结果都可以表示成二次根式的形式,它们都表示一些正数的算术平方根,由此引出二次根式的定义. 再通过例1讨论了二次根式中被开方数字母的取值范围的问题,加深学生对二次根式的定义的理解.
本节课的教学重点是:了解二次根式的概念;
二、目标和目标解析
1.教学目标
(1)体会研究二次根式是实际的需要.
(2)了解二次根式的概念.
2. 教学目标解析
(1)学生能用二次根式表示实际问题中的数量和数量关系,体会研究二次根式的必要性.(2)学生能根据算术平方根的意义了解二次根式的概念,知道被开方数必须是非负数的理由,知道二次根式本身是一个非负数,会求二次根式中被开方数字母的取值范围.
三、教学问题诊断分析
对于二次根式的定义,应侧重让学生理解“的双重非负性,”即被开方数≥0是非负数,的算术平方根≥0也是非负数.教学时注意引导学生回忆在实数一章所学习的有关平方根的意义和特征,帮助学生理解这一要求,从而让学生得出二次根式成立的条件,并运用被开方数是非负数这一条件进行二次根式有意义的判断.
本节课的教学难点为:理解二次根式的双重非负性.
四、教学过程设计
1.创设情境,提出问题
问题1你能用带有根号的的式子填空吗?
(1)面积为3 的正方形的边长为_______,面积为S 的正方形的边长为_______.
(2)一个长方形围栏,长是宽的2 倍,面积为130m?,则它的宽为______m.
(3)一个物体从高处自由落下,落到地面所用的时间t(单位:s)与开始落下的高度h(单位:m)满足关系h =5t?,如果用含有h 的式子表示t ,则t= _____.
师生活动:学生独立完成上述问题,用算术平方根表示结果,教师进行适当引导和评价.
【设计意图】让学生在填空过程中初步感知二次根式与实际生活的紧密联系,体会研究二次根式的必要性.
问题2 上面得到的式子,,分别表示什么意义?它们有什么共同特征?
师生活动:教师引导学生说出各式的意义,概括它们的共同特征:都表示一个非负数(包括字母或式子表示的非负数)的算术平方根.
【设计意图】为概括二次根式的概念作铺垫.
2.抽象概括,形成概念
问题3你能用一个式子表示一个非负数的算术平方根吗?
师生活动:学生小组讨论,全班交流.教师由此给出二次根式的定义:一般地,我们把形如(a≥0)的式子叫做二次根式,“”称为二次根号.
【设计意图】让学生体会由特殊到一般的过程,培养学生的概括能力.
追问:在二次根式的概念中,为什么要强调“a≥0”?
师生活动:教师引导学生讨论,知道二次根式被开方数必须是非负数的理由.
【设计意图】进一步加深学生对二次根式被开方数必须是非负数的理解.
3.辨析概念,应用巩固
例1当时怎样的实数时,在实数范围内有意义?
师生活动:引导学生从概念出发进行思考,巩固学生对二次根式的被开方数为非负数的理解.例2当是怎样的实数时,在实数范围内有意义?呢?
师生活动:先让学生独立思考,再追问.
【设计意图】在辨析中,加深学生对二次根式被开方数为非负数的理解.
问题4 你能比较与0的大小吗?
师生活动:通过分和这两种情况的讨论,比较与0的大小,引导学生得出≥0的结论,强化学生对二次根式本身为非负数的理解.
【设计意图】通过这一活动的设计,提高学生对所学知识的迁移能力和应用意识;培养学生分类讨论和归纳概括的能力.
4.综合运用,巩固提高
练习1 当x 是什么实数时,下列各式有意义.
(1);(2);(3);(4).
【设计意图】辨析二次根式的概念,确定二次根式有意义的条件.
【设计意图】设计有一定综合性的题目,考查学生的灵活运用的能力,开阔学生的视野,训练学生的思维.
5.总结反思
教师和学生一起回顾本节课所学主要内容,并请学生回答以下问题.
(1)本节课你学到了哪一类新的式子?
(2)二次根式有意义的条件是什么?二次根式的值的范围是什么?
(3)二次根式与算术平方根有什么关系?
师生活动:教师引导,学生小结.
【设计意图】:学生共同总结,互相取长补短,再一次突出本节课的学习重点,掌握解题方法.
6.布置作业:
教科书习题16.1第1,3,5,7题.
五、目标检测设计
1. 下列各式中,一定是二次根式的是()
A. B. C. D.
【设计意图】考查对二次根式概念的了解,要特别注意被开方数为非负数.
2. 当时,二次根式无意义.
【设计意图】考查二次根式无意义的条件,即被开方数小于0,要注意审题.
3.当时,二次根式有最小值,其最小值是.
【设计意图】本题主要考查二次根式被开方数是非负数的灵活运用.
4.对于,小红根据被开方数是非负数,得出的取值范围是≥.小慧认为还应考虑分母不为0的情况.你认为小慧的想法正确吗?试求出的取值范围.
【设计意图】考查二次根式的被开方数为非负数和一个式子的分母不能为0,解题时需要综合考虑.。