系统辨识与参数估计精选
- 格式:ppt
- 大小:1.69 MB
- 文档页数:45
Matlab中的系统辨识与参数估计技术Matlab(Matrix Laboratory)是一款强大的数学软件,被广泛应用于科学计算、数据处理和工程设计等领域。
在实际工程项目中,经常需要通过已有的数据来推断系统的行为模型,这就涉及到系统辨识与参数估计技术。
本文将介绍在Matlab中使用系统辨识与参数估计技术的方法和步骤。
一、系统辨识与参数估计的概念系统辨识和参数估计是在给定输入输出数据的前提下,通过数学或统计方法来推断系统的动态模型和参数值的过程。
系统辨识旨在从实验数据中提取出模型的结构信息,而参数估计则是为了获得模型的具体参数值。
二、离散时间系统的辨识与参数估计对于离散时间系统,常用的辨识方法有ARX、ARMA和ARMAX等。
以ARX 模型为例,其数学表达式为:y(t) = -a(1)y(t-1) - a(2)y(t-2) - … - a(na)y(t-na) + b(1)u(t-1) + b(2)u(t-2) + … +b(nb)u(t-nb)其中,y(t)表示系统的输出,u(t)表示系统的输入,a和b分别是系统的参数。
在Matlab中,可以使用System Identification Toolbox来进行辨识和参数估计。
首先,需要将实验数据导入到Matlab中,然后根据数据的性质选择合适的辨识方法和模型结构。
接下来,使用辨识工具箱提供的函数,通过最小二乘法或最大似然估计等算法来得到系统的参数估计值。
三、连续时间系统的辨识与参数估计对于连续时间系统,常用的辨识方法有传递函数模型、状态空间模型和灰色系统模型等。
以传递函数模型为例,其数学表达式为:G(s) = num(s)/den(s)其中,num(s)和den(s)分别是系统的分子和分母多项式。
在Matlab中,可以使用System Identification Toolbox或Control System Toolbox 来进行连续时间系统的辨识和参数估计。
机械系统的系统辨识与参数辨识在机械工程领域,系统辨识和参数辨识是非常重要的研究方向。
系统辨识主要是指从输入和输出的测量数据中,通过建立数学模型来揭示系统的特性和行为规律。
而参数辨识则是指利用已知的数学模型,从实测数据中确定模型的参数值。
这两个方法的应用可以帮助工程师深入理解和优化机械系统的性能。
系统辨识方法的应用非常广泛,可以用于各种不同的机械系统,包括机器人、汽车、航空航天设备等。
通过系统辨识,工程师可以了解系统的内部结构和动力学特性,从而优化系统设计和控制策略。
例如,在机器人领域,系统辨识可以帮助研究人员确定机器人的动力学参数,从而实现更加精确的轨迹跟踪和运动控制。
在汽车行业,系统辨识可以用于优化发动机燃油效率和悬挂系统的动力学性能。
系统辨识的方法包括基于物理模型和基于数据的方法。
基于物理模型的方法主要是通过建立数学模型来描述系统的动力学特性。
这种方法需要事先了解系统的机械结构和物理参数,然后使用数学工具,如微分方程和线性代数等,来推导系统的动力学模型。
基于数据的方法则是基于实测数据来推断系统的动力学特性。
这种方法不需要事先了解系统的物理参数,而是通过对输入和输出数据进行统计分析和数学建模,来揭示系统的动力学行为。
参数辨识是系统辨识的一个重要组成部分。
在实际应用中,通常需要确定系统模型中的参数值。
参数辨识的方法可以分为线性和非线性方法。
线性参数辨识方法通常是通过最小二乘法或极大似然法来确定参数值。
而非线性参数辨识方法则需要使用更加复杂的数学工具,如优化算法或贝叶斯推断方法等。
参数辨识的目标是使得建立的数学模型和实测数据之间的误差最小化。
机械系统的系统辨识和参数辨识在实际应用中存在一定的挑战和困难。
首先,机械系统往往具有复杂的非线性特性,这使得建立准确的数学模型非常困难。
其次,实际采集到的输入和输出数据可能受到噪声和干扰的影响,这会导致辨识结果的误差。
另外,系统辨识和参数辨识需要大量的计算和数据处理,对计算资源和存储空间有一定的要求。
系统辨识与参数估计课程习题一、 选择题:答案唯一,在( )填入正确答案的编号。
1. 对于批量最小二乘格式L L L E Y +θΦ=,其最小二乘无偏估计的必要条件是( )。
A. 输入序列}{k u 为“持续激励”信号B. L E 与TL L T L ΦΦΦ-1)(正交 C. L E 为非白噪声向量 D. 0}{=L E E2. 对象模型为Tk k k y e ϕθ=+时,采用递推最小二乘估计后的残差序列的计算式为( )。
A. 1ˆT k k k k y εϕθ-=-B. 1ˆT k k k k y εϕθ-=-C. ˆT k k k k y εϕθ=-D. 11ˆT k k k k y εϕθ--=-3. 在上题的条件下,递推最小二乘算法中的增益矩阵k K 可以写成( )。
A. 11k k P ϕ--B. 1k k P ϕ-C. 1k k P ϕ-D. k k P ϕ 4. 可以同时得到对象参数和干扰噪声模型参数的估计算法是( )。
A. 辅助变量法B. 广义最小二乘法C. 最小二乘限定记忆法D. 相关最小二乘两步法 5. 增广最小二乘估计的关键是( )。
A. 将控制项增广进k ϕ中,并用残差项取代进行估计B. 将输出项增广进k ϕ中,并用残差项取代进行估计C. 将噪声项增广进k ϕ中,并用残差项取代进行估计D. 将噪声项增广进k ϕ中,并用输出项取代进行估计答案:1. B 2. C 3. D 4. B 5. C ■ 二、 判断题:以○表示正确或×表示错误。
1.估计残差平方和最小是确定辨识过程对象结构的唯一标准。
( ) 2.最小二乘估计的批量算法和递推算法在数学上是等价的。
( ) 3.广义最小二乘法就是辅助变量法和增广最小二乘法交替试用。
( )4.在递推最小二乘算法中,若置0>==Tk P P P ,则该算法也能克服“数据饱和”现象,进而可适用于时变系统。
( )5.用神经网络对SISO 非线性系统辨识,采用的是输入层和输出层均为一个神经元的三层前馈神经元网络结构。
第 四 章系统辨识与参数估计4.1 系统辨识概述4.2 非参数模型辨识4.3 最小二乘参数估计4.4 递推最小二乘数估计4.5 其它最小二乘类估计4.6 极大似然估计法4.7 预报误差法4.8 子空间方法4.9 闭环辨识2012年5月29日星期二3第八讲14. 4 递推最小二乘估计2012年5月29日星期二3第八讲24.4 递推最小二乘数估计参数估计的一次算法, 当N很大时,(ΦTΦ)-1的计算是个很大的负担, 且每增加一个数据(ΦTΦ)-1的计算必须重复进行,因此, 递推算法在实际应用中是十分必要.•递推算法的基本思想:新估计c(k+1) = 原估计c(k) + 修正项2012年5月29日星期二3第八讲32012年5月29日星期二3第八讲44.4.1基本最小二乘递推公式2012年5月29日星期二3第八讲5定理4.6 对于定义的辨识问题, 未知参数向量θ的最小二乘估计的递推计算式为(1×S)(S×S)(S ×1)标量S = n a +n b +12012年5月29日星期二3第八讲62012年5月29日星期二3第八讲7证明:设基于N 时刻为止的所有观测数据对N 时刻的未知参数θ的最小二乘估计为 则由矩阵求逆引理可知2012年5月29日星期二3第八讲82012年5月29日星期二3第八讲92012年5月29日星期二3第八讲10注1: 新估计c(N+1)是原估计c(N)及校正项K(N+1)[y(N+1)-φT (N+1)c(N)]的线性组合。
若记代表原估计对N+1时刻输出的预测,则表示新息,即输出误差的预报,若预报误差为零,说明参数估计已准确,不必校正。
注2:递推算法所需的存贮容量及计算量都大大下降。
2012年5月29日星期二3第八讲11注5: 增益阵K(N)的计算误差δK(N),通过式给P(N)阵的计算带来误差δP(N),显然有δP(N) =-δK(N)φT (N)P(N-1)即误差以一次幂的形式传播,累积现象显著。
第一题 递推最小二乘估计参数考虑如下图所示的仿真对象,图中)(k v 是服从)1,0(N 正态分布的不相关随机噪声;输入信号)(k u 采用4阶逆M 序列,特征多项式取41)(s s s F ⊕⊕=,幅度为1,循环周期为bit N p 62=;控制λ值,使数据的噪信比为73%。
加权因子1)(=Λk ;数据长度L=500;初始条件取001.0)0(ˆ,10)0(6==θI P , (1) 利用递推最小二乘算法在线估计参数,(2) 利用模型阶次辨识方法(AIC 准则),确定模型的阶次。
(3) 估计噪声)(k v 的方差和模型静态增益K (4) 作出参数估计值随时间的变化图 答:设过程的输入输出关系可以描述成()()()T z k h k n k θ=+()z k 是输出量,()h k 是可观测的数据向量,n (k)是均值为0的随机噪声 []()(1),(2),(1),(2)Th k z k z k u k u k =------[]1212,,,Ta ab b θ=选取的模型为结构是1212()(1)(2)(1)(2)z k a z k a z k bu k bu k =----+-+- 12121.5,0.7, 1.0,0.5a a b b =-===加权最小二乘参数估计递推算法RWLS 的公式如下,11()(1)()()(1)()()()(1)()()()(1)()()()(1)T T TK k p k h k h k p k h k k k k K k z k h k k p k I K k h k p k θθθ-⎡⎤=--+⎢⎥Λ⎣⎦⎡⎤=-+--⎣⎦⎡⎤=--⎣⎦为了把p(k)的对称性,可以把p(k)写成1()(1)()()()(1)()()T T p k p k K k K k h k p k h k k ⎡⎤=---+⎢⎥Λ⎣⎦ 如果把()k Λ设成1的时候,加权最小二乘法就退化成最小二乘法。
1第六章 数据预处理及相容性检验6.1 前言航行器航行试验数据用于参数辨识之前,需要对试验数据进行预处理和数据相容性检验,目的在于尽可能消除含在数据中的各种噪声和系统误差,以提高辨识结果的准确度。
数据预处理包括:数据野值的识别、剔除与补正;数据加密;数据平滑与微分平滑;滤除高频噪声及以传感器位置校正等。
数据相容性检验的主要功能是将数据中的常值误差,特别是零位漂移误差辨识出来并重新建立没有常值误差的试验数据。
本章还以某型航行器的实测数据预处理为例,给出了具有实际应用意义的数据处理技术及结果。
6.2 数据处理的理论基础6.2.1 信号的分类用数学来描述待辨识系统的某一组输入和某一组输出时间函数间的关系是辨识的基础。
在选择信号的描述方法时,必须考虑信号表示的两个方面:①要表现出信号载有信息的属性;②要给出研究过程信息传递特性的方法。
按时间函数的特点来表达信息,可将信号分为连续信号和采样信号。
在许多情况下,信号的记录可以采用这两种信号中的任一种。
两种信号的记录均有各自的特点,但是利用计算机对记录的信号作处理时,往往需要采样信号,即使采用连续信号,也必须对信号作采样处理。
采样运算是线性运算,即当我们用算子ψ(.)表示这一运算时,对一切α和β,信号u(t)和y(t)均有ψαβαψβψ[()()][()][()]u t y t u t y t +=+(6-2-1)按幅度划分,信号可以分为模拟信号、量化信号和二进制信号。
二进制信号是量化信号的极限情况,量化运算是非线性运算。
因此,在处理量化信号时,这种非线性造成许多数学上的困难。
确定性信号与随机信号也是系统建模和参数辨识中常用的信号分析方式。
由于工程的实际环境,对随机信号的讨论更具有实际意义。
6.2.2 随机信号的描述为了讨论问题的方便,在此我们首先介绍随机信号的一些统计性质。
与确定性信号不一样,对随机信号询问其幅度的瞬时值是没有多少意义的,所以最有用的量是那些关于统计性质的量,如谱密度、数学期望值、方差和相关函数等。
系统辨识《系统辨识》课程综述及其⼯程应⽤案例⼀、系统辨识课程综述1、定义系统辨识是在已知或测得系统输⼊和输出数据的基础上,从⼀组给定的模型类中,确定⼀个与所测系统等价的模型。
系统辨识要素为:数据:指系统过程的输⼊数据和输出数据,它是辨识的基础。
模型类:指各种已知的系统过程模型集合,它是辨识时寻找模型的范围。
等价准则:指系统⾏为相似性、系统效⽤等同性的识别标准,它是辨识优化的⽬标。
辨识的实质就是按某种准则,从⼀组已知模型类中选择⼀个模型,使之能最好地拟合实际过程的动态特性。
观测数据含有噪声,因此辨识建模实际上是⼀种实验统计的⽅法,所获得的模型只是与实际过程的外特性等价的⼀种近似描述。
从某种意义上来说,不同学科的发展过程就是建⽴他的数学模型的过程。
辨识问题可以归结为⽤⼀个模型来表⽰可观系统(或将要改造的系统)本质特征的⼀种演算,并⽤这个模型吧对客观系统的理解表⽰成有⽤的形式。
当然可以刻有另外的描述,辨识有三个要素:数据,模型类和准则。
辨识就是按照⼀个准则在⼀组模型类中选择⼀个与数据拟合得最好的模型。
总⽽⾔之,辨识的实质就是从⼀组模型类中选择⼀个模型,按照某种准则,使之能最好地拟合所关⼼的实际过程的静态或动态特性。
⽐较典型的⼏个定义为:(1)L.A.Zadeh 定义:辨识就是在输⼊和输出数据的基础上,从⼀组给定的模型类中,确定⼀个与所测系统等价的模型;(2)P.Eykhoff 定义:辨识问题可以归结为⽤⼀个模型来表⽰客观系统(或将要构造的系统)本质特征的⼀种演算,并⽤这个模型把客观系统的理解表⽰成有⽤的形式;(3)L.Ljung 定义:辨识有三个要素,即数据、模型类和准则。
辨识就是按照⼀个准则在⼀组模型类中选择⼀个与数据拟合得最好的模型。
2、系统辨识基本原理系统辨识算法根据过程提供的测量信息,按照最优准则,估计模型未知参数,如图1所⽰。
通常采⽤逐步逼近获取模型参数θ的估值'θ,根据k -1时刻的估计参数,计算出k 时刻的预测值、预测误差。
参数估计与系统辨识方法在控制系统设计中的应用控制系统设计是应用于各个领域的一项重要技术,在工业、航空航天、汽车、医疗等众多领域中都有广泛应用。
参数估计和系统辨识是控制系统设计中的两个关键步骤,它们能够帮助我们理解和预测系统的行为,并提供了优化控制器设计的依据。
一、参数估计的概念与应用参数估计是指通过实验数据和数学模型来估计控制系统中的未知参数。
在控制系统设计中,我们通常使用数学模型来描述系统的动态行为,该模型一般包含一些未知参数。
参数估计的目标是通过观测到的输入输出数据,利用统计方法来估计这些未知参数的值。
参数估计在控制系统设计中具有广泛的应用。
首先,参数估计可以用于设计控制器。
通过对系统进行实验,并通过估计系统参数的值,我们可以得到一个准确的数学模型,从而设计出更为有效的控制器。
其次,参数估计还可以用于系统诊断和故障检测。
通过估计系统参数的变化趋势,我们可以及时检测到系统故障,并采取相应的措施进行维修和调整。
此外,参数估计还可以用于系统预测和优化。
通过估计系统参数的值,我们可以预测系统在不同工况下的性能,并进行相应的优化设计。
二、常用的参数估计方法在控制系统设计中,常用的参数估计方法包括最小二乘法(Least Squares),极大似然估计法(Maximum Likelihood),贝叶斯估计法(Bayesian Estimation)等。
1. 最小二乘法:最小二乘法是一种常用的参数估计方法,它通过最小化观测值和数学模型之间的差异来估计参数的值。
最小二乘法具有良好的稳定性和统计性能,在实际应用中广泛使用。
2. 极大似然估计法:极大似然估计法是另一种常用的参数估计方法,它基于统计学理论,通过最大化参数的似然函数来估计参数的值。
极大似然估计法在参数估计中具有一定的理论基础,但计算复杂度较高。
3. 贝叶斯估计法:贝叶斯估计法是一种基于贝叶斯统计理论的参数估计方法,它通过先验信息和观测数据来估计参数的值。
使用MATLAB进行系统辨识与参数估计的基本原理近年来,随着人工智能和机器学习的发展,系统辨识和参数估计变得越来越重要。
在工程和科学领域,系统辨识与参数估计可以帮助我们理解和预测复杂系统的行为,从而为决策和控制提供有力支持。
而MATLAB作为一种强大的科学计算软件,在系统辨识与参数估计方面提供了丰富的工具和功能。
本文将介绍MATLAB 中进行系统辨识与参数估计的基本原理。
一、系统辨识的概念系统辨识是指通过一系列的实验和数据分析,确定出系统的数学模型或特性。
在实际工程和科学问题中,我们经常遇到许多系统,如电子电路、生化反应、飞行控制系统等。
通过系统辨识,我们可以了解系统的行为规律,预测未来状态,从而进行优化和控制。
在MATLAB中,可以使用系统辨识工具箱(System Identification Toolbox)进行系统辨识。
该工具箱提供了一系列的函数和算法,可以帮助我们建立和分析系统模型。
例如,使用arx函数可以基于自回归模型建立离散时间系统的模型,使用tfest函数可以进行连续时间系统的模型辨识。
二、参数估计的基本原理参数估计是系统辨识的一个重要部分,它是指通过已知的输入输出数据,估计系统模型中的参数。
在实际应用中,我们通常只能通过实验数据来获得系统的输入输出信息,而无法直接观测到系统内部的参数。
因此,参数估计成为了一种重要的技术,用于从数据中推断出系统的模型参数。
在MATLAB中,参数估计的基本原理是最小二乘估计。
最小二乘估计是指寻找能够最小化实际输出与模型输出之间的误差平方和的参数值。
在MATLAB中,可以使用lsqcurvefit函数进行最小二乘估计,该函数可以用来拟合非线性模型或者线性模型。
此外,还可以使用最大似然估计(MLE,Maximum Likelihood Estimation)进行参数估计,MATLAB通过提供相应的函数,如mle函数和mlecov 函数,支持最大似然估计的使用。
频域系统辨识与模型参数估计频域系统辨识与模型参数估计是一种用于解决信号处理和系统建模问题的方法。
它基于频域分析技术,可以从信号的频域特性中提取系统的动态特征和参数信息。
频域系统辨识与模型参数估计在许多领域中广泛应用,包括通信系统、控制系统、信号处理等。
在频域系统辨识与模型参数估计中,我们首先需要收集系统的输入输出数据。
这些数据可以是时域样本序列,也可以是频域样本序列。
接下来,我们可以使用傅里叶变换等频域分析技术将时域信号转换为频域信号,得到系统的频域特性。
在频域中,我们可以利用频率响应函数来描述系统的动态特性。
频率响应函数是系统的输入输出频谱之间的关系,可以通过系统辨识方法来估计。
常见的系统辨识方法包括传递函数法、频域多项式法等。
这些方法通过拟合实验数据和系统模型之间的误差,来获得系统的参数估计结果。
传递函数法是一种常用的频域系统辨识方法。
它假设系统是线性、时不变的,并且可以用传递函数来描述。
在利用传递函数法进行频域系统辨识时,我们需要选择一个适当的模型结构。
常见的模型结构包括有限阶的自回归(AR)模型、滑动平均(MA)模型、自回归滑动平均(ARMA)模型等。
频域多项式法是另一种常用的频域系统辨识方法。
它假设系统可以用多项式函数来描述,并且可以通过多项式系数来估计系统的参数。
频域多项式法一般需要进行谱分解,将输入输出数据分解为一系列频率对应的分量,然后通过拟合分量之间的关系来估计系统的参数。
除了传递函数法和频域多项式法,还有其他一些方法可以用于频域系统辨识与模型参数估计。
例如,最小二乘法可以用于参数估计,最大似然估计可以用于模型参数的统计推断,系统辨识的正则化方法可以用于处理过拟合问题等。
频域系统辨识与模型参数估计在实际应用中具有广泛的应用价值。
例如,在通信系统中,可以利用频域系统辨识与模型参数估计方法来分析和优化信道估计算法,提高系统的抗干扰性能和信号传输质量。
在控制系统中,可以利用频域系统辨识与模型参数估计方法来设计和优化控制算法,实现对系统动态特性的精确控制。
Matlab的系统辨识和参数估计方法一、引言Matlab是一种强大的计算机软件,被广泛应用于各个领域的科学研究和工程实践。
在信号处理、控制系统设计等领域,系统的辨识和参数估计是一项重要的任务。
本文将介绍Matlab中常用的系统辨识和参数估计方法,包括参数辨识、频域辨识、时域辨识等方面。
同时,还将探讨这些方法的优势和局限性。
二、参数辨识参数辨识是一种推断系统输入和输出之间关系的方法。
Matlab提供了多种参数辨识工具箱,例如System Identification Toolbox。
其中,最常用的方法包括最小二乘法、极大似然法、递归最小二乘法等。
最小二乘法是一种经典的参数估计方法,通过最小化测量值与预测值之间的差异来估计参数。
Matlab中的lsqcurvefit函数可以用于最小二乘拟合曲线。
例如,通过拟合一组数据点得到一个最优的曲线,可以估计曲线的参数。
极大似然法是一种基于概率统计的参数估计方法,通过最大化观测数据出现的似然函数来估计参数。
Matlab中的mle函数可以用于极大似然估计。
例如,在某个信号的概率密度函数已知的情况下,可以通过观测到的样本来估计概率密度函数的参数。
递归最小二乘法是一种递归更新参数的方法,可以在随时间变化的系统中实时地进行参数估计。
Matlab中的rls函数可以用于递归最小二乘估计。
例如,在自适应滤波中,可以通过递归最小二乘法来实时估计信号的参数。
三、频域辨识频域辨识是一种基于频谱分析的参数估计方法,可以在频率域中确定系统的特性。
Matlab提供了多种频域辨识工具箱,例如System Identification Toolbox和Signal Processing Toolbox。
其中,最常用的方法包括功率谱密度估计、自相关函数法、协方差法等。
功率谱密度估计是一种常用的频域参数估计方法,可以估计信号在不同频率上的能量分布。
Matlab中的pwelch函数可以用于功率谱密度估计。