清华大学2015年自主招生数学试题及答案解析
- 格式:doc
- 大小:1.14 MB
- 文档页数:11
清华大学高考自主招生领军计划历年面试真题(2015年—2018年)同样,小北也为大家准备了清华近4年的综合评价招生面试真题。
清华也是从2015年才开始在全国范围开展综合评价招生!清华大学2018年领军计划面试题学科面试:1.建筑系:7位考官面试一个学生,不仅考查学生的综合素质,还考查他们对于各省市建筑的理解和表达。
2.数学系:给出4道题目让考生现场在黑板上作答,考官根据考生的解答思路或提问或追问。
清华大学2017年领军计划面试题1.材料阅读:影响你选择大学以及专业志愿的有哪些因素?请列举出来并说明理由。
可以借鉴但不局限于所给三则材料:第一则选择大学更重要还是选择专业更重要,第二则选择专业有哪些影响因素,第三则大学排名,包括US NEWS、泰晤士、QS、软科世界大学排名、毕业生就业力排名等等。
2.对人才培养的看法3.对清华理念的理解清华大学2016年领军计划面试题1.时政题是南京一个母亲盗窃超市为给自己的女儿过儿童节,警察赶到后宽大处理并帮助筹集善款,你怎么看?反映了什么社会问题?2.如果你在清华创立社团,你会创建什么社团?怎样让它发展得更好?3.大学应该无微不至地照顾学生,宽容对待他们的小错误还是应该训练学生适应社会?4.关于考生个人,被问到为什么选择这个专业清华大学2015年领军计划面试题1.你对“中国式过马路”怎么看?2.你对“中国梦”怎么理解?3.2012年度的五大新闻是什么,如果你是新闻评论员,请对这些新闻事件作出评论。
4.你对“钓鱼岛事件”怎么看?清华大学与北大相似,题目涉及范围较广,与经济、社会的各个方面相关。
童鞋们在做好充分准备的同时也要大方主动的展示自己的想法,不要太过于谨慎,甚至羞于表达。
专题之7、解析几何一、选择题。
1.(2009年复旦大学)设△ABC三条边之比AB∶BC∶CA=3∶2∶4,已知顶点A的坐标是(0,0),B的坐标是(a,b),则C的坐标一定是2.(2009年复旦大学)平面上三条直线x−2y+2=0,x−2=0,x+ky=0,如果这三条直线将平面划分成六个部分,则k可能的取值情况是A.只有唯一值B.可取二个不同值C.可取三个不同值D.可取无穷多个值3.(2010年复旦大学)已知常数k1,k2满足0<k1<k2,k1k2=1.设C1和C2分别是以y=±k1(x−1)+1和y=±k2(x−1)+1为渐近线且通过原点的双曲线,则C1和C2的离心率之比等于5.(2011年复旦大学)A.ρsin θ=1B.ρcos θ=−1C.ρcos θ=1D.ρsin θ=−1 6.(2011年复旦大学)设直线L过点M(2,1),且与抛物线y2=2x相交于A,B两点,满足|MA|=|MB|,即点M(2,1)是A,B的连接线段的中点,则直线L的方程是A.y=x−1B.y=−x+3C.2y=3x−4D.3y=−x+5 7.(2011年复旦大学)设有直线族和椭圆族分别为x=t,y=mt+b(m,b为实数,t为参数)和(a是非零实数),若对于所有的m,直线都与椭圆相交,则a,b应满足A.a2(1−b2)≥1B.a2(1−b2)>1C.a2(1−b2)<1D.a2(1−b2)≤1 8.(2011年复旦大学)极坐标表示的下列曲线中不是圆的是A.ρ2+2ρ(cos θ+sin θ)=5B.ρ2−6ρcos θ−4ρsin θ=0C.ρ2−ρcos θ=1D.ρ2cos 2θ+2ρ(cos θ+sin θ)=19.10.(2012年复旦大学)B.抛物线或双曲C.双曲线或椭圆D.抛物线或椭圆A.圆或直线线11.(2011年同济大学等九校联考)已知抛物线的顶点在原点,焦点在x轴上,△ABC的三个顶点都在抛物线上,且△ABC的重心为抛物线的焦点,若BC边所在直线的方程为4x+y−20=0,则抛物线方程为A.y2=16xB.y2=8xC.y2=−16xD.y2=−8xA.2B.2C.4D.413.(2011年清华大学等七校联考)AB为过抛物线y2=4x焦点F的弦,O为坐标原点,且∠OFA=135°,C为抛物线准线与x轴的交点,则∠ACB的正切值为14.(2012年清华大学等七校联考)椭圆长轴长为4,左顶点在圆(x−4)2+(y−1)2=4上,左准线为y 轴,则此椭圆离心率的取值范围是二、解答题。
2015年高三数学高校自主招生考试真题分类解析10 不等式一、选择题。
1.(2009年复旦大学)若实数x满足对任意实数a>0,均有x2<1+a,则x的取值X围是( ) A.(-1,1) B.[-1,1]C.(-,)D.不能确定2.(2010年复旦大学)已知点A(-2,0),B(1,0),C(0,1),如果直线y=kx将△ABC分割为两个部分,则当k=时,这两个部分的面积之积最大. ( )A.-B.-C.-D.-3.(2010年复旦大学)将同时满足不等式x-ky-2≤0(k>0),2x+3y-6≥0,x+6y-10≤0的点(x,y)组成的集合D称为可行域,将函数z=称为目标函数,所谓规划问题就是求解可行域内的点(x,y),使目标函数达到在可行域内的最小值.如果这个规划问题有无穷多个解,则( ) A.k≥1 B.k≤2 C.k=2 D.k=14.(2011年复旦大学)设n是一个正整数,则函数y=x+在正实半轴上的最小值是( ) A. B. C. D.5.(2011年复旦大学)若对一切实数x,都有|x-5|+|x-7|>a,则实数a的取值X围是( ) A.a<12 B.a<7 C.a<5 D.a<26.(2011年清华大学等七校联考)已知向量a=(0,1),b=(-,-),c=(,-),xa+yb+zc=(1,1),则x2+y2+z2的最小值为( )A.1B.C.D.2二、填空题。
7.(2010年中南财经政法大学)已知实数a,b满足a>b,ab=1,则的最小值是 . 8.(2009年华中科技大学) 对任意的a>0,b>0,的取值X围是.三、解答题。
9.(2009年中国科技大学)求证:∀x,y∈R,不等式x2+xy+y2≥3(x+y-1)恒成立.10.(2009年某某大学)P为△ABC内一点,它到三边BC,CA,AB的距离分别为d1,d2,d3,S为△ABC的面积,求证:++≥.11.(2010年某某大学)(a+b)2+3a+2b=(c+d)2+3c+2d. (*)证明:(1)a=c,b=d的充分必要条件是a+b=c+d;(2)若a,b,c,d∈N*,则(*)式成立的充要条件是a=c,b=d.12.(2010年某某大学)有小于1的n(n≥2 )个正数:x1,x2,x3,…,x n,且x1+x2+x3+…+x n=1.求证:+++…+>4.13.(2009年清华大学)设a=(n∈N*),S n=(x1-a)(x2-a)+(x2-a)(x3-a)+…+(x n-1-a)(x n-a),求证:S3≤0.14.(2009年清华大学)(1)x,y为正实数,且x+y=1,求证:对于任意正整数n,x n+y n≥;(2)a,b,c为正实数,求证:++≥3,其中x,y,z为a,b,c的一种排列.15.(2009年大学)∀x∈R都有acos x+bcos 2x≥-1恒成立,求a+b的最大值.16.(2011年大学等十三校联考)求f(x)=|x-1|+|2x-1|+…+|2 011x-1|的最小值.17.(2012年大学等十一校联考)求+=1的实数根的个数.1.B【解析】对任意实数a>0,函数f(a)=1+a的值域是(1,+∞),因此只要x2≤1即可.由x2≤1,解得x∈[-1,1].3.C【解析】可行域如图中阴影部分所示,目标函数z=的几何意义是可行域内的点与点(0,-1)连线的斜率,如果要使其取得最小值的点有无穷多个,则直线x-ky-2=0必过点(0,-1),即k=2.选C. 在解含有参数的平面区域问题时要注意含有参数的直线系的特点,本题的突破点是直线系x-ky-2=0过定点(2,0). 4.C【解析】题中函数为非常规函数,可利用导数求其最值.因为y=x+=x+x-n,所以y'=1-x-n-1=1-,令y'=0得x=1,且函数y在(0,1)上递减,在(1,+∞)上递增,故函数y在正实半轴上的最小值为1+=.5.D【解析】可先求出函数y=|x-5|+|x-7|的最小值,然后根据不等式恒成立的条件求得a的取值X围.由于|x-5|+|x-7|≥|5-7|=2,即函数y=|x-5|+|x-7|的最小值等于2,所以要使|x-5|+|x-7|>a恒成立,应有a<2.方法二∵xa+yb+zc=(1,1),∴-y+z=1,x-y-z=1,∴-y+z=,y+z=2x-2,∴z=+x-1,y=-+x-1,∴x2+(-+x-1)2+(+x-1)2=3x2-2(+1)x+(+1)2+2(-1)x+(-1)2=3x2-4x++2=3(x2-x +)++2-=3(x-)2+≥,当且仅当x=,z=,y=时等号成立.9.x2+xy+y2-3(x+y-1)=(x+y)2+x2+y2-3x-3y+3=(x+y)2+(x-3)2+(y-3)2-6≥(x+y)2+(x+y-6)2-6=(x+y)2-3(x+y)+3=[(x+y)-]2≥0,故∀x,y∈R,不等式x2+xy+y2≥3(x+y-1)恒成立.10.2S=2(S△PBC+S△PCA+S△PAB),2S=ad1+bd2+cd3.要证++≥成立,即证(ad1+bd2+cd3)(++)≥(a+b+c)2成立.由柯西不等式可得上面不等式成立,当且仅当d1=d2=d3时等号成立.11.(1)由a=c,b=d得到a+b=c+d是显然的;反之,把a+b=c+d代入(*)式可得a=c,于是b=d.因此,a=c,b=d的充要条件是a+b=c+d.(2)充分性是显然的,下面证明必要性.当a+b=c+d时,由(1)可知:a=c,b=d,即必要性成立.当a+b>c+d时,有a-c>d-b,设a-c=d-b+p(p≥1),由(*)式得(a+b+1)2+a=(c+d+1)2+c,∴(a+b-c-d)(a+b+c+d+2)+a-c=0,∴[(a-c)-(d-b)](a+b+c+d+2)+a-c=0.∴a-c+p(a+b+c+d+2)=0,∴(1+p)a+pb+(p-1)c+pd+2p=0,这与p≥1相矛盾,于是a+b>c+d不能成立.同理可证a+b<c+d也不能成立.综上可知:必要性成立.12.∵0<x i<1,∴>(i=1,2,3,…,n).∴+++…+>+++…+≥,又∵1=x1+x2+x3+…+x n≥n,∴≥n,又∵n≥2,∴+++…+>n2≥4.13.S3=(x1-)(x2-)+(x2-)(x3-)=(x2-)(x1-+x3-)=·=-(x1+x3-2x2)2≤0.14.(1)设x=+a,则y=-a,其中-<a<,于是x n+y n=(+a)n+(-a)n=()n+()n-1·a+()n-2·a2+…+a n+()n-()n-1·a+()n-2·a2-…+(-a)n=2[()n+()n-2·a2+()n-4·a4+…]≥2×()n=.(2)不妨设a≥b≥c>0,即0<≤≤,且{,,}={,,},由排序不等式得++≥++=3.15.2【解析】方法一令cos x=t,则-1≤t≤1,f(t)=2bt2+at+1-b≥0恒成立.(1)当b<0时,,利用线性规划知识,如下图,可以解得:-1≤a+b<1.(2)当b=0时,at+1≥0,由-1≤t≤1,得-1≤a+b≤1.(3)当b>0时,(i),利用线性规划知识,如下图,可以解得:0<a+b<;(ii),即,⇒9b2-(2k+8)b+k2≤0,Δ≥0⇒-1≤k≤2,∴(a+b)max=2;(iii),即,利用线性规划知识,如图,可以解得:-1≤a+b<0.综上,(a+b)max=2.方法二2bcos2x+acos x-b+1≥0,令cos x=-,得+≤1,即a+b≤2,又当a=,b=时,cos2x+cos x+=(2cos x+1)2≥0成立,∴(a+b)max=2.16.【解析】解法一由绝对值的几何意义联想到求距离的最小值,如|x-a|+|x-b|的最小值应该是在数轴上a,b两点之间取得,为|a-b|,所以将函数f(x)的右边整理为|x-1|+|x-|+|x-|+|x-|+|x-|+|x-|+…+|x-|+|x-|+…+|x-|,共有1+2+3+…+2 011=1 006×2 011项,则f(x)可以理解为x到这1 006×2 011个零点的距离之和.从两端开始向中间靠拢,每两个绝对值的和的最小值都是在相应的零点之间取得,而且X围是包含关系,比如|x-1|+|x-|的最小值是在x∈[,1]上取得,|x-|+|x-|的最小值是在x∈[,]上取得,…,所以f(x)的最小值应该在正中间的零点或正中间的相邻两个零点之间取得.由=503×2 011可知,f(x)取得最小值的X围在第503×2 011个零点和第503×2 011+1个零点之间(这两个零点也可能相等).由<503×2 011算得n ≤1 421,所以第503×2 011个零点和第503×2 011+1个零点均为,则[f(x)]min=f()=.解法二由零点分区间法讨论去绝对值:当x∈(-∞,]时,f(x)=(1-x)+(1-2x)+…+(1-2 011x),此函数图象是一条直线中的一部分,斜率k1=-1-2-…-2 011.当x∈(,]时,f(x)=(1-x)+(1-2x)+…+(1-2 010x)+(2 011x-1),此函数图象是一条直线中的一部分,斜率k2=-1-2-…-2 010+2 011.当x∈(,]时,f(x)=(1-x)+…+(1-2 009x)+(2 010x-1)+(2 011x-1),此函数图象是一条直线中的一部分,斜率k3=-1-2-…-2 009+2 010+2 011.……当x∈(,]时,f(x)=(1-x)+…+(1-mx)+[(m+1)x-1]+…+(2 011x-1),此函数图象是一条直线中的一部分,斜率k2 012-m=-1-2-…-m+(m+1)+…+2 011.当x∈(,]时,f(x)=(1-x)+…+[1-(m-1)x]+(mx-1)+…+(2 011x-1),此函数图象是一条直线,斜率k2 013-m=-1-2-…-(m-1)+m+…+2 011.令,即,即,由于m∈N*,解得m=1 422.word所以当x∈(,]时,f(x)=(1-x)+…+(1-1 422x)+(1 423x-1)+…+(2 011x-1)=833-711×1 423x+1 717×589x, [f(x)]min=f()=.11 / 11。
2015年全国重点高中阶段自主招生考试数学模拟试题(一)(历年真题汇总)数学试卷(满分:150分;考试时间:120分钟)学校 班级 姓名 号数 准考证号亲爱的同学:欢迎你参加本次考试!请细心审题,用心思考,耐心解答.祝你成功!答题时请注意:请将答案或解答过程写在答题卡...的相应位置上,写在试卷上不得分. 一、选择题(共10小题,每小题4分,满分40分.每小题只有..一个..正确的选项,请把正确答案的代号填写在答题..卡.中相应的表格内) 1.下列计算正确的是A .32a a a =•B . 523)(a a = C . 32a a a =+ D . 326a a a =÷ 2.不等式组⎩⎨⎧≥->+0401x x 的解集是A .41≤≤-xB .41≥-<x x 或C .41<<-xD .41≤<-x3.一组数据:3,4,5,x ,7的众数是4,则x 的值是A .3B .4C .5D .64.下列图案中,既是中心对称又是轴对称的图案是A B C D5.已知两圆的半径分别为6和1,当它们外切时,圆心距为A .5B .6C .7D .86.如果一个定值电阻R 两端所加电压为5伏时,通过它的电流为1安培,那么通过这一电阻的电流I随它的两端电压U 变化的图像是7.下列事件是必然事件的是A .直线b x y +=3经过第一象限;B .方程0222=-+-x x x 的解是2=x ;C .方程34-=+x 有实数根;D .当a 是一切实数时,a a =2.8.如图示,将矩形纸片ABCD 沿虚线EF 折叠,使点A 落在点G 上,点D 落在点H 上;然后再沿虚线GH 折叠,使B 落在点E 上,点C 落在点F 上;叠完后,剪一个直径在BC 上的半圆,再展开,则展开后的图形为9.如图,△ABC 内接于⊙O ,∠BAC=120°,AB=AC=4 ,BD 为⊙O 的直径,则BD 等于A.4B.6C.8D.1210.如图,将n 个边长都为1cm 的正方形按如图所示摆放,点A 1、A 2、…、A n 分别是正方形的中心,则n 个这样的正方形重叠部分的面积和为A .41-n cm 2B .4n cm 2C .41cm 2D .n)41( cm 2二、填空题(共8小题,每小题4分,满分32分.请将答案填在答题卡...的相应位置上)11.2009-的相反数是 .12.分解因式:222-m = .13.生物学家发现目前备受关注的甲H1N1病毒的长度约为0.000056毫米,用科学记数法表示为毫米.14.正方形网格中,∠AOB 如图放置,则cos ∠AOB= .15.海峡两岸血浓于水,“两岸三通”有了新发展,最近大陆与台湾的包机航班改为定期航班,受到两岸人民的欢迎.如图是我国政区图,根据图上信息,台北与北京的实际距离<直线距离>约是 千米(精确到千米).A B D C H G E F F BCG(A) H(D) E G(A)H(D)F(C) E(B) B DC A A B C O A 'B 'C '北京* 台北 * 600千米 O DCBA 第9题 第10题第第14题 第15题16.如图,菱形OABC 中,120A =o ∠,1OA =,将菱形OABC 绕点O 按顺时针方向旋转90o,则图中由弧,,A B B B '''C ,A '弧CB 围成的阴影部分的面积是 .(结果保留根号) 17.若方程组⎩⎨⎧=-=+a by x b y x 2的解是⎩⎨⎧==12y x ,那么b a -= .18.从1-,1,2这三个数中,任取两个不同的数作为一次函数y ax b =+的系数,a b ,则一次函数y ax b =+的图象不经过第三象限的概率是 . 三、解答题(共8小题,满分78分. 请将答案写在答题卡...的相应位置上) 19.(满分8分)计算:20)2(30sin 2)23(-+--ο20.(满分8分)小明和小颖在玩“石头、剪刀、布”的一次游戏中,他们平局的概率是多少?(请列表或画树状图分析)21.(满分8分)如图, 将矩形EFBC 一条对角线FC 向两端延伸,使AF=DC ,连接AB 、ED .求证:AB ∥ED .22.(满分10分)2009年10月1日是中华人民共和国成立六十周年纪念日,某中学举行了一次“建国知识竞赛”,并从中抽取了部分学生成绩(得分取整数,满分为100分)作为样本,绘制了如下的统计图.请根据图中的信息回答下列问题:(1)此样本抽取了多少名学生的成绩?(2)此样本数据的中位数落在哪一个范围内?(请直接写出该组的分数范围)(3)若这次竞赛成绩高于80分为优秀,已知该校有900名学生参加了这次竞赛活动,请估计该校获得优秀成绩的学生人数约为多少名?23.(满分8分)为了更好地宣传“2010年上海世博会”,“和谐之旅”号京沪城际铁路于2009年5月1日正式开通运营,预计高速列车在北京、上海间单程直达运行时间为半小时.某次试车时,试验列车由北京到上海的行驶时间比预计时间多用了6分钟,由上海返回北京的行驶时间与预计时间相同.如果这次试车时,由上海返回北京比去上海时平均每小时多行驶40千米,那么这次试车时由上海返回北京的平均速度是每小时多少千米?24.(满分10分)阅读下列材料,并解决后面的问题.在锐角△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c .过点A作AD ⊥BC 于点D (如图), 则 sin B =c AD ,sin C =bAD ,即AD =c sin B ,AD =b sin C , 于是c sin B =b sin C ,即C c B b sin sin =. A B C D E F 第21题 第22题 学生数50.5 60.5 70.5 80.5 90.5 100.5 222 28 0 32 36同理有A a C c sin sin =,Bb A a sin sin =. 所以 Cc B b A a sin sin sin ==………(*) 即:在一个三角形中,各边和它所对角的正弦的比相等.(1)在锐角三角形中,若已知三个元素a 、b 、∠B ,运用上述结论....(*)...和有关定理.....就可以求出其余三个未知元素c 、∠A 、∠C ,请你按照下列步骤填空,完成求解过程:第一步:由条件 a 、b 、∠B∠A ; 第二步:由条件 ∠A 、∠B ∠C ; 第三步:由条件 c .(2)如图,已知:∠A =60°,∠C =75°,a =6,运用上述结论(*)试求b .25.(满分12分)如图,抛物线)0(2≠++=a c bx ax y 与y 轴正半轴交于点C ,与x 轴交于点),(、08)0,2(B A ,OBC OCA ∠=∠。
一、选择题1.设复数z=cos 23π+isin 23π,则2111-1z z +-=( ) (A)0 (B)1 (C)12 (D)322.设数列{}n a 为等差数列,p,q,k,l 为正整数,则“p+q>k+l ”是“p q k l a a a a +>+”的( )条件(A)充分不必要 (B)必要不充分 (C)充要 (D)既不充分也不必要 3.设A 、B 是抛物线y=2x 上两点,O 是坐标原点,若OA ⊥OB,则( )(A)|OA|·|OB|≥2 (B)|OA|+|OB|≥22(C)直线AB 过抛物线y=2x 的焦点 (D)O 到直线AB 的距离小于等于14.设函数()f x 的定义域为(-1,1),且满足:①()f x >0,x ∈(-1,0);②()f x +()f y =()1x yf xy++,x 、y ∈(-1,1),则()f x 为 (A)奇函数 (B)偶函数 (C)减函数 (D)有界函数5.如图,已知直线y=kx+m 与曲线y=f (x)相切于两点,则F(x)=f (x)−kx 有( )(A)2个极大值点 (B)3个极大值点 (C)2个极小值点 (D)3个极小值点 6.△ABC 的三边分别为a 、b 、c .若c=2,∠C=3π,且sinC+sin(B −A)−2sin2A=0,则有( ) (A)b=2a (B)△ABC 的周长为3 (C)△ABC 的面积为33(D)△ABC 的外接圆半径为337.设函数2()(3)xf x x e =-,则( )(A)()f x 有极小值,但无最小值 (B) ()f x 有极大值,但无最大值 (C)若方程()f x =b 恰有一个实根,则b>36e(D)若方程()f x =b 恰有三个不同实根,则0<b<36e 8.已知A={(x,y)∣222x y r +=},B={(x,y)∣222()()x a y b r -+-=,已知A∩B={(11,x y ),(22,x y )},则( )(A)0<22a b +<22r (B)1212()(y )0a x x b y -+-= (C)12x x +=a ,12y y +=b (D)22a b +=1122ax by +9.已知非负实数x,y,z 满足22244x y z +++2z=3,则5x+4y+3z 的最小值为( ) (A)1 (B)2 (C)3 (D)410.设数列{n a }的前n 项和为n S ,若对任意正整数n ,总存在正整数m ,使得n S =m a ,则( )(A ){n a }可能为等差数列 (B ){n a }可能为等比数列(C ){n a }的任意一项均可写成{n a }的两项之差(D)对任意正整数n ,总存在正整数m ,使得n a =m S11.运动会上,有6名选手参加100米比赛,观众甲猜测:4道或5道的选手得第一名;观众乙猜测:3道的选手不可能得第一名;观众丙猜测:1,2,6道选手中的一位获得第一名;观众丁猜测:4,5,6道的选手都不可能获得第一名.比赛后发现没有并列名次,且甲、乙、丙、丁中只有1人猜对比赛结果,此人是( ) (A)甲 (B)乙 (C)丙 (D)丁12.长方体ABCD −1111A B C D 中,AB=2,AD=A 1A =1,则A 到平面1A BD 的距离为( )(A)13 (B)23(C)22 (D)6313.设不等式组||||22(1)x y y k x +≤⎧⎨+≤+⎩所表示的区域为D ,其面积为S ,则( )(A)若S=4,则k 的值唯一 (B)若S=12,则k 的值有2个(C)若D 为三角形,则0<k ≤23(D)若D 为五边形,则k>4 14.△ABC 的三边长是2,3,4,其外心为O ,则OA AB OB BC OC CA ⋅+⋅+⋅=( ) (A)0 (B)−15 (C)−212(D)−29215.设随机事件A 与B 互相独立,且P(B)=0.5,P(A −B)=0.2,则( )(A)P(A)=0.4 (B)P(B −A)=0.3 (C)P(AB)=0.2 (D)P(A+B)=0.916.过△ABC 的重心作直线将△ABC 分成两部分,则这两部分的面积之比的( ) (A)最小值为34 (B)最小值为45 (C)最大值为43 (D 最大值为5417.从正15边形的顶点中选出3个构成钝角三角形,则不同的选法有( )(A)105种 (B)225种 (C)315种 (D)420种18.已知存在实数r ,使得圆周222x y r +=上恰好有n 个整点,则n 可以等于( ) (A)4 (B)6 (C)8 (D)12 19.设复数z 满足2|z|≤|z −1|,则( ) (A)|z|的最大值为1 (B)|z|的最小值为13 (C)z 的虚部的最大值为23(D)z 的实部的最大值为1320.设m,n 是大于零的实数,a =(mcosα,msinα),b =(ncosβ,nsinβ),其中α,β∈[0,2π)α,β∈[0,2π).定义向量12a =(2m α2m α),12b =(2n β2n β),记θ=α−β,则( )(A)12a ·12a =a (B)1122a b ⋅=2mn θ(C)112222||44a b mn θ-≥(D)112222||44a b mn θ+≥21.设数列{n a }满足:1a =6,13n n n a a n++=,则( ) (A)∀n ∈N ∗,n a <3(1)n + (B)∀n ∈N ∗,n a ≠2015 (C)∃n ∈N ∗,n a 为完全平方数 (D)∃n ∈N ∗, n a 为完全立方数 22.在极坐标系中,下列方程表示的图形是椭圆的有( ) (A )ρ=1cos sin θθ+ (B )ρ=12sin θ+ (C )ρ=12cos θ- (D )ρ=112sin θ+23.设函数2sin ()1xf x x x π=-+,则( )(A )()f x ≤43(B)|()f x |≤5|x| (C)曲线y=()f x 存在对称轴 (D)曲线y=()f x 存在对称中心24.△ABC 的三边分别为a ,b,c ,若△ABC 为锐角三角形,则( ) (A)sinA>cosB (B)tanA>cotB (C)222a b c +> (D)333a b c +>25.设函数()f x 的定义域是(−1,1),若(0)f =(0)f '=1,则存在实数δ∈(0,1),使得( ) (A)()f x >0,x ∈(−δ,δ) (B)()f x 在(−δ,δ)上单调递增 (C)()f x >1,x ∈(0,δ) (D)()f x >1,x ∈(−δ,0)26.在直角坐标系中,已知A(−1,0),B(1,0).若对于y 轴上的任意n 个不同的点k P (k=1,2,…,n),总存在两个不同的点i P ,j P ,使得|sin ∠A i P B −sin ∠A j P B|≤13,则n 的最小值为( )(A)3 (B)4 (C)5 (D)627.设非负实数x,y 满足2x+y=1,则22x y + )(A)最小值为45 (B)最小值为25(C)最大值为1 (D)最大值为12328.对于50个黑球和49个白球的任意排列(从左到右排成一行),则( )(A)存在一个黑球,它右侧的白球和黑球一样多 (B)存在一个白球,它右侧的白球和黑球一样多(C)存在一个黑球,它右侧的白球比黑球少一个 (D)存在一个白球,它右侧的白球比黑球少一个29.从1,2,3,4,5中挑出三个不同数字组成五位数,其中有两个数字各用两次,例如12231,则能得到的不同的五位数有( ) (A)300个 (B)450个 (C)900个 (D)1800个30.设曲线L 的方程为42242(22)(2)y x y x x +++-=0,则( ) (A)L 是轴对称图形 (B)L 是中心对称图形 (C)L ⊂{(x,y)∣22x y +≤1} (D)L ⊂{(x,y)∣−12≤y ≤12} ##Answer## 1.【解析】2111-1z z +-=211-zz z zz z +-=11-z z z z +-=22cos sin 1332221-cos sin 2sin 333i i i πππππ-+--=212sin 2sincos333i πππ-⋅-22cos()sin()333(cossin )22i i ππππ-+-+ =cos 0sin 02sin [cos()sin()]366i i πππ+-+-77)sin()]663i ππ-+- 31sin )6623i i ππ+=1,选B2.【简解】 ()p q k l a a a a +-+=[(p+q)-(k+l)]d ,与公差d 的符号有关,选D3.【解析】设A(211,x x ),B(222,x x ),OA OB ⋅=1212(1)x x x x +=0⇒211x x =-答案(A),||||OA OB ⋅2211221111(1)(1)x x x x ++2121111x x +++11122||||x x +⋅=2,正确;答案(B),|OA|+|OB|≥2||||OA OB ⋅22,正确;答案(C),直线AB 的斜率为222121x x x x --=21x x +=111x x - 方程为y-21x =(111x x -)(x-1x ),焦点(0,14)不满足方程,错误;答案(D),原点到直线AB :(111x x -)x-y+1=0的距离2111()1x x -+1,正确。
专题之8、平面几何一、选择题.1、(2009年复旦大学)一个菱形边长与其内切圆的直径之比为k∶1(k>1),则这个菱形的一个等于A.arctan(k)B.arctanC.arctanD.arctan2、(2009年复旦大学)用同样大小的一种正多边形平铺整个平面(没有重叠),有几种正多边形可以铺满整个平面而不留缝隙?A.2种B.3种C.4种D.5种3、(2012年复旦大学)设S是平面上的一个六边形,不是凸的,且它的任意3个顶点都不共线,称一个以S的某些顶点为顶点的多边形为一个S多边形,则下面的结果一定不对的是A.每个S四边形都是凸四边形B.存在S五边形为凸五边形C.每个S五边形都不是凸五边形D.至少有两个S四边形是凸四边形4、(2011年同济大学等九校联考)如图,△ABC内接于☉O,过BC中点D作平行于AC的直线l,l交AB于E,交☉O于G,F,交☉O在A点处的切线于P,若PE=3,ED=2,EF=3,则PA的长为5、(2010年清华大学等五校联考)如图,△ABC的两条高线AD,BE交于H,其外接圆圆心为O,过O作OF垂直BC于F,OH与AF相交于G,则△OFG与△GHA面积之比为A.1∶4B.1∶3C.2∶5D.1∶26、(2012年清华大学等七校联考)已知锐角△ABC,BE垂直AC于E,CD垂直AB于D,BC=25,CE=7,BD=15,BE,CD交于H,连接DE,以DE为直径画圆,与AC交于另一点F,则AF 的长为A.8B.9C.10D.11二、解答题.7、(2009年华中科技大学)由图1,得4(ab)+c2=(a+b)2,①可推得勾股定理a2+b2=c2.则由图2,可得一个类似于①的等式:.从而推得一个重要的三角公式:.8、(2009年中国科技大学)如图所示,已知D、E、F分别为BC、AC、AB的三等分点,并且EC=2AE,BD=2CD,AF=2BF,若S△ABC=1,试求S△PQR.9、(2012年同济大学等九校联考)如图,AB是圆O的直径,CD⊥AB于H,且AB=10,CD=8,DE=4,EF是圆的切线,BF交HD于G.(1)求GH;(2)连接FD,判断FD与AB的关系,并加以证明.10、(2009年北京大学)如图,圆内接四边形ABCD,AB=1,BC=2,CD=3,DA=4,求圆的半径.11、(2010年北京大学等三校联考)A,B为边长为1的正五边形边上的点.证明:AB最长为.12、(2011年北京大学等十三校联考)在△ABC中,a+b≥2c,求证:∠C≤60°.13、(2011年北京大学等十三校联考)已知平行四边形的其中两条边长分别是3和5,一条对角线长是6,求另一条对角线长.14、(2012年北京大学等十一校联考)求证:若圆内接五边形的每个角都相等,则它为正五边形.A1A4A5A6都是凸四边形,故选项D正确;如图③,选项C正确.4.B【解析】因为AC∥PF,所以∠HAC=∠APE,又PA是☉O的切线,可得∠HAC=∠B,故∠APE=∠B,又因为∠PEA=∠BED,所以△BED∽PEA,故=,因为PE=3,ED=2,BE=AE,所以BE=AE=,再由相交弦定理可得GE·EF=BE2,故GE=2,得PG=1,最后由切割线定理可得PA2=PG·PF,知PA=.故选B.5.A【解析】观察到△OFG与△GHA相似,只要找到这两个三角形的边长之比,就可以求出其面积之比.因为O点为△ABC的外心,OF⊥BC,所以F是BC边的中点,故AF是BC边上的中线,由欧拉定理可知OH和AF的交点G为△ABC的重心,所以FG∶GA=1∶2,又△OFG∽△HAG,故两三角形面积之比为1∶4.选A.6.B【解析】方法一如图,7.用面积分割的方法考虑各部分面积之和等于整个图形的面积.四个三角形的面积的和为2×[(nsin β)(ncos β)]+2×[(msin α)(mcos α)],中间平行四边形的面积为mnsin[π−(α+β)]=mnsin(α+β),而整个图形的面积为(nsin β+msin α)(ncos β+mcos α),∴2×[(nsin β)(ncos β)]+2×[(msin α)(mcos α)]+mnsin(α+β)=(nsin β+msin α)(ncos β+mcos α),整理上式有sin(α+β)=sin αcos β+cos αsin β.8.过E作BC的平行线,交AD于S.10.11.以正五边形一条边上的中点为原点,此边所在的直线为x轴,建立如图所示的平面直角坐标系.(1)如图1,当A,B中有一点位于P点时,知另一点位于R1或者R2时有最大值|PR1|;当有一点位于O点时,|AB|max=|OP|<|PR1|.(2)如图2,当A,B均不在y轴上时,知A,B必在y轴的异侧方可能取到最大值(否则取A点关于y轴的对称点A',有|A'B|>|AB|).不妨设A位于线段OR2上(由正五边形的中心对称性,知这样的假设是合理的),则使|AB|最大的B点必位于线段PQ上,且当B从P向Q移动时,|AB|先减小后增大,于是|AB|max=|AP|或|AQ|.对于线段PQ上任意一点B,都有|BR2|≥|BA|.于是|AB|max=|R2P|=|R2Q|.由(1)(2)知|AB|max=|R2P|.下面研究正五边形对角线的长.如图3,12.【解析】论证角的范围往往是通过先论证该角的某个三角函数值的范围后,再结合相应函数的单调性进行的.本题是在三角形中解决问题,并且已知了三角形的三条边之间的关系,因此可考虑利用余弦定理先确定cos C的范围,再根据余弦函数的单调性证得结论.13.因为平行四边形中的各边长度是已知的,因此可考虑利用三角形的余弦定理进行求解.如图,不妨设AB=5,AD=3,BD=6.在△ABD中,由余弦定理得BD2=AB2+AD2−2AB·ADcos∠BAD;在△ABC中,由余弦定理得AC2=BA2+BC2−2BA·BCcos∠ABC,由于AD=BC,AB=BA,∠ABC+∠DAB=π,故两式相加得AC2+BD2=2(AB2+AD2),于是62+AC2=2×(52+32),解得AC=4,即另一条对角线长为4.14.方法一如图1所示,五边形ABCDE为☉O内接五边形,延长AE,CD,DC,AB,有两交点G,H,连接AC. 因为∠AED=∠EDC,所以∠GED=∠GDE,所以GE=GD.因为A,C,D,E在☉O上,所以∠CAG=∠GDE,∠GCA=∠GED,所以∠CAG=∠GCA,故GA=GC,可得AE=CD.连接AD,同理可得AB=CD,从而AE=AB=CD.同样延长BC,ED,BA,DE,可证得BA=BC=DE,所以AB=BC=CD=DE=EA,从而可得五边形ABCDE为正五边形.方法二如图2所示,。
2015年普通高等学校招生全国统一考试课标全国Ⅰ理科数学注意事项:1.本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至3页,第Ⅱ卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2015课标全国Ⅰ,理1)设复数z满足1+z=i,则|z|=()A.1B.2C.3D.2答案:A解析:∵1+z=i,∴z=i−1=(i−1)(−i+1)=i,∴|z|=1.2.(2015课标全国Ⅰ,理2)sin 20°cos 10°-cos 160°sin 10°=()A.-32B.32C.-12D.12答案:D解析:sin20°cos10°-cos160°sin10°=sin20°cos10°+cos20°sin10°=sin(10°+20°)=sin30°=12.3.(2015课标全国Ⅰ,理3)设命题p:∃n∈N,n2>2n,则p为()A.∀n∈N,n2>2nB.∃n∈N,n2≤2nC.∀n∈N,n2≤2nD.∃n∈N,n2=2n答案:C解析:∵p:∃n∈N,n2>2n,∴p:∀n∈N,n2≤2n.故选C.4.(2015课标全国Ⅰ,理4)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A.0.648B.0.432C.0.36D.0.312答案:A解析:由条件知该同学通过测试,即3次投篮投中2次或投中3次.故P=C320.62(1-0.6)+C330.63=0.648.5.(2015课标全国Ⅰ,理5)已知M(x0,y0)是双曲线C:x 22-y2=1上的一点,F1,F2是C的两个焦点.若MF1·MF2<0,则y0的取值范围是()A. −3,3B. −3,3C. −22,22D. −23,23答案:A解析:由条件知F1(-3,0),F2(3,0),∴MF1=(-3-x0,-y0),MF2=(3-x0,-y0),∴MF1·MF2=x02+y02-3<0.①又∵x022−y02=1,∴x02=2y02+2.代入①得y02<13,∴-3<y0<3. 6.(2015课标全国Ⅰ,理6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( ) A .14斛 B .22斛 C .36斛 D .66斛 答案:B解析:设底面圆半径为R ,米堆高为h.∵米堆底部弧长为8尺,∴14·2πR=8,∴R=16π.∴体积V=1×1·πR 2h=1×π× 16 2×5.∵π≈3,∴V ≈3209(尺3). ∴堆放的米约为3209×1.62≈22(斛).7.(2015课标全国Ⅰ,理7)设D 为△ABC 所在平面内一点,BC =3CD ,则( )A .AD =-1AB +4AC B .AD =1AB −4AC C .AD =43AB +13AC D .AD=43AB −13AC 答案:A解析:如图:∵AD =AB +BD,BC =3CD , ∴AD =AB +43BC =AB +43(AC −AB )=-13AB +43AC. 8.(2015课标全国Ⅰ,理8)函数f (x )=cos(ωx+φ)的部分图像如图所示,则f (x )的单调递减区间为( ) A . kπ−1,kπ+3 ,k ∈Z B . 2kπ−1,2kπ+3 ,k ∈Z C . k −14,k +34 ,k ∈Z D . 2k −1,2k +3 ,k ∈Z 答案:D解析:不妨设ω>0,由函数图像可知,其周期为T=2× 54−14=2,所以2πω=2,解得ω=π. 所以f (x )=cos(πx+φ).由图像可知,当x=12 14+54=34时,f (x )取得最小值,即f 3 =cos3π+φ =-1,解得3π4+φ=2k π+π(k ∈Z ),解得φ=2k π+π4(k ∈Z ).令k=0,得φ=π,所以f (x )=cos πx +π.令2k π≤πx+π≤2k π+π(k ∈Z ),解得2k-14≤x ≤2k+34(k ∈Z ).所以函数f (x )=cos πx +π4的单调递减区间为 2k−14,2k +34(k ∈Z ).结合选项知应选D .9.(2015课标全国Ⅰ,理9)执行下面的程序框图,如果输入的t=0.01,则输出的n=( )A .5B .6C .7D .8答案:C解析:∵S=1,n=0,m=1,t=0.01,∴S=S-m=12,m=m 2=14,n=n+1=1,S>0.01,∴S=14,m=18,n=2,S>0.01,∴S=1,m=1,n=3,S>0.01,∴S=1,m=1,n=4,S>0.01,∴S=132,m=164,n=5,S>0.01,∴S=1,m=1,n=6,S>0.01,∴S=1,m=1,n=7,S<0.01,∴n=7.10.(2015课标全国Ⅰ,理10)(x 2+x+y )5的展开式中,x 5y 2的系数为( ) A .10 B .20 C .30 D .60 答案:C解析:由于(x 2+x+y )5=[(x 2+x )+y ]5,其展开式的通项为T r+1=C 5r (x 2+x )5-r y r (r=0,1,2,…,5),因此只有当r=2,即T 3=C 52(x 2+x )3y 2中才能含有x 5y 2项.设(x 2+x )3的展开式的通项为S i+1=C 3i (x 2)3-i ·x i =C 3i x 6-i(i=0,1,2,3),令6-i=5,得i=1,则(x 2+x )3的展开式中x 5项的系数是C 31=3,故(x 2+x+y )5的展开式中,x 5y 2的系数是C 52·3=10×3=30. 11.(2015课标全国Ⅰ,理11)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=( ) A .1 B .2 C .4 D .8 答案:B解析:由条件知,该几何体是由一个圆柱被过圆柱底面圆直径的平面所截剩下的半个圆柱及一个半球拼接而成,其表面积是一个矩形面积、两个半圆面积、圆柱侧面积的一半、球表面积的一半相加所得,所以表面积为S 表=2r×2r+2×12πr 2+πr×2r+12×4πr 2=5πr 2+4r 2=16+20π,解得r=2.12.(2015课标全国Ⅰ,理12)设函数f (x )=e x (2x-1)-ax+a ,其中a<1,若存在唯一的整数x 0使得f (x 0)<0,则a 的取值范围是( )A. −32e ,1B. −32e,34C.32e ,34D.32e,1答案:D解析:设g(x)=e x(2x-1),h(x)=a(x-1),则不等式f(x)<0即为g(x)<h(x).因为g'(x)=e x(2x-1)+2e x=e x(2x+1),当x<-12时,g'(x)<0,函数g(x)单调递减;当x>-12时,g'(x)>0,函数g(x)单调递增.所以g(x)的最小值为g −1.而函数h(x)=a(x-1)表示经过点P(1,0),斜率为a的直线.如图,分别作出函数g(x)=e x(2x-1)与h(x)=a(x-1)的大致图像.显然,当a≤0时,满足不等式g(x)<h(x)的整数有无数多个.函数g(x)=e x(2x-1)的图像与y轴的交点为A(0,-1),与x轴的交点为D1,0.取点C −1,−3e.由图可知,不等式g(x)<h(x)只有一个整数解时,须满足k PC≤a<k PA.而k PC=0−−3e=3,k PA=0−(−1)=1,所以32e ≤a<1.故选D.第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.(2015课标全国Ⅰ,理13)若函数f(x)=x ln(x+ a+x2)为偶函数,则a=.答案:1解析:∵f(x)是偶函数,∴f(-1)=f(1).又f(-1)=-ln(-1+a+1)=ln a+1+1a,f(1)=ln(1+a+1),因此ln(a+1+1)-ln a=ln(a+1+1),于是ln a=0,∴a=1.14.(2015课标全国Ⅰ,理14)一个圆经过椭圆x 2+y2=1的三个顶点,且圆心在x轴的正半轴上,则该圆的标准方程为.答案: x−32+y2=25解析:由条件知圆经过椭圆的三个顶点分别为(4,0),(0,2),(0,-2),设圆心为(a,0)(a>0),所以(a−0)2+(0−2)2=4-a,解得a=32,故圆心为32,0,此时半径r=4-32=52,因此该圆的标准方程是 x−322+y2=254.15.(2015课标全国Ⅰ,理15)若x,y满足约束条件x−1≥0,x−y≤0,x+y−4≤0,则yx的最大值为.答案:3解析:画出约束条件对应的平面区域(如图),点A为(1,3),要使y最大,则y−0最大,即过点(x,y),(0,0)两点的直线斜率最大,由图形知当该直线过点A时,yx max =3−01−0=3.16.(2015课标全国Ⅰ,理16)在平面四边形ABCD 中,∠A=∠B=∠C=75°,BC=2,则AB 的取值范围是 . 答案:( 6− 2, 6+ 2) 解析:如图.作CE ∥AD 交AB 于E ,则∠CEB=75°,∠ECB=30°. 在△CBE 中,由正弦定理得,EB= − 延长CD 交BA 的延长线于F ,则∠F=30°. 在△BCF 中,由正弦定理得,BF= 6+ 2, 所以AB 的取值范围为( 6− 2, 6+ 2).三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)(2015课标全国Ⅰ,理17)S n 为数列{a n }的前n 项和.已知a n >0,a n 2+2a n =4S n +3. (1)求{a n }的通项公式; (2)设b n =1a n a n +1,求数列{b n }的前n 项和.解:(1)由a n 2+2a n =4S n +3,可知a n +12+2a n+1=4S n+1+3.可得a n +12−a n 2+2(a n+1-a n )=4a n+1,即2(a n+1+a n )=a n +12−a n 2=(a n+1+a n )(a n+1-a n ). 由于a n >0,可得a n+1-a n =2.又a 12+2a 1=4a 1+3,解得a 1=-1(舍去),a 1=3.所以{a n }是首项为3,公差为2的等差数列,通项公式为a n =2n+1. 6分(2)由a n =2n+1可知b n =1n n +1=1=11−1.设数列{b n }的前n 项和为T n ,则 T n =b 1+b 2+…+b n=12 13−15 + 15−17 +⋯+12n +1−12n +3=n . 12分18.(本小题满分12分)(2015课标全国Ⅰ,理18)如图,四边形ABCD 为菱形,∠ABC=120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE=2DF ,AE ⊥EC.(1)证明:平面AEC ⊥平面AFC ;(2)求直线AE 与直线CF 所成角的余弦值. 解:(1)连结BD ,设BD ∩AC=G ,连结EG ,FG ,EF.在菱形ABCD 中,不妨设GB=1. 由∠ABC=120°,可得AG=GC=由BE ⊥平面ABCD ,AB=BC ,可知AE=EC. 又AE ⊥EC ,所以EG= 3,且EG ⊥AC. 在Rt △EBG 中,可得BE= 2,故DF= 2. 在Rt △FDG 中,可得FG= 62.在直角梯形BDFE 中,由BD=2,BE= 2,DF= 22,可得EF=3 22. 从而EG 2+FG 2=EF 2,所以EG ⊥FG. 又AC ∩FG=G ,可得EG ⊥平面AFC.因为EG ⊂平面AEC ,所以平面AEC ⊥平面AFC. 6分(2)如图,以G 为坐标原点,分别以GB ,GC 的方向为x 轴、y 轴正方向,|GB |为单位长,建立空间直角坐标系G-xyz.由(1)可得A (0,- E (1,0, F −1,0,2,C (0, 3,0),所以AE =(1, 3, 2),CF= −1,− 3, 2 . 10分故cos <AE ,CF >=AE ·CF|AE ||CF|=- 33. 所以直线AE 与直线CF 所成角的余弦值为 3.12分19.(本小题满分12分)(2015课标全国Ⅰ,理19)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t)和年利润z (单位:千元)的影响.对近8年的年宣传费x i 和年销售量y i (i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.表中w i = x i ,w =18∑i =18w i. (1)根据散点图判断,y=a+bx 与y=c+d x 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程;(3)已知这种产品的年利润z 与x ,y 的关系为z=0.2y-x.根据(2)的结果回答下列问题: ①年宣传费x=49时,年销售量及年利润的预报值是多少? ②年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ),其回归直线v=α+βu 的斜率和截距的最小二乘估计分别为β^=∑i =1n(u i −u )(v i −v )∑i =1n(u i −u )2,α^=v −β^u .解:(1)由散点图可以判断,y=c+d x 适宜作为年销售量y 关于年宣传费x 的回归方程类型.2分(2)令w= x ,先建立y 关于w 的线性回归方程.由于d ^=∑i =18(w i −w )(y i −y )∑i =18(w i −w )2=108.81.6=68, c ^=y −d ^w =563-68×6.8=100.6,所以y 关于w 的线性回归方程为y ^=100.6+68w ,因此y 关于x 的回归方程为y ^=100.6+68 x . 6分(3)①由(2)知,当x=49时,年销售量y 的预报值y ^=100.6+68 49=576.6,年利润z 的预报值z ^=576.6×0.2-49=66.32. 9分②根据(2)的结果知,年利润z 的预报值z ^=0.2(100.6+68 x )-x=-x+13.6 x +20.12.所以当 x =13.6=6.8,即x=46.24时,z ^取得最大值.故年宣传费为46.24千元时,年利润的预报值最大.12分20.(本小题满分12分)(2015课标全国Ⅰ,理20)在直角坐标系xOy 中,曲线C :y=x 24与直线l :y=kx+a (a>0)交于M ,N两点.(1)当k=0时,分别求C 在点M 和N 处的切线方程;(2)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM=∠OPN ?说明理由. 解:(1)由题设可得M (2 a ,a ),N (-2 a ,a ),或M (-2 a ,a ),N (2 a ,a ).又y'=x 2,故y=x 24在x=2 a 处的导数值为 a ,C 在点(2 a ,a )处的切线方程为y-a= a (x-2 a ),即 a x-y-a=0. y=x 2在x=-2 a 处的导数值为- a ,C 在点(-2 a ,a )处的切线方程为y-a=- a (x+2 a ),即 a x+y+a=0. 故所求切线方程为 a x-y-a=0和 a x+y+a=0. 5分(2)存在符合题意的点,证明如下:设P (0,b )为符合题意的点,M (x 1,y 1),N (x 2,y 2),直线PM ,PN 的斜率分别为k 1,k 2. 将y=kx+a 代入C 的方程得x 2-4kx-4a=0. 故x 1+x 2=4k ,x 1x 2=-4a.从而k 1+k 2=y 1−b x 1+y 2−bx 2=2kx 1x 2+(a−b )(x 1+x 2)x 1x 2=k (a +b )a.当b=-a 时,有k 1+k 2=0,则直线PM 的倾角与直线PN 的倾角互补,故∠OPM=∠OPN ,所以点P (0,-a )符合题意. 12分21.(本小题满分12分)(2015课标全国Ⅰ,理21)已知函数f (x )=x 3+ax+1,g (x )=-ln x.(1)当a 为何值时,x 轴为曲线y=f (x )的切线;(2)用min{m ,n }表示m ,n 中的最小值,设函数h (x )=min{f (x ),g (x )}(x>0),讨论h (x )零点的个数. 解:(1)设曲线y=f (x )与x 轴相切于点(x 0,0),则f (x 0)=0,f'(x 0)=0,即 x 03+ax 0+1=0,3x 02+a =0.解得x 0=1,a=-3.因此,当a=-34时,x 轴为曲线y=f (x )的切线. 5分(2)当x ∈(1,+∞)时,g (x )=-ln x<0,从而h (x )=min{f (x ),g (x )}≤g (x )<0,故h (x )在(1,+∞)无零点. 当x=1时,若a ≥-54,则f (1)=a+54≥0,h (1)=min{f (1),g (1)}=g (1)=0,故x=1是h (x )的零点;若a<-54,则f (1)<0,h (1)=min{f (1),g (1)}=f (1)<0,故x=1不是h (x )的零点.当x ∈(0,1)时,g (x )=-ln x>0.所以只需考虑f (x )在(0,1)的零点个数.(ⅰ)若a ≤-3或a ≥0,则f'(x )=3x 2+a 在(0,1)无零点,故f (x )在(0,1)单调.而f (0)=14,f (1)=a+54,所以当a ≤-3时,f (x )在(0,1)有一个零点;当a ≥0时,f (x )在(0,1)没有零点.(ⅱ)若-3<a<0,则f (x )在 0, −3单调递减,在 −3,1 单调递增,故在(0,1)中,当x= −3时,f (x )取得最小值,最小值为f −a =2a −a +1. ①若f −a >0,即-3<a<0,f (x )在(0,1)无零点; ②若f −a =0,即a=-3,则f (x )在(0,1)有唯一零点;③若f −3 <0,即-3<a<-34,由于f (0)=14,f (1)=a+54,所以当-54<a<-34时,f (x )在(0,1)有两个零点;当-3<a ≤-54时,f (x )在(0,1)有一个零点.10分综上,当a>-3或a<-5时,h (x )有一个零点;当a=-3或a=-5时,h (x )有两个零点;当-5<a<-3时,h (x )有三个零点. 12分请考生在第22、23、24三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,做答时请用2B 铅笔在答题卡上将所选题号后的方框涂黑.22.(本小题满分10分)(2015课标全国Ⅰ,理22)选修4—1:几何证明选讲如图,AB是☉O的直径,AC是☉O的切线,BC交☉O于点E.(1)若D为AC的中点,证明:DE是☉O的切线;(2)若OA=3CE,求∠ACB的大小.解:(1)连结AE,由已知得,AE⊥BC,AC⊥AB.在Rt△AEC中,由已知得,DE=DC,故∠DEC=∠DCE.连结OE,则∠OBE=∠OEB.又∠ACB+∠ABC=90°,所以∠DEC+∠OEB=90°,故∠OED=90°,DE是☉O的切线.5分(2)设CE=1,AE=x,由已知得AB=2,BE=2.由射影定理可得,AE2=CE·BE,所以x2=12−x2,即x4+x2-12=0.可得x=3,所以∠ACB=60°.10分23.(本小题满分10分)(2015课标全国Ⅰ,理23)选修4—4:坐标系与参数方程在直角坐标系xOy中,直线C1:x=-2,圆C2:(x-1)2+(y-2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(1)求C1,C2的极坐标方程;(2)若直线C3的极坐标方程为θ=π4(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积.解:(1)因为x=ρcosθ,y=ρsinθ,所以C1的极坐标方程为ρcosθ=-2,C2的极坐标方程为ρ2-2ρcosθ-4ρsinθ+4=0.5分(2)将θ=π4代入ρ2-2ρcosθ-4ρsinθ+4=0,得ρ2-32ρ+4=0,解得ρ1=22,ρ2= 2.故ρ1-ρ2=2,即|MN|= 2.由于C2的半径为1,所以△C2MN的面积为1.10分24.(本小题满分10分)(2015课标全国Ⅰ,理24)选修4—5:不等式选讲已知函数f(x)=|x+1|-2|x-a|,a>0.(1)当a=1时,求不等式f(x)>1的解集;(2)若f(x)的图像与x轴围成的三角形面积大于6,求a的取值范围.解:(1)当a=1时,f(x)>1化为|x+1|-2|x-1|-1>0.当x≤-1时,不等式化为x-4>0,无解;当-1<x<1时,不等式化为3x-2>0,解得2<x<1;当x≥1时,不等式化为-x+2>0,解得1≤x<2.所以f(x)>1的解集为 x2<x<2.5分(2)由题设可得,f(x)=x−1−2a,x<−1,3x+1−2a,−1≤x≤a,−x+1+2a,x>a.所以函数f(x)的图像与x轴围成的三角形的三个顶点分别为A2a−13,0,B(2a+1,0),C(a,a+1),△ABC的面积为2(a+1)2.由题设得23(a+1)2>6,故a>2.所以a的取值范围为(2,+∞).10分。
清华、北大2011-2015年自主招生面试真题汇总2016年自主招生即将来临,考生和家长需要着手准备了。
除了报名申请材料之外,自主招生最重要的环节就是笔试和面试部分。
下面中国自主招生网小编汇总了清华大学、北京大学2011-2015年部分面试题,供报考2016自主招生的考生们参考。
清华大学清华大学2015年自主招生面试部分真题1.假设给你一次穿越的机会,你最希望穿越到什么时候?做什么人?干什么?2.清华大学的校训是什么?你是如何理解的?如果你被清华大学录取,你如何去践行这一校训?3.如果你是班长,如何组织一次关于雷锋精神的班级活动?活动内容,请向班里同学发表一段两分钟的“学雷锋”活动动员演讲。
4.“是休学创业,还是毕业后创业。
”5.要不要休学当老板?清华大学2014年自主招生面试部分真题一、领军计划:1、怎么看待单独二孩政策?2、谈谈对节假日安排的看法,有什么建议?3、怎么看待社会公平?二、自强计划:1、请讲一个你的经历中体现你“自强”的故事。
2、你对自己的大学生活有何规划?将来想从事何种职业?3、你认为自己的家乡至今仍然贫困的原因有哪些?应该如何解决?4、你曾经遇到过的最大困难是什么?你是如何面对和解决的?5、谈谈“如何看待春运一票难求的现象,怎么解决这个问题?6、如何看待社会公平?7、结合考生的申请材料,提出一些与考生自身经历有关的问题,如问考生家乡的特产是什么。
清华大学2013年自主招生面试部分真题【综合面试】分上午与下午两场进行:每场考生都有三道相同的必答题目,面试时间为10分钟左右,三位考官对一位考生。
另根据面试时间的剩余情况,考官也会根据考生的特点增加其他题目。
据考生回忆,必答题有:1.“人类一思考,上帝就发笑。
请在90秒内作答?基于你的评价,你打算在当下、在未来做些什么?”2.请以“我和诺贝尔奖的距离”为题发表一段2 分钟的演讲,可准备1 分钟。
3.近期上海、南京、杭州等地接连出现H7N9型禽流感的感染病例,并且造成数名感染者死亡,世界卫生组织和中国政府都高度关注这一病情,并且采取了积极的救治措施,但是公众依然非常想要知道和这个事件相关的各种信息。
2015年高三数学高校自主招生考试真题分类解析2 复数、平面向量一、选择题。
1.(2009年复旦大学)设实数r>1,如果复平面上的动点z满足|z|=r,则动点w=z+的轨迹是A.焦距为4的椭圆B.焦距为的椭圆C.焦距为2的椭圆D.焦距为的椭圆2.(2009年复旦大学)复平面上点=1+2i关于直线l:|z−2−2i|=|z|的对称点的复数表示是A.−i B.1−i C.1+i D.i3.(2010年复旦大学)在xOy坐标平面上给出定点A(1,2),B(2,3),C(2,1),矩阵将向量, ,分别变换成向量,,,如果它们的终点A',B',C'的连线构成直角三角形,斜边为B'C',则k的取值为A.±2B.2C.0D.0,−24.(2010年复旦大学)设复数z=cos+isin,w=sin+icos满足z,则sin(β−α)= A.± B.,C.±D.,5.(2010年复旦大学)已知复数=1+,z2=+,则复数z1z2的辐角是A. B. C. D.6.(2010年复旦大学)在直角坐标系xOy中,已知点(1,0),(, ),(, ),(−1,0),(, )和(,),问在向量(i,j=1,2,3,4,5,6,i≠j)中,不同向量的个数是A.9B.15C.18D.307.(2011年复旦大学)给定平面向量(1,1),那么,平面向量(, )是将向量(1,1)经过A.顺时针旋转60°所得B.顺时针旋转120°所得C.逆时针旋转60°所得D.逆时针旋转120°所得8.(2011年复旦大学)设有复数=, =+isin ,令ω=,则复数ω+ω2+ω3+…+ω2 011=B. C. D.A.ω9.(2011年复旦大学)将复数z=(sin 75°+isin 15°)3 (其中i=))所对应的向量按顺时针方向旋转15°,则所得向量对应的复数是A.+ iB.+ iC. D.10.(2012年复旦大学)设S是Oxy平面上的一个正n边形,中心在原点O处,顶点依次为,,…,,有一个顶点在正y轴上.又设变换σ是将S绕原点O旋转一个角度使得旋转后的图形与原图形重合,σ−1表示σ的反变换(即旋转角度大小和σ相同但方向相反),变换τ是将S作关于y轴的对称变换(即将(x,y)变为(−x,y)),στ表示先作变换τ再作变换σ,而τσ,τστ,στστ等的含义类推,则有A.τστ=σB.τστ=σ−1C.τσ=στD.τστσ=σσ11.(2011年同济大学等九校联考)i为虚数单位,设复数z满足|z|=1,则||的最大值为A.−1B.2−C.+1D.2+12.(2011年同济大学等九校联考)向量a,b均为非零向量,(a−2b)⊥a,(b−2a)⊥b,则a,b的夹角为A. B. C. D.13.(2010年清华大学等五校联考)设向量a,b满足==1,a•b=m,则(t∈R)的最小值为A.2B.C.1D.14.(2010年清华大学等五校联考)设复数w=()2,其中a为实数,若w的实部为2,则w的虚部为A. B. C. D.15.(2011年清华大学等七校联考)设复数z满足<1且= ,则|z|=A. B. C. D.16.(2012年清华大学等七校联考)向量a≠e,=1,若∀t∈R,≥,则A.a⊥eB.a⊥(a+e)C.e⊥(a+e)D.(a+e)⊥(a−e)17.(2012年清华大学等七校联考)若复数的实部为0,Z是复平面上对应的点,则点Z(x,y)的轨迹是A.一条直线B.一条线段C.一个圆D.一段圆弧二、填空题。
专题之5、概率一、选择题。
1、(2009年华中科技大学)从0,1,2,…,9这十个数码中不放回地随机取n(2≤n≤10)个数码,能排成n位偶数的概率记为Pn,则数列{Pn}A.既是等差数列又是等比数列B.是等比数列但不是等差数列C.是等差数列但不是等比数列D.既不是等差数列也不是等比数列2、(2009年华中科技大学)5张票中有1张奖票,5个人按照排定的顺序从中各抽1张以决定谁得到其中的奖票,且后抽的人不知道先抽的人抽出的结果,则第3个人抽到奖票的概率是A. B. C. D.3、(2009年复旦大学)某种细胞如果不能分裂则死亡,并且一个细胞死亡和分裂为两个细胞的概率都为,现有两个这样的细胞,则两次分裂后还有细胞存活的概率是A. B. C. D.4、(2012年复旦大学)随机任取一个正整数,则它的3次方的个位和十位上的数字都是1的概率是A. B. C. D.二、填空题。
5、(2009年南京大学)有一个1,2,…,9的排列,现将其重新排列,则1和2不在原来位置的概率是.三、解答题。
6、(2010年中南财经政法大学)某市在36位“政协委员”候选人中任选2名,其中来自教育界的候选人共有6人,求:(1)至少有1名来自教育界的人当选的概率是多少?(2)候选人中任何人都有当选的可能性,若选得同性别委员的概率等于,则男女候选人相差几名?(注:男候选人多于女候选人)7、(2011年同济大学等九校联考)一袋中有a个白球和b个黑球,从中任取一个球,如果取出白球,则把它放回袋中;如果取出黑球,则该黑球不再放回,另补一个白球放到袋中.在进行n次这样的操作后,记袋中白球的个数为Xn.(1)求E;(2)设P(=a+k)=,求P(=a+k),k=0,1,…,b;(3)证明:EX n+1=(1)EX n+1.8、(2009年清华大学)12名职工(其中3名为男性)被平均分配到3个部门.(1)试求3名男员工分配到不同部门的概率;(2)试求3名男员工分配到相同部门的概率;(3)试求1名男员工指定到某一部门,另两名不在同部门的概率.9、(2009年清华大学)M为三位的自然数,求:(1)M含因子5的概率;(2)M中恰有两位数码相同的概率.10、(2010年清华大学)12个人玩一个游戏,游戏开始后每个人被随机地戴上红、黄、蓝、绿四种颜色之一的帽子,每个人都可以看到其余11个人帽子的颜色,游戏开始后12个人不能再交流,并被要求猜出自己帽子的颜色,请为这12个人在游戏前商定一个方案,使得他们同时猜对自己帽子的颜色的概率尽可能大.11、(2010年清华大学等五校联考)假定亲本总体中三种基因型式:AA,Aa,aa的比例为u∶2v∶w(u>0,v>0,w>0,u+2v+w=1)且数量充分多,参与交配的亲本是该总体中随机的两个.(1)求子一代的三种基因型式的比例;(2)子二代的三种基因型式的比例与子一代的三种基因型式的比例相同吗?并说明理由.12、(2011年清华大学等七校联考)将一枚均匀的硬币连续抛掷n次,以表示未出现连续三次正面的概率.(1)求、、和;(2)探究数列{}的递推公式,并给出证明(3)讨论数列{}的单调性及其极限,并阐述该极限的概率意义.13、(2012年清华大学等七校联考)系统内有2k−1(k∈N*)个元件,每个元件正常工作的概率为p(0<p<1),各个元件独立工作.若系统有超过一半的元件正常工作,则系统正常工作,系统正常工作的概率称为系统的可靠性.(1)求该系统正常工作的概率;(2)试讨论的单调性,并讨论增加两个元件后,能否提高系统的可靠性.因此两次分裂后还有细胞存活的概率为1−P(E)=.4.D【解析】首先,一个正整数的3次方的个位数是1,则这个正整数的个位数也必须是1.其次可试得1~100中只有71符合要求,而且末两位是71的均符合要求.故选D.5..【解析】2+=57×或+7×7×,∴P=.6.(1) . (2) 6【解析】(1)任意选取2人的选法为,其中2人都不是来自教育界的选法为,因此所求概率为p==.(2)设男候选人为x(x>18)人,则女候选人为36−x人,选出两人都是男性的概率为p 1=,选出两人都是女性的概率为=,+=,∴x2−36x+35×9=0,∴x=21(x>18),p2∴男女相差6人.=a+k)=p k·+p k−1·(k≥1).7.(1) . (2) P(X(3)第n次白球个数的数学期望为EX n,由于白球和黑球的总个数为a+b,则将第n+1次白球个数的数学期望分为两类:第n+1次取出来的是白球,这种情况发生的概率是,此时白球的个数为EX n;第n+1次取出来的是黑球,这种情况发生的概率是,此时白球的个数是EX n+1,数的数学期望分为两类:第n+1次取出来的是白球,这种情况发生的概率是,此时白球的个数为EX n ;第n+1次取出来的是黑球,这种情况发生的概率是,此时白球的个数是EX n +1, 故EX n+1=EX n +·(EX n +1)=+(1)(EX n +1)=+EX n+1=(1)EX n +1. 8.(1(2)(3)【解析】(1)P 1==;(2)P 2==;(3)P3==.9.(1) (2).【解析】(1)当个位数字为0时,有9×10=90个符合题意的三位数;当个位数字为5时,有9×10=90个符合题意的三位数,故M含因子5的概率为=.(2)当M中含有数字0,且0是重复数码时,有9个符合题意的三位数;当M中含有数字0,且0不是重复数码时,有9×=18个符合题意的三位数;当M中不含数字0时,有9×8×3=216个符合题意的三位数,故M中恰有两位数码相同的概率为=.10.12个人同时猜对的概率一定不大于单独一个人猜对的概率,即.【解析】首先将问题数学化,将红、黄、蓝、绿四种颜色分别用数字0、1、2、3代表.策略是每个人将其余11人的帽子的颜色所对应的数字求和,记为S,S除以4的余数设为d,(4−d)对应的颜色即为他所猜的颜色.例如,若12个人都戴黄帽子,每个人看到其余11个人的帽子颜色对应数字和均为11,11除以4余3,4−3=1对应黄色,全都猜对.这样的策略使得同时猜对头上帽子颜色的概率为.当且仅当12个人的帽子颜色所对应数字之和为4的倍数时,12个人能够同时猜对.不然,12个人会同时猜错.这12个人或者同时猜对,或者同时猜错,同时猜对的概率与一个人随机猜测正确的概率相等,为.而多个人猜测时,由于不能由他人的帽子颜色推断出有关自己帽子颜色的信息,因此12个人同时猜对的概率一定不大于单独一个人猜对的概率,即.因此上述方案是最优的.11.(1)AA,Aa,aa的比例为p2∶2pq∶q2.(2) 相同可知子二代的基因型式AA,Aa,aa的比例为α2∶2αβ∶β2,其中α=p2+pq,β=pq+q2.由p+q=1,可得α=p,β=q.故子二代的三种基因型式AA,Aa,aa的比例为p2∶2pq∶q2,与子一代的三种基因型式的比例相同.【解析】(1)参与交配的两个亲本(一个称为父本,一个称为母本)的基因型式的情况,及相应情p 1=u2×1+2uv×+2uv×+4v2×=(u+v)2.由对称性知子一代的基因型式为aa的概率为p3=(v+w)2.子一代的基因型式为Aa的概率为p 2=2uv×+uw×1+2uv×+4v2×+2vw×+uw×1+2vw×=2(uv+uw+v2+vw)=2(u+v)(v+w).若记p=u+v,q=v+w,则p>0,q>0,p+q=1,子一代的三种基因型式AA,Aa,aa的比例为p2∶2pq∶q2.(2)由(1)可知子二代的基因型式AA,Aa,aa的比例为α2∶2αβ∶β2,其中①×②,有p=p n−1p n−4(n≥5).(3)n≥4时,{p n}单调递减.又p1=p2>p3>p4,∴n≥2时,数列{p n}单调递减,且有下界0.∴p的极限存在记为a,对p n=p n−1p n−4两边同时取极限可得a=a a,a=0,故p n=0.其概率意义:当投掷的次数足够多时,不出现连续三次正面的概率非常小.【解析】(1)显然p 1=p2=1,p3=1=;又投掷四次出现连续三次正面的情况只有:正正正正或正正正反或反正正正,故p 4=1=.(2)共分三种情况:1)如果第n次出现反面,那么前n次不出现连续三次正面和前n−1次不出现连续三次正面是相同的,所以这个时候不出现连续三次正面的概率是×p n−1;2)如果第n次出现正面,第n−1次出现反面,那么前n次不出现连续三次正面和前n−2次不出现连续三次正面是相同的,所以这个时候不出现连续三次正面的概率是×p n−2;增加两个元件时,系统可靠性降低;当p>时,P k+1>P k,函数P k单调递增,增加两个元件时,系统可靠性提高.【解析】(1)当系统有2k−1(k∈N*)个元件时,恰有k个元件正常工作的概率为·p k(1−p)k−1,恰有k+1个元件正常工作的概率为·p k+1(1−p)k−2,…,恰有2k−1个元件正常工作的概率为·p2k−1(1−p)0,P k=·p k(1−p)k−1+·p k+1(1−p)k−2+…+·p2k−1(1−p)0。
2015年自主招生试卷(北约)1. 已知等腰直角△PQR 的三个顶点分别在等腰直角△ABC 的三条边上,记△PQR ,△ABC 的面积分别为S △PQR ,S △ABC ,则PQR ABCS S ∆∆的最小值为 .解答:如图5-1所示,图5-1 图5-2(1)当PQR ∆的直角顶点在ABC ∆的斜边上,则,,,P C Q R 四点共圆,180,APR CQR BQR ∠=∠=-∠所以sin sin .APR BQR ∠=∠在,APR BQR ∆∆中分别应用正弦定理得,sin sin sin sin PR AR QR BRA APRB BQR==.又45,A B ∠=∠=故PR QR =,故AR BR =即R 为AB 的中点.过R 作RH AC ⊥于H ,则12PR RH BC ≥=,所以22221()124PQR ABC BC S PR S BC BC ∆∆=≥=,此时PQR ABCS S ∆∆的最大值为14. (2)当PQR ∆的直角顶点在ABC ∆的直角边上,如图5-2所示,设1,(01),(0)2BC CR x x BRQ παα==≤≤∠=<<,则90.CPR PRC BRQ α∠=-∠=∠=在Rt CPR ∆中,,sin sin CR xPR αα== 在BRQ ∆中,31,,sin 4x BR x RQ PR RQB QRB B ππαα=-==∠=-∠-∠=+, AB P H由正弦定理, 1sin 3sin sin sin sin()44xPQ RB xB PQB αππα-=⇔=⇔∠+1sin cos 2sin x ααα=+,因此2221111()()22sin 2cos 2sin PQR x S PR ααα∆===+.这样,PQR ABCS S ∆∆2222111()cos 2sin (12)(cos sin )5αααα=≥=+++,当且仅当arctan 2α=取等号,此时PQR ABCS S ∆∆的最小值为15.2. 若集合{}2015*(,)(1)(2)()10,,A m n m m m n m Z n N =++++++=∈∈,则集合A中的元素个数为 . 解答:由已知得20162015(21)25n n m ++=,因为,21n n m ++一奇一偶,所以,21n n m ++两者之一为偶数,即为2016201620162201620152,25,25,,25共有2016种情况,交换顺序又得到2016种情形,所以集合A 共有4032个元素. 3.若数列{}n a 的前n 项和nS =32n n -,*n N ∈,则20151182i i a i =+-∑= .答案:20156048. 解答:1211352,nn n i i i i a a a n n -===-=-+∑∑又10a =,故2*352()n a n n n N =-+∈, 20152015201511111111()823(1)31i i i i a i i i i i =====-=+-++∑∑∑20156048. 4.若22sin cos 161610xx +=,则cos4x = .答案:12-. 解答:设2sin 16,116xt t =≤≤,则22cos 1sin 161616x x t-==,代入方程得16102,t t t +=⇒=或8t =,即21sin 4x =或34,所以cos4x =12-。
专题之4、创新与综合题一、选择题。
1、(2011年复旦大学)设正整数n可以等于4个不同的正整数的倒数之和,则这样的n的个数是A.1B.2C.3D.42、(2011年同济大学等九校联考)设σ是坐标平面按顺时针方向绕原点做角度为的旋转,τ表示坐标平面关于y轴的镜面反射,用τσ表示变换的复合,先做τ,再做σ,用σk表示连续做k 次σ的变换,则στσ2τσ3τσ4是A.σ4B.σ5C.σ2τD.τσ2二、解答题。
3、(2009年南京大学)求所有满足tan A+tan B+ta n C≤[tan A]+[tan B]+[tan C]的非直角三角形.4、(2010年浙江大学)如图,一条公路两边有六个村庄,要建一个车站,要求到六个村庄的距离之和最小,应该建在哪里最合适?如果再在边上增加一个村庄呢?5、(2009年清华大学)A、B两人玩一个游戏,A选择n枚硬币,B根据自己的策略将这些硬币全部摆放在位点上,之后A选取一个至少有2枚硬币的位点,取走一枚硬币,再将另一枚硬币移动到相邻位点,A若在有限步内根据规则在指定点P处放上一个硬币则获胜.问在一条有5个位点的线段和7个位点的圆环上,A分别至少选择多少枚硬币时,无论点P的位置如何均可保证获胜?6、(2009年清华大学)有64匹马,每匹马的速度保持不变且各不相同,现通过比赛来完成排名,若每场比赛最多只能有8匹马参赛,问理想状态下能否在50场比赛内完成排名?7、(2009年清华大学)有100个集装箱,每个集装箱装有两件货物.在取出来的过程中货物的顺序被打乱了,现在按一定的规则将货物依次放入集装箱中.集装箱的体积都是1,且每个集装箱最多放两件货物,若装了一件货物后装不下第二件货物,那么就将这个集装箱密封,把第二件货物装到下一个集装箱中.问在最坏情况下需要多少个集装箱?8、(2009年清华大学)请写出一个整系数多项式f(x),使得+是其一根.9、(2010年清华大学)将长为n的棒锯开,要求锯成的每段长都是整数,且任意时刻,锯成的所有棒中最长的一根严格小于最短的一根的2倍,如6只能锯一次,6=3+3,而7能锯2次,7=4+3,4又能锯为2+2,问长为30的棒最多能锯成几段?若a,b,c中没有1,则a≥2,b≥2,c≥2,a+b+c=abc化为++=1,而1=++≤++=,显然不成立.∴三角形三内角的正切值分别为1,2,3.即满足三内角的正切值分别为1,2,3的三角形,即为所求.【解析】无4.1.首先设六个村庄到达公路的距离之和为S0,车站P到六个村庄的距离之和为S,下面我们根据车站所建的位置来讨论它到六个村庄的距离之和.(1)建在A、B之间(包括端点A),则S=AP+2PB+PC+PD+PE+S0=AE+BC+BD+S0+4PB.(2)建在B、C之间(包括两端点B、C),则S=PA+2PB+PC+PD+PE+S0=AE+BC+BD+S0.(3)建在C、D之间(包括端点D),则S=PA+2PB+PC+PD+PE+S0=AE+BC+BD+S0+2PC.(4)建在D、E之间(包括端点E),则S=PA+2PB+PC+PD+PE+S0=AE+BC+BD+S0+2PC+2PD.(5)建在A的左侧或E的右侧,则S均比情况(2)中的大.综合以上各种情况,我们可以发现:当车站建在B、C之间(包括端点B、C)时最合适.币.于是由结论①可知A可获胜.③对于4个位点线段的情况,A只要选择8枚硬币,不妨设点P为P1,P2,P3三点中的一点,并设点P 4处有硬币S枚,则点P4处的硬币尽可能移到点P3处后,点P1,P2与P3处共有:8−S+[]≥4②左半环内有7枚硬币.a.若这7枚硬币全在点P7处,则看右半环内的4枚硬币,若点P1处有2枚,则将其移动到点P7处后,点P7处就有8枚硬币,就能保证通过左半环的通路移动硬币,最终让点P处有硬币;若点P1处仅有1枚或没有硬币,则可将点P7处的硬币移动3枚到点P1处,再将点P1处的硬币移动到点P2处后,点P2与点P3处的硬币就不少于4枚.这样,通过右半环的通路,最终可将至少1枚硬币移动到点P4处.b.若这7枚硬币不全在点P7处,则将点P7处的硬币移到点P6处后,在点P5与点P6两处的硬币就不少于4枚.于是通过左半环的通路,最终也可保证有硬币移动到点P4处.③左半环有6枚硬币,则右半环就有5枚硬币.a.左半环内的6枚硬币全在点P7处,将它们移动到点P1处后,右半环内就有了8枚硬币,则通过右半环的通路,可最终保证至少移动1枚硬币到点P4处.b.左半环内的6枚硬币,点P7处有5枚,则再看点P1处,若点P1处的硬币数不足2枚,则在点P2与点P3处就有4枚硬币,则从右半环的通路,就能移动硬币到点P4;若点P1处的硬币数有2枚或2枚以上,则至少可从点P1处移动1枚硬币到点P7处.这样,点P7处就有6枚硬币,于是可移3枚到点P6处.这样点P5与点P6处就有4枚硬币,通过左半环可移动硬币到点P4处.c.左半环内的6枚硬币,点P7处有4枚或不足4枚,则在点P6与点P5处就有2枚或2枚以上,则将点P7处的硬币移动到点P6处以后,在点P6与点P5处的硬币数就不少于4枚,于是通过左半环可移动硬币到点P4处.④若左半环内的硬币数不足6枚,则右半环内的硬币就在6枚或6枚以上,则对右半环内硬币的分布情况进行相同的讨论,亦可发现必可将硬币移动到点P4处.各自的前4名,共8匹马进行一场比赛.这8匹马中的前4名,就是A组与B组32匹马中的前4名;接下来,又在A组与B组中分别扣除32匹马中的前4名后,再分别按照A组与B组中的排名,再各取4匹马,这8匹马进行一场比赛,它们中的前4名,就是A组与B组32匹马中的第5名到第8名;重复上述过程,又可分别确定第9名到第12名;……;最后留下的8匹马,只需进行一场比赛,就能确定第25名到第32名的排名.这样进行了7场比赛,就将A组与B组中的32匹马进行了排名.同理进行7场比赛,又可将C组与D组中的32匹马进行排名.这样第三步共进行14场比赛.第四步:要来完成AB组的32匹马与CD组的32匹马(它们各自内部的排名已经完成)共计64匹马的排名.采用第三步中的方法,每次分别选择AB组与CD组中留下的前4名进行一场比赛,都能确定其中4匹马在总体中的排名,这样14场比赛后,就确定了前56匹马的排名,最后留下的8匹马,只需进行一场比赛,就确定了第57名到第64名的排名.因此,只需15场比赛就能完成这两大组64匹马的排名.综观以上四个步骤,一共进行:8+12+14+15=49(场).所以,可以在50场比赛内完成排名.【解析】无7.由题意知共有200件货物.设a1≤a2≤…≤a99≤a100,b1≥b2≥…≥b99≥b100,令a i+b i=1,a i≥b i,则将它们按如下顺序排列:a1,a2,b1,a3,b2,a4,b3,…,a99,b98,a100,b99,b100,则a 1+a2>1,a2+b1>1,b1+a3>1,…,a100+b99>1,+<1,a1到a100,b1到b98各在一个箱中,b99,b100在一个箱子中,则在最坏情况下需要199个箱子.换个角度考虑,无论200件货物如何排列,体积最小的货物总能与它前面的或后面的货物合装进一个集装箱的,故有199个集装箱就一定能将200件货物全部装下.【解析】无8.设x=+,则(x)3=3,即x3−3x2·+3x·2−2=3,∴x3+6x−3=(3x2+2)·,∴(x3+6x−3)2=2·(3x2+2)2,整理得:x6−6x4−6x3+12x2−36x+1=0,则f(x)=x6−6x4−6x3+12x2−36x+1即为所求的一个整系数多项式.【解析】无9.首先,由题意可知:当我们锯了若干次之后,产生若干根棒,它们中有长度相等与仅差一个单位的棒(例如:7,8,9;6,6,7;5,5,6,6等),这些棒除了2k−2,2k−1,2k与2k−1,2k−1,2k这两种情况,其他无论锯开哪一根,均不能符合最长的一根严格小于最短一根的2倍,有了这样的认识,我们就可以用枚举法来解本题了.(1)30=11+19=11+7+12=11+7+6+6=5+6+7+6+6,。
、选择题2( )(A)充分不必要(B)必要不充分(C)充要(D)3.设A、B是抛物线y=x2上两点,0是坐标原点,若OAL 0B,则()(A)|OA| •|OB| > 2 (B)|OA|+|OB| (C)直线AB过抛物线y=x2的焦点(D)O至煩线AB的距离小于等于X yf (x) >0,x € (-1,0);② f (X) + f (y) = f ( ) , X、y €1 xy(-1,1),则f (x)为(A)奇函数(B)偶函数(C)减函数(D)有界函数5. 如图,已知直线y=kx+m与曲线y=f(x)相切于两点,则F(x)= f (x) - kx有(/ C=—,且sinC+sin(B - A) -2sin2A=0,则有(3(A)b=2 a (B) △ ABC的周长为2+2-. 3 (C) △ ABC的面积为一空(D) △ ABC的外接圆半径为37.设函数f(x) (x23)e x,则( )(A) f (x)有极小值,但无最小值(B) f (x)有极大值,但无最大值(C)若方程f (x) =b恰有一个实根,则b>-6| (D)若方程f (x) =b恰有三个不同实根,则0<b<£e e1.设复数z=cos -3+isin (A)0 (B)1 (C) 2 冲13 ,则仁(D)3211 z22.设数列{aj为等差数列, p,q,k, l为正整数,则p+q>k+l ”是“ a p aqa k a l ”的()条件既不充分也不必要4.设函数f(x)的定义域为(-1,1),且满足:①个极小值点(D)3个极小值点8.已知 A={(x,y) 1 x 22 2y r },B={(x,y)1 (x2 2 2a) (y b) r ,已知 A n B={(x 1,yJ ,( X 2,y 2)},则()(A)0< a 2 b 2 <2r 2(B)aXX 2) b(y1 y 2) 0(C)X 1 X 2 = a , y 1y 2=b (D)2a b 2 = 2ax 1 2by 19.已知非负实数x,y,z满足4x 24y 22z +2z=3, 则5x+4y+3z 的最小值为()(A)1 (B)2 (C)3 (D)410.设数列{ a n }的前n 项和为S n ,若对任意正整数n ,总存在正整数 m,使得S n =a m ,则( )(A ){ a n }可能为等差数列(B ){ a n }可能为等比数列(c ){a n }的任意一项均可写成{a n }的两项之差(D)对任意正整数n ,总存在正整数 m 使得a n = S m 11.运动会上,有6名选手参加100米比赛,观众甲猜测:4道或5道的选手得第一名;观众乙猜测: 3道的选手不可能得第一名;观众丙猜测:1,2,6道选手中的一位获得第一名;观众丁猜测:4,5,6道的选手都不可能获得第一名•比赛后发现没有并列名次,且甲、乙、丙、丁中只有 1人猜对比赛结果,此人是( )(A)甲(B)乙(C)丙(D) 丁1(A)若S=4,则k 的值唯一(B) 若S=^,贝U k 的值有2个22(C)若D 为三角形,则0<k <(D)若D 为五边形,则312.长方体 ABCDAEGD 中,AB=2, AD=A A 1=1,贝U A 到平面 A BD 的距离为((A) - (B)3(D)13.设不等式组|x| |y| 2 y 2 k(x 1)所表示的区域为 D,其面积为S,U(k>414. △ ABC 勺三边长是 2,3,4,其外心为 0,则 uuu uuu OA AB uuu uuu uuur uuu OB BC 0C CA =((A)0 (B)-15 (C) -21(D)229 215. 设随机事件 A 与B 互相独立,且 P(B)=0.5(A)P(A)=0.4 (B)P(B -A)=0.3 (C)P(AB)=0.2 (D)P(A+B)=0.916. 过厶ABC 的重心作直线将厶 3(A)最小值为一(B)最小值为417. 从正15边形的顶点中选出,P(A- B)=0.2,则(ABC 分成两部分,则这两部分的面积之比的(4 4(C)最大值为一533个构成钝角三角形,5(D 最大值为一4则不同的选法有((A)105 种(B)225 种(C)315 种(D)420 种18. 已知存在实数r,使得圆周x2y2 r2上恰好有n个整点,则n可以等于(22.在极坐标系中,下列方程表示的图形是椭圆的有(4 2 1 V2(A)最小值为一(B)最小值为一 (C)最大值为1 (D)最大值为--------------------5 5 3(A)4 (B)6 (C)8 (D)1219. 设复数z 满足2|z| w |z-1|,则(1(A)|z|的最大值为1 (B)|z| 的最小值为—(C)z321的虚部的最大值为2(D)z 的实部的最大值为13320.设 m,n 是大于零的实数, a =(mcos a ,msin a ),b =(ncos 3 ,nsin 3 ),其中 a , B€ [0,2 n ) a , B€r 1, _[0,2 n ) •定义向量 a 2 =( 、、. m cos — ,、. m sin 一 ), b 2=(、. n 2cos — 2 ,、齐 sin —),记 9 = a - 3,贝U2r [ r 1 r r 1 r 1 ___ (A) a 2 • a 2 = a (B) a 2 b 2=、.mn cos — (C) 2r] r] … |a 2 b 2|4、一 mn sin 2 —4r 1 r] 2 _ 2 (D) |a 2 b 2 |24, mncos 2 —421.设数列{ a n }满足:a 1=6, an 1,则((A) ? n € N?, a n <(n 1)3 (B) ? n € N?, a n 丰 2015 (C) ? n € N?, a n 为完全平方数(D)? n € N?, a n 为完全立方数1 (A )p=cos sin23. 设函数 f(x)s in x,则( x x 14(A ) f(x) w (B)| f (x) | w 5|x| (C)曲线 y= f (x)存在对称轴324. △ ABC 的三边分别为a ,b,c ,若△ ABC 为锐角三角形,则((B )p=—1(C ) 2 sin1p= —2 cos(D )(D) 1 1 2si n曲线y= f (x)存在对称中心(A)si nA>cosB (B)ta nA>cotB (C) a 2 b 2 c 2 (D) a 3 b 3 c 325.设函数f (x)的定义域是(-1,1), 若f(0) = f (0) =1,则存在实数 s€ (0,1),使得()(A) f (x) >0, x € (- S , S) (B)f (x)在(-S , S )上单调递增 (C) f (x) >1, x € (0, S) (D)f (x)>1 , x € (- S ,0)26.在直角坐标系中,已知A(-1,0),B(1,0) •若对于y 轴上的任意n 个不同的点 P k (k=1,2,…,n),总存在两个不同的点R ,P j ,1使得 |sin / A P j B-sin / A P j B| w —,贝V n 的最小值为( 3(A)3 (B)4(C)5 (D)627.设非负实数x,y 满足2x+y=1,则 x+ x 2 y 2 的()128.对于50个黑球和49个白球的任意排列(从左到右排成一行),则((A)存在一个黑球,它右侧的白球和黑球一样多(B)存在一个白球,它右侧的白球和黑球一样多(C)存在一个黑球,它右侧的白球比黑球少一个 (D)存在一个白球,它右侧的白球比黑球少一个 29.从1,2,3,4,5 中挑出三个不同数字组成五位数, 同的五位数有( (A)300 个(B)450其中有两个数字各用两次,例如 12231,则能得到的不 30.设曲线L 的方程为 (A)L 是轴对称图形 (C)L ? {(x,y) I ##A nswer##1.【解析】 丄1-z) 个(C)900 y 4 (2x 2(B)L 个(D)1800 个 2 4 2 2)y (x 2x ) =0,则(是中心对称图形 1 (D)L ? {(x,y)zz 1 zz_______ 1 - 2. 21-cos i sin332 cos 3..2 i sin ___ 3 2 2i sin32sin 2 i 2sin cos —3 3 3 cos0 isinO 2sin — [cos( —) i sin(-)i sin(3、、3(cos —2-洽 2os(cos( i sin ) 27) i sin(67)]丄(cos — isi n —.3 6 6△ )=1,选 B22.【简解】 a p (a k Q )=[(p+q)-(k+l)]d ,与公差 d 的符号有关,选 3.【解析】设A( 2X 1,X 1 ),B( 2 uuu uuu X 2,X 2 ), OA OB =X 1X 2(1 X 1X 2) =0 X 2 X1 答案(A), |0A| l OBI ^x^(1 好)4(1 —1^) = j1 X2 1 2 X 11 > /2 2|X 1 | 丄=2,正确; |X 1 | 答案(B),|OA|+|OB| > 2..|OA 「|OB| > 2 .2,正确;答案(C),直线 AB 的斜率为 2 22^=X 2 x 2 x 1X1程为 y- xj =( x 1 1)(x-x 1),焦点(0, 1)不满足方程,错误;答案(D),原点到直线AB :(4X11)x-y+ 仁X 1的距离d=w 1,正确。
数学自主招生训练题(2)1.设直线l 与抛物线24y x =相交于A ,B 两点,与圆()()22250x y r r -+=>相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是( ) (A )()13, (B )()14, (C )()23, (D )()24,2.已知菱形ABCD 的边长为2,120BAD,点,E F 分别在边,BC DC 上,BEBC ,DFDC .若1AE AF,23CE CF,则( )(A )12 (B )23 (C )56 (D )7123.已知定义在R 上的函数()21x mf x -=- (m 为实数)为偶函数,记()()0.52(log 3),log 5,2a f b f c f m === ,则,,a b c 的大小关系为(A )a b c << (B )a c b << (C )c a b << (D )c b a <<4.已知函数()()22,2,2,2,x x f x x x ⎧-≤⎪=⎨->⎪⎩ 函数()()2g x b f x =-- ,其中b R ∈ ,若函数()()y f x g x =- 恰有4个零点,则b 的取值范围是(A )7,4⎛⎫+∞⎪⎝⎭ (B )7,4⎛⎫-∞ ⎪⎝⎭ (C )70,4⎛⎫ ⎪⎝⎭ (D )7,24⎛⎫ ⎪⎝⎭5.已知某批零件的长度误差(单位:毫米)服从正态分布N (0,32),从中随机抽取一件,其长度误差落在区间(3,6)内的概率为( )(附:若随机变量ξ服从正态分布N (μ,σ2),则P (μ﹣σ<ξ<μ+σ)=68.26%,P (μ﹣2σ<ξ<μ+2σ)=95.44%) A . 4.56% B . 13.59% C . 27.18% D . 31.74%6.一条光线从点(﹣2,﹣3)射出,经y 轴反射后与圆(x+3)2+(y ﹣2)2=1相切,则反射光线所在直线的斜率为( ) A . ﹣或﹣ B . ﹣或﹣ C . ﹣或﹣ D .﹣或﹣ 7.设函数f (x )=,则满足f (f (a ))=2f (a )的a 的取值范围是( )A .[,1]B . [0,1]C .[,+∞)D . [1,+∞)8.已知0b 0,a >>,椭圆1C 的方程为1x 2222=+b y a ,双曲线2C 的方程为1x 2222=-by a ,1C 与2C 的离心率之积为23,则2C 的渐近线方程为 (A ) 02x =±y (B )02=±y x (C )02y x =±(D )0y 2x =± 9.若实数x ,y 满足x 2+y 2≤1,则|2x+y ﹣2|+|6﹣x ﹣3y|的最小值是 .10.某食品的保鲜时间y (单位:小时)与储存温度x (单位:C )满足函数关系bkx ey +=( 718.2=e 为自然对数的底数,k 、b 为常数)。
2015年清华大学自主招生试题注所有选择题均为不定项选择题.1、已知非负实数\(x,y,z\)满足\(4x^2+4y^2+z^2+2z=3\),求\(5x+4y+3z\)的最大值.2、已知\(x^2+y^2\leqslant 1\),求\(\left|x^2+2xy-y^2\right|\)的最大值.3、如图所示,已知函数\(f(x)\)与直线\(y=kx+m\)有两个切点,则\(g(x)=kx-f(x)\)有()A.\(3\)个极大值点B.\(2\)个极小值点C.\(2\)个极大值点D.\(4\)个极小值点4、已知\(x,y,z\in\mathcal Z\),且\(xy+yz+zx=1\),则\(\left(1+x^2\right)\left(1+y^2\right)\left(1+z^2\right)\)的值可能是()A.\(16900\)B.\(17900\)C.\(18900\)D.以上都不对5、一个以\(O\)为圆心的圆上的整数格点(横纵坐标都是整数)的点的个数可能是()A.\(4\)B.\(6\)C.\(8\)D.\(12\)6、已知\(2x+y=1\),求\(x+\sqrt{x^2+y^2}\)的最值.7、\(50\)个黑球和\(49\)个白球排成一排,则()A.必有一个黑球右侧白球的数量等于黑球的数量B.必有一个白球右侧白球的数量等于黑球的数量C.必有一个黑球右侧黑球的数量比白球的数量多\(1\)D.必有一个白球右侧黑球的数量比白球的数量多\(1\)8、已知\(P=\left\{(x,y)\left|x^2+y^2=r^2\right.\right\}\),\(Q=\left\{(x,y)\left|(x-a)^2+(y-b)^2=r^2\right.\right\}\),已知\(P\capQ=\left\{(x_1,y_1),(x_2,y_2)\right\}\),则()A.\(a(x_1-x_2)+b(y_1-y_2)=0\)B.\(2ax_1+2by_1=a^2+b^2\)C.\(0<a^2+b^2<2r^2\)D.\(x_1+x_2=a\),\(y_1+y_2=b\)9、一个正十五边形,任取其三个顶点构成三角形,可构成多少个钝角三角形?10、已知\(\overrightarrow{a}=\left(m\cos\theta_1,m\sin\theta_1\right)\),\(\overrightarrow{b}=\left(m\cos\theta_2,m\cos\theta_2\right)\),定义\(\overrightarrow{a}^{\frac 12}=\left(\sqrt m\cos\dfrac{\theta_1}{2},\sqrt m\sin\dfrac{\theta_1}{2}\right)\),\(\overrightarrow{b}^{\frac12}=\left(\sqrt m\cos\dfrac{\theta_2}{2},\sqrtm\sin\dfrac{\theta_2}{2}\right)\),则()A.\(\left|\overrightarrow{a}^{\frac 12}\cdot \overrightarrow{b}^{\frac 12}\right|\)B.\(\left|\overrightarrow{a}^{\frac 12}+\overrightarrow{b}^{\frac12}\right|\geqslant 4\sqrt{mn}\cos^2\dfrac{\theta}{2}\)C.\(\left|\overrightarrow{a}^{\frac 12}-\overrightarrow{b}^{\frac12}\right|\geqslant 4\sqrt{mn}\sin^2\dfrac{\theta}{2}\)D.11、一个抛物线\(y^2=2px\)上有两个点\(A\)、\(B\),则()A.\(AB\)过抛物线焦点B.\(OA\cdot OB\leqslant ?\)C.\(OA^2+OB^2\leqslant ?\)D.\(O\)到\(AB\)的距离小于\(1\)12、点集\(A=\left\{(x,y)\left|\dfrac{\sin\pi x}{x^2-x+1}=y\right.\right\}\),则()A.曲线有对称轴B.\(A\subseteq \left\{(x,y)\left|-\dfrac 12\leqslant y\leqslant \dfrac12\right.\right\}\)C.曲线有对称中心。
平面几何一、考试要求:平面几何是自主招生考试中北约、华约、卓越共同考查的内容,主要考查平 面图形中三边角关系以及长度、角度、面积的计算;考查学生逻辑思维能力,推理认证 能力及计算能力.二、知识准备:定理:梅涅劳斯定理:设△ABC 的三边BC 、CA 、AB 或他们的延长线与一条不经过其 顶点的直线交于P 、Q 、R 三点,则1=∙∙RBAR QA CQ PC BP . 梅涅劳斯逆定理:设P 、Q 、R 分别是△ABC 的三边BC 、CA 、AB 或他们的延 长线上三点,若有1=∙∙RBAR QA CQ PC BP ,则P 、Q 、R 三点在同一条直线上. 三、题型训练:类型一:凸多边形有关的计算或证明例1:(2012北约)求证:若圆内接五边形的两个角都相等,则它为正五边形.例2:(2008北约)求证:边长为1的正五边形对角线长为215+.例4:(2013北约)如果锐角△ABC 的外接圆圆心为O ,求O 到三角形三边距离比.例5:(2009北大)圆内接四边形ABCD 中,AB=1,BC=2,CD=3,DA=4.求圆的半径.例6:(2011北约)在△ABC 中,若c b a 2≥+,证明60≤∠c .其中∠A,∠B,∠C 的对 边 分别为c b a ,,. 例7:(2009中国科技大)如图:已知D ,E ,F 分别为BC ,AC ,AB 的三等分点.且EC = 2AE ,BD =2CD ,AF =2BF ,若1=∆ABC S ,试求PQR S ∆.例8:(2011华约)如图,已知△ABC 的面积为2,D ,E 分别为边AB ,AC 上的点, F 为线段DE 上一点,设z DEDF y AC AE x AB AD ===,,,且1=-+x z y .则△BD 下面 积的最大值为( )A.278 B. 2710 C. 2714 D. 2716例9:(2010五校)如图,△ABC 的两条交线AD ,BE 交于H ,其外接圆圆心为O ,过O OF 垂直BC 于F ,OH 与AF 相交于G ,则△OFG 与△GAH 面积之比为( )A. 1:4B. 1:3C. 2:5D. 1:2例10:(2011北大保送)在△ABC 内有一点P ,满足PCA PAC PAB PBC ∠=∠=∠=∠. 求证:△ABC 的三边边长成等比数列.例11:(2009南京大学)P 为△ABC 内一点,它到三边BC ,CA ,AB 的距离分别为321,,d d d ,S 为△ABC 的面积.求证:sc b ad c d b d a 2)(2321++≥++(这里c b a ,,分别表示BC , CA ,AB 的长).例14:(2007克罗地亚国家采训队)已知:S 为△ABC 内一点,证明:当S 到△ABC 三边 距离的积取最大值时,S 为△ABC 的重心.例15:在锐角△ABC 中,111,,C B A 分别为BC ,CA ,AB 的中点,O 为△ABC 外接圆的圆 心,若外接圆半径为1,证明:6111111≥++OC OB OA .。
绝密★启用前
清华大学2015年自主招生考试
数学试题
一、选择题
1.设复数z=cos 23π+isin 23
π,则2
111-1z z +-=( ) (A)0 (B)1 (C)12 (D)32 2.设数列{}n a 为等差数列,p,q,k,l 为正整数,则“p+q>k+l ”是“p q k l a a a a +>+”的( )条件
(A)充分不必要 (B)必要不充分 (C)充要 (D)既不充分也不必要
3.设A 、B 是抛物线y=2
x 上两点,O 是坐标原点,若OA ⊥OB,则( )
(A)|OA|·|OB|≥2 (B)|OA|+|OB|≥
(C)直线AB 过抛物线y=2
x 的焦点 (D)O 到直线AB 的距离小于等于1 4.设函数()f x 的定义域为(-1,1),且满足:①()f x >0,x ∈(-1,0);②
()f x +()f y =()1x y f xy
++,x 、y ∈(-1,1),则()f x 为 (A)奇函数 (B)偶函数 (C)减函数 (D)有界函数
5.如图,已知直线y=kx+m 与曲线y=f (x)相切于两点,则F(x)=f (x)−kx 有( )
(A)2个极大值点 (B)3个极大值点 (C)2个极小值点 (D)3个极小值点
6.△ABC 的三边分别为a 、b 、c .若c=2,∠C=3
π,且sinC+sin(B −A)−2sin2A=0,则有( )
(A)b=2a (B)△ABC 的周长为 (C)△ABC (D)△ABC 的外接圆半径为
7.设函数2()(3)x f x x e =-,则( )
(A)()f x 有极小值,但无最小值 (B) ()f x 有极大值,但无最大值
(C)若方程()f x =b 恰有一个实根,则b>
36e (D)若方程()f x =b 恰有三个不同实根,则0<b<3
6e 8.已知A={(x,y)∣222x y r +=},B={(x,y)∣222()()x a y b r -+-=,已知
A∩B={(11,x y ),(22,x y )},则( )
(A)0<22a b +<22r (B)1212()(y )0a x x b y -+-=
(C)12x x +=a ,12y y +=b (D)22a b +=1122ax by +
9.已知非负实数x,y,z 满足22244x y z +++2z=3,则5x+4y+3z 的最小值为( )
(A)1 (B)2 (C)3 (D)4
10.设数列{n a }的前n 项和为n S ,若对任意正整数n,总存在正整数m,使得n S =m a ,则( )
(A ){n a }可能为等差数列 (B ){n a }可能为等比数列
(C ){n a }的任意一项均可写成{n a }的两项之差(D)对任意正整数n,总存在正整数m,使得n a =m S
11.运动会上,有6名选手参加100米比赛,观众甲猜测:4道或5道的选手得第一名;观众乙猜测:3道的选手不可能得第一名;观众丙猜测:1,2,6道选手中的一位获得第一名;观众丁猜测:4,5,6道的选手都不可能获得第一名.比赛后发现没有并列名次,且甲、乙、丙、丁中只有1人猜对比赛结果,此人是( )
(A)甲 (B)乙 (C)丙 (D)丁
12.长方体ABCD −1111A B C D 中,AB=2,AD=A 1A =1,则A 到平面1A BD 的距离为( )。