1 2
C 1
D2
1 2
C1 b
33
第四章 恒定电流的电场和磁场
所以得
1
C1 r
C2
C
1
1 a
1 r
U
0
1 a
1 c
U0 1
2
1 c
1 b
1 r
1 c
2 1
1 a
U0
1 c
1 c
1 b
1 c
1 b
2 12a11cU01cb11rb1
34
第四章 恒定电流的电场和磁场
导体表面上总的场强为
E Et2En2 0.565 V/m
电场强度与导体表面的夹角为
aarctEgt 19.5 En
V/m
27
第四章 恒定电流的电场和磁场
例 4.2 设有一同心金属球, 内外球体之间均匀充满二层电导 率分别为σ1和σ2的导电媒质, σ1、σ2远小于金属球的电导率。 σ1≈σ2, 为常数。导体球及导电媒质的半径如图4-8所示。内外球间 加有直流电压U0, 极性如图。试求两区域中恒定电场的电流、 电 流密度、电场强度及电位的分布。
tg1 tg2
1 2
11007101
017
22
第四章 恒定电流的电场和磁场 3. 第一种媒质为理想介质, 第二种媒质为导体
图 4-6 理想介质与导体交界面的电场强度
23
第四章 恒定电流的电场和磁场
E1 E12n E12t
由上式可知E1不垂直导体表面, 那么导体表面不是等位面, 导体也不是等位体, 这是由于σ2有限, 导体中沿电流方向存在电 场。 而在静电场中, 导体内电场强度为零, 介质中的场强总是垂 直导体表面, 导体是等位体, 其表面是等位面。这一点, 恒定电场 与静电场有根本的区别。然而σ2越大, E2t和E1t越小, θ1也越小, 直 至σ2=∞时, E1就垂直导体表面, 导体表面为等位面。