《数学物理方法A》教学大纲
- 格式:doc
- 大小:44.00 KB
- 文档页数:4
《数学物理方法》课程教学大纲(72 学时)(理论课程)一课程说明(一)课程概况课程中文名称:《数学物理方法》课程英文名称:Mathematics physics method课程编码:3910252114开课学院:理学院适用专业/开课学期:物理学/第 4 学期学分/周学时:4 学分/周4 学时《数学物理方法》是物理学本科专业的必修专业主干课,通过该课程的学习,使学生掌握复变函数、数学物理方程和特殊函数的基本理论、建模方法和计算方法,培养学生用数学方法和物理规律解决各类物理实际问题的能力,为后续课程的学习打下良好的基础。
本课程是前期课程《高等数学》的延伸,为后继开设的《电动力学》、《量子力学》等课程提供必需的数学理论知识和计算工具。
本课程在本科物理学专业中占有重要的地位,本专业学生必须掌握它们的基本内容,否则对后继课的学习将会带来很大困难。
(二)课程目标通过本课程的学习,使学生掌握处理物理问题的一些基本数学方法,为进一步学习后继课程提供必要的数学基础。
要求学生熟悉复变函数(特别是解析函数)的一些基本概念,掌握泰勒级数及洛朗级数的展开方法,利用留数定理来计算回路积分和三类实变函数的定积分;掌握傅立叶变换和拉普拉斯变换的概念及性质,并能运用拉普拉斯变换方法求解积分、微分方程。
了解三种类型的数学物理方程的导出过程,能熟练写出定解问题;掌握用行波法求解一维无界及半无界波动方程,利用分离变量法求解各类齐次及非齐次方程;了解特殊函数的常微分方程,掌握用级数解法求解二阶常微分方程,了解施图姆-刘维尔本征值问题及性质;掌握勒让德多项式、贝塞尔函数及性质,并能利用勒让德多项式求解三维轴对称拉普拉斯方程。
(三)学时分配二教学方法和手段1.本课程课堂讲授约需 72 课时。
2.学生在学习过程中应注重各专题所要求内容的全貌,以掌握基本思想和基本方法为主,培养创新精神。
3.在学习过程中,应以推荐教材为主,适当参考所列出的或其它的参考书,要适应各种不同的教材的编排体系和书写符号等。
《数学物理方法A》教学大纲数学物理方法A教学大纲一、课程信息1.1课程名称:数学物理方法A1.2学时:48学时(32课时理论课+16课时实验课)1.3学分:3学分1.4授课对象:理工科本科生二、教学目标2.1知识与理解目标:1)了解和掌握数学物理方法和技巧;2)熟悉物理问题的数学描述;3)掌握微积分、线性代数、复数、常微分方程等数学工具及其应用。
2.2能力与技能目标:1)能够运用数学方法解决物理问题;2)具备解析解和近似解的求解能力;3)能够理解和应用数学物理方法解读和解决实际问题。
2.3情感、态度与价值观目标:1)培养学生对数学物理的兴趣与热爱;2)培养学生独立思考和解决问题的能力;3)培养学生对抽象数学概念的理解和应用的能力。
三、教学内容3.1数学物理背景知识1)向量与矩阵2)微积分基础3)常微分方程4)复数与复变函数3.2数学物理方法及其应用1)变分法及其应用2)波动方程与热传导方程3)常微分方程解的性质与稳定性4)特殊函数及其应用5)复变函数与调和函数3.3数学物理实验1)模型建立与分析2)数值模拟与计算3)实验数据处理与分析4)实验结果与结论四、教学方法4.1理论课1)讲授法:通过讲解理论知识,准确、简明、逻辑清晰地阐述数学物理方法的基本原理和应用方法。
2)案例分析法:通过具体问题的分析与求解,加深学生对理论知识的理解和应用能力的培养。
4.2实验课1)实验教学法:通过实验操作和数据处理,培养学生实验设计与科学研究的能力。
2)讨论交流法:通过实验结果的讨论与交流,促进学生思维能力的提升和科学合作精神的培养。
五、考核方式5.1理论考核:1)平时成绩:包括课堂听讲、课堂练习、作业完成情况等。
2)期末考试:闭卷考试,主要考察学生对数学物理方法的理解和应用。
5.2实验考核:1)实验报告:包括实验目的、实验设计与方法、实验数据处理与分析、实验结果分析与结论等。
2)实验技能:考察学生在实验操作和数据处理上的表现。
《数学物理方法》课程教学大纲一、课程基本信息英文名称 Mathematical Methods for Physics 课程代码 PHYS2002课程性质 大类基础课程 授课对象 物理学学 分 4学分 学 时 72学时主讲教师 修订日期 2021年9月指定教材 四川大学数学学院高等数学、微分方程教研室编,高等数学第四册(第三版), 北京:高等教育出版社,2010年二、课程目标(一)总体目标:本课程的总体目标是使学生在高等数学和普通物理学的基础上学习复变函数和数学物理方程的基础知识,并了解近年来相关理论的新进展,为后继物理学专业课程学习和科研工作中将要遇到的相关数学物理问题打下基础。
与此同时培养和锻炼学生的科学思维能力、科学创新能力和解决实际数理问题的能力;掌握辩证唯物主义基本原理,建立科学的世界观和方法论,使学生富有科学精神,勇于探索未知的研究领域。
(二)课程目标:课程目标1:了解复变函数理论建立和发展的历史;掌握解析函数的定义和常见初等解析函数的性质及计算方法;掌握柯西积分定理和柯西积分公式;掌握解析函数的幂级数表示和洛朗级数的展开;掌握留数的计算方法。
掌握辩证唯物主义基本原理,建立科学的世界观和方法论。
课程目标2:掌握利用留数计算实积分的方法;了解复变函数中的共形映射;了解解析延拓及Γ函数、黎曼ζ函数。
训练学生运用所学复变函数理论求解实际物理问题中遇到的各类复杂积分的能力,培养和提高学生的抽象思维能力和科研创新能力。
课程目标3:掌握一维波动方程的建立和傅里叶求解方法;掌握热传导方程的傅里叶解法;掌握二维拉普拉斯方程的傅里叶解法;了解波动方程的达朗贝尔解法;掌握傅里叶变换;掌握几类常见的特殊函数,如勒让德多项式和贝塞尔函数等。
培养学生对常见数理方程和特殊多项式的求解计算能力。
课程目标4:了解施图姆-刘维尔本征问题。
体会数理方程建立过程中的物理思想方法,培养学生模型建构、分析与综合、推理类比等科学思维方法,培养学生的爱国热情,探索未知、追求真理、永攀高峰的责任感和使命感。
《数学物理方法A》教学大纲(Methods of Mathematical Physics )一.课程编号: 040422二.课程类型:必修.学时/学分: 48学时/3学分适用专业: 通信与信息类强化班先修课程: 高等数学, 线性代数, 普通物理三.课程的性质与任务:数学物理方法是我校通信与信息类强化班的一门必修课程。
通过本课程的学习, 使学生初步掌握复变函数和数学物理方程的基本理论与方法, 培养学生的理论思维能力和分析问题、解决问题的能力。
为学生学习有关后继课程以及进一步扩大数学知识面奠定必要的数学基础。
四、教学的主要内容及学时分配(一)教学的主要内容复变函数部分:1.复数与复变函数复数及其代数运算, 复数的几何表示, 复数的乘幂与方根, 复平面上的点集, 复变函数的概念, 复变函数的极限和连续性2.解析函数解析函数的概念, 函数解析的充要条件, 初等函数3.复变函数的积分复变函数积分的概念、存在条件、性质与计算方法, Cauchy基本定理及其推广-复合闭路定理, Cauchy积分公式、解析函数的高阶导数, 解析函数与调和函数的关系4.级.复数项级数、幂级数,Taylor级数,Laurent级.5.留数孤立奇点及其分类、函数的零点与极点的关系, 留数的定义、留数定理、留数的计算规则, 留数在定积分计算上的应用数学物理方程部分:1.典型方程和定解条件1)三类典型方程(波动方程、热传导方程和位势方程)及其定解问题的提出;2)偏微分方程的一些基本知识与定值问题的适定性概念。
2.分离变量法(驻波法)1)分离变量法的基本步骤;2)非齐次方程齐次边界条件的固有函数法;3)非齐次边界条件的处理;4)施特姆-刘维尔方程的固有值问题简介。
3.达郎贝尔法(行波法)1)一维波动方程初值问题的达郎贝尔公式;2)非齐次波动方程的齐次化原理。
4.积分变换法1)傅立叶积分变换的概念及基本性质;2)应用傅立叶变换法解微分方程定值问题;3)拉普拉斯变换的概念和基本性质;4)拉普拉斯变换法在解微分方程中的应用。
《数学物理方法》课程教学大纲课程名称:数理方法课程类别:专业必修课适用专业:物理学考核方式:考试总学时、学分:56 学时 3.5 学分其中实验学时:0 学时一、课程性质、教学目标数学物理方法课程是适用于物理、光信息科学、计算科学等理工科专业本科的重要基础课,也是专业核心课程。
它的基本理论和方法,具有较强的逻辑性,抽象性和广泛的实用性。
通过本课程的学习,使学生掌握有关复变函数的基本理论,积分变换及数理方程的定解问题及其求解方法,为进一步学习后继课程提供必要的数学基础。
同时可培养学生的逻辑思维能力,数学建模能力,帮助学生树立科学的学习观,使学生初步具备解决简单常见物理和工程实际问题的素养。
本课程主要包括复变函数及其理论,积分变换,线性常微分方程的级数解法和数学物理方程等四块基本内容,是学生学习电动力学,量子力学和固体物理等专业核心课的必备基础。
其具体的课程教学目标为:课程教学目标1:熟练掌握复变函数求导,积分计算,泰勒级数和洛朗级数展开,留数定理及其应用,会计算物理中相应的数学问题。
课程教学目标2:深刻理解积分变换法,数理方程的定解问题及其计算方法,会用积分变换法,分离变量法和格林函数法求解电动力学和量子力学中的相关问题。
课程教学目标3:了解某些特殊函数及其性质,学会它们在物理学中的基本应用,让学生感受数学工具和数学表达在物理学中的重要地位。
课程教学目标与毕业要求对应的矩阵关系注:以关联度标识,课程与某个毕业要求的关联度可根据该课程对相应毕业要求的支撑强度来定性估计,H:表示关联度高;M表示关联度中;L表示关联度低。
二、课程教学要求本课程要求学生熟悉复变函数的一些基本概念,掌握泰勒级数及洛朗级数的展开方法,利用留数定理来计算围道积分和三类特殊类型的实变函数定积分;掌握傅立叶变换和拉普拉斯变换的概念及性质,并能运用拉普拉斯变换方法求解积分、微分方程。
了解三种类型的数学物理方程的导出过程,能熟练写出定解问题;掌握利用分离变量法求解各类齐次方程,了解非齐次方程的求解方法;了解特殊函数的常微分方程,掌握用级数解法求解二阶常微分方程,了解施图姆-刘维尔本征值问题及性质;掌握勒让德多项式、贝塞尔函数的基本性质,并学会利用勒让德多项式求解轴对称型的拉普拉斯方程。
《数学物理方法》课程教学大纲第一篇:《数学物理方法》课程教学大纲《数学物理方法》课程教学大纲(供物理专业试用)课程编码:140612090学时:64学分:4 开课学期:第五学期课程类型:专业必修课先修课程:《力学》、《热学》、《电磁学》、《光学》、《高等数学》教学手段:(板演)一、课程性质、任务1.《数学物理方法》是物理教育专业本科的一门重要的基础课,它是前期课程《高等数学》的延伸,为后继开设的《电动力学》、《量子力学》和《电子技术》等课程提供必需的数学理论知识和计算工具。
本课程在本科物理教育专业中占有重要的地位,本专业学生必须掌握它们的基本内容,否则对后继课的学习将会带来很大困难。
在物理教育专业的所有课程中,本课程是相对难学的一门课,学生应以认真的态度来学好本课程。
2.本课程的主要内容包括复变函数、傅立叶级数、数学物理方程、特殊函数等。
理论力学中常用的变分法,量子力学中用到的群论以及现代物理中用到的非线性微分方程理论等,虽然也属于《数学物理方法》的内容,但在本大纲中不作要求。
可以在后续的选修课中加以介绍。
3.《数学物理方法》既是一门数学课程,又是一门物理课程。
注重逻辑推理和具有一定的系统性和严谨性。
但是,它与其它的数学课有所不同。
本课程内容有很深广的物理背景,实用性很强。
因此,在这门课的教学过程中,不能单纯地追求理论上的完美、严谨,而忽视其应用。
学生在学习时,不必过分地追求一些定理的严格证明、复杂公式的精确推导,更不能死记硬背,而应重视其应用技巧和处理方法。
4.本课程的内容是几代数学家与物理学家进行长期创造性研究的成果,几乎处处都闪耀创新精神的光芒。
教师应当提示学生注意在概念建立、定理提出的过程中所用的创新思维方法,在课堂教学中应尽可能地体现历史上的创造过程,提高学生的创造性思维能力。
二、课程基本内容及课时分配第一篇复数函数论第一章复变函数(10)教学内容:§1.1.复数与复数运算。
《数学物理方法》教学大纲一、课程基本信息课程中文名称:数学物理方法课程英文名称:Mathematical Methods of Physics课程性质:专业基础必修课考核方式:闭卷考试开课专业:应用物理、核技术、辐射防护及大气科学开课学期:3或4总学时:72总学分:4二、课程的目的与任务本课程为物理专业所开设,也可供应用物理专业开设本课程参考。
本课程在高等数学、线性代数和普通物理的基础上,讲授经典数学物理中的常用方法,讲授内容分为三个部分,第一部分对矢量代数、标量场和矢量场及相关内容作一介绍,加深学生对“场”的概念理解;第二部分在简要介绍复数理论后,引入复空间的概念,强调复数与矢量之间的联系。
对于复变函数的泰勒级数、洛朗级数进行了较为详细的讨论,并注意强调利用复变函数理论进行积分运算;第三部分在第四部分教授数学物理方程,介绍常微分方程级数解法,强调数学物理方程的导出、平面坐标系下的分离变量和正交曲面坐标下的分离变量方法和定解问题的求解;介绍拉普拉斯变换、傅里叶变换、行波法、变分法和格林函数法。
本课程为后继的基础课程和专业课程研究有关的数学问题作准备,也为今后工作中遇到的数学物理问题求解提供基础。
三、教材与参考书教材:自编《数学物理方法讲义》(初稿)参考书:四、课程参考学时和教学进度五、教学内容第1章复变函数与解析函数(4学时)复数与复数运算;复变函数;复变函数的微商;解析函数。
第2章复变函数的积分(3学时)复变函数的积分概念、性质;柯西定理;柯西公式。
第3章复变函数级数(4学时)复数项级数;幂级数;泰勒级数展开;洛朗级数展开;孤立奇点的分类。
第4章留数理论(6学时)留数定理;应用留数定理求解实变函数的定积分。
第5章数学物理定解问题(6学时)数学物理方程得导出;定解条件;数学物理方程分类。
第6章分离变量法(6学时)齐次方程的分离变数法;非齐次方程的分离变数法;非齐次边界条件的处理。
第7章行波法(3学时)一维波动方程的达朗贝尔公式;三维波动方程的泊松公式。
《数学物理方法》课程教学大纲课程代码:课程负责人:姚端正课程中文名称:数学物理方法课程英文名称:Mathematical Methods in Physics课程类别:必修课程学分数:5课程学时数:90授课对象:物理学院基地班、物理类和材料本科生本课程的前导课程:高等数学、普通物理一、教学目的由于数学物理方法课程既是物理类专业的重要基础课又是一门工具课。
故本课程的教学目的,一方面是让学生通过本课程的学习,掌握本课程所涉的数学方法、技巧去解决物理学中的一些问题,如,用留数理论计算物理学中的反常积分,用分离变量法求解物理学中三类典型数理方程的有界问题,用积分变换法求解物理学中三类典型数理方程的无界问题等等;另一方面是让学生通过本课程的学习,其逻辑思维能力得到训练、分析问题解决问题的能力得到提高,而对所学物理学知识加深理解、融会贯通。
二、教学要求熟悉复变函数论中与实变函数论相平行的一些概念,如,连续、极限、可导、初等复变函数的定义等。
掌握解析函数的概念及重要性质、级数展开的方法和用留数理论计算积分特别是计算实积分的方法。
重点掌握求解偏微分方程的各种解法,如,行波法、分离变量法、积分变换法等及特殊函数的相关性质。
三、课程内容与学时分配(黑体五号)课程内容与学时分配表四、教材与参考书(黑体五号)教材:《数学物理方法》(第三版),科学出版社,姚端正、梁家宝,2010。
参考书:[1]《数学物理方法学习指导》(第一版),科学出版社,姚端正,2001。
[2]Mathematical Methods For Physicists(4th ed) ,New York:AcademicPress,ArfkenG.,1997五、考核方式(1)考试形式上采取平时课堂小练习(开卷)和期中、期末考试(闭卷)相结合;(2)在考题类型上采取客观性试题(填空、选择等)和主观性试题(证明、计算题等)相结合;。
数学物理方法教学大纲一、课程信息课程名称:(中文):数学物理方法(英文):Mathematical Methods for Physics 课程代码:A0911X1030课程类别:通识教育课程/必修课适用专业:物理教育、应用物理专业课程学时:72课程学分:4先修课程:高等数学、线性代数、普通物理选用教材:《数学物理方法》梁昆淼著,高等教育出版社,2010年第四版主要参考书目:1、《数学物理方法》胡嗣柱倪光炯著,高等教育出版社,2010年第二版2、《数学物理方法》周明儒著,高等教育出版社,2008年第一版3、《数学物理方法》杨孔庆著,高等教育出版社,2015年第一版二、课程目标(一)具体目标通过本课程的学习,使学生达到以下目的:1、掌握复变函数(主要指解析函数)的基本理论和方法,为后续内容提供数学基础;2、导出一些典型的数学物理方程,并能写出相应的定解条件;3、掌握用分离变量法求某些定解问题;4、掌握某些特殊函数(如球函数)的性质及其在物理学中的应用。
“数学物理方法”作为一门数学课,要求学生学习掌握复变函数基本理论,学习并掌握复变函数论的基本方法。
例如应用留数定理求解理论物理学中的一些实定积分,如阻尼振动中的狄利科雷积分、光衍射中的菲涅尔积分等;学习如何将物理问题转化为偏微分方程的一般步骤;学会将物理上的各种初始条件、边界条件用数学方法表达出来;学会应用分离变量法把一些偏微分方程化为常微分方程;学习并掌握二阶常微分方程的级数解法,并用该方法求解勒让德方程、贝塞尔方程等特殊函数方程;学习并掌握勒让德多项式、贝塞尔函数等特殊函数的性质及其在物理学中的应用。
为后续理论物理课程(如理论力学、电动力学、统计物理学和量子力学等)提供数学方法和数学工具。
三、课程学习内容(一)课程学习内容与课程目标的关系(二)具体内容第一章复变函数[学习目标]1、在复变函数论中,许多基本概念与运算是数学分析中相应概念与运算在复数域中的推广,如极限、连续、导数、积分等。
数学物理方法教学大纲一、大纲的适用对象本大纲适用于科学教育专业物理学方向。
二、课程基本信息1、课程英文名称:Method of Mathematical Physics2、课程类别:专业基础课程3、课程学时:总学时684、学分:45、考核方式:本课为必修课,闭卷考试。
考试成绩=平时成绩+考试成绩。
其中平时成绩占30%,考试成绩占70%。
三、课程的性质、目的与任务数学物理方法是物理系科学教育物理学方向的专业基础理论课。
通过本课程的教学,帮助学生掌握并能运用复变函数、数学物理方程等理论物理的基本数学工具。
培养学生严谨的逻辑和推演等理性思维能力,为学习物理系基础理论课量子力学、统计物理和电动力学等打好数学基础。
四、本课程与其他课程的关系本课程必须在高等数学、线性代数、力学、电磁学、光学、原子物理学、理论力学等课程基础上开设。
后续课程是量子力学、电动力学、热力学与统计物理、固体物理。
五、课程的基本要求1、掌握复变函数论的基本理论、微分和积分的方法,了解留数定理及其在围道积分中的应用;2、掌握振动方程、输运方程、稳定场方程的建模过程;3、初步学会确定边界条件和初始条件;4、熟练掌握分离变量法、达朗贝尔法和拉普拉斯变换法;5、了解特殊函数的导出和意义。
六、课程的重点与难点重点:留数定理、应用留数定理计算实变函数定积分、傅立叶积分和傅里叶变换、拉普拉斯变换、数学物理方程的定解条件、行波法、分离变数法、二阶常微分方程级数解法、本征值问题、球函数、柱函数。
难点: 分离变数法、二阶常微分方程级数解法、本征值问题、球函数、柱函数。
七、建议选用教材梁昆淼,《数学物理方法》,高等教育出版社,第三版。
各章教学时数分配表第一章复变函数教学目的:通过本章的学习,使学生能够正确理解复变函数的导数定义和解析函数定义;能够熟练掌握柯西―黎曼方程、解析函数、共轭调和函数。
内容要点:复数及其运算,复变函数,导数,解析函数,平面标量场教学建议:● 教学方法建议:建议教学中以讲授为主,分析举例为辅,突出重点、难点。
数学物理方法课程教案大纲一、课程说明(一)课程名称:数学物理方法所属专业:物理、应用物理专业课程性质:数学、物理学学分:(二)课程简介、目标与任务这门课主要讲授物理中常用的数学方法,主要内容包括线性空间和线性算符、复变函数、积分变换和δ函数、数学物理方程和特殊函数等,适当介绍近年来的新发展、新应用。
本门课程是物理系学生建立物理直观的数学基础,其中很多内容是为后续物理课程如量子力学、电动力学等服务,是其必需的数学基础。
这门课中的一些数学手段将在今后的基础研究和工程应用中发挥重要的作用,往往构成了相应领域的数学基础。
一般来讲,因为同样的方程有同样的解,掌握和运用这些数学方法所体现的物理内容将更深入,更本质。
(三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接本课程以普通物理、高等数学和部分线性代数知识为基础,为后继的基础课程和专业课程研究有关的数学问题作准备,也为今后工作中遇到的数学物理问题求解提供基础。
(四)教材:《数学物理方法》杨孔庆编参考书:. 《数学物理方法》柯朗、希尔伯特著. 《特殊函数概论》王竹溪、郭敦仁编著. 《物理中的数学方法》李政道著. 《数学物理方法》梁昆淼编. 《数学物理方法》郭敦仁编. 《数学物理方法》吴崇试编二、课程内容与安排第一部分线性空间及线性算子第一章空间的向量分析第一节向量的概念第二节空间的向量代数第三节空间的向量分析第四节空间的向量分析的一些重要公式第二章空间曲线坐标系中的向量分析第一节空间中的曲线坐标系第二节曲线坐标系中的度量第三节曲线坐标系中标量场梯度的表达式第四节曲线坐标系中向量场散度的表达式第五节曲线坐标系中向量场旋度的表达式第六节曲线坐标系中(拉普拉斯)算符▽的表达式第三章线性空间第一节线性空间的定义第二节线性空间的内积第三节(希尔伯特)空间第四节线性算符第五节线性算符的本征值和本征向量第二部分复变函数第四章复变函数的概念第一节映射第二节复数第三节复变函数第五章解读函数第一节复变函数的导数第二节复变函数的解读性第三节复势第四节解读函数变换第六章复变函数积分第一节复变函数的积分第二节(柯西)积分定理第三节(柯西)积分公式第四节解读函数高阶导数的积分表达式第七章复变函数的级数展开第一节复变函数级数第二节解读函数的(泰勒)展开第三节展开的理论应用第四节解读函数的(洛朗)展开第八章留数定理第一节留数定理第二节留数的一般求法第三节解读函数在无穷远点的留数第四节留数定理在定积分中的应用第五节(希尔伯特)变换第三部分积分变换与δ函数第九章(傅里叶)变换第一节级数第二节变换第三节变换的基本性质第十章(拉普拉斯)变换第一节变换第二节变换基本性质第三节变换的应用第四节关于变换的反演第十一章δ函数第一节δ函数的定义第二节δ函数的性质第三节δ函数的导数第四节三维δ函数第五节δ函数的变换和级数展开第四部分数学物理方程第十三章波动方程、输运方程、(泊松)方程及其定解问题第一节二阶线性偏微分方程的普遍形式第二节波动方程及其定解条件第三节输运方程及其定解条件第四节方程及其定解条件第五节方程和调和函数第六节三类方程定解问题小结第十四章分离变量法第一节齐次方程齐次边界条件下的分离变量法第二节—(斯特姆刘维尔)本征值问题第三节非齐次方程齐次边界条件下的分离变量法第四节非齐次边界条件下的分离变量法第五节分离变量法小结第十五章曲线坐标系下方程的分离变量第一节球坐标系下方程的分离变量第二节柱坐标系下方程的分离变量第三节二阶线性常微分方程的级数解法第十六章球函数第一节(勒让德)多项式第二节多项式的性质第三节具有轴对称的方程的求解第四节连带函数第五节球函数第十七章柱函数第一节(贝塞尔)函数第二节函数的递推关系第三节柱函数的定义第四节整数阶函数()的生成函数第五节方程的本征值问题第六节球函数*第十八章(格林)函数法第一节微分算子的基本解和函数的定义第二节算子的基本解第三节算子的函数第四节算子的镜像函数法第五节(霍姆赫兹)算子的基本解。
《数学物理方法A》教学大纲
(Methods of Mathematical Physics )
一. 课程编号:040422
二. 课程类型:必修课
学时/学分:48学时/3学分
适用专业:通信与信息类强化班
先修课程:高等数学,线性代数,普通物理
三. 课程的性质与任务:
数学物理方法是我校通信与信息类强化班的一门必修课程。
通过本课程的学习,使学生初步掌握复变函数和数学物理方程的基本理论与方法,培养学生的理论思维能力和分析问题、解决问题的能力。
为学生学习有关后继课程以及进一步扩大数学知识面奠定必要的数学基础。
四、教学的主要内容及学时分配
(一)教学的主要内容
复变函数部分:
1.复数与复变函数复数及其代数运算,复数的几何表示,复数的乘幂与方根,复平面上的点集,复变函数的概念,复变函数的极限和连续性
2.解析函数解析函数的概念,函数解析的充要条件,初等函数
3.复变函数的积分复变函数积分的概念、存在条件、性质与计算方法,Cauchy基本定理及其推广-复合闭路定理,Cauchy积分公式、解析函数的高阶导数,解析函数与调和函数的关系
4. 级数复数项级数、幂级数,Taylor级数,Laurent级数
5.留数孤立奇点及其分类、函数的零点与极点的关系,留数的定义、留数定理、留数的计算规则,留数在定积分计算上的应用
数学物理方程部分:
1、典型方程和定解条件
1)三类典型方程(波动方程、热传导方程和位势方程)及其定解问题的提出;
2)偏微分方程的一些基本知识与定值问题的适定性概念。
2、分离变量法(驻波法)
1)分离变量法的基本步骤;
2)非齐次方程齐次边界条件的固有函数法;
3)非齐次边界条件的处理;
4)施特姆-刘维尔方程的固有值问题简介。
3、达郎贝尔法(行波法)
1)一维波动方程初值问题的达郎贝尔公式;
2)非齐次波动方程的齐次化原理。
4、积分变换法
1)傅立叶积分变换的概念及基本性质;
2)应用傅立叶变换法解微分方程定值问题;
3)拉普拉斯变换的概念和基本性质;
4)拉普拉斯变换法在解微分方程中的应用。
5、特殊函数及其在分离变量法中的应用
1)贝塞尔方程的幂级数解法;
2)贝塞尔函数的递推公式、零点、模值,按贝塞尔函数系展开函数;
3)贝塞尔函数应用举例;
4)勒让德方程的解法;
5)勒让德多项式的形式及傅立叶-勒让德级数;
6)勒让德多项式应用举例。
(二)学时分配(共48学时)
五. 教学基本要求
复变函数部分:
1. 熟练掌握复变函数的各种表示方法及其运算,复变函数的概念,复变函数的极限、连续的概念。
2. 掌握复变函数导数、复变函数解析的概念,熟悉复变函数解析的充要条件,了解调和函数与解析函数的关系,掌握从解析函数的实(虚)部求其虚(实)部的方法,了解初等解析函数(指数函数、三角函数、对数函数、幂函数)的定义及主要性质。
3. 掌握复变函数积分的定义,了解其性质,会求复变函数的积分,理解Cauchy 积分原理,掌握Cauchy 积分公式与高阶导数公式,知道解析函数无限次可导的性质。
4. 理解复变项级数收敛、发散及绝对收敛等概念,了解幂级数收敛圆的概念,掌握简单的幂级数收敛半径的求法,知道幂级数在收敛圆内的一些基本性质,了解Taylor 定理,
掌握z e ,z sin 、)1ln(z +、n
z )1(+的Maclaurin 展开式,并能利用它们将一些简单的解析
函数展开为幂级数,了解Laurent定理及孤立奇点的分类,掌握将简单的函数在其孤立奇点附近展开为Laurent级数的间接方法。
5. 理解留数的概念,掌握留数的一些求法,理解留数定理,掌握用留数求围道积分的方法,会用留数求一些实积分。
数学物理方程部分:
1、了解下列基本概念:
1)三类典型方程的建立及其定解问题(初值问题、边值问题和混合问题)的提法,定解条件的物理意义。
2)偏微分方程的解、阶、维数、线性与非线性、齐次与非齐次的概念,线性问题的叠加原理。
3)施特姆-刘维尔固有值理论要点(固有值的存在与分布,固有函数系的正交性,函数按固有函数系展开)。
2、掌握下列基本解法
1)会用分离变量法(驻波法)解有界弦自由振动问题、有限长杆上热传导问题以及矩形域、圆形域内拉普拉斯方程狄利克雷问题;会用固有函数法解非齐次方程的定值问题,会用辅助函数和叠加原理处理非齐次边值问题;
2)会用行波法(达郎贝尔法)解无界弦自由振动问题,了解达郎贝尔解的物理意义;了解齐次化原理及其在解无界弦强迫振动问题中的应用;
3)会用傅立叶变换法及拉普拉斯变换法解无界域上的热传导问题及弦振动问题;
4)了解格林函数的概念及其在求解半空间域和球性域上位势方程狄利克雷问题中的应用;
3、了解下列特殊函数的基本性质及其应用
1)贝塞尔(Bessel)方程的幂级数解法及整数阶贝塞尔函数的一些性质(递推公式、零点、模值、正交性)。
傅立叶-贝塞尔展开式; 2)会用贝塞尔函数解有关的定值问题;
3)勒让德(Legendre)方程的幂级数解法及勒让德多项式的一些性质(递推公式、正交性)。
傅立叶-勒让德展开式。
六. 课程内容的重点和难点
重点:留数定理,分离变量法,拉普拉斯变换,付里叶积分变换
难点:罗朗级数,无穷远点的留数,高维波动方程,贝塞尔函数与勒让德多项式及其应用。
七. 作业、辅导与考试
作业与辅导:作业次数或作业量:每学期约布置20—24次作业,每次平均4题左右。
每周一次课外辅导。
考核方法:平时考核占总成绩30%,期末考试占70%。
八.教材与参考书
教材:
1. 西安交通大学高等数学教研室.《复变函数》(第四版).高等教育出版社,1996.
2. 胡学刚等.数学物理方法.机械工业出版社,1997.
参考书目:
1.钟玉泉. 复变函数论(第二版). 高等教育出版社,1988.
2. 梁昆淼. 数学物理方法(第三版). 高等教育出版社,1998.
3.郭敦仁等. 数学物理方法(第三版). 高等教育出版社,1995.
4. 谷超豪、李大潜等. 数学物理方程(第二版). 高等教育出版社,2002.
5. 姜礼尚等. 数学物理方程讲义(第二版). 高等教育出版社,199
6.
6. 陈恕行等. 数学物理方程.复旦大学出版社,2003.
7. 四川大学编著. 高等数学(IV)(第二版). 高等教育出版社,1985.
8. 吴方同编著.数学物理方程.武汉大学出版社,2001.
9. 王元明. 工程数学:数学物理方程与特殊函数(第三版).高等教育出版社,2004.
10. 王元明. 工程数学:数学物理方程与特殊函数学习指南.高等教育出版社,2004.
11. 杨华军.数学物理方法与计算机访真.电子工业出版社,2005.
12.杨奇林. 数学物理方程与特殊函数.清华大学出版社,2004.
13. 戴嘉尊.数学物理方程.东南大学出版社,2002
14.南京工学院编.积分变换.高等教育出版社,1982.
15. Lawrence C Evans. Partial Differential Equations. American Mathematical
Society, Provodence, Rhode Island.
九、本课程与后续课程的关系
《数学物理方法》是通讯及相关专业的基础课。
十. 对学生能力培养的要求
学生能够从物理问题中提炼出方程模型,并能用数学方法解决问题
十一. 教学方法和教学媒体的使用
采用启发式、提问式等教学方法,辅以板书和多媒体相结合的教学手段。
十二.学习方法与建议
建议学生采取课前阅读,必要时查阅相关物理文献资料。
上课时认真听讲,课后多作练习的学习方法。