第二章高分子材料的表界面
- 格式:ppt
- 大小:3.02 MB
- 文档页数:12
四川大学2009级研究生期末考试论文(2009-1010学年下半学年)课程名称:材料的表面与界面论文题目:材料的表界面特征及在材料工程上的意义学院:材料科学与工程学院专业:材料材料与纳米技术学号:S092030姓名:管东波材料的表面界面特征及在材料工程上的意义摘要:本文首先提出为什么要研究材料的表界面,随后又系统的阐述了何为材料的表界面,接着文章从液体材料表面、固体材料表面、固-液界面、金属材料表面、高分子材料表界面、无机材料表面等不同类型的材料表面来具体分析了材料表面的特征,最后文章简单的说明了材料的表界面对提高、改善材料工程上很多材料的性能有极大的帮助,研究材料的表界面对材料工程有着非常重要的意义。
关键词:材料的表界面、表面、界面、材料工程1.前言材料科学、信息科学和生命科学是当今新技术革命的三大前沿科学,而材料科学方面材料的表界面占有十分重要的地位,所以说研究材料的表界面特征对我们材料科学的发展、对我们材料工程的设计有着非常重要的意义。
材料的表面界面与其内部本体在结构上和化学组成上都有很明显的差别,这是因为在材料内部的原子周围布满原子,原子之间相互作用,中间原子所受的力是平衡的,而对于处于表面界面的原子,它所受的力场是不平衡的,所以在材料的表面产生了表面能(若是界面则称为界面能)。
对于不同组分构成的材料,组分与组分之间可形成界面,而对于单组份材料,由于其内部不可避免的会存在有缺陷,所以即使单组份材料内部也会产生界面。
材料的表界面对材料的整体性能有很大的影响,有的甚至直接决定了材料的性能,所以我们有必要把研究材料的表界面作为我们研究材料的一个重要研究对象。
2.材料表界面的定义及其特征2.1材料表界面的定义何谓材料的表界面?表界面研究的对象是不均匀的体系,具有多相性,即该体系中存在两个或两个以上的不同的相,而表界面就是指由一个相过渡到另一个相的这段过渡区域。
虽然说表面和界面都是指这段过渡区域,但由于习惯的不同,我们还是把表面和界面区分开来的,一般把固-气、液-气的过渡的过渡区域称为表面,而把固-液、液-液、固-固之间的过渡区域称为界面。
高分子材料的表征和导热性能研究高分子材料是一种重要的材料种类,具有广泛的应用领域。
如何对高分子材料进行表征和研究其导热性能,是当前高分子材料研究的一个热点问题。
一、高分子材料的表征高分子材料通常具有分子量大、化学结构复杂的特点,因此需要采用多种手段进行表征。
1. 分子量的测定高分子材料的分子量一般采用凝胶渗透色谱、粘度法等实验手段进行测定。
其中,凝胶渗透色谱具有分离精度高、灵敏度好等优点,可以处理多种分子量范围的高分子材料。
2. 凝聚态的表征对于固态高分子材料,需要采用X射线衍射、热分析等技术手段进行表征,以了解高分子材料的晶体结构、热性能等特征。
3. 动态热力学性能的表征高分子材料在使用过程中还需要考虑其时间依赖性、疲劳性、耐热性等方面的性能。
这就需要采用热分析、动态力学测试等技术手段进行表征。
二、高分子材料的导热性能研究导热性能是高分子材料的一个关键性能指标,对于高分子材料的设计、制备、应用都具有重要意义。
导热性能研究的主要方法有以下几个:1. 热导率的测试热导率是导热性能的基本指标之一,一般采用稳态热流方法进行测试。
稳态热流方法包括热阻率法、热板法等,能够准确测定材料在稳态下的导热性能。
2. 动态热导率的测试高分子材料在使用过程中很少处于稳态状态,因此需要考虑其动态导热性能。
动态热导率的测试方法包括脉冲法、频率扫描法等,能够模拟高分子材料在实际使用过程中的导热性能。
3. 热膨胀系数的测试高分子材料在受热过程中往往会产生热膨胀现象,对于导热性能的影响较大。
因此,需要采用膨胀测试仪等设备对高分子材料的热膨胀系数进行测定。
4. 界面热阻的测试高分子材料在应用过程中往往需要与其他材料进行接触,因此涉及到界面热阻的问题。
界面热阻的测试方法包括接触热阻法、热反射法等。
三、导热性能的改进高分子材料的导热性能往往不如金属等传统材料,因此需要采取一些措施进行改进。
导热性能的改进方法主要有以下几个:1. 添加导热填料通过向高分子材料中添加导热填料,如石墨、纳米银粉等,可以显著提高高分子材料的导热性能。
第二章2.1聚合物的晶态和非晶态结构2.1.1内聚能密度例2-1 根据高聚物的分子结构和分子间作用能,定性地讨论表2-3中所列各高聚物的性能。
表2-3线形高聚物的内聚能密度高聚物内聚能密度兆焦/米3 卡/厘米3聚乙烯259 62聚异丁烯272 65天然橡胶280 67聚丁二烯276 66丁苯橡胶276 66聚苯乙烯305 73高聚物内聚能密度兆焦/米3 卡/厘米3聚甲基丙烯酸甲酯347 83聚醋酸乙烯酯368 88聚氯乙烯381 91聚对苯二甲酸乙二酯477 114尼龙66 774 185聚丙烯腈992 237解:(1)聚乙烯、聚异丁烯、天然橡胶、聚丁二烯和丁苯橡胶都有较好的柔顺性,它们适合于用作弹性体。
其中聚乙烯由于结构高度对称性,太易于结晶,从而实际上只能用作塑料,但从纯C-C单键的结构来说本来应当有很好的柔顺性,理应是个橡胶。
(2)聚苯乙烯、聚甲基丙烯酸甲酯、聚醋酸乙烯酯和聚氯乙烯的柔顺性适中,适合用作塑料。
(3)聚对苯二甲酸乙二酯、尼龙66和聚丙烯腈的分子间作用力大,柔顺性较差,刚性和强度较大,宜作纤维。
可见一般规律是内聚能密度<70卡/厘米3的为橡胶;内聚能密度70~100的为塑料;>100的为纤维。
2.1.2 比容、密度、结晶度例2-2 由文献查得涤纶树脂的密度ρc=1.50×103kg·m-3,和ρa=1.335×103kg·m-3,内聚能ΔΕ=66.67kJ·mol-1(单元).今有一块1.42×2.96×0.51×10-6m3的涤纶试样,重量为2.92×10-3kg,试由以上数据计算:(1)涤纶树脂试样的密度和结晶度;(2)涤纶树脂的内聚能密度.解(l) 密度结晶度或(2) 内聚能密度文献值CED=476(J·cm-3)例2-3 试从等规聚丙烯结晶(α型)的晶胞参数出发,计算完全结晶聚丙烯的比容和密度。
高分子材料的界面性质研究高分子材料是一类重要的功能性材料,其应用领域涉及电子、光电子、医疗、化工等多个领域。
然而,高分子材料的性质与表现与其所处于的环境有着密切的关系,因此研究高分子材料的界面性质成为了一项十分重要的任务。
高分子材料的界面性质是指其与环境物质之间的相互作用和影响。
这些相互作用和影响可以来自不同的环境物质,如溶液、气体、固体等,也可以来自高分子材料表面上的不同部位或不同结构。
研究高分子材料的界面性质不仅可以帮助我们深入了解高分子材料的特性,还可以为高分子材料的应用提供指导和支持。
一、高分子材料表面的化学结构对界面性质的影响高分子材料的表面化学结构是影响其界面性质的重要因素之一。
对于聚合物材料而言,其表面化学结构可以通过不同的方法来调控,如表面化学修饰、聚合物侧链修饰等。
这些方法可以改变聚合物表面的化学键结构和表面电荷等因素,从而影响其在不同环境中的相互作用和影响。
例如,在水溶液中,聚乙烯醇(PVA)的表面化学结构会影响其在溶液中的吸附和分散行为。
实验结果表明,表面羟基官能团含量较高的PVA能够更好地分散在水溶液中,而表面羟基含量较低的PVA则容易凝聚成大团块,形成颗粒状的沉淀物质。
另外,聚合物表面的官能团结构也会影响其与其他物质之间的相互作用。
例如,含羧酸官能团的聚合物表面与钙离子之间会发生络合反应,从而形成钙离子的化合物沉淀。
因此,在高分子材料的应用中,需要对其表面化学结构进行精调和控制,以达到更高的应用性能和效率。
二、高分子材料的界面能对其应用性能的影响除了高分子材料表面的化学结构外,其界面能也是影响其应用性能的重要因素之一。
高分子材料与其他物质之间的相互作用和能量变化,表现在高分子材料的表面能和界面能上。
表面能和界面能的大小和差值对于高分子材料的润湿行为、附着性能、摩擦学性质等方面有着重要的影响。
例如,在涂料和涂层领域中,高分子材料的界面能可以影响其与基底材料之间的附着性能。
高分子材料的界面与表面性质研究高分子材料是一类具有广泛应用的材料,它们在各个领域中扮演着重要的角色。
然而,高分子材料的界面与表面性质对于其性能和应用有着至关重要的影响。
在这篇文章中,我们将探讨高分子材料的界面和表面性质的研究进展,以及其在材料科学领域中的意义。
一、界面性质的研究界面是指两个相互接触的材料之间的区域。
对于高分子材料而言,界面性质的研究对于了解材料的结构和性能起着至关重要的作用。
界面性质的研究方法主要包括界面力学性质、界面能量、界面结构等方面。
1. 界面力学性质界面力学性质是研究界面上力学行为的重要指标。
通过测量界面的剪切强度、界面屈服强度、弹性模量等参数,可以评估材料界面的稳定性和强度。
例如,通过拉伸实验可以测定高分子材料界面的断裂强度,以评估其在实际应用中的可靠性。
2. 界面能量界面能量是描述界面力量交换的重要参数。
通过测量界面的表面张力和界面能量,可以了解高分子材料与其他材料的黏附性和界面稳定性。
界面能量的研究可以帮助我们优化材料的界面结构,从而改善材料的性能和应用。
3. 界面结构界面结构指的是高分子材料与其他材料之间的结合方式和层次。
通过使用各种表征方法,如扫描电子显微镜(SEM)、透射电子显微镜(TEM)等,可以观察和分析高分子材料与其他材料界面的形貌和结构。
界面结构的研究有助于我们了解材料在界面处的相互作用机制,从而指导材料的设计和制备。
二、表面性质的研究表面性质是指高分子材料表面的特征和性质。
与界面性质类似,表面性质的研究也对于了解高分子材料的性能和应用具有重要意义。
表面性质的研究方法主要包括表面能、表面形貌等方面。
1. 表面能表面能是描述材料表面各个部分之间相互作用的能量。
通过测量材料表面的接触角,可以获得材料的表面能。
表面能的研究可以帮助我们了解高分子材料与其他物质的黏附性和润湿性,进而优化材料的表面处理方法。
2. 表面形貌表面形貌是指材料表面的形状、纹理和粗糙度等特征。