管道超声导波检测技术
- 格式:pdf
- 大小:241.66 KB
- 文档页数:2
超声导波技术在管道缺陷检测中的研究一、本文概述随着工业化的快速发展,管道作为各类流体输送的主要工具,其安全性和稳定性对于工业生产和社会生活至关重要。
然而,由于长期运行、外部环境和材料老化等多种因素的影响,管道往往会出现各种缺陷,如腐蚀、裂纹、焊接缺陷等。
这些缺陷如果不及时发现和处理,可能会导致严重的后果,甚至引发安全事故。
因此,对管道进行定期、有效的缺陷检测具有重要意义。
超声导波技术作为一种新兴的无损检测技术,近年来在管道缺陷检测领域受到了广泛关注。
该技术利用超声波在固体介质中传播的特性,通过对超声波的传播速度、幅度和波形等参数进行分析,可以实现对管道内部缺陷的精确识别。
与传统的检测方法相比,超声导波技术具有检测速度快、范围广、精度高等优点,且无需破坏管道结构,因此在管道缺陷检测领域具有广阔的应用前景。
本文旨在深入研究超声导波技术在管道缺陷检测中的应用。
我们将对超声导波技术的基本原理和检测方法进行介绍,包括超声波的传播特性、信号处理方法以及缺陷识别算法等。
我们将对超声导波技术在管道缺陷检测中的实际应用案例进行分析,探讨其在不同管道类型和缺陷类型下的检测效果和可靠性。
我们将对超声导波技术的发展趋势和前景进行展望,以期为管道缺陷检测领域的技术进步和实际应用提供参考和借鉴。
二、超声导波技术原理及特点超声导波技术是一种基于超声波在介质中传播特性的无损检测技术。
其原理在于利用高频振动产生的超声波在材料内部传播时,遇到缺陷或界面会产生反射、折射或散射等现象,通过接收并分析这些反射波、透射波或散射波,可以实现对材料内部缺陷的定性、定量和定位检测。
高灵敏性:超声导波技术能够检测到微小的缺陷,如裂纹、腐蚀、夹杂等,对于保障管道安全运行具有重要意义。
长距离传播:超声导波在管道中传播时,能够覆盖较长的距离,减少了检测点的设置数量,提高了检测效率。
实时在线监测:超声导波技术可实现对管道的实时在线监测,及时发现潜在的安全隐患,为管道的预防性维护提供有力支持。
超声导波检测技术在压力管道检测中的应用研究【摘要】本文旨在探讨超声导波检测技术在压力管道检测中的应用研究。
引言部分介绍了本研究的背景和研究意义,指出压力管道检测的重要性。
正文部分分别从超声导波检测技术概述、压力管道检测需求分析、应用案例分析、优势与局限性以及技术改进与发展等方面展开讨论。
结论部分展望了超声导波检测技术在压力管道检测中的应用前景,并总结提出建议。
通过本文的研究,将为压力管道领域提供更加准确、高效的检测方法,有望推动该领域的发展。
【关键词】超声导波检测技术,压力管道,应用研究,需求分析,案例分析,优势,局限性,技术改进,发展,展望,总结,建议1. 引言1.1 背景介绍压力管道是输送液体或气体的重要设施,在工业生产中扮演着至关重要的角色。
随着管道运行时间的延长和环境条件的变化,管道存在着腐蚀、疲劳、裂纹等问题,给管道的安全性和稳定性带来了挑战。
及时有效地检测管道的健康状况,成为保障生产安全的关键措施。
本文将探讨超声导波检测技术在压力管道检测中的应用研究,深入分析其优势与局限性,探讨技术改进与发展方向,并展望其在压力管道检测领域的前景,旨在为压力管道检测技术的发展提供有益的参考和借鉴。
1.2 研究意义超声导波检测技术在压力管道检测中的应用研究具有重要的理论和实际意义。
随着社会经济的快速发展,压力管道在工业生产中扮演着至关重要的角色,其安全运行直接影响着生产效率和人员生命财产安全。
研究超声导波检测技术在压力管道检测中的应用,可以提高管道的安全性和可靠性,有助于预防管道事故的发生,保障工业生产的正常运行。
超声导波检测技术相比传统的检测方法具有更高的精度和灵敏度,能够检测出管道内部的微小缺陷和裂纹,实现对管道的全面监测和评估。
这对于提前发现潜在问题,及时采取修复措施,延长管道的使用寿命具有重要意义。
研究超声导波检测技术在压力管道检测中的应用,不仅可以提高管道的安全性和可靠性,保障工业生产的正常进行,还可以推动检测技术的创新与发展,为工程技术领域的进步做出积极贡献。
超声导波管道无损检测技术及应用
超声导波管道无损检测技术是一种利用管道中固有传播的弹性波传递声波信号,从而检测管道内部状态的方法。
它具有高效、精确、无损、不需要管道开挖的优点,广泛应用于石油、化工、天然气、核电和航空等行业。
该技术在检测管道内部存在的裂缝、氧化、腐蚀、壁厚变化等缺陷方面具有广泛的应用。
超声导波管道无损检测技术的核心是管道内部传播的弹性波,将弹性波信号转化为电信号,并通过信号处理与分析,得出管道内部状态的相关信息。
该技术主要有三种探头类型:双向检测探头、单向检测探头和球形检测探头,以满足不同管道尺寸和形状的需求。
随着技术的发展,超声导波管道无损检测技术还可以与无损检测机器人和云计算等智能技术相结合,实现对可视化管道内部状态及历史数据的追踪和管理。
在应用方面,超声导波管道无损检测技术的主要优点是无需管道开挖或者拆除,以及高效、准确地识别出管道内部状态。
它可以精确地查找到管道壁的缺陷、管道环境内的氧化情况、均匀性变化、破损情况等,从而为维修保养、管道安全检测和材料选择提供有力支持。
此外,它还可以作为管道日常检测和维护的工具,能够节省成本、节约时间、提高效率。
综上所述,超声导波管道无损检测技术具有在管道安全、质量和效率方面带来的前所未有的优势,是现代工业的重要技术之一。
它的应用范围将会越来越广泛,并给相关工业领域带来巨大的经济效益和社会效益。
超声无损检测中的导波技术摘要:近年来超声导波检测研究有了新进展,超声导波技术作为一种新式检测手段被运用于各行各业。
本文主要介绍超声导波技术的基本原理及运用,以供参考和分析。
关键词:无损检测;超声;导波技术引言相对于传统的超声波检测技术,超声导波具有传播距离远、速度快的特点,因此,在大型构件和复合材料板壳的无损检测中具有良好的应用前景。
由于导波的一些机理和特性仍然有的地方不是很清楚,导波的理论研究也成为了近年来无损检测界的焦点研究之一。
随着理论研究的深入,产生了很多有关导波的新技术。
1、超声导波检测技术概念超声导波检测技术即长距离超声遥探法,主要用于在线管道检测,包括低碳钢、奥氏体不锈钢、二重不锈钢等材料的无缝管、纵焊管、螺旋焊管。
可应用于油气管网(如天燃气管道、炼油厂火焰加热器中的垂直管路、带岩棉保温介质和漆层的架空液化气管道)及石油化工厂中的管网(如无保温层的输送CO与H合成类的淤浆管道、石油化工厂的交叉管路),码头管线、管区的连接管网,海上石油管网/导管,水下管道、电厂管网,结构管系,穿路/过堤管道、复杂或抬高管网,保温层下管道(例如带有保温层的氨水管道)、带有套管的管道,以及带有保护层的管道。
超声导波检测技术能检出管道内外部腐蚀或冲蚀、环向裂纹、焊缝错边、焊接缺陷、疲劳裂纹等缺陷。
最新的利用磁致伸缩换能器的超声导波检测已能应用于非铁磁性材料和非金属材料,除了管道检测还能用于棒材、钢索、电缆以及板盘件的检测。
2、超声导波无损检测技术的应用-以管道检测为例对于导波在结构中传播的研究可以追溯到20世纪20年(1920s);主要启蒙于地震学领域。
从那以后,开始致力于导波在圆柱状结构的传播方面的分析研究;在20世纪90年代(1990s)早期,导波检测被认为仅仅是应用于工程结构的无损检测方法。
如今,导波检测作为完整健康监测计划应用于石油产业领域。
与传统的超声波不同;有多种导波模式用于管道几何学,通常归类为三组,分别是扭转模式、纵向模式和弯曲模式。
管道超声导波检测技术研究的开题报告一、研究背景随着化工、石油、能源等重要行业的快速发展,管道系统的安全问题日益引起人们的关注。
管道系统中存在的缺陷,如裂纹、腐蚀等,对管道的安全性能和经济效益造成了严重影响。
因此,在管道系统中实施有效的缺陷检测和评估技术,是维护管道系统安全的必要手段之一。
传统的管道缺陷检测方法主要是使用无损检测技术,如涡流、超声、X射线等,其中,超声检测技术作为一种基于声学能量传输的非破坏检测技术,被广泛应用于管道缺陷检测中。
管道超声检测技术主要有直接接触、水浸、干式和气压式等不同形式,但这些方法均存在着检测深度和检测精度等方面的限制。
为了克服传统超声检测技术的局限性,管道超声导波检测技术应运而生。
该技术通过在管道内部传播机械波,实现对整个管道壁厚的全局检测,具有无需接触、快速、全面、高精度等优点,成为管道缺陷检测技术中备受关注的新兴技术。
二、研究内容本文拟以管道超声导波检测技术为研究对象,探究其在管道缺陷检测中的应用。
具体研究内容如下:1. 管道超声导波检测技术原理及特点介绍超声导波检测的基本概念和原理,并重点阐述其在管道缺陷检测中的优势和应用场景。
2. 超声导波在管道中的传播特性分析分析超声导波在管道中的传播规律和特性,探究管道壁厚的影响因素以及其对导波信号的影响。
3. 管道超声导波检测信号分析及缺陷识别方法研究采集探头产生的超声导波信号,分析信号特性,并针对不同类型的缺陷,研究其对应的信号特征和识别方法。
4. 管道超声导波检测系统设计与实验验证基于前期研究成果,设计管道超声导波检测系统实验平台,通过对真实管道缺陷的检测与识别验证技术可行性和应用效果。
三、研究意义1. 对于优化传统管道缺陷检测方法、提升管道安全性有一定的实用价值。
2. 为管道超声导波检测技术的发展提供理论和实验支持,推动其在工业领域的应用。
3. 对培育高水平的无损检测技术人才,提高我国无损检测领域的科学水平具有积极意义。
管道缺陷电磁超声螺旋导波层析成像方法导言本文旨在介绍管道缺陷电磁超声螺旋导波层析成像方法。
管道是工业生产中常见的输送设备,而管道缺陷可能会导致泄漏、断裂等严重后果。
对管道进行及时有效的检测至关重要。
而传统的探伤方法往往存在着限制和不足之处,因此需要不断创新和拓展新的检测方法。
电磁超声螺旋导波层析成像方法作为一种新型的管道缺陷检测技术,具有独特的优势和应用前景。
一、电磁超声螺旋导波层析成像方法概述1.1 电磁超声螺旋导波层析成像方法的原理电磁超声螺旋导波层析成像方法是一种利用电磁超声螺旋导波技术的管道缺陷检测方法。
该方法利用电磁超声螺旋导波技术,通过对管道内壁的超声信号进行螺旋成像,实现对管道内部缺陷的高分辨率成像和定量检测。
1.2 电磁超声螺旋导波层析成像方法的优势相比传统的探伤方法,电磁超声螺旋导波层析成像方法具有以下优势:a) 非接触式检测:无需直接接触被检测对象,减少了对管道的干扰和损伤;b) 高分辨率成像:通过螺旋导波技术,能够实现对管道内部缺陷的高分辨率成像,发现微小缺陷;c) 快速成像:成像速度快,能够快速对管道进行检测和评估。
1.3 电磁超声螺旋导波层析成像方法的应用前景电磁超声螺旋导波层析成像方法在石油、化工、航空航天等领域具有广阔的应用前景。
随着工业技术的不断发展和进步,对于管道缺陷检测的需求也日益增加,因此电磁超声螺旋导波层析成像方法的应用前景十分广阔。
二、电磁超声螺旋导波层析成像方法的关键技术2.1 电磁超声螺旋导波传感器电磁超声螺旋导波传感器是实现电磁超声螺旋导波层析成像的关键设备。
该传感器具有高灵敏度、高分辨率和高稳定性,能够有效地接收并记录管道内壁的超声信号。
2.2 数据采集和处理系统数据采集和处理系统是电磁超声螺旋导波层析成像方法的核心部分。
该系统能够快速、准确地采集管道内壁的超声信号,并进行数据处理和成像重建,最终形成管道内部的缺陷成像。
2.3 成像算法成像算法是电磁超声螺旋导波层析成像方法的重要技术支撑。
基于超声导波的管道缺陷动态检测方法全文共四篇示例,供读者参考第一篇示例:基于超声导波的管道缺陷动态检测方法随着工业技术的不断发展,管道在各种领域中扮演着重要的角色,比如石化、水利和供暖系统等。
长期使用和环境因素的影响,管道内部存在各种缺陷如腐蚀、裂纹和磨损等,这些缺陷可能会导致管道破裂、泄漏等严重后果。
管道缺陷的动态检测方法就显得尤为重要。
近年来,基于超声导波的管道缺陷动态检测方法成为了研究的热点之一。
超声导波是指在固体介质中传播的具有高频、超声的弹性波。
由于超声波在固体介质中传播时可以穿透一定深度,因此可以用来检测管道内部的缺陷。
与传统的超声波检测方法相比,超声导波检测方法具有更高的穿透深度和灵敏度,同时可以实现对管道内部大面积的缺陷进行快速高效检测。
基于超声导波的管道缺陷动态检测方法主要包括超声波发射、接收和信号处理三个步骤。
通过超声发射器在管道的一个端口处发射超声波,超声波在管壁内传播并经过管道内部的缺陷时会发生反射和散射。
接着,通过超声接收器接收反射和散射回来的超声波信号,并将信号传输到信号处理系统进行处理。
在信号处理系统中,可以利用算法对信号进行分析和处理,从而实现对管道内部缺陷的定位和识别,最终生成缺陷的检测报告。
在基于超声导波的管道缺陷动态检测方法中,超声波的频率和波速是两个重要的参数。
一般来说,当超声波的频率越高时,其穿透深度越浅,但对小尺寸缺陷的检测灵敏度更高。
而波速则影响了超声波在管道内部传播的速度和衰减程度,需要根据具体管道的材质和结构选取合适的波速参数。
为了提高基于超声导波的管道缺陷动态检测的准确性和可靠性,还可以通过引入多通道和多角度检测、实时成像和数据分析等技术手段。
多通道和多角度检测可以提高对管道内部缺陷的探测范围和检测精度,实时成像可以实时显示管道内部的缺陷信息,便于操作人员进行判断和处理,数据分析则可以利用先进的算法进行大数据处理和统计分析,为管道的维护和管理提供参考依据。
站场管道的导波检测技术佚名【摘要】超声导波是由超声波在介质中的不连续交接面间产生多次往复反射,并进一步产生复杂的干涉和几何弥散而形成的。
导波主要沿管道轴向传输,当导波传输过程中遇到缺陷时,会在缺陷处返回部分反射波,因此可根据反射波来检测缺陷位置和大小。
结合中洛管道站场管道特点,进行站场管道导波检测技术研究。
结果表明,站内伴热管道失效概率最高,其失效形式主要为腐蚀泄漏;失效后果最严重的风险点为加热炉,其次为燃料油管。
建议全线范围内拆除固定墩,验证是否有固定墩内腐蚀的情况,或定期进行导波检测,监测管道腐蚀的发展状况。
由于中洛线站场设施的风险在未来的一段时间内上升较快,建议加强监测,降低站场风险。
【期刊名称】《油气田地面工程》【年(卷),期】2013(000)007【总页数】3页(P22-23,24)【关键词】输油管道;导波检测;完整性管理;管道失效【正文语种】中文1.1 导波基本概念超声导波是由超声波在介质中的不连续交接面间产生多次往复反射,并进一步产生复杂的干涉和几何弥散而形成的。
其中,传播介质称为波导,传播速度仅与波导密度和弹性性质有关,而与波动本身特性无关。
在传播过程中,一定频率相近的一族波叠加形成波包,此波包的速度称为群速度,而其中每一相波的速度称为相速度。
导波既携带了扰动源的信息,同时又包含了波导本身的特征。
导波主要沿管道轴向传输,当导波传输过程中遇到缺陷时,会在缺陷处返回部分反射波,因此可根据反射波来检测缺陷位置和大小。
检测灵敏度用管道环状截面上金属缺损面积的百分比评价,当缺损面积达到管道总截面积的3%便可检出。
1.2 管道中的导波模态由弹性动力学可知,各向同性均匀的线弹性体的运动由纳维方程决定,假定方程解具有谐波形式,则质点位移分量为式中周向阶数n=0,1,2,3…;Ur、Uθ、Uz是由Bessel函数(或修正的Bessel函数,取决于幅角)构成的相应的位移幅度。
根据Meitzler(1961)、Zemanek(1972)、Silk和Bainton(1979)的理论,当假设导波在空心无限长且无应力的管道中传播时,其导波分为三种模式:轴对称纵向模态,L(0,m);轴对称扭转模态,T(0,m);非轴对称的弯曲模态,F(n,m)。
超声导波检测技术在压力管道检测中的应用研究超声导波检测技术是一种应用于结构健康监测和无损检测的有效手段。
通过在管道表面激发超声导波,可以对管道内部及周围的缺陷进行评估和检测,实现对管道的损伤和腐蚀程度进行实时监测。
因此,超声导波检测技术在压力管道检测中得到了广泛的应用。
本文将探讨超声导波检测技术在压力管道检测中的应用研究。
一、超声导波技术原理超声导波检测技术是通过在压力管道表面激发超声波,并通过接收器接收并分析超声波信号,从而实现对管道状态进行诊断。
在压力管道检测中,可以通过精确控制激发超声波的波长、频率和传播方向,来检测出管道中的各种缺陷和损伤,如管道内部的裂纹、腐蚀、磨损等。
超声导波技术根据超声波在不同介质中的传播特性和面对波的特性,可以分为纵波、横波和剪切波。
其中,纵波是波速最快的一种,它沿着管道的轴向传播,可用于检测管道内部的缺陷和腐蚀;横波是波速较慢的一种,它沿着管道的周向传播,可用于检测管道弯曲处的缺陷和损伤;剪切波也是一种周向传播的波,其传播速度介于纵波和横波之间,主要用于检测管道表面附着物和松动部分。
二、超声导波技术在压力管道检测中的应用1. 检测管道内部的裂纹和腐蚀在使用超声导波技术进行内部检测时,激发的超声波会沿着管道轴向传播,并通过管道内部存在的裂纹、腐蚀等缺陷时产生的反射和散射,形成不同的信号。
总的来说,由于缺陷处所引起的超声波的反射和散射等情况与管道本身的特性如弯曲、直径大小等关联较小,因此可以使用超声波检测技术来精确检测管道内部的裂纹和腐蚀。
特别是采用多通道捕获和分析技术,可以实现对管道整个截面的检测和分析。
2. 检测管道表面的附着物和松动处超声导波技术还可以用于检测管道表面的附着物和松动处。
在横波的传播过程中,其波形可以受到管道表面的附着物和松动处的影响。
因此,通过分析横波波形的特征,可以得出附着物或松动处的存在情况,从而及时进行处理和维护。
此外,由于横波能穿过附着物,因此超声导波技术还可以用于检测附着物和管道之间的空隙。
超声导波检测技术在压力管道检测中的应用研究超声导波检测技术是一种用于检测金属管道中内部缺陷的非破坏性检测方法。
目前,它已经成为压力管道检测领域中最为常用和可靠的方法之一。
本文将详细介绍超声导波检测技术在压力管道检测中的应用研究。
一、超声导波检测技术的原理超声导波检测技术是一种基于声学原理的检测方法,通过在金属管道中传播超声波来检测管道中的内部缺陷。
超声波会在管道内部产生反射和散射,并且不同频率的超声波会因为管道不同部位的结构差异而受到不同的影响,从而形成不同的回波信号。
这些信号可以通过电子仪器进行处理和分析,通过对其波形、振幅、时间等特征进行分析,可以确定管道内部的缺陷类型和位置。
1. 腐蚀检测超声导波检测技术可以通过检测管道表面和管道内部的缺陷来对管道进行腐蚀检测。
管道表面的腐蚀可以通过超声波的散射来检测,而管道内部的腐蚀可以通过超声波的回波信号来检测。
这样可以便于管道维护人员及时发现管道的腐蚀情况,进行维护和修复。
2. 破裂检测破裂是压力管道的常见缺陷之一,超声导波检测技术可以有效地对破裂进行检测。
当管道内部存在破裂时,超声波会产生不同的特征信号,通过对这些信号进行分析可以确定管道的破裂位置及程度。
3. 焊缝检测超声波会被焊缝表面的几何形状和物理性质影响,在焊缝中存在的缺陷可以通过超声波的回波信号来检测。
这种检测方法可以有效地检测管道焊缝的质量,确保管道的安全和可靠性。
4. 垂直管道检测垂直管道常常受到热膨胀和冷缩等环境因素的影响,容易引起管道的内部缺陷,给管道的使用带来安全隐患。
超声导波检测技术可以通过对管道上下方向的检测,对垂直管道的内部缺陷进行有效地检测,并确保管道的安全和可靠性。
5. 隐蔽部位检测有些压力管道的结构较为复杂,隐蔽部位容易受到损坏。
超声导波检测技术可以通过检测管道内部声波的传播速度和振幅等特征,对隐蔽部位进行检测,并可以有效地检测到管道的缺陷。
1、非破坏性检测方法,不会对管道本身造成任何损伤。
管道超声导波检测原理
管道超声导波检测是一种非破坏性检测技术,用于检测管道内部的缺陷、腐蚀、磨损等问题。
其原理是利用超声波在管道壁内部传播时的特性来检测管道的健康状况。
首先,超声波是一种机械波,它可以在固体材料中传播。
当超声波遇到材料的界面或者缺陷时,会发生反射、折射或散射,这些现象可以被探测到并用来分析材料的性质。
在管道超声导波检测中,通常会使用多个传感器,将超声波引入管道内部。
超声波会沿着管道壁传播,并在遇到缺陷或改变材料性质的地方发生反射。
通过分析反射的强度、时间和位置,可以推断出管道内部的问题。
此外,管道超声导波检测还可以利用不同频率的超声波来探测不同深度的问题,从而实现对管道壁厚度、腐蚀程度等多种参数的检测。
总的来说,管道超声导波检测利用超声波在管道内部传播时的
反射、折射和散射等特性,通过分析这些特性来检测管道的健康状况,是一种准确、可靠的非破坏性检测方法。
超声导波检测技术在压力管道检测中的运用分析摘要:超声导波检测技术是常用于压力管道检测的技术手段,是一种基于导波技术的探测手段。
单一模式导波检测、多模式导波检测以及模态声发射技术都能够对各种类型的压力管道进行有效检测,但在具体应用中需要结合实际情况进行分析,而了解超声导波检测技术在弯管检测、直管检测以及管道缺陷分析等方面的特性与要点,有利于更好的完成检测过程,提升检测准确性。
关键词:超声导波检测技术;压力管道检测;运用超声导波检测技术是一种新型的压力管道检测技术,其检测准确性与便捷度比传统检测更为优秀,可以为工业生产提供实时性和准确性更好的压力管道检测结果。
超声导波在检测压力管道方面具有良好的优势,其超声导波的探头固定于管道周围即可发射低频导波,无需液体耦合,操作方便快捷。
在实际检测中,超声导波检测技术能够提供多模态检测、横波检测、纵波检测等各类型检测条件,具有极高的应用价值。
一、超声导波检测技术超声导波检测技术是利用导波进行探测的过程,导波频率一般在20kHz—100kHz,用于管道检测可以穿透管壁并沿管壁传播,当导波触及管壁内异常变化时会产生脉冲波反射,并由传感器接收反馈,超声导波检测技术对管壁内变形、异质体以及其他缺陷等都具有良好的检测效果[1]。
超声导波检测系统包括多模态检测、扭曲波检测、纵波检测等,均可以为检测样品提供良好的条件,在进行管道检测时可根据管道特点进行具体检测技术的选择,保证其探测准确性(见表1)。
表1 多模态超声导波管道检测系统实例二、压力管道检测中超声导波检测技术类型1、单一模式导波检测单一模式导波检测是在压力管道检测中应用最为普遍的技术,可以将复杂的超声导波信号转化为单一模式信号,便于数据分析和处理,完成压力管道的检测。
单一模式导波检测属于管道的无损检测技术,在实际检测中具有简单、便捷的作用,相较于其他模式而言,单一模式导波检测可以将其复杂的信号转化为单一信号,能够更加快速、灵敏的完成管道检测,便于后续的数据分析;单一模式导波检测在传输介质流动过程中,可以沿介质流动方向实现管道自主检测,检测过程更加便捷。
超声导波检测技术超声导波(Ultrasonic Guided Wave)检测技术利用低频扭曲波(Torsinal Wave)或纵波(Longitudinal Wave)可对管路、管道进行长距离检测,包括对于地下埋管不开挖状态下的长距离检测。
超声导波(也称为制导波)的产生机理与薄板中的兰姆波激励机理相类似,也是由于在空间有限的介质内多次往复反射并进一步产生复杂的叠加干涉以及几何弥散形成的。
但是对于管道检测,在一般管壁厚度下要产生适当的波型,则需要使用比通常超声波探伤低得多的频率,导波通常使用的频率f<100KHz,因此导波对单个缺陷的检出灵敏度与通常使用频率在MHz级别的超声检测相比是比较低的,但是导波检测的优点是能传播20~30米长距离而衰减很小,因此可在一个位置固定脉冲回波阵列就可做大范围的检测,特别适合于检测在役管道的内外壁腐蚀以及焊缝的危险性缺陷。
低频导波长距离超声检测法用于管道在役状态的快速检测,内外壁腐蚀可一次探测到,也能检出管子断面的平面状缺陷。
超声导波应用的主要波型包括-扭曲波(Torsinal Wave,也简称为扭波)和纵波(Longitudinal Wave)。
扭曲波的特点是能够一边沿管子周向振动,一边沿管子轴向传播,声能受管道内部液体影响较小(在导波检测时,液体在管道中流动是允许的),回波信号能包含管轴方向的缺陷信息,通常能得到清晰的回波信号,信号识别较容易,在应用中需要换能器数量少,重量轻、费用省、因管内液体介质而产生的扩散效应较小,波型转换较少,检测距离较长,对轴向缺陷灵敏度高。
纵波特点是一边沿管子轴向振动,一边沿管子轴向传播,回波幅度与缺陷性状关系不大,回波信号不如扭波清晰,因为受管内流体流动的影响,也受探头接触面的表面状态影响较大(油漆、凹凸等)受被测管内液体介质流动的影响很大。
超声导波检测装置主要由固定在管子上的探伤套环(探头矩阵)、检测装置本体(低频超声探伤仪)和用于控制和数据采样的计算机三部分组成。
浅析压力管道超声导波检测技术摘要:超声导波检测技术由于在检测在役各类管道中有着独特的优势,因而越来越广泛地在多个行业中得到应用。
作为一种新型的检测技术,要了解、掌握并更好地应用,还需要在检测中不断地经累经验和检测案例。
关键词:压力管道;超声导波检测1超声导波检测技术介绍1.1压力管道超声导波检测的基本原理超声导波激发的声波频率只有数十千赫兹,可穿透整个管壁,并延管壁传播数十甚至上百米。
当它在传播过程中碰到缺陷、异质体或者结构形状变化的地方时,脉冲波发生发射并延管壁返回传感器而被接收。
这样一种工作方式决定了超声导波这种检测技术的特点,即完全覆盖管壁,实现大范围远距离扫查。
低频导波从固定在管道周围的探头环发射,不需要液体进行耦合,采用机械或气体施加到探头的背面以保证探头压电晶片与管道表面接触良好。
管道环向的超声波探头均匀的间隔排列,使得声波以管道轴芯为对称传播。
影响导波传播的因素主要有声波的频率和材料的厚度,在遇到管壁截面积发生变化的位置,无论增加或减少,一定比例能量被反射回到探头,为检测不连续性提供了可能。
管道的特征部位如环形焊缝,壁厚的增加在管道周向是对称的,因此反射的声波也是对称的;而在有腐蚀的区域,厚度的减少将是不对称的,导致入射声波的散射附加到反射波中并发生模式转换,因此组成的反射波模式加上模式转换组份。
模式转换声波由于不统一的声源趋于产生管道弯曲波。
超声导波检测系统能够检测和区分对称波和弯曲波,且能分别显示。
1.2导波检测设备图1为超声导波检测系统。
该系统可进行纵波检测、扭曲波检测和多模态检测,并具备沿圆周方向每隔45°分别进行聚焦的能力。
实际检测中,一般采用多模态检测,对异常位置进行聚焦检测。
多模态检测的优点是既可以发射两种模式的声波,又可以接受相同或不同的声波,极大地增加了缺陷的检出率。
而聚焦功能则可以初步确定异常点在管道环向的位置和环向长度,也可以估计出缺陷的深度。
图1 超声导波检测系统及实验室模拟管道检测系统可根据不同管径配置不同规格的卡具,每个卡具可安装不同数量的多功能模块,一般模块的数量为8的倍数,故卡具也称为八分仪;每个模块可以装3~5个检测探头,一般装3个纵波探头和2个扭曲波探头。
超声波管道检测技术原理
超声波管道检测技术是一种非破坏性检测方法,主要用于检测管道内部的问题,例如管道壁面缺陷、腐蚀、裂纹等。
其原理是利用超声波在介质中传播的特性来实现检测。
超声波是一种高频声波,其频率通常在1MHz至10MHz之间。
在管道检测中,通常采用探头将超声波引入管道内部。
超声波在管道中传播时,会遇到介质的界面。
当超声波传播到不同介质的界面时,会发生折射、反射和散射。
通过分析接收到的超声信号,可以判断管道内部是否存在缺陷。
在管道检测中,常用的超声波检测方法有脉冲回波技术和传递法技术。
脉冲回波技术是指在探头向管道内发送短脉冲超声波信号后,接收探头接收到的回波信号,并通过分析回波信号的幅值、时间等参数来判断管道内部的问题。
传递法技术是指在探头向管道内发送连续超声波信号后,接收探头接收到的传递超声波信号,并通过分析传递超声波信号的幅值、频谱等参数来判断管道内部的问题。
总的来说,超声波管道检测技术利用超声波在管道内部传播的特性,通过分析超声信号来检测管道内部的问题。
这种方法具有非破坏性、无污染、快速、高精度等优点,因此在管道行业中得到广泛应用。
超声导波检测技术在压力管道检测中的应用研究一、超声导波检测技术概述超声导波检测技术是利用超声波在材料中的传播特性来检测材料内部的缺陷情况的一种方法。
它通过在材料中引入超声波,利用超声波在材料内部的传播特性和反射特性,来检测材料中的缺陷和变化。
与传统的超声波检测技术相比,超声导波技术在材料中的传播距离更远,能够有效地检测材料中的细小缺陷,因此在检测灵敏度和有效性上有着更明显的优势。
二、超声导波检测技术在压力管道检测中的应用研究1.适用范围超声导波检测技术在压力管道检测中的应用范围非常广泛,可以对各种类型的管道进行检测,包括金属管道、复合材料管道等。
在管道的壁厚较大的情况下,超声导波检测技术同样能够发挥其优势,准确地检测出管道壁内部的缺陷情况。
2.检测原理超声导波检测技术通过在管道中引入超声波,利用超声波在管道内部的传播特性和反射特性,来检测管道内部的缺陷情况。
超声波在管道内部的传播受到管道壁厚、材料性质、管道内部的缺陷等因素的影响,根据超声波的传播时间、幅度、频率等参数来判断管道内部的缺陷情况。
3.优势和局限性超声导波检测技术在压力管道检测中具有以下优势:(1)灵敏度高:超声波在材料中的传播特性使得超声导波检测技术对于材料内部的细小缺陷具有很高的灵敏度,能够有效地检测出管道内部的腐蚀、疲劳等问题;(2)定位准确:超声导波检测技术能够对管道内部的缺陷进行准确定位,帮助工作人员快速找到管道内部存在问题的位置;(3)非破坏性:超声导波检测技术是一种非破坏性检测方法,不会对管道本身造成损坏,能够保持管道的完整性。
超声导波检测技术在压力管道检测中也存在一定的局限性,包括:(1)受材料影响:不同材料的超声波传播特性不同,因此在实际应用中需要对不同材料的管道进行适当的参数调整;(2)较高的技术要求:超声导波检测技术对操作人员的技术要求较高,要求操作人员具有一定的专业知识和经验。
三、超声导波检测技术在压力管道检测中的应用案例超声导波检测技术在压力管道检测中已经得到了广泛的应用,下面通过具体的案例来说明其应用效果。
管道超声导波检测技术摘要:超声导波检测技术作为一种长距离、全范围的检测手段,已经发展成为国内外前沿的管道检测技术。
超声导波技术作为新型的无损检测技术,因为其具有检测距离长、速度快、成本低并且可以检测到一般常规检测器无法检测的地方,例如有套管或者埋地管道等特殊管道。
本文通过介绍管道超声导波检测技术的一些基础理论知识,提出这一检测技术的应用关键,对此,为以后人们能广泛应用管道超声导波技术提出合理化的建议。
关键词:超声导波技术;管道;检测技术在化工及其相关类工厂中大量压力管道被集中在管廊上,沿着装置或在厂区外布置。
管廊上压力管道的距离长,离地距离高,而常规检测技术是单点检测,对于数量庞大的管道,其检测成本高,效率低。
超声导波检测技术具有检测距离长,效率高且可以同时检测管道内外壁的优点。
超声导波检测技术作为一种长距离、全范围的检测手段,已经发展成为重要的管道检测技术。
1 超声导波技术1.1基本原理导波原理好像平板中的板波,它发出的超声波频率比板波更低,它横穿整个管壁,并可以继续沿管壁传播上百米。
当在传播过程中碰到缺陷、结构变化的地方,脉冲波会发生反射并沿管壁传播到传感器而被接收。
这一特殊的工作原理决定了管道超声波可以应用于工业企业中大范围、远距离的检测中去,实现全覆盖管道壁。
1.2导波检测技术的应用范围、优缺点应用于:管道、管状设备等。
检测管道类型:无缝管、纵焊管等。
优点:(1)一般常规超声波检测只能检测到管壁一个点的腐蚀情况,而管道导波检测技术可以利用一个检测点,从两个方向检测到几米甚至上百米管道腐蚀情况。
(2)可以检测到常规检测技术无法检测到的地方,如埋地管道等特殊管道。
(3)检测速度快、效率高、全方位覆盖,无漏检。
(4)可敏感地感应到横截面检测面的金属损失,检测深度也达到管道横截面的4%。
缺点:(1)超声导波不能对缺陷准确定性,定量也是不准确的,对可疑地方只能再根据其他检测方法进行进一步检测。
(2)超声导波检测技术很难将单个点状缺陷和轴向条状缺陷检测出来。
压力管道超声导波检测技术研究摘要:压力管道广泛应用在石油化工、工业生产、热力传输等关键领域,担负着各种高温高压、易燃易爆以及有毒介质的生产输送。
因此,需要定期对压力管道进行检验检测,保障其运行安全,而传统的无损检测方法费时费力,鉴于此,本文就压力管道超声导波检测技术展开探讨,以期为相关工作起到参考作用。
关键词:压力管道;超声导波检测;技术研究1.超声波检测研究概况超声波检测中,声波分为体波和导波两种。
体波是当声波在无限大或半无限大介质中传播的声波,分为纵波和横波等,体波的传播速度取决于传播介质的特性,与频率无关。
导波是声波受到界面的影响,声波会在界面来回反射,此时声波将出现频散现象,即波速与频率相关,从而导波的特性常通过频散曲线来表示,具有群速度和相速度,如图1、图2所示。
图1铝板中相速度曲线图2铝板中群速度曲线1.1国内研究概况研究者们首先对导波的群速度、相速度以及导波传播过程中的反射、折射等现象进行了探索,并用实验进行了论证。
然后研究者们逐步对导波在波导中传播的频散特性进行了研究,分析总结了导波传播中出现的模态转换现象,并给出了合理的解释。
在20世纪早期,人们开始研究超声导波在有界的不同形状的介质中传播的相关特性,并重点研究了导波在平板中的传播特性,进而通过获得的相关结论对导波在圆柱空心管中的传播进行了预测和分析,并对超声导波在无限长圆柱管中的传播特性进行了研究。
1.2国外研究概况外国学者对超声导波技术研究较早,始于20世纪初期。
国外科学家在假设导波的传播为轴对称运动的基础上,基于板壳理论对超声导波在空心圆柱壳中的传播进行了分析及研究。
另外详细分析了轴对称和非轴对称模态导波的性质和板壳理论和轴对称假设的局限性,并提出了自己的线弹性理论;同时,运用得到的频散方程对超声导波在板中和圆柱壳中的传播进行了分析和比较。
2.压力管道特点(工业管道)我国当前对工业管道所输送工业介质的不同来划分成工艺管道、公用工程管道和其它辅助管道这几大类。
管道超声导波检测技术
发表时间:2018-08-14T11:41:10.603Z 来源:《防护工程》2018年第7期作者:张加恬[导读] 超声导波检测技术作为一种长距离、全范围的检测手段,已经发展成为国内外前沿的管道检测技术
浙江赛福特特种设备检测有限公司浙江杭州 310000 摘要:超声导波检测技术作为一种长距离、全范围的检测手段,已经发展成为国内外前沿的管道检测技术。
超声导波技术作为新型的无损检测技术,因为其具有检测距离长、速度快、成本低并且可以检测到一般常规检测器无法检测的地方,例如有套管或者埋地管道等特殊管道。
本文通过介绍管道超声导波检测技术的一些基础理论知识,提出这一检测技术的应用关键,对此,为以后人们能广泛应用管道超
声导波技术提出合理化的建议。
关键词:超声导波技术;管道;检测技术
在化工及其相关类工厂中大量压力管道被集中在管廊上,沿着装置或在厂区外布置。
管廊上压力管道的距离长,离地距离高,而常规检测技术是单点检测,对于数量庞大的管道,其检测成本高,效率低。
超声导波检测技术具有检测距离长,效率高且可以同时检测管道内外壁的优点。
超声导波检测技术作为一种长距离、全范围的检测手段,已经发展成为重要的管道检测技术。
1 超声导波技术
1.1基本原理
导波原理好像平板中的板波,它发出的超声波频率比板波更低,它横穿整个管壁,并可以继续沿管壁传播上百米。
当在传播过程中碰到缺陷、结构变化的地方,脉冲波会发生反射并沿管壁传播到传感器而被接收。
这一特殊的工作原理决定了管道超声波可以应用于工业企业中大范围、远距离的检测中去,实现全覆盖管道壁。
1.2导波检测技术的应用范围、优缺点
应用于:管道、管状设备等。
检测管道类型:无缝管、纵焊管等。
优点:(1)一般常规超声波检测只能检测到管壁一个点的腐蚀情况,而管道导波检测技术可以利用一个检测点,从两个方向检测到几米甚至上百米管道腐蚀情况。
(2)可以检测到常规检测技术无法检测到的地方,如埋地管道等特殊管道。
(3)检测速度快、效率高、全方位覆盖,无漏检。
(4)可敏感地感应到横截面检测面的金属损失,检测深度也达到管道横截面的4%。
缺点:(1)超声导波不能对缺陷准确定性,定量也是不准确的,对可疑地方只能再根据其他检测方法进行进一步检测。
(2)超声导波检测技术很难将单个点状缺陷和轴向条状缺陷检测出来。
(3)焊接处的管道因为结构发生变化影响整个检测的长度和准确度。
2 弯管检测研究现状
导波在弯头部位容易发生频散和模态转换,并且导波能量将主要集中在弯头的背弯部位。
因此导波检测弯头时,容易发现处于弯头背弯部位的缺陷,而可能漏检内弯的缺陷。
在弯头生产时,弯头背弯处壁厚将小于内弯壁厚,且背弯处受到管道中介质冲刷的影响,更容易产生缺陷。
因此采用超声导波检测弯头部位缺陷是可行的,但其难点在于信号分析。
国内外对于弯管的研究还较少。
2.1国内研究概况
目前大多数从事导波检测的科研人员主要针对的是直管道的缺陷检测展开的研究,然而管道系统里的直管道绝大部分是 90°弯曲管道连接起来的,研究导波在弯曲管道中的传播在近年来变成一个热门的话题。
学者已经对导波在弯曲处的传播特性进行了研究,并对弯管中缺陷的进行了检测,模态具有检测弯曲管道外侧区域的能力。
也有学者通过改变90度弯头的曲率半径进行试验,模态在不同的曲率半径下,穿过90度弯头的能力(即透射系数)。
2.2导波检测仪器对比
超声导波的激励方式主要有压电晶片和磁致伸缩,相比于压电晶片式导波仪器,磁致伸缩激励方式易于实现非耦合状态下检测,且易于激励扭转模态导波。
其中磁致伸缩导波检测是通过磁致伸缩效应和逆磁致伸缩效应激发和接收超声导波信号。
铁磁体在外磁场作用下会引起磁畴的变化,而磁畴的变化也引起晶格的变形,从而产生振动激发应力波。
反之,在磁场的作用下,铁磁体中晶格的变化会改变磁畴,从而影响外磁场的变化。
磁磁致伸缩仪器的功放研制是关键点和难点。
压电晶片激励超声导波的研究难点和热点在于晶片的研制。
采用压电方式激励导波时难以激励纯正的扭转模态,但是很容易激励纵向模态导波,而磁致伸缩激励方式正好相反。
在价格方面,压电晶片导波检测仪器比磁致伸缩导波仪器更昂贵。
3 超声导波检测方法
经过这么多年的发展,超声导波检测技术在压力管道中进行检测的技术得到了国内外很多研究机构的关注与研究。
因为在实际生产作业中非常需要利用先进的检测技术对压力管道检测管道情况,所以超声导波技术逐渐浮出水面,成为管道检测的一大技术。
3.1单一模式导波检测
一般来说,激励源产生的波是处于其所在频域范围内所有的模式,是很复杂的,几乎是没办法直接利用这种信号直接进行分析的。
但是如果利用一些特定的激励形式把复杂的信号转化成具有单一模式的信号,这样将大大减少工作强度。
当前在国外研究领域,超声导波检测经常使用的单一模式导波是 L的模式。
采用L模式的导波的优点在于:(1)在某个固定的频率带宽内,这种模式下的信号基本都是非频散的,意思就是导波的群速度和相速度都不会随着频率的变化而发生巨大变化,所以这样当导波进行传播时是相对稳定的,几乎不发生变形;(2)这种模式下的导波的传播速度是最快的,这样会使其他杂乱的、不需要利用的信号处在后面;(3)这种方法对内表面和外表面的灵敏度都很高,因此这种模式的导波不但可以检测内外表面的损伤,还可以沿径向方向进行检测。
3.2模态声发射技术
声发射技术是近五十年才发展起来的,但是因为其有很大的优势所以发展很迅速。
这种技术是利用其在发生作用的时候可以快速释放能量对管带物体进行检测的,它的优势在于能够形成动态检测,而且覆盖面广。
3.3多模式导波检测
因为一种模式的导波只能检测出一种缺陷类型,但是实际工程中的缺陷却是多种复杂原因结合在一起的,因此利用多模式导波检测可以同时对多种缺陷进行检测。
另外,可以根据激励信号的空间相位和幅度的特殊性对一些结构中的缺陷进行检测。
比如可以利用低频窄带脉冲信号的特殊性检测管道,这样的方法很适合应用在径向和轴向不均匀特点的管道缺陷。
4 超声导波检测的应用
从现在来看,管道铺设方法有架空和埋地两种。
因为使用时间较长,管道的腐蚀也比较严重。
针对于腐蚀情况的检测,如果继续运用一般常规检测技术还需要利用手脚架、拆除管道外壁的保温层、大面积,长距离的挖沟等长时间,大工作量的前期辅助工作,无疑是增加了检测技术的检测成本。
而经过大的变动之后能否正常进行检测,检测是否准确这些也是应该考虑的地方。
检测后的管道能否正常运作也会直接影响到正常的生产工作。
结论
目前,研究研究表明纵向模态导波对管道周向缺陷比较敏感,而扭转模态导波对管道纵向缺陷比较敏感,相比于直管,压力管道的弯头部位会引起导波频散和模态转换,同时弯头的焊缝也会对导波的传播产生严重的干扰,因此弯管部位是检测难点。
参考文献
[1]郑国军.磁致伸缩导波管道无损检测数字信号处理关键技术[D].杭州:浙江大学,2013.
[2]陈旭玲,朱如鹏,陈阳.多场耦合下超磁致伸缩材料特性与应用综述[J].机械传动,2016(10):181-184.
[3]龙盛蓉.管道磁致伸缩导波检测机理及传播特性研究[D].南昌:南昌大学,2014.。