现代近红外光谱分析仪工作原理
- 格式:doc
- 大小:18.50 KB
- 文档页数:3
红外光谱仪的原理及应用
红外光谱仪是一种利用红外光谱技术来测试物质或物质表面的一种仪器。
它的原理是利用物质在不同波长红外线下吸收或散射不同程度的光来分析物质的性质。
红外光谱仪主要有两种工作方式:吸收光谱和反射光谱。
吸收光谱是利用物质吸收红外光的能量来分析物质的性质,反射光谱是利用物质反射红外光的能量来分析物质的性质。
红外光谱仪应用非常广泛,主要应用在化学、石油、农业、食品、医药、环境、生物等领域。
如分析石油中的含量,鉴定药物成分,检测食品中毒素,监测环境污染等。
红外光谱仪的原理
红外光谱仪的原理是利用物质在不同波长红外线下吸收或散射不同程度的光来分析物质的性质。
红外线是一种电磁波,其频率在可见光之外,波长在700纳米到1纳米之间。
当红外线照射到物质上时,物质中的分子会吸收其中的能量。
每种物质都有其特有的吸收光谱,因此可以利用这些吸收光谱来分析物质的性质。
红外光谱仪通常包括一个红外光源、一个分光仪、一个探测器和一个计算机控制系统。
红外光源发出红外线,分光仪将红外线分成不同波长的光束,探测器检测物质对不同波长的吸收程度,计算机控制系统将检测数据处理成可视化的光谱图。
红外光谱仪还可以进行反射光谱和透射光谱的测试,其原理是一样的。
反射光谱是利用物质对红外线的反射能力来分析物质的性质。
而透射光谱是利用物质对红外线的透射能力来分析物质的性质。
红外光谱技术是一种非接触式的分析方法,不会对样品造成破坏,可以在试样的原始状态下进行测试,因此被广泛应用于各种领域。
近红外光谱技术原理
近红外光谱技术是一种非破坏性测试方法,可以对分子结构进行快速、准确的分析。
近红外光谱技术的原理是基于物质分子的振动和转动的能量差异,通过检测物质在近红外光谱范围内的吸收或反射光谱,来获取样品的化学成分信息。
该技术在化学、药品、食品、环境、农业等领域中广泛应用,因为它可以用于研究样品中的有机和无机化合物,无需对样品进行任何化学处理,非常方便快捷,减少了对环境的污染。
近红外光谱技术的原理是基于物质分子的振动和转动的能量差异。
在近红外光谱范围内,物质分子中的C-H、O-H、N-H、S-H等共价键的振动和转动能量与光子能量相等,因此会吸收或散射光子,产生独特的光谱。
当近红外光经过样品后,样品吸收或反射了一部分光子,另一部分继续传递。
被吸收或反射的光子数与样品的化学成分、浓度和分子结构等有关。
通过测量吸收或反射的光谱图,可以得到样品在近红外光谱范围内的光谱。
近红外光谱技术的优点在于可以对不同种类的样品进行非破坏性测试,且不需要对样品进行任何化学处理。
同样的,近红外光谱技术有其缺点,即需要一定数量和质量的样品数据来进行模型训练,有时候样品中复杂物质的存在可能会产生干扰或信噪比较低的问题。
总的来说,近红外光谱技术是一种非常实用的检测方法,它为许多行业提供了一个快速、准确、非破坏性的检测方法。
随着技术的不断发展,近红外光谱技术将
会被广泛应用到更多的领域。
近红外光谱<NIR>分析技术的应用近红外光谱分析是近20年来发展最为迅速的高新技术之一,该技术分析样品具有方便、快速、高效、准确和成本较低,不破坏样品,不消耗化学试剂,不污染环境等优点,因此该技术受到越来越多人的青睐.一、近红外光谱的工作原理有机物以及部分无机物分子中各种含氢基团在受到近红外线照射时,被激发产生共振,同时吸收一部分光的能量,测量其对光的吸收情况,可以得到极为复杂的红外图谱,这种图谱表示被测物质的特征.不同物质在近红外区域有丰富的吸收光谱,每种成分都有特定的吸收特征.因此,NIR能反映物质的组成和结构信息,从而可以作为获取信息的一种有效载体.二、近红外光谱仪的应用NIR分析技术的测量过程分为校正和预测两部分〔如图一所示〕,<1>校正:①选择校正样品集,①对校正样品集分别测得其光谱数据和理化基础数据,①将光谱数据和基础数据,用适当的化学计量方法建立校正模型;<2>预测:采集未知样品的光谱数据,与校正模型相对应,计算出样品的组分.由此可知,建立一个准确的校正模型是近红外光谱分析技术应用中的重中之重.图一2.1定标建模2.1.1 为什么要建立近红外校正模型2.1.1.1 建立近红外校正模型的最终目标是获得一个长期稳定的和可预测的模型.2.1.1.2 近红外光谱分析是间接的〔第二手〕分析方法,所以①需要定标样品集;①利用定标样品集的参比分析数据与近红外光谱建立校正模型;③近红外分析准确度与参比方法数据准确度高度相关;④近红外分析精度一般优于参比方法分析精度.2.1.2 模型的建立与验证步骤2.1.2.1 扫描样品近红外光谱准确扫描校正样品集中各个样品规范的近红外光谱:为了克服近红外光谱测定的不稳定性的困难,必须严格控制包括制样、装样、测试条件、仪器参数等测量参数在内的测量条件.利用该校正校品集建立的数学模型,也只能适用于按这个的测量条件所测量光谱的样品.2.1.2.2 测定样品成分〔定量〕按照标准方法〔如饲料中的粗蛋白GB/T6432、水分GB/T6435、粗脂肪GB/T6433〕准确测定样品集中每个样品的各种待测成分或性质<称为参考数据>.这些值测定的精确度是近红外光谱运用数学模型进行定量分析精确度的理论极限.2.1.2.3 建立数据对应关系通过2.1.2.1所得光谱与2.1.2.2所得不同性质参数的参考数据相关联,使光谱图和其参考数据之间形成一一对应映射的关系,从而建立一个带参考数据的光谱文件.2.1.2.4 剔除异常值2.1.2.3建立的光谱文件中,样品参考值与光谱有可能由于各种随机的原因而有较严重的失真,这些样品的测定值称为异常值.为保证所建数学模型的可靠性,在建立模型时应当剔除这些异常值.2.1.2.5 建立模型选择算法、确定模型的参数、建立、检验与评价数字模型:常用的算法有逐步回归分析、偏最小二乘法、主成分回归分析等.这些算法的基本思想是应用近红外光谱的全光谱的信息,以解决近红外光谱的谱峰重叠与复杂背景的影响.2.1.2.6 模型验证用外部证实法检验和评价数学模型,以检验数学模型在时间空间上的稳定性.可以用另外几批独立的、待测量已知的检验样品集,用数学模型预测计算检验集中各样品的待测值;对实际值与预测值作线性相关,并用相关系数和预测标准差来表示预测效果.2.2 模型维护与扩展2.2.1 为什么要维护与扩展校正模型建立一个校正模型通常是从一个小的光谱数据库开始的.数据库小,模型的适用范围就必然受到限制.这也就意味着要想使一个模型更加稳定、适用范围更加宽广,就需要不断地对模型的数据库进行扩充.2.2.2 扩展校正模型步骤通过扫描光谱与实验数据建立具有数据对应关系的光谱文件,再使用该文件对旧方程进行扩展,形成新方程,并对新方程进行验证.2.3 具体例子分析2.3.1 方程选择使用改进偏最小二乘法<MPLS>建立校正模型,为消除光谱信号的基线漂移,随机噪音及颗粒度不均匀引起的散射,光谱采用三种去散射处理和三种导数处理结合,共9中光谱预处理方法.三种去散射处理包括无散射<None>,标准正态变量校正结合去除趋势校正<SNVD>,加权多元去散射校正<WMSC>;三种导数处理包括1,2,2,1; 1,4,4,1; 2,4,4,1,个数值依次代表导数处理阶数,导数数据间隔,平滑点数及二次平滑点数.模型建立过程中,定标集被分成6个交互验证组,以最小交互验证标准差<SECV>确定最佳主因子数.异常值判断与剔除是影响模型预测效果的关键因素.方程采用两轮异常值剔除过程,剔除光谱异常值<GH≥10>及化学异常值<T≥2.5>.以最高交互验证决定系数<1-VR>和最低SECV值确定最佳校正模型.如图二所示,蛋白最佳方程应为SNVD+2,4,4,1处理得到的.图二2.3.2 外部验证校正模型建立后,除用自身最高交互验证决定系数<1-VR>和最低SECV值衡量外,还需要用外部检验的方法来评价模型的可靠性,以保证模型在实际使用中的效果.选取已知样品对模型进行验证,如下图所示,样品〔粗蛋白〕预测值准确度较高,基本达到了分析要求〔表一可见,样品预测值与参考值误差较小;图三为蛋白化学值与预测值之间相关散点图,其中预测标准偏差<Sep>为0.447,系统偏差<Bias>为-0.059,相关系数<R>为0.957〕.表一图三三、近红外光谱分析技术的不足3.1 近红外光谱分析的灵敏度相对较低,不能用于微量分析.这主要是因为近红外光谱作为分子振动的非谐振吸收跃迁几率较低一般近红外倍频和合频谱带强度是其基频吸收的十万分之一.所以对组分的分析而言,其含量一般应大于0.1%才适合采用近红外光谱分析技术.当然这个数值并不是理论限值,随着近红外分析技术的不断发展,相信它的最小检出限还将会有所突破.3.2 分析必须要依赖模型,对模型的建立要求较高,投入较大.预测结果的准确性与校正模型建立的质量有很大关系,因此,建立校正模型一般需要有经验的专业人员和来源丰富的有代表性的大量样品,并配备精确的化学分析手段.3.3 模型传递技术尚不成熟.目前,由于校正模型受限于各种测量条件,只能适应一定的时间和空间范围,如果能建立成熟的模型传递,使在一台仪器上建立的定性或定量校正模型可靠地移植到其他相同或类似的仪器上使用,就能减少建模所需的时间和费用.四、结束语尽管近红外检测分析技术目前还有些许不足,但随着计算机技术、光谱学和化学计量学的快速发展和相互融合,该技术预测能力及预测精度等将得到进一步提高,建模难度也将进一步下降.当今粮食生产、食品安全和市场检查管理部门等各方面要求更使得需要深入研究近红外光谱检测技术,并在实践中得以普遍应用.今后,近红外光谱检测分析技术会拥有更广阔的应用前景.。
近红外光谱技术的原理和应用领域近红外(NIR)光谱技术是一种非常重要的分析技术,它在许多领域中都有着广泛的应用。
本文将介绍近红外光谱技术的原理以及一些常见的应用领域。
首先,让我们来了解一下近红外光谱技术的原理。
近红外光谱在波长范围为700-2500纳米之间,可以通过光的吸收和散射来探测分子的特征。
每个分子都有特定的吸收光谱,通过分析样品与光的相互作用,可以获取样品组分的信息。
近红外光谱技术有许多应用领域。
其中,食品安全检测是一个重要的应用领域。
通过近红外光谱分析,可以快速准确地检测食品中的有害物质,如农药残留和重金属污染。
这种技术可以在食品加工过程中迅速检测出问题,确保食品的质量和安全。
此外,近红外光谱技术还广泛应用于制药行业。
在药物研发和生产过程中,近红外光谱可以用来分析原料药和药物包装材料的质量。
通过检测样品的特征光谱,可以及时发现并解决质量问题,确保药物的安全和有效性。
近红外光谱技术在农业领域也有着重要的应用。
例如,农作物的生长和发育状态可以通过近红外光谱来监测和评估。
通过分析植物的叶片光谱特征,可以及时了解植物的健康状况,从而进行精细化管理,提高农作物的产量和质量。
此外,近红外光谱技术在环境监测和污染治理中也有着广泛的应用。
例如,在水质监测中,可以通过分析水样的近红外光谱特征来检测水中的有机污染物和重金属。
这种技术具有快速、准确和非破坏性的特点,可以为环境保护工作提供有力的支持。
此外,近红外光谱技术还被广泛应用于化学和材料研究领域。
通过分析物质的近红外光谱特征,可以了解物质的结构和性质。
这对于新材料的研发以及物质的表征和鉴定具有重要意义。
总之,近红外光谱技术具有非常广泛的应用领域。
通过分析样品的近红外光谱特征,可以获取样品的组分和性质信息,从而实现快速、准确和非破坏性的分析。
该技术在食品安全、制药、农业和环境保护等领域中发挥着重要作用,为不同行业的发展和创新提供了有力支持。
随着科技的不断进步,相信近红外光谱技术的应用领域还将不断扩大,为人们带来更多的便利和利益。
近红外光谱仪的原理和应用1. 简介近红外光谱仪(Near-Infrared Spectrometer)是一种用来分析物质组成和化学结构的有效工具。
它利用近红外光区的特性,通过对光的吸收、反射和散射等特征进行量化,来获得样品的光谱信息。
本文将介绍近红外光谱仪的工作原理及其常见的应用领域。
2. 原理近红外光谱仪的原理基于样品与近红外光之间的相互作用。
近红外光波长范围通常为700至2500纳米,介于可见光和红外光之间。
以下是近红外光谱仪的工作原理:•光源发射:近红外光谱仪通常采用LED或激光二极管等光源发射特定波长的近红外光。
•样品交互:发射的光经过样品散射、吸收或透射后,携带了样品的化学信息。
•光谱检测:经过样品后的光线进入光谱仪的光路系统,光谱仪中的探测器对不同波长的光进行检测和测量。
•数据处理:检测到的光信号经过放大、滤波和数学处理等步骤,得到样品的光谱图谱。
•分析与解读:通过比对样品的光谱图谱与已知物质的库光谱进行分析,可以推断样品的成分和结构等信息。
3. 应用近红外光谱仪在许多领域中得到了广泛应用。
以下是一些常见的应用领域:3.1 农业•农产品品质检测:近红外光谱仪可以分析农产品中的水分、脂肪、蛋白质等成分,用于农产品的质量鉴定和分类。
•土壤分析:通过近红外光谱仪可以分析土壤中的有机质、pH值、养分含量等,为土壤肥力评估和施肥方案提供依据。
3.2 化学与制药•药物分析:近红外光谱仪可以分析药物中的活性成分含量、溶解度等指标,用于药物质量控制和药物效果评估。
•化学品鉴定:通过比对已知化学品的光谱库,近红外光谱仪可以识别未知化学品的成分和纯度。
3.3 环境监测•水质分析:近红外光谱仪可以快速分析水质中的溶解有机物、无机离子等参数,用于水质监测和环境保护。
•大气检测:通过近红外光谱仪可以实时监测大气中的气体成分,例如二氧化碳、氨等,用于大气污染监测和空气质量评估。
3.4 食品安全•食品成分分析:近红外光谱仪可以分析食品中的营养成分、添加剂、重金属等物质的含量,用于食品质量检测和食品安全控制。
近红外检测原理近红外(NIR)检测是一种非侵入式的光谱分析技术,广泛应用于农业、食品、制药等领域。
它通过检测物质在近红外光波段的吸收和散射特性,来获取物质的相关信息。
近红外检测原理基于光的相互作用和物质的分子结构。
1. 光的相互作用与近红外光谱光是由一系列电磁波组成的,包括可见光、紫外光、红外光等。
近红外光谱波段通常被定义为750-2500纳米(nm),相对于可见光而言,近红外光具有较高的穿透力和较弱的散射能力。
2. 分子的能级和跃迁分子在吸收光的过程中,会发生能级跃迁。
当分子吸收能量与能级间隔相等时,电子会从基态跃迁至激发态。
近红外光的能量正好位于分子能级间隔的范围,因此适用于近红外检测。
3. 物质的吸收特性不同物质在近红外光谱波段的吸收特性是由其分子结构和化学键决定的。
不同的化学键振动和伸缩会导致不同的吸收光谱。
通过测量物质在近红外光谱波段的吸收,可以了解其组成、浓度、质量等信息。
4. 光源、光谱仪和样品槽近红外检测系统由光源、光谱仪和样品槽等组成。
光源发出近红外光,经过样品后,被光谱仪接收并分析。
样品槽是将待测样品放置的空间,通常采用透明的玻璃或石英材料,以便光线穿透。
5. 数据处理和模型建立在近红外检测中,采集到的光谱数据需要进行预处理和分析。
预处理包括光谱校正、信号平滑和噪声滤波等步骤。
分析阶段则需要建立模型,将光谱数据与样品的性质进行关联,以实现定性或定量分析。
6. 应用领域近红外检测技术在农业、食品、制药等领域具有广泛应用。
例如,在农业领域,近红外检测可用于土壤分析、农作物品质评估和植物病害检测等;在食品领域,可用于食品成分分析、食品质量控制和食品安全检测等;在制药领域,可用于药品含量检测、药材鉴定和药品质量监控等。
近红外检测技术凭借其快速、无损、高效等优势,成为现代科学研究和工业生产中的重要工具。
在不断的研究和发展中,相信近红外检测技术将更加成熟和广泛应用于更多领域。
近红外光谱分析仪的使用分析仪技术指标近红外光谱分析仪是利用气体或液体对红外线进行选择性吸取的原理制成的一种分析仪表,它具有灵敏度高反应速度快分析范围宽选择性好抗干扰本领强等特点,被广泛应近红外光谱分析仪是利用气体或液体对红外线进行选择性吸取的原理制成的一种分析仪表,它具有灵敏度高反应速度快分析范围宽选择性好抗干扰本领强等特点,被广泛应用于石油化工冶金等工业生产中。
近红外光谱分析仪的光源是接受上下两个电极的方法,通上电流,电极之间就形成一个火花式光谱仪光源。
在这火花式光谱仪光源中,电极之间空气或其他气体一般处于大气压力。
因此放电是在充有气体的电极之间发生,是依靠电极间流过的电流使气体发光,是建立在气体放电的基础上。
低压火花以及控波型光谱分析仪光源是在电容电场作用下,接受掌控气氛中放电;火花光谱分析仪光源是在直流电场作用下,淡薄掌控气氛中放电;等离子体火花式光谱仪光源是在射频电磁场作用下掌控气氛中放电(电极之间的电压以及电流的关系不遵守欧姆定律的)。
光谱分析仪光源的作用是将待测元素变成气体状态,而后激发成光谱,依据该元素谱线强度转换成光电流,由计算机掌控的测光系统按谱线的强度换算成元素的含量。
光源作用的这种动态过程,就是将样品由固态变成气态,其中一部份元素激发而发射光谱,而这些气态的样品又不断地向四周扩散,分析间隙的气态样品也在不断更新,以求达到一个动态平衡,当火花光谱分析仪光源激发确定时间后,蒸气云中待测元素浓度增大,只有蒸气云中浓度充分大,才能得到大的光电信号。
近红外光谱分析仪是否稳定正常地运行,直接影响到仪器测定数据的好坏,假如气路中有水珠、机械杂物杂屑等都会造成气流不稳定,因此,对气体掌控系统要常常进行检查和维护。
首先要做试验,打开掌控系统的电源开关,使电磁阀处于工作状态,然后开启气瓶及减压阀,使气体压力指示在额定值上,然后关闭气瓶,察看减压阀上的压力表指针,应在几个小时内没有下降或下降很少,否则气路中有漏气现象,需要检查和排出。
近红外光谱技术的原理
近红外光谱技术是一种非常重要的光谱分析方法,其原理基于近红外光在物质中的吸收谱带。
近红外光谱波长范围通常在780 nm到2500 nm之间,这个范围内的物质分子和化学键通
常会对光吸收或散射。
通过测量物质在不同波长处的吸光度或反射率,可以获得该物质的光谱特征。
近红外光谱技术的实验系统通常由光源、样品、光学元件和检测器组成。
光源发出近红外光,经过样品后,部分光被物质吸收或散射,其他光经过光学元件聚焦后,最终到达检测器。
检测器将接收到的光信号转化为电信号,并通过计算机处理和分析得到光谱图。
通过近红外光谱技术,可以获取样品的光谱图像,其中横轴表示波长,纵轴表示吸光度或反射率。
根据不同的样品性质,其光谱图像会呈现出特定的吸收峰或吸收带。
通过对光谱图的解析,可以确定样品中的不同物质成分以及它们的含量。
近红外光谱技术在很多领域应用广泛,例如农业、食品、药品、生物医学等。
在农业方面,通过分析土壤和作物的近红外光谱,可以评估土壤的肥力和作物的生长状态。
在食品工业中,近红外光谱可以用来检测食品中的营养成分、成分含量、质量等。
在药品和生物医学领域,近红外光谱被广泛应用于药品质量控制和生物组织成分分析等方面。
总之,近红外光谱技术是一种快速、无损、准确的光谱分析方
法,通过测量物质在近红外波段的吸光度或反射率,可以获取物质的光谱特征,从而实现对物质成分和性质的分析和检测。
近红外光谱仪的结构性原理分析光谱仪工作原理近红外光谱分析仪是利用气体或液体对红外线进行选择性吸取的原理制成的一种分析仪表,它具有灵敏度高反应速度快分析范围宽选择性好抗干扰本领强等特点,被广泛应用于石油化工冶金等工业生产中。
近红外光谱分析仪的光源是接受上下两个电极的方法,通上电流,电极之间就形成一个火花式光谱仪光源。
在这火花式光谱仪光源中,电极之间空气或其他气体一般处于大气压力。
因此放电是在充有气体的电极之间发生,是依靠电极间流过的电流使气体发光,是建立在气体放电的基础上。
低压火花以及控波型光谱分析仪光源是在电容电场作用下,接受掌控气氛中放电;火花光谱分析仪光源是在直流电场作用下,淡薄掌控气氛中放电;等离子体火花式光谱仪光源是在射频电磁场作用下掌控气氛中放电(电极之间的电压以及电流的关系不遵守欧姆定律的)。
光谱分析仪光源的作用是将待测元素变成气体状态,而后激发成光谱,依据该元素谱线强度转换成光电流,由计算机掌控的测光系统按谱线的强度换算成元素的含量。
光源作用的这种动态过程,就是将样品由固态变成气态,其中一部份元素激发而发射光谱,而这些气态的样品又不断地向四周扩散,分析间隙的气态样品也在不断更新,以求达到一个动态平衡,当火花光谱分析仪光源激发确定时间后,蒸气云中待测元素浓度增大,只有蒸气云中浓度充分大,才能得到大的光电信号。
近红外光谱分析仪是否稳定正常地运行,直接影响到仪器测定数据的好坏,假如气路中有水珠、机械杂物杂屑等都会造成气流不稳定,因此,对气体掌控系统要常常进行检查和维护。
首先要做试验,打开掌控系统的电源开关,使电磁阀处于工作状态,然后开启气瓶及减压阀,使气体压力指示在额定值上,然后关闭气瓶,察看减压阀上的压力表指针,应在几个小时内没有下降或下降很少,否则气路中有漏气现象,需要检查和排出。
近红外光谱分析仪保养工作做得好,就能够延长使用寿命,可以把工作做得更好。
光纤光谱仪功能光纤光谱仪是一种测量工具,紧要用于测量紫外、可见、近红外和红外波段光强的仪器,具有测量精准、精准明确度高、使用快捷、牢靠性好等优点。
近红外光谱仪原理
近红外光谱,又称做接近红外光谱分析,是一种利用近红外光谱仪技术对样品
成分进行测试和分析的方法。
近红外光谱仪可以分析温度范围从室温到极低温的物体,但主要用于检测活性
物质的分子结构、活性某种物质含量的大小以及电致变化物质的排列状态等。
特点是发送的光波,波长跨度较宽,可在此范围内检测到物质的变化动态。
近红外光谱仪对样品进行分析的原理在于,由信号源将扫描波长范围内的光束
发射到样品,然后产生发射光谱,再使用检测器探测到其吸收波长,根据样品吸收的不同程度,得到吸收光谱,近红外光谱仪以不同的波长跨度(幅度)发射光束,再探测到发射对样品所产生的反应,所得结果就可以用于对样品成分进行仪器分析。
近红外光谱仪用于生活娱乐中的应用也越来越多,比如饮料、食品、药品等的
鉴定与分析,有利于鉴定伪劣商品;犯罪现场的痕迹检验,使刑事讯问工作更加准确;也可以用在文物鉴定、染料等行业;此外,近红外光谱仪还可以在艺术品鉴别中作为一种重要的检测工具,帮助鉴定艺术品是否为真迹。
因此,近红外光谱仪已成为一种为我们生活带来科技革新的重要实用装置,它
已经为我们娱乐生活提供了极大的便利。
近红外光谱技术原理
近红外光谱技术是一种常用的非破坏性分析方法,用于物质的组成分析和质量检测。
其原理基于近红外光(波长范围为750-2500纳米)与物质相互作用的特性。
近红外光谱技术原理的核心是分析样品对不同波长的近红外光的吸收和散射情况。
当近红外光照射到样品时,样品中的分子会与光发生相互作用,导致光的能量发生改变。
这些能量改变可以通过检测光的强度和波长来获得。
虽然每种化合物与近红外光的相互作用方式各异,但是总体上可以分为两种情况:吸收和散射。
吸收是指样品吸收一部分光的能量,而散射则是指样品将光随机反射、散射。
近红外光谱技术利用了不同样品吸收和散射光谱特性的差异来分析物质的组成和相关信息。
通过建立光谱库,将已知样品的近红外光谱与其组成关联起来,可以利用光谱库中的信息来识别未知样品的组成。
在实际应用中,近红外光谱技术可以被应用于多个领域,包括农业、医学、食品安全等。
例如,在食品安全领域,可以使用近红外光谱技术来检测食品中的营养成分、食品添加剂和污染物的含量,从而确保食品的质量和安全性。
总之,近红外光谱技术利用近红外光与物质相互作用的特性,通过分析样品对不同波长光的吸收和散射来获得物质的组成和
相关信息。
这种非破坏性分析方法在许多领域中有广泛应用,并且具有快速、准确、无需样品处理等优势。
近红外光谱仪2篇近红外光谱仪(一)近红外光谱仪是一种应用广泛且重要的科学仪器,它在化学分析、生物医学、食品安全等领域发挥了重要作用。
本文将从近红外光谱仪的原理和应用方面进行探讨。
近红外光谱仪是一种能够检测物质组成和性质的仪器。
它利用近红外光的穿透、反射或散射性质,以获取物质的光谱信息。
其原理基于物质分子的振动和转动,不同分子具有不同的振动频率和振动方式,通过对光的探测和分析,可以得到物质的光谱图像。
近红外光谱仪主要由光源、光学系统、光谱检测器和数据分析系统组成。
其中,光源产生近红外光,经过光学系统的调制和分光,然后经过样品,将经过样品的光信号转换为电信号,并传送到光谱检测器进行信号的测量和分析。
最后,通过数据分析系统对信号进行处理和解读,得到物质的光谱图谱。
近红外光谱仪具有许多优点,例如非破坏性、实时性、高灵敏度、高精度和广泛的应用范围等。
它可以快速、准确地测量物质的组成和含量;同时,它也可以用于无损检测、在线监测和质量控制等领域。
近年来,近红外光谱仪在各个领域取得了显著的进展。
在食品安全方面,近红外光谱仪可以快速检测食品中的有毒物质和添加剂,从而保障食品的质量和安全;在药物研究和制造方面,近红外光谱仪可以快速测定药物的成分和含量,提高药物的质量和效果;在农业领域,近红外光谱仪可以判断土壤的肥力、农产品的品质和营养含量,从而优化农业生产。
总之,近红外光谱仪是一种十分重要的科学仪器,它在化学分析、生物医学、食品安全等领域具有广泛的应用。
随着技术的不断进步,近红外光谱仪的性能和应用范围将会进一步提高,为我们的研究和生活带来更多的便利和创新。
近红外光谱仪(二)近红外光谱仪是一种重要的分析仪器,具有广泛的应用。
本文将从近红外光谱仪的优势和应用案例方面进行介绍。
近红外光谱仪具有许多优势,首先是非破坏性。
光谱检测过程中,近红外光不会损伤样品,可以反复进行测试,不会对样品产生任何影响。
其次,近红外光谱仪具有实时性,可以在很短的时间内完成样品的检测和分析。
近红外光谱分析仪原理
近红外光谱分析仪是一种可以通过测量样品吸收、散射或透射近红外光的仪器,用于分析和确定样品中的化学成分或性质。
其工作原理基于近红外光与样品发生相互作用后产生的能量变化。
每种化学物质都有其特定的分子结构和化学键,因此它们对于不同波长的光有不同的吸收特性。
近红外光谱分析仪利用这一原理进行定量或定性分析。
其工作原理大致可以分为光源、样品传感器和信号处理三个主要部分。
首先,近红外光谱分析仪会通过一个光源产生一束包含不同波长的近红外光。
这种光通过一系列的透镜和光学器件进行聚焦和传输,最后照射到样品表面。
其次,样品表面的化学物质会吸收或散射部分近红外光。
这些吸收或散射过程会导致透射光中特定波长的光强发生变化。
近红外光谱分析仪会采用一个传感器,如光电二极管或光电探测器,来测量透射光的强度。
传感器会将吸收或散射光转化为电信号,并将其传送至信号处理部分。
最后,信号处理部分会对接收到的电信号进行处理和分析。
这些处理方法包括光谱解析、数学算法和化学模型等。
光谱解析可以通过比较样品的光谱特征与已知标准光谱进行拟合,从而确定样品中的化学成分。
数学算法则可以通过对光谱数据进行处理和加工,提取有关样品的相关信息。
化学模型则可以利用已知样品的光谱数据训练模型,从而实现对未知样品的分类或
定量分析。
综上所述,近红外光谱分析仪利用样品对近红外光的吸收或散射特性,通过测量透射光的强度和进行信号处理,实现对样品化学成分或性质的分析和确定。
这种仪器可以广泛应用于食品、药品、化工等各个领域,并在质量控制、过程监测和研究开发等方面发挥着重要作用。
近红外光谱法原理
近红外光谱法是一种分析技术,通过检测和分析物质在近红外光谱范围内的吸收特性来确定样品中的成分。
该技术基于物质分子与电磁波的相互作用而产生的吸收波长和强度的变化。
近红外光谱法的原理基于分子的振动和转动。
分子在光照射下会发生不同类型的振动和转动,这些振动和转动的能量可以与入射光的能量相互作用。
近红外光谱法利用了分子振动和转动的特点,通过测量物质在近红外光谱范围内的吸收能力来确定样品中的不同成分。
在近红外光谱法中,使用近红外光源产生的特定波长的光照射到样品上,并通过检测光的透过率或反射率来获取样品的光谱信息。
通过比较待测样品与已知标准样品的光谱特征,可以确定待测样品中的不同成分的含量。
这种方法可以广泛应用于化学、制药、食品等领域,用于分析各种化合物的含量、纯度和组成。
总的来说,近红外光谱法利用了物质分子在近红外光谱范围内的吸收特性,通过测定样品的吸光度或透过率来确定样品的成分。
通过比较待测样品与标准样品的光谱信息,可以快速准确地分析物质的含量和成分。
近红外光谱仪的基本工作原理:波长在700nm – 2,500nm (4,000–14,300cm-1) 的光谱为近红外光谱。
它是一种既快速(十到二十秒钟) 又简便(不需作样品前处理) 的测试手段, 这种方法的特点是对样品作一步式组份(需测的浓度大于0.01%) 分析而不需破坏样品。
如果产品颜色是质量指标之一、您可选400nm-1,100nm 的图谱数据作鉴定。
近红外光谱仪适用于对含有C-H, N-H, O-H 和S-H 化学键的化合物作组份分析。
在700 – 2,500 nm 的近红外波长范围内, 含有上述化合键的物质(药品、烟草、食品、农作物、聚合物、石油化工产品等) 会产生吸收。
一些物质除在1,450 nm 到2,050 nm 之间产生第一谐波外,往往还会分别在1,050 nm - 1,700nm 和700 nm - 1,050 nm 谱带内产生第二及第三谐波。
这些谐波的组合构成了被测物质在近红外光谱带内的特征吸收谱图-指纹图。
相同的近红外谱图(样品的指纹图) 一定是从相同的物质得到。
这也是应用近红外光谱仪作质量管理的主导基础原理。
有机物在近红外光谱带内的吸收强度比在中红外(如FT-IR) 的吸收强度弱10 到1,000 倍。
由于这特殊的弱吸收优点, 近红外射线能很容易地穿透未经研片与稀释等需作预处理的非透明样品,实现透射吸收;而另一部分反射光谱也可很容易地被检测。
但是如何利用近红外图谱来对原材料或产品进行质量监控呢? 答案是利用统计学理论建立被测样品的数据库或校正曲线,而统计学之成败与校正曲线(数据库) 的相互转移性有决定性的关系。
在建立校正曲线或数据库之前, 近红外仪器的使用者把日常的测试样品先作近红外扫描, 然后再用传统分析法(如:GC、HPLC、TKN、FIA、折光仪、……) 准确测定出样品的数值, 具有不同指标的样品在近红外光谱中将产生不同强度的吸收图谱(不是某一吸收峰),利用专用软件处理, 便可得到校正曲线或数据库,分析人员可利用该校正曲线或数据库方便快速地通过测定未知样品的近红外谱图得知其被测指标的数据。
现代近红外光谱分析仪工作原理现代近红外光谱分析仪工作原理2011年02月08日20世纪90年代初,外国厂商开始在我国销售近红外光谱分析仪器产品,但在很长时间内,进展不大,其原因主要是:首先,近红外光谱分析要求光谱仪器、光谱数据处理软件(主要是化学计量学软件)和应用样品模型结合为一体,缺一不可。
但被分析样品会由于样品产地的不同而不同,国内外的样品通常有差异,因此,进口仪器的应用模型一般不适合分析国内样品。
如果自己建立模型,就需要操作人员了解和熟悉化学计量学知识和软件,而外商在中国的代理机构缺乏这方面的专业人才,不能有效地根据用户的需要组织培训,因此,用户对这项技术缺乏全面了解,影响到了它的推广使用。
其次,进口仪器价格昂贵,售后技术服务费用也往往超出大多数用户的承受能力。
现代近红外光谱分析技工作原理近红外光谱主要是由于分子振动的非谐振性使分子振动从基态向高能级跃迁时产生的。
近红外光谱记录的是分子中单个化学键的基频振动的倍频和合频信息,它常常受含氢基团X-H(X-C、N、O)的倍频和合频的重叠主导,所以在近红外光谱范围内,测量的主要是含氢基团X-H振动的倍频和合频吸收。
由于倍频和合频跃迁几率低,而有机物质在NIR光谱区为倍频与合频吸收,所以消光系数弱,谱带重叠严重。
因此从近红外光谱中提取有用信息属于弱信息和多元信息,需要充分利用现有的光机技术、电子技术和计算机技术进行处理。
计算机技术主要包括光谱数据处理和数据关联技术。
光谱数据处理是消除仪器因素(灯及测量方式等)环境因素(如温度等)和样品物态(如颜色、形态等)等对光谱的影响。
常采用的方法有平滑、微分、基线漂移扣减、多元散射校正(MSC)和有限脉冲响应滤波(FIR)等也可以用小波变换来进行部分处理。
数据关联技术主要是化学计量学方法。
化学计量学的发展使多组分分析中多元信息处理理论和技术日益成熟,解决了近红外光谱区重叠的问题。
通过关联技术可以实现近红外光谱的快速分析。
近红外光谱的工作原理阐述红外光谱工作原理近红外光谱紧要是由于分子振动的非谐振性使分子振动从基态向高能级跃迁时产生的,记录的紧要是含氢基团X-H(X=C、N、O)振动的倍频和合频吸取。
不同基团(如甲基、亚甲基,苯环等)或同一基团在不同化学环境中的近红外吸取波长与强度都有明显差别;NIR光谱具有丰富的结构和构成信息,特别适适用于碳氢有机物质的构成与性质丈量。
但在NIR区域,吸取强度弱,灵敏度相对较低,吸取带较宽且重叠严重。
因此,依靠传统的建立工作曲线方法进行定量分析是特别困难的,化学计量学的进展为这一题目的解决奠定了数学基础。
其工作原理是,假如样品的构成相同,则其光谱也相同,反之亦然。
假如我们建立了光谱与待测参数之间的对应关系(称为分析模型);那么,只要测得样品的光谱,通过光谱和上述对应关系,就能很快得到所需要的质量参数数据。
分析方法包括校正和猜想两个过程:(1)在校正过程中,收集确定量有代表性的样品(一般需要80个样品以上),在丈量其光谱图的同时;依据需要使用有关标准分析方法进行丈量,得到样品的各种质量参数,称之为参考数据。
通过化学计量学对光谱进行处理,并将其与参考数据关联,这样在光谱图和其参考数据之间建立起逐一对应映射关系,通常称之为模型。
当然建立模型所使用的样本数目很有限,但通过化学计量学处理得到的模型应具有较强的普适性。
对于建立模型所使用的校正方法视样品光谱与待分析的性质关系不同而异,常用的有多元线性回回,主成分回回,偏最小二乘,人工神经网络和拓扑方法等。
明显,模型所适用的范围越宽越好,但是模型的范围大小与建立模型所使用的校正方法有关,与待测的性质数占有关,还与丈量所要求达到的分析精度范围有关。
实际应用中,建立模型都是通过化学计量学软件实现的,并且有严格的规范(如ASTM—6500标准)。
(2)在猜想过程中,首先使用近红外光谱仪测定待测样品的光谱图,通过软件自动对模型库进行检索,选择正确模型计算待测质量参数。
现代近红外光谱分析仪工作原理
现代近红外光谱分析仪工作原理
2011年02月08日
20世纪90年代初,外国厂商开始在我国销售近红外光谱分析仪器产品,但在很长时间内,进展不大,其原因主要是:首先,近红外光谱分析要求光谱仪器、光谱数据处理软件(主要是化学计量学软件)和应用样品模型结合为一体,缺一不可。
但被分析样品会由于样品产地的不同而不同,国内外的样品通常有差异,因此,进口仪器的应用模型一般不适合分析国内样品。
如果自己建立模型,就需要操作人员了解和熟悉化学计量学知识和软件,而外商在中国的代理机构缺乏这方面的专业人才,不能有效地根据用户的需要组织培训,因此,用户对这项技术缺乏全面了解,影响到了它的推广使用。
其次,进口仪器价格昂贵,售后技术服务费用也往往超出大多数用户的承受能力。
现代近红外光谱分析技工作原理
近红外光谱主要是由于分子振动的非谐振性使分子振动从基态向高能级跃迁时产生的。
近红外光谱记录的是分子中单个化学键的基频振动的倍频和合频信息,它常常受含氢基团X-H(X-C、N、O)的倍频和合频的重叠主导,所以在近红外光谱范围内,测量的主要是含氢基团X-H振动的倍频和合频吸收。
由于倍频和合频跃迁几率低,而有机物质在NIR光谱区为倍频与合频吸收,所以消光系数弱,谱带重叠严重。
因此从近红外光谱中提取有用信息属于弱信息和多元信息,需要充分利用现有的光机技术、电子技术和计算机技术进行处理。
计算机技术主要包括光谱数据处理和数据关联技术。
光谱数据处理是消除仪器因素(灯及测量方式等)环境因素(如温度等)和样品物态(如颜色、形态等)等对光谱的影响。
常采用的方法有平滑、微分、基线漂移扣减、多元散射校正(MSC)和有限脉冲响应滤波(FIR)等也可以用小波变换来进行部分处理。
数据关联技术主要是化学计量学方法。
化学计量学的发展使多组分分析中多元信息处理理论和技术日益成熟,解决了近红外光谱区重叠的问题。
通过关联技术可以实现近红外光谱的快速分析。
在近红外光谱的应用中我们所关心的是被测样品的组成或各种物化性质,因此,如何提取这些有用信息是近红外光谱分析的技术核心。
现在的许多研究与应用表明,
利用化学计量学方法进行近红外光谱分析是非常有效的。
化学计量学理论在近红外光谱仪器中的应用对仪器的实用化是非常关键的。
获得近红外光谱主要应用两种技术透射光谱技术和反射光谱技术。
透射光谱(波长一般在780~1100nm范围内)是指将待测样品置于光源与检测器之间,检测器所检测的光是透射光或与样品分子相互作用后的光(承载了样品结构与组成信息),若样品是混浊的,样品中有能对光产生散射的颗粒物质,光在样品中经过的路程是不确定的,透射光强度与样品浓度之间的关系不符合Beer定律。
对这种样品应使用漫透射分析法。
反射光谱(波长一般在1100~2526nm 范围内)是指将检测器和光源置于样品的同一侧,检测器所检测的是样品以各种方式反射回来的光。
物体对光的反射又分为规则反射(镜面反射)与漫反射。
规则反射指光在物体表面按入射角等于反射角的反射定律发生的反射,漫反射是光投射到物体后(常是粉末或其它颗粒物体),在物体表面或内部发生方向不确定的反射。
应用漫反射光进行的分析称为漫反射光谱法。
此外,还有把透射分析和漫反射分析结合在一起的综合漫反射分析法和衰减全反射分析法等。
在近红外光谱分析中被测物质的近红外光谱取决于样品的组成和结构。
样品的组成和结构和近红外光谱之间有着一定的函数关系。
使用化学计量学方法确定出这些重要函数关系,即经过校正,就可以根据被测样品的近红外光谱,快速计算出各种数据。
现在常用的校正方法主要有:多元线性回归(MLR)主成分分析(PCA),偏最小二乘法(PLS)人工神经网络(ANN)和拓扑(Topological)方法等。
1995年以来,国内许多科研院所和大专院校开始积极研究和开发适合国内需要的近红外光谱分析技术,并且做了大量技术知识的普及工作,为我国在这一技术领域的发展奠定了良好的基础,开创了崭新的局面。
近红外光(near infrared,NIR)是介于可见光(VIS)和中红外光(MIR或IR)之间的电磁波美国材料检测协会(ASTM)将近红外光谱区定义为波长780-2526nm的光谱区(波数为12820-3959cm-1)习惯上又将近红外区划分为近红外短波(780-1100nm)和近红外长波(1100-2526nm)两个区域。
从20世纪50年代起,近红外光谱技术就在农副产品分析中得到广泛应用,但是由于技术上的原因,在随后的20多年中进展不大。
进入20世纪80 年代后,随着计算机技术的迅速发展,以及化学计量学方法在解决光谱信息提取和消除背景干扰方面取得的良好效果,加之近红外光谱在测试技术上所独有的特点,人们对近红外光谱技术的价值有了进一步的了解从而进行了广泛的研究。
数字
化光谱仪器与化学计量学方法的结合标志着现代近红外光谱技术的形成。
数字化近红外光谱技术在20 世纪90年代初开始商品化。
近年来,近红外光谱的应用技术获得了巨大发展,在许多领域得到应用,对推进生产和科研领域的技术进步发挥了巨大作用。
近红外光谱技术是90年代以来发展最快、最引人注目的光谱分析技术,测量信号的数字化和分析过程的绿色化使该技术具有典型的时代特征。
由于近红外光在常规光纤中有良好的传输特性,使近红外光谱技术在实时在线分析领域中得到很好的应用。
在工业发达国家,这种先进的分析技术已被普遍接受,例如1978年美国和加拿大采用近红外法代替凯氏法,作为分析小麦蛋白质的标准方法。