小升初数学易考30个题型汇总及知识点大全
- 格式:doc
- 大小:46.50 KB
- 文档页数:15
小升初数学易考30个题型汇总及知识点大全一、工程问题1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?解:1/20+1/16=9/80表示甲乙的工作效率9/80×5=45/80表示5小时后进水量1-45/80=35/80表示还要的进水量35/80÷(9/80-1/10)=35表示还要35小时注满答:5小时后还要35小时就能将水池注满。
2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。
如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。
现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?解:由题意知,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效>甲的工效>乙的工效。
又因为,要求“两队合作的天数尽可能少”,所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成。
只有这样才能“两队合作的天数尽可能少”。
设合作时间为x天,则甲独做时间为(16-x)天1/20*(16-x)+7/100*x=1 x=10答:甲乙最短合作10天3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。
现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。
乙单独做完这件工作要多少小时?解:由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量(1/4+1/5)×2=9/10表示甲做了2小时、乙做了4小时、丙做了2小时的工作量。
根据“甲、丙合做2小时后,余下的乙还需做6小时完成”可知甲做2小时、乙做6小时、丙做2小时一共的工作量为1。
所以1-9/10=1/10表示乙做6-4=2小时的工作量。
小升初数学复习知识点大全
一、整数运算
1.整数的概念
2.整数的加法、减法
3.整数的乘法、除法
4.整数的大小比较
5.整数的绝对值
二、分数运算
1.分数的概念
2.分数的加法、减法
3.分数的乘法、除法
4.分数的化简
5.分数的大小比较
三、小数运算
1.小数的概念
2.小数的加法、减法
3.小数的乘法、除法
4.小数的大小比较
5.小数与分数的相互转换
四、数字的性质
1.奇数、偶数的概念及判断方法
2.能被2整除的性质
3.能被3整除的性质
4.能被5整除的性质
5.能被9整除的性质
五、算式的变形与意义
1.加减法的结合律、交换律、分配律
2.乘除法的意义与性质
3.乘除法的结合律、交换律
4.简单算式的变形与计算
六、数与代数
1.数的概念及分类
2.自然数、整数、分数、小数等的互相转换
3.代数式的概念及构成
4.代数式的计算
七、常见几何图形
1.点、线、线段、射线的概念
2.直角、钝角、锐角的概念
3.正方形、长方形、三角形、菱形、梯形的定义、性质及判断方法
4.圆的定义、性质及计算
八、面积、体积、容量
1.长方形、正方形、三角形、圆形的面积计算
2.立方体、长方体、圆柱体的体积计算
3.比较两个面积或体积的大小
4.容积的计算
九、时刻、时区
1.时间的概念及表示方法
2.24小时制与12小时制的互换
3.时分数与分数的互换
4.时区的概念与计算
十、逻辑问题
1.推理与判断
2.常见逻辑问题的解答方法。
小升初数学必考题型大全一.解答题(共50题,共300分)1.一种圆柱形状的铁皮油桶,量得底面直径8dm,高5dm.做一个这样的铁皮油桶至少需多少平方米铁皮?(铁皮厚度不计,结果保留整数)2.一个圆锥体钢制零件,底面半径是3cm,高是2m,这个零件的体积是多少立方厘米?3.一条公路全长1500m,修路队第一天修了全长的45%,第二天修了全长的。
还剩下多少米没有修?4.一个圆柱形的金鱼缸,底面半径是40cm,里面有一座假山石全部浸没在水中(水没有溢出),取出假山石后,水面下降了5cm。
这座假山的体积是多少?5.一件上衣打八折后的售价是160元,老板说:“如果这件上衣对折就不赚也不亏”。
这件上衣成本是多少元?6.某电视机厂去年电视机生产情况统计图(单位:台; 2011年1月)看图列式计算:(1)全年共生产电视机多少台?(2)平均每月生产电视机多少台?(3)第四季度比第一季度增产百分之几?7.我们把李明从家出发,向西走了500米记作走了-500米,那么李明又接着走了+800米是什么意思?这时李明离家的距离有多远?8.2018年2月,王阿姨把一些钱存入银行,定期三年,如果年利率是5.0%,到期后可以取出92000元。
王阿姨当时存入银行多少钱?9.在打谷场上,有一个近似于圆锥的小麦堆,高是1.2米,测得底面直径是4米。
每立方米小麦约重735千克,这堆小麦大约有多少千克?(得数保留整千克数)10.一个无盖圆柱形油桶,底面半径2分米,高8分米,里面装满汽油,1升汽油重0.8千克。
这个油桶最多装多少千克的汽油?11.某水果店新进一批水果,其中苹果占新进水果总量的30%,香蕉占40%,已知这两种水果共70kg,这批水果的总量是多少?12.某建筑物内有6根圆柱形大柱,高10米,大柱周长25.12分米,要全部涂上油漆,如果按每平方米的油漆费为80元计算,需用多少钱?13.1990年~1995年下列国家年平均森林面积(单位:平方千米)的变化情况是:如果规定将“增加”记为正,请用正数和负数表示这六个国家1990年~1995年年平均森林面积的增长量。
2016小升初数学易考30个题型汇总及知识点大全一、工程问题1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?解:1/20+1/16=9/80表示甲乙的工作效率9/80×5=45/80表示5小时后进水量1-45/80=35/80表示还要的进水量35/80÷(9/80-1/10)=35表示还要35小时注满答:5小时后还要35小时就能将水池注满。
2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。
如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。
现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?解:由题意知,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效>甲的工效>乙的工效。
又因为,要求“两队合作的天数尽可能少”,所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成。
只有这样才能“两队合作的天数尽可能少”。
设合作时间为x天,则甲独做时间为(16-x)天1/20*(16-x)+7/100*x=1 x=10答:甲乙最短合作10天3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。
现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。
乙单独做完这件工作要多少小时?解:由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量(1/4+1/5)×2=9/10表示甲做了2小时、乙做了4小时、丙做了2小时的工作量。
根据“甲、丙合做2小时后,余下的乙还需做6小时完成”可知甲做2小时、乙做6小时、丙做2小时一共的工作量为1。
1. 正方体展开图正方体有6个面,12条棱,沿着某棱将正方体剪开,可以得到正方体的展开图。
很显然,正方体的展开图形不是唯一的,但也不是无限的,事实上,正方体的展开图形有且只有11种,11种展开图形又可以分为4种类型:(1)141型中间一行4个作侧面,上下两个各作为上下底面,共有6种基本图形。
(2)231型中间一行3个作侧面,共3种基本图形。
(3)222型中间两个面,只有1种基本图形。
(4)33型中间没有面,两行只能有一个正方形相连,只有1种基本图形。
2. 和差问题已知两数的和与差,求这两个数。
【口诀】和加上差,越加越大;除以2,便是大的;和减去差,越减越小;除以2,便是小的。
例:已知两数和是10,差是2,求这两个数。
按口诀,则大数=(10+2)/2=6,小数=(10-2)/2=4。
3. 鸡兔同笼问题假设全是鸡,假设全是兔。
多了几只脚,少了几只足?除以脚的差,便是鸡兔数。
例:鸡免同笼,有头36 ,有脚120,求鸡兔数。
求兔时,假设全是鸡,则免子数=(120-36X2)/(4-2)=24求鸡时,假设全是兔,则鸡数 =(4X36-120)/(4-2)=124. 浓度问题(1)加水稀释【口诀】加水先求糖,糖完求糖水。
糖水减糖水,便是加糖量。
例:有20千克浓度为15%的糖水,加水多少千克后,浓度变为10%?加水先求糖,原来含糖为:20X15%=3(千克)糖完求糖水,含3千克糖在10%浓度下应有多少糖水,3/10%=30(千克)糖水减糖水,后的糖水量减去原来的糖水量,30-20=10(千克)(2)加糖浓化【口诀】加糖先求水,水完求糖水。
糖水减糖水,求出便解题。
例:有20千克浓度为15%的糖水,加糖多少千克后,浓度变为20%?加糖先求水,原来含水为:20X(1-15%)=17(千克)水完求糖水,含17千克水在20%浓度下应有多少糖水,17/(1-20%)=21.25(千克)糖水减糖水,后的糖水量减去原来的糖水量,21.25-20=1.25(千克)5. 路程问题(1)相遇问题【口诀】相遇那一刻,路程全走过。
小升初数学30个必考知识点大全1.数的读写和进位规则:掌握整数、分数、百分数的读写,了解进位的规则。
2.两位数以内的加减法:能够熟练计算两位数以内的加减法,掌握进位和退位规则。
3.倍数和约数:掌握倍数和约数的概念,并能应用于解决实际问题。
4.三位数以内的加减法和乘法:能够熟练计算三位以内的加减法和乘法,掌握进位和退位规则。
5.除法和分数的加减乘除:掌握整数的除法和分数的加减乘除运算,能够应用于解决实际问题。
6.小数的读写和比较:能够正确读写小数,掌握小数的比较规则。
7.分数的改写和比较:掌握分数的化简和扩大的方法,能够正确比较分数大小。
8.千分数和百分数的转化:掌握千分数和百分数的转化方法和应用。
9.平面图形的认识:认识常见平面图形的形状和性质,如三角形、四边形等。
10.周长和面积的计算:能够计算常见平面图形的周长和面积,了解计算公式。
11.角的认识和度量:掌握角的定义、度量方法和表示法。
12.直线、射线和线段:掌握直线、射线和线段的定义和特点。
13.线段比例和相似:掌握线段比例的计算方法和相似图形的性质。
14.已知条件求未知数:能够根据已知条件求解未知数的值,包括一元一次方程和一元一次不等式。
15.图表的读取和分析:能够正确读取和分析图表,解决与实际生活相关的问题。
16.长方体和正方体:了解长方体和正方体的定义和性质,能够计算其体积和表面积。
17.圆的认识和计算:了解圆的定义和性质,能够计算圆的周长和面积。
18.分数与小数的换算:掌握分数与小数的相互转化方法和应用。
19.余数和整除性质:了解余数和整除性质,能够应用于解决相关问题。
20.整数的加减运算:掌握整数的加减运算方法和规律。
21.方程的解和方程的应用:能够解一元一次方程和应用方程解决实际问题。
22.数轴和有理数的大小比较:了解数轴和有理数的定义,能够正确比较有理数的大小。
23.数列的认识和求和:了解数列的定义和性质,能够求解等差数列的和。
历年小升初数学易考30个题型汇总(附知识点)【一】工程问题1、甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,假设水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满依旧要多少小时?解:1/20+1/16=9/80表示甲乙旳工作效率9/80×5=45/80表示5小时后进水量1-45/80=35/80表示还要旳进水量35/80÷〔9/80-1/10〕=35表示还要35小时注满答:5小时后还要35小时就能将水池注满。
2、修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。
假如两队合作,由于彼此施工有阻碍,他们旳工作效率就要降低,甲队旳工作效率是原来旳五分之四,乙队工作效率只有原来旳十分之九。
现在打算16天修完这条水渠,且要求两队合作旳天数尽可能少,那么两队要合作几天?解:由题意知,甲旳工效为1/20,乙旳工效为1/30,甲乙旳合作工效为1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效>甲旳工效>乙旳工效。
又因为,要求“两队合作旳天数尽可能少”,因此应该让做旳快旳甲多做,16天内实在来不及旳才应该让甲乙合作完成。
只有如此才能“两队合作旳天数尽可能少”。
设合作时刻为x天,那么甲独做时刻为〔16-x〕天1/20*〔16-x〕+7/100*x=1 x=10答:甲乙最短合作10天3、一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。
现在先请甲、丙合做2小时后,余下旳乙还需做6小时完成。
乙单独做完这件工作要多少小时?解:由题意知,1/4表示甲乙合作1小时旳工作量,1/5表示乙丙合作1小时旳工作量〔1/4+1/5〕×2=9/10表示甲做了2小时、乙做了4小时、丙做了2小时旳工作量。
依照“甲、丙合做2小时后,余下旳乙还需做6小时完成”可知甲做2小时、乙做6小时、丙做2小时一共旳工作量为1。
小升初数学必考题型讲解
一、题型一:计算题
1. 知识点:小数乘法、小数除法、分数乘法、分数除法。
2. 常见考法:小数、分数混合运算,应用题。
3. 解题技巧:将小数或分数转化为整数,再进行运算,注意小数点的处理。
4. 易错点:运算顺序错误、小数点处理不当、运算符号看错等。
5. 详细解析:在计算小数、分数混合运算时,要按照从左到右的顺序进行计算,先乘除后加减,有括号的先算括号里面的。
在处理小数或分数时,可以将小数或分数转化为整数进行计算。
在应用题中,需要注意小数点的处理和运算顺序。
二、题型二:方程题
1. 知识点:一元一次方程、二元一次方程、三元一次方程。
2. 常见考法:解方程、方程应用题。
3. 解题技巧:设未知数、列方程、解方程、检验。
4. 易错点:未知数处理不当、方程变形错误、解方程不彻底等。
5. 详细解析:设出未知数,找到等量关系列出方程,进行变形求解,最后检验。
在解方程时,需要注意未知数的处理和方程变形的方法。
在应用题中,需要找到等量关系列出方程,进行变形求解,最
后检验。
三、题型三:几何题
1. 知识点:平面几何、立体几何。
2. 常见考法:计算面积、计算体积、应用题。
3. 解题技巧:找到几何元素之间的对应关系,利用公式进行计算。
4. 易错点:几何元素对应关系不明确、公式使用错误等。
5. 详细解析:在几何题中,需要找到几何元素之间的对应关系,如面积、周长、体积等。
对于平面几何,需要利用直角三角形的勾股定理进行计算;对于立体几何,需要利用公式进行计算。
小升初数学易考30个题型汇总及知识点大全一、工程问题1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?解:1/20+1/16=9/80表示甲乙的工作效率9/80×5=45/80表示5小时后进水量1-45/80=35/80表示还要的进水量35/80÷(9/80-1/10)=35表示还要35小时注满答:5小时后还要35小时就能将水池注满。
2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。
如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。
现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?解:由题意知,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效>甲的工效>乙的工效。
又因为,要求“两队合作的天数尽可能少”,所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成。
只有这样才能“两队合作的天数尽可能少”。
设合作时间为x天,则甲独做时间为(16-x)天1/20*(16-x)+7/100*x=1 x=10答:甲乙最短合作10天3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。
现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。
乙单独做完这件工作要多少小时?解:由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量(1/4+1/5)×2=9/10表示甲做了2小时、乙做了4小时、丙做了2小时的工作量。
根据“甲、丙合做2小时后,余下的乙还需做6小时完成”可知甲做2小时、乙做6小时、丙做2小时一共的工作量为1。
所以1-9/10=1/10表示乙做6-4=2小时的工作量。
2024小升初数学必考题型汇总2024小升初数学必考题型汇总一、计算1、数的加减法 (1)整数和小数的加减法 (2)分数和百分数的加减法2、数的乘法与除法 (1)整数的乘法与除法 (2)分数的乘法与除法 (3)小数和百分数的乘法与除法3、方程 (1)一元一次方程 (2)二元一次方程 (3)三元一次方程4、简算与巧算 (1)加减法简算与巧算 (2)乘除法简算与巧算 (3)混合运算简算与巧算二、几何1、平面图形 (1)直线、射线、线段 (2)角的度量与计算 (3)三角形、四边形、多边形2、立体图形 (1)长方体、正方体、圆柱、圆锥 (2)球、棱柱、四面体三、统计与概率1、统计初步知识 (1)数据的收集与整理 (2)统计表与统计图2、概率初步知识 (1)事件的发生与可能性 (2)事件的概率与概率计算四、应用题1、行程问题 (1)一般行程问题 (2)多次相遇问题 (3)变速行程问题2、工程问题 (1)一般工程问题 (2)周期工程问题 (3)分工合作工程问题3、比例问题 (1)一般比例问题 (2)百分数比例问题 (3)浓度问题4、分数问题 (1)一般分数问题 (2)分数工程问题 (3)分数行程问题五、拓展题1、多位数问题2、逻辑推理问题3、数独问题2024小升初数学必考题型分类汇总2024小升初数学必考题型分类汇总一、计算题1、有括号的先算小括号里面的,没有括号的先算乘除,再算加减。
2、递等式计算题,不能急于求成,要按照先乘除,后加减,遇到有括号的要先算括号里面的运算顺序进行计算。
3、混合运算题,不能掉以轻心,要认真仔细,先算乘除,后加减,遇到括号要先计算括号里面的运算。
二、填空题1、填空题一定要仔细审题,比较大小题,大于号和小于号一定填正确。
2、填空题答案不唯一,要认真审题,填写正确的答案。
3、填空题涉及到的知识点较多,需要加强练习,积累经验。
三、选择题1、选择题不要盲目选择,要仔细分析题目,选择正确的答案。
小升初数学考试重点题型汇总一、计算题1.有括号的先算小括号里面的,没有括号的先算乘除,再算加减。
2.递等式计算题,不能急于求成,要按照先乘除,后加减,遇到有括号的要先计算括号里面的运算顺序进行计算。
3.混合运算题,不能掉以轻心,要认真仔细,先算乘除,后加减,遇到括号要先计算括号里面的运算。
二、填空题1.填空题一定要仔细审题,比较大小题,大题可能是小题思考的延续,小题可能是大题的补充或延续。
2.求近似值,改写用“万”、“亿”做单位或省略“万”、“亿”后面的尾数或“四舍五入”以及数的组成(必然出现一种)。
3.举例:5个1,16个1/100组成的数是(1.05)。
第五次全国人口普查结果,全国总人口为十二亿九千五百三十三万,这个数写作(1295330000)。
三、应用题1.运用运算定律及性质速算与巧算。
例如:17×5+17×7+13×5+13×7这种技巧性试题。
重点题型有多位数的计算,小数的基本运算,小数的简便运算等。
其中,多位数的计算主要以通过缩放讲多位数凑成各位数全是9的多位数,再利用乘法的分配率进行计算。
重点在于以基础计算为主,掌握各种简便运算技巧,提高准确度和速度。
2.平均数应用题。
“平均数”这个数学概念在同学们的日常学习和生活中经常用到。
如计算全班同学的数学“平均成绩”,同学与爸爸妈妈三个人的“平均年龄”等等,都是会经常碰到的求平均数的问题。
3.和差倍应用题。
为了弄清题目中两种量彼此间的关系,需要孩子学习使用画线段图的方法以线段的相对长度来表示两种量间的关系,找到解题的途径。
和倍问题是已知大小两个数的和与它们的倍数关系,求大小两个数的应用题,一般可应用公式:数量和÷对应的倍数和=“1”倍量;差倍问题是为了弄清题目中两种量彼此间的关系。
以上是小升初数学考试的重点题型汇总,希望对你有所帮助。
小升初数学易考30个题型汇总及知识点大全一、工程问题1.甲乙两个水管单独开;注满一池水;分别需要20小时;16小时.丙水管单独开;排一池水要10小时;若水池没水;同时打开甲乙两水管;5小时后;再打开排水管丙;问水池注满还是要多少小时?解:1/20+1/16=9/80表示甲乙的工作效率9/80×5=45/80表示5小时后进水量1-45/80=35/80表示还要的进水量35/80÷(9/80-1/10)=35表示还要35小时注满答:5小时后还要35小时就能将水池注满。
2.修一条水渠;单独修;甲队需要20天完成;乙队需要30天完成。
如果两队合作;由于彼此施工有影响;他们的工作效率就要降低;甲队的工作效率是原来的五分之四;乙队工作效率只有原来的十分之九。
现在计划16天修完这条水渠;且要求两队合作的天数尽可能少;那么两队要合作几天?解:由题意知;甲的工效为1/20;乙的工效为1/30;甲乙的合作工效为1/20*4/5+1/30*9/10=7/100;可知甲乙合作工效>甲的工效>乙的工效。
又因为;要求“两队合作的天数尽可能少”;所以应该让做的快的甲多做;16天内实在来不及的才应该让甲乙合作完成。
只有这样才能“两队合作的天数尽可能少”。
设合作时间为x天;则甲独做时间为(16-x)天1/20*(16-x)+7/100*x=1 x=10答:甲乙最短合作10天3.一件工作;甲、乙合做需4小时完成;乙、丙合做需5小时完成。
现在先请甲、丙合做2小时后;余下的乙还需做6小时完成。
乙单独做完这件工作要多少小时?解:由题意知;1/4表示甲乙合作1小时的工作量;1/5表示乙丙合作1小时的工作量(1/4+1/5)×2=9/10表示甲做了2小时、乙做了4小时、丙做了2小时的工作量。
根据“甲、丙合做2小时后;余下的乙还需做6小时完成”可知甲做2小时、乙做6小时、丙做2小时一共的工作量为1。
所以1-9/10=1/10表示乙做6-4=2小时的工作量。
1/10÷2=1/20表示乙的工作效率。
1÷1/20=20小时表示乙单独完成需要20小时。
答:乙单独完成需要20小时。
4.一项工程;第一天甲做;第二天乙做;第三天甲做;第四天乙做;这样交替轮流做;那么恰好用整数天完工;如果第一天乙做;第二天甲做;第三天乙做;第四天甲做;这样交替轮流做;那么完工时间要比前一种多半天。
已知乙单独做这项工程需17天完成;甲单独做这项工程要多少天完成?解:由题意可知;1/甲+1/乙+1/甲+1/乙+……+1/甲=1 1/乙+1/甲+1/乙+1/甲+……+1/乙+1/甲×0.5=1(1/甲表示甲的工作效率、1/乙表示乙的工作效率;最后结束必须如上所示;否则第二种做法就不比第一种多0.5天)1/甲=1/乙+1/甲×0.5(因为前面的工作量都相等)得到1/甲=1/乙×2又因为1/乙=1/17所以1/甲=2/17;甲等于17÷2=8.5天答:甲单独做这项工程要8.5天完成。
5.师徒俩人加工同样多的零件。
当师傅完成了1/2时;徒弟完成了120个。
当师傅完成了任务时;徒弟完成了4/5;这批零件共有多少个?答案为300个120÷(4/5÷2)=300个可以这样想:师傅第一次完成了1/2;第二次也是1/2;两次一共全部完工;那么徒弟第二次后共完成了4/5;可以推算出第一次完成了4/5的一半是2/5;刚好是120个。
6.一批树苗;如果分给男女生栽;平均每人栽6棵;如果单份给女生栽;平均每人栽10棵。
单份给男生栽;平均每人栽几棵?答案是15棵算式:1÷(1/6-1/10)=15棵7.一个池上装有3根水管。
甲管为进水管;乙管为出水管;20分钟可将满池水放完;丙管也是出水管;30分钟可将满池水放完。
现在先打开甲管;当水池水刚溢出时;打开乙,丙两管用了18分钟放完;当打开甲管注满水是;再打开乙管;而不开丙管;多少分钟将水放完?答案为45分钟。
1÷(1/20+1/30)=12 表示乙丙合作将满池水放完需要的分钟数。
1/12*(18-12)=1/12*6=1/2 表示乙丙合作将漫池水放完后;还多放了6分钟的水;也就是甲18分钟进的水。
1/2÷18=1/36 表示甲每分钟进水最后就是1÷(1/20-1/36)=45分钟。
8.某工程队需要在规定日期内完成;若由甲队去做;恰好如期完成;若乙队去做;要超过规定日期三天完成;若先由甲乙合作二天;再由乙队单独做;恰好如期完成;问规定日期为几天?答案为6天解:由“若乙队去做;要超过规定日期三天完成;若先由甲乙合作二天;再由乙队单独做;恰好如期完成;”可知:乙做3天的工作量=甲2天的工作量即:甲乙的工作效率比是3:2甲、乙分别做全部的的工作时间比是2:3 时间比的差是1份实际时间的差是3天所以3÷(3-2)×2=6天;就是甲的时间;也就是规定日期方程方法:[1/x+1/(x+2)]×2+1/(x+2)×(x-2)=1 解得x=6二、数字数位问题9.把1至这个自然数依次写下来得到一个多位数123456789.....,这个多位数除以9余数是多少? 解:首先研究能被9整除的数的特点:如果各个数位上的数字之和能被9整除;那么这个数也能被9整除;如果各个位数字之和不能被9整除;那么得的余数就是这个数除以9得的余数。
解题:1+2+3+4+5+6+7+8+9=45;45能被9整除依次类推:1~19xx这些数的个位上的数字之和可以被9整除10~19;20~29……90~99这些数中十位上的数字都出现了10次;那么十位上的数字之和就是10+20+30+……+90=450它有能被9整除同样的道理;100~900 百位上的数字之和为4500 同样被9整除也就是说1~999这些连续的自然数的各个位上的数字之和可以被9整除;同样的道理:1000~19xx这些连续的自然数中百位、十位、个位上的数字之和可以被9整除(这里千位上的“1”还没考虑;同时这里我们少20xx20xx20xx 从1000~19xx千位上一共999个“1”的和是999;也能整除;20xx20xx20xx的各位数字之和是27;也刚好整除。
最后答案为余数为0。
10.A和B是小于100的两个非零的不同自然数。
求A+B分之A-B的最小值...解:(A-B)/(A+B) = (A+B - 2B)/(A+B)=1-2 * B/(A+B)前面的 1 不会变了;只需求后面的最小值;此时(A-B)/(A+B) 最大。
对于 B / (A+B) 取最小时;(A+B)/B 取最大; 问题转化为求(A+B)/B 的最大值。
(A+B)/B =1 + A/B ;最大的可能性是A/B =99/1 (A+B)/B =100(A-B)/(A+B) 的最大值是:98/10011.已知A.B.C都是非0自然数,A/2 + B/4 + C/16的近似值市6.4,那么它的准确值是多少?答案为6.375或6.4375因为A/2 + B/4 + C/16=8A+4B+C/16≈6.4;所以8A+4B+C≈102.4;由于A、B、C为非0自然数;因此8A+4B+C为一个整数;可能是102;也有可能是103。
当是102时;102/16=6.375 当是103时;103/16=6.437512.一个三位数的各位数字之和是17.其中十位数字比个位数字大1.如果把这个三位数的百位数字与个位数字对调,得到一个新的三位数,则新的三位数比原三位数大198,求原数.答案为476解:设原数个位为a;则十位为a+1;百位为16-2a根据题意列方程100a+10a+16-2a-100(16-2a)-10a-a=198 解得a=6;则a+1=7 16-2a=4 答:原数为476。
13.一个两位数,在它的前面写上3,所组成的三位数比原两位数的7倍多24,求原来的两位数. 答案为24解:设该两位数为a;则该三位数为300+a 7a+24=300+a a=24答:该两位数为24。
14.把一个两位数的个位数字与十位数字交换后得到一个新数,它与原数相加,和恰好是某自然数的平方,这个和是多少?答案为121解:设原两位数为10a+b;则新两位数为10b+a 它们的和就是10a+b+10b+a=11(a+b)因为这个和是一个平方数;可以确定a+b=11 因此这个和就是11×11=121答:它们的和为121。
15.一个六位数的末位数字是2,如果把2移到首位,原数就是新数的3倍,求原数.答案为85714解:设原六位数为abcde2;则新六位数为2abcde(字母上无法加横线;请将整个看成一个六位数)再设abcde(五位数)为x;则原六位数就是10x+2;新六位数就是20xx00+x 根据题意得;(20xx00+x)×3=10x+2 解得x=85714 所以原数就是85714216.有一个四位数,个位数字与百位数字的和是12,十位数字与千位数字的和是9,如果个位数字与百位数字互换,千位数字与十位数字互换,新数就比原数增加2376,求原数.答案为3963解:设原四位数为abcd;则新数为cdab;且d+b=12;a+c=9根据“新数就比原数增加2376”可知abcd+2376=cdab,列竖式便于观察abcd 2376 cdab根据d+b=12;可知d、b可能是3、9;4、8;5、7;6、6。
再观察竖式中的个位;便可以知道只有当d=3;b=9;或d=8;b=4时成立。
先取d=3;b=9代入竖式的百位;可以确定十位上有进位。
根据a+c=9;可知a、c可能是1、8;2、7;3、6;4、5。
再观察竖式中的十位;便可知只有当c=6;a=3时成立。
再代入竖式的千位;成立。
得到:abcd =3963再取d=8;b=4代入竖式的十位;无法找到竖式的十位合适的数;所以不成立。
17.如果现在是上午的10点21分,那么在经过28799...99(一共有20个9)分钟之后的时间将是几点几分?答案是10:20解:(28799……9(20个9)+1)/60/24整除;表示正好过了整数天;时间仍然还是10:21;因为事先计算时加了1分钟;所以现在时间是10:20三、排列组合问题18.有五对夫妇围成一圈;使每一对夫妇的夫妻二人动相邻的排法有()A 768种B 32种C 24种D 2的10次方种解:根据乘法原理;分两步:第一步是把5对夫妻看作5个整体;进行排列有5×4×3×2×1=120种不同的排法;但是因为是围成一个首尾相接的圈;就会产生5个5个重复;因此实际排法只有120÷5=24种。