【配套K12】北师大版七年级数学上册第二章知识点整理
- 格式:doc
- 大小:15.50 KB
- 文档页数:5
北师大版初一上册第二章有理数运算的基本概念及运用知识点总结
本文档旨在总结北师大版初一上册第二章有理数运算的基本概念及运用知识点。
以下是总结的主要内容:
1. 有理数的概念
有理数是指可以表示为两个整数的比例的数,包括正有理数、负有理数和零。
2. 有理数的运算
2.1 有理数的加法和减法
有理数的加法和减法遵循以下规则:
- 同号相加减,取绝对值相加减,结果的符号与原来相同。
- 异号相加减,取绝对值相减,结果的符号由绝对值较大的数决定。
2.2 有理数的乘法和除法
有理数的乘法和除法遵循以下规则:
- 同号相乘除,结果为正数。
- 异号相乘除,结果为负数。
3. 分数的概念
分数是指一个整数除以一个非零的整数得到的数,可以表示为a/b的形式,其中a称为分子,b称为分母。
4. 分数的运算
4.1 分数的加法和减法
分数的加法和减法遵循以下规则:
- 先通分,然后对分子进行加减操作,分母保持不变。
4.2 分数的乘法和除法
分数的乘法和除法遵循以下规则:
- 分子相乘除,分母相乘除,得到的结果即为最简分数。
5. 实际问题中的有理数运用
有理数运算在实际问题中的应用非常广泛,例如在温度计中的正负温度表示、人口的正负增长等。
以上就是北师大版初一上册第二章有理数运算的基本概念及运用知识点的总结。
---
注意:本文档的内容仅供参考,具体的教材内容以教材为准。
《有理数的减法》知识点解读知识点有理数的减法运算(难点)★有理数减法法则:减去一个数等于加上这个数的相反数,即().a b a b-=+-★有理数减法运算的步骤:(1)减法运算变加法运算;(2)运用加法法则进行计算,掌握有理数减法的关键是正确地将减法转变为加法,再按有理数的加法法则运算。
注意:①在运用减法法则时,注意两个符号的变化,一是运算符号,减号变为加号,二是性质符号,减数变成它的相反数;②减法法则不能与加法法则的异号两数相加混淆;③有理数的减法中,被减数与减数不能互换,即减法没有交换律。
典例剖析【例1】计算下列各题:(1)-(17)-(+14);(2)(+32)-(-78);(3)(-114)-14;(4)0-(-5.2).解析:这是有理数的减法,根据有理数的减法法则,先将减法变为加法,再运用有理数加法法则进行计算.答案:(1)-(17)-(+14)=(-17)+(-14)=-31;(2)(+32)-(-78)=(+32)+(+78)=110;(3)(-114)-14=-114+(-14)=-112;(4)0-(-5.2)=0+5.2=5。
2.错因分析:减法转化加法时,减号与后面的减数的性质符号要同时改变,如0-(-5。
2),初学时容易出现0-(-5。
2)=0-5.2的错误。
【类型突破】计算:(1)(-32)-(-12)-5-(-15);(2)2151()()()().3263--+---- 答案:原式=(-32)+(+12)+(-5)+(+15)=[(-32)+(-5)]+[ (+12)+(+15)]=(-37)+(+27)= -10;(2)原式=2151()+()()()32632151[()+()][()()]32632151()()3263770.66--++++=--++++=-+++=-+= 尊敬的读者:本文由我和我的同事在百忙中收集整编出来,本文稿在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。
北师大版七年级数学上册第二章知识点整理北师大版七年级数学上册第二章知识点整理七年级上册第二章有理数及其运算1.有理数:有理数=整数+分数(包括有限小数+无限循环小数)整数=正整数+0+负整数分数=正分数+负分数有理数=正有理数+0+负有理数正有理数=正整数+正分数负有理数=负整数+负分数l 正数的概念:数轴上0右边的数即比0大的数叫正数,形如+1,+0.5,+10.1,0.001…l 负数的概念:数轴上0左边的数,形如-3,-0.2,-100…(负号不能省略). l 0既不是正数也不是负数,0是整数也是偶数.① 正负数的表示方法:盈利,亏损;足球比赛胜,负;收入,支出;提高,降低;上升,下降;② 不投入不支出,不盈也不亏,海平面的海拔,某一个标准或基准….用0表示;2.数轴:概念:规定了原点,正方向和单位长度的直线数轴是一条可以向两端无限延伸的直线,数轴有三要素:原点,正方向,单位长度;画法:首先画一条直线;在这条直线上任取一点,作为原点;再确定正方向,一般规定向右为正,画上箭头,反方向为负方向;最后选取适应的长度作为单位长度;数轴上的点与有理数的关系:任意一个有理数都可以用数轴上的点来表示。
有理数的大小比较:在数轴上表示的两个数,右边的数比左边的数大,正数都大于0,负数都小于0,正数大于负数.3. 相反数:(1)只有符号不同的两个数叫做互为相反数(在数轴上互为相反数的两点位于原点两侧,并且到原点的距离相等),0的相反数是0;a,b互为相反数 a+b=0;(2)求一个数的相反数,只要在它的前面添上负号“-”即得原数的相反数,当原数是多个数的和差时,要用括号括起来再添“-”;下面的a,b即可以是数字,字母,也可以是代数式;(3)一般地,数a的相反数是-a,这里的a表示任意一个数,可以是正数、负数、0.4. 绝对值:(1)几何定义:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值;(2)代数定义:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0;互为相反数的两个数的绝对值相等.(3)对于任何有理数a,都有a的绝对值≥0 ,即绝对值非负性;若几个数的绝对值的和等于0,则这几个数同时为0;(4)比较两个负数,绝对值大的反而小;5.倒数:(1)乘积为1的两个数互为倒数,所以数a(a≠0) 的倒数是 1/a,0没有倒数;(2)求一个整数的倒数,写成这个整数分之一;求一个小数的倒数,先将其化成分数,再求其倒数;求一个带分数的倒数,先将其化为假分数,再求出倒数.(3)用1除以一个非0数,商就是这个数的倒数.6. 有理数的四则运算:⑴ 加法法则:① 同号两数相加,符号不变,把绝对值相加;② 异号两数相加,绝对值相等时(即互为相反数的两个数)相加得0;绝对值不相等时,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.③ 一个数同0相加,仍得这个数;有理数加法运算律:交换律和结合律(互为相反数的可先相加;相加可得整数的可先相加;同分母的分数可先相加;符号相同的可先相加;易于通分的可先相加).⑵ 减法法则:① 减去一个数,等于加上这个数的相反数,依据加法法则② 加减混合运算,通过减法法则将减法转化为加法,统一成只含有加法运算的和式;减法没有交换律.⑶ 乘法法则:① 两数相乘,同号得正,异号得负,把绝对值相乘;② 任何数同0相乘,得0;(另外1乘任何数都等于这个数本身;-1乘以任何数都等于这个数的相反数.)③ 几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数的个数是奇数时,积为负;当负因数的个数是偶数时,积为正.乘法的运算律:交换律、结合律、乘法对加法的分配律.⑷ 除法法则:① 两数相除,同号得正,异号得负,把绝对值相除;② 0除以任何非0的数都得0.③ 除以一个数,等于乘上这个数的倒数,即 .⑸ 乘方:① 求几个相同因数积的运算,叫做乘方;乘方的结果叫做幂;,表示n个相同因数乘积的运算;② 负数乘方要用括号括起来;分数乘方要用括号括起来;当指数是1时,可省略不写;③ 正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数(奇次幂 2n+1,2n-1; 偶次幂 2n);0的正整数次幂都是0.⑹ 混合运算:① 从左到右的顺序进行;② 先乘方,再乘除,后加减;如有括号,应先算括号里面的;7. 科学记数法(1)把一个大于10的数表示成的形式(其中a是整数数位只有一位的数,n是正整数,它的值等于原数的整数位数减1,),这种记数方法叫科学记数法;(2)准确数与近似数:与实际完全相符的数是准确数;与实际相接近的数是近似数;(3)精确度:近似数与准确数的接近程度,可以用精确度表示;一般地,把一个数四舍五入到哪一位,就说这个数精确到了那一位;所以,精确度是描述一个近似数的近似程度的量;(4)有效数字:在近似数中,从左边第一个不是0的数字起,到精确的数位止,所有的数字都叫做这个数的有效数字;一共包含的数字的个数,叫做有效数字的个数;。
《数轴》知识点解读知识点1 数轴(重点)1。
数轴的概念画一条水平直线,在直线上取一点表示0(叫做原点),选取某一长度作为单位长度。
规定直线上向右的方向为正方向,就得到数轴.如下图2。
任何一个有理数都可以用数轴上的一个点来表示.注意:(1)在取原点位置和确定单位长度时,要根据题目的不同特点,灵活选取。
(2)所有的有理数都可以用数轴上的点来表示,但数轴上的点不都可以表示有理数.(今后要学的无理数也可以用数轴上的点来表示)典例剖析【例1】指出下图中的数轴上各点表示的数.解析读出在数轴上的点表示的有理数分两步:(1)根据点在原点的左右边确定有理数的符合;(2)根据点与原点的距离确定数值。
答案 A点表示—212;B点表示-1,C点表示0;D点表示2;E点表示212。
【类型突破】画出数轴,并用数轴上的点来表示下列各数:+4,-2,—4。
5,113,0。
答案知识点2 有理数大小的比较(重点)利用数轴可比较有理数的大小,即(1)在数轴上表示的两个数,右边的数总比左边的数大.(2)由正数、负数、0在数轴上的位置可知:正数都大于0,负数都小于0,正数大于一切负数.提示:正负数的表示方法:因为正数都大于0,反过来,大于0的数都是正数,所以可用a〉0表示a是正数;反之,知道a是正数也可以表示为a〉0.同理,a<0表示a是负数;反之,a是负数也可以表示为a<0.典例剖析【例2】将下列各数在数轴上描出其对应点,并用“<”将它们连接起来.—312,3,-2,32,—0。
5,12,1,0.解析将给出的数在数轴上表示出来,再根据数轴上两个点表示的数,右边的总比左边的大的规律来比较大小.答案在数轴上表示如下图所示.用“〈”连接为:113 320.5013 222-<-<-<<<<<方法总结:比较数的大小时,利用数轴,把这些数用数轴上的点来表示,根据右边的总比左边的大比较,这种方法是数学结合思想的初步运用。
1 有理数知识点一 具有相反意义的量(1) 一般地,对于具有相反意义的量,我们把其中一种意义的量规定为正的,并在表示这个量的数字前面添上“+”(读作“正”)来表示;把与他意义相反的量规定为负的,并在表示这个量的数字前面添上“-”(读作“负”)来表示。
(2) 用正数和负数表示具有相反意义的量时注意事项① 在用正数和负数表示具有相反意义的量时,究竟哪个量为正,是可以任意规定的。
习惯上把“盈利”、“升高”、“收入”、“增加”等规定为正,而把“亏损”、“降低”、“支出”、“减少”等规定为负;② 不具有相反意义的量不能用正数和负数表示,如向南走100米和向西走100米,因为他们不是具有相反意义的量,所以 也就不能用正数和负数表示。
例1:(1)在一次知识竞赛中,如果加10分用+10分表示,那么扣20分应表示为( )分;(2)设前进为正,则前进20米记做( )米,后退15米记做( )米,原地不动记作( )米,前进-12米表示( )12米;(3)在图纸上零件的尺寸为(25±0.003)mm ,加工人加工出来的零件尺寸为25.002mm ,乙工人加工出来的零件尺寸为24.995mm,则( )工人加工出来的零件 ,加工出来的零件允许的最小尺寸是( )mm 。
知识点二 正数和负数的概念(1) 像5,1.2,52,…这样的数叫做正数; (2) 在正数前面加上“-”号的数叫做负数,如-10,-3,…,他们都比0小;(3) 0既不是正数,也不是负数。
例2:在数-2,0,1,-1.5,32中,负数有( )个。
知识点三 有理数及其分类 (1) 我们把正整数、零和负整数合起来统称为正数;把正分数和负分数合起来统称为分数(2) 整数和分数统称为有理数。
有理数可分类如下:※ 注意:分数都能化为小数,但小数不一定都能化为分数,只有有限小数和无限循环小数才能化为分数,因此分数包括有限小数和无限循环小数,但不包括无限不循环小数。
北师大版七年级数学上册第二章知识点整理七年级上册第二章有理数及其运算有理数:有理数=整数+分数整数=正整数+0+负整数分数=正分数+负分数有理数=正有理数+0+负有理数正有理数=正整数+正分数负有理数=负整数+负分数l正数的概念:数轴上0右边的数即比0大的数叫正数,形如+1,+0.5,+10.1,0.001…l负数的概念:数轴上0左边的数,形如-3,-0.2,-100….l0既不是正数也不是负数,0是整数也是偶数.①正负数的表示方法:盈利,亏损;足球比赛胜,负;收入,支出;提高,降低;上升,下降;②不投入不支出,不盈也不亏,海平面的海拔,某一个标准或基准….用0表示;数轴:概念:规定了原点,正方向和单位长度的直线数轴是一条可以向两端无限延伸的直线,数轴有三要素:原点,正方向,单位长度;画法:首先画一条直线;在这条直线上任取一点,作为原点;再确定正方向,一般规定向右为正,画上箭头,反方向为负方向;最后选取适应的长度作为单位长度;数轴上的点与有理数的关系:任意一个有理数都可以用数轴上的点来表示。
有理数的大小比较:在数轴上表示的两个数,右边的数比左边的数大,正数都大于0,负数都小于0,正数大于负数.相反数:只有符号不同的两个数叫做互为相反数,0的相反数是0;a,b互为相反数a+b=0;求一个数的相反数,只要在它的前面添上负号“-”即得原数的相反数,当原数是多个数的和差时,要用括号括起来再添“-”;下面的a,b即可以是数字,字母,也可以是代数式;一般地,数a的相反数是-a,这里的a表示任意一个数,可以是正数、负数、0.绝对值:几何定义:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值;代数定义:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0;互为相反数的两个数的绝对值相等.对于任何有理数a,都有a的绝对值≥0,即绝对值非负性;若几个数的绝对值的和等于0,则这几个数同时为0;比较两个负数,绝对值大的反而小;倒数:乘积为1的两个数互为倒数,所以数a的倒数是1/a,0没有倒数;求一个整数的倒数,写成这个整数分之一;求一个小数的倒数,先将其化成分数,再求其倒数;求一个带分数的倒数,先将其化为假分数,再求出倒数.用1除以一个非0数,商就是这个数的倒数.有理数的四则运算:⑴加法法则:①同号两数相加,符号不变,把绝对值相加;②异号两数相加,绝对值相等时相加得0;绝对值不相等时,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.③一个数同0相加,仍得这个数;有理数加法运算律:交换律和结合律.⑵减法法则:①减去一个数,等于加上这个数的相反数,依据加法法则②加减混合运算,通过减法法则将减法转化为加法,统3 / 5一成只含有加法运算的和式;减法没有交换律.⑶乘法法则:①两数相乘,同号得正,异号得负,把绝对值相乘;②任何数同0相乘,得0;③几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数的个数是奇数时,积为负;当负因数的个数是偶数时,积为正.乘法的运算律:交换律、结合律、乘法对加法的分配律.⑷除法法则:①两数相除,同号得正,异号得负,把绝对值相除;②0除以任何非0的数都得0.③除以一个数,等于乘上这个数的倒数,即.⑸乘方:①求几个相同因数积的运算,叫做乘方;乘方的结果叫做幂;,表示n个相同因数乘积的运算;②负数乘方要用括号括起来;分数乘方要用括号括起来;当指数是1时,可省略不写;③正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的正整数次幂都是0.⑹混合运算:①从左到右的顺序进行;②先乘方,再乘除,后加减;如有括号,应先算括号里面的;科学记数法把一个大于10的数表示成的形式,这种记数方法叫科学记数法;准确数与近似数:与实际完全相符的数是准确数;与实际相接近的数是近似数;精确度:近似数与准确数的接近程度,可以用精确度表示;一般地,把一个数四舍五入到哪一位,就说这个数精确到了那一位;所以,精确度是描述一个近似数的近似程度的量;有效数字:在近似数中,从左边个不是0的数字起,到精确的数位止,所有的数字都叫做这个数的有效数字;一共包含的数字的个数,叫做有效数字的个数;5 / 5。
北师大版七年级数学上册第二章期末复习知识点七年级上册第二章有理数及其运算.有理数:有理数=整数+分数整数=正整数+0+负整数分数=正分数+负分数有理数=正有理数+0+负有理数正有理数=正整数+正分数负有理数=负整数+负分数l正数的概念:数轴上0右边的数即比0大的数叫正数,形如+1,+0.5,+10.1,0.001…l负数的概念:数轴上0左边的数,形如-3,-0.2,-100…(负号不能省略).l0既不是正数也不是负数,0是整数也是偶数.①正负数的表示方法:盈利,亏损;足球比赛胜,负;收入,支出;提高,降低;上升,下降;②不投入不支出,不盈也不亏,海平面的海拔,某一个标准或基准….用0表示;2.数轴:概念:规定了原点,正方向和单位长度的直线数轴是一条可以向两端无限延伸的直线,数轴有三要素:原点,正方向,单位长度;画法:首先画一条直线;在这条直线上任取一点,作为原点;再确定正方向,一般规定向右为正,画上箭头,反方向为负方向;最后选取适应的长度作为单位长度;数轴上的点与有理数的关系:任意一个有理数都可以用数轴上的点来表示。
有理数的大小比较:在数轴上表示的两个数,右边的数比左边的数大,正数都大于0,负数都小于0,正数大于负数.3.相反数:(1)只有符号不同的两个数叫做互为相反数(在数轴上互为相反数的两点位于原点两侧,并且到原点的距离相等),0的相反数是0;a,b互为相反数a+b=0;(2)求一个数的相反数,只要在它的前面添上负号“-”即得原数的相反数,当原数是多个数的和差时,要用括号括起来再添“-”;下面的a,b即可以是数字,字母,也可以是代数式;(3)一般地,数a的相反数是-a,这里的a表示任意一个数,可以是正数、负数、0.4.绝对值:(1)几何定义:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值;(2)代数定义:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0;互为相反数的两个数的绝对值相等.(3)对于任何有理数a,都有a的绝对值≥0,即绝对值非负性;若几个数的绝对值的和等于0,则这几个数同时为0;(4)比较两个负数,绝对值大的反而小;5.倒数:(1)乘积为1的两个数互为倒数,所以数a的倒数是1/a,0没有倒数;(2)求一个整数的倒数,写成这个整数分之一;求一个小数的倒数,先将其化成分数,再求其倒数;求一个带分数的倒数,先将其化为假分数,再求出倒数.(3)用1除以一个非0数,商就是这个数的倒数.6.有理数的四则运算:⑴加法法则:①同号两数相加,符号不变,把绝对值相加;②异号两数相加,绝对值相等时(即互为相反数的两个数)相加得0;绝对值不相等时,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.③一个数同0相加,仍得这个数;有理数加法运算律:交换律和结合律(互为相反数的可先相加;相加可得整数的可先相加;同分母的分数可先相加;符号相同的可先相加;易于通分的可先相加).⑵减法法则:①减去一个数,等于加上这个数的相反数,依据加法法则②加减混合运算,通过减法法则将减法转化为加法,统一成只含有加法运算的和式;减法没有交换律.⑶乘法法则:①两数相乘,同号得正,异号得负,把绝对值相乘;②任何数同0相乘,得0;(另外1乘任何数都等于这个数本身;-1乘以任何数都等于这个数的相反数.)③几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数的个数是奇数时,积为负;当负因数的个数是偶数时,积为正.乘法的运算律:交换律、结合律、乘法对加法的分配律.⑷除法法则:①两数相除,同号得正,异号得负,把绝对值相除;②0除以任何非0的数都得0.③除以一个数,等于乘上这个数的倒数,即.⑸乘方:①求几个相同因数积的运算,叫做乘方;乘方的结果叫做幂;,表示n个相同因数乘积的运算;②负数乘方要用括号括起来;分数乘方要用括号括起来;当指数是1时,可省略不写;③正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数(奇次幂2n+1,2n-1;偶次幂2n);0的正整数次幂都是0.⑹混合运算:①从左到右的顺序进行;②先乘方,再乘除,后加减;如有括号,应先算括号里面的;7.科学记数法(1)把一个大于10的数表示成的形式(其中a是整数数位只有一位的数,n是正整数,它的值等于原数的整数位数减1,),这种记数方法叫科学记数法;(2)准确数与近似数:与实际完全相符的数是准确数;与实际相接近的数是近似数;(3)精确度:近似数与准确数的接近程度,可以用精确度表示;一般地,把一个数四舍五入到哪一位,就说这个数精确到了那一位;所以,精确度是描述一个近似数的近似程度的量;(4)有效数字:在近似数中,从左边第一个不是0的数字起,到精确的数位止,所有的数字都叫做这个数的有效数字;一共包含的数字的个数,叫做有效数字的个数;。
(完整word版)新北师大版七年级数学第二章知识点加习题(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整word版)新北师大版七年级数学第二章知识点加习题(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整word版)新北师大版七年级数学第二章知识点加习题(word版可编辑修改)的全部内容。
第一讲两条直线的位置关系知识点一两条直线的位置关系1。
在同一平面内两条直线的位置关系有、 .2。
的两条直线叫做平行线。
例1、下列说法正确的是()A。
同一平面内,不相交的两条射线是平行线.B. .同一平面内,两条直线不相交就重合。
C. 。
同一平面内,没有公共点的直线是平行线。
D。
.不相交的两条直线是平行线。
练习1、在同一平面内,两条直线的位置关系是()A.平行 B。
相交 C。
平行或相交 D。
平行、相交或垂直知识点二对顶角3.如果两个角有,且它们的两边互为 ,那么这样的两个角叫做对顶角。
对顶角。
例2、如图,∠1与∠2是对顶角的是()A.B.C.D.练习2、如图所示,当光线从空气射入水中时,光线的传播方向发生了改变,这就是光的折射现象.若∠1=42°,∠2=28°,则光的传播方向改变了______度.知识点三互为余角、互为补角的概念与性质4。
如果两个角的和是 ,那么称这两个角互为余角,如果两个角的和是,那么称这两个角互为补角。
同角(或等角)的余角,同角(或等角)的补角。
例3、一个角的余角是30º,则这个角的补角是。
练习3、已知∠1+∠2=90°,∠3+∠4=180°,下列说法正确的是()A.∠1是余角B.∠3是补角C.∠1是∠2的余角D.∠3和∠4都是补角知识点四垂直的概念与性质、点到直线的距离5。
《有理数的加法》知识点解读知识点1 有理数的加法法则(重点)有理数的加法法则如下:(1)同号两数相加,取相同的符合,并把绝对值相加.(2)异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符合,并用较大数的绝对值减去较小的绝对值.(3)一个数同0相加,仍得这个数.归纳:有理数的运算涉及两个方面:(1)符合的确定;(2)绝对值的计算.因此运用有理数加法法则进行计算时要按照“一观察,二确定,三求和”的步骤进行,即第一步观察两数的符合是同号还是异号;第二步确定用哪条法则;第三步求出结果.典例剖析【例1】计算下列各题:23(1)(30)(6);(2)()();341(3)( 3.6)( 1.9);(4)()0;3(5)( 2.5)( 3.1);(6)(5)(5).-+--++-++-+-++++- 解析:先观察两个加数的符号,并比较两个加数的绝对值的大小,再根据相应的法则计算. 答案:(1)(30)(6)=(30+6)=36;23321(2)()()();(3)( 3.6)( 1.9)(3.6 1.9) 1.7;11(4)()0;33(5)( 2.5)( 3.1)(3.1 2.5)0.6;(6)(5)(5)0.-+----++=+-=+-++=--=--+=--++=+-=+++-= 方法归纳:(1)有理数加法运算的一般步骤:①首先判断是同号两数相加还是异号两数相加;②再判断结果是正好还是负号;③最后判断是利用绝对值的和还是差进行计算.(2)有理数加法法则口诀:同号相加一边倒;异号相加“大”减“小”,符号跟着“大”的跑,绝对值相等“零”正好;数零相加变不了.其中“大”“小”指加数的绝对值的大小.【类题突破】下列各式,p ,q 互为相反数的是( )A.pq=1B.pq=-1C.P+q=0D.p-q=0答案:C知识点2 有理数加法的运算律(难点)有理数加法的运算律(1)加法的交换律:两个数相加,交换加数的位置,和不变,即a+b=b+a(2)加法的结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变,即(a+b )+c=a+(b+c )说明:式子中的字母a ,b ,c 表示任意有理数.交换律和结合律对两个以上的数也使用,使用运算律是为了简化运算,在使用时,一般先把具有以下特征的数相加:(1)互为相反数的两个数;(2)符号相同的数;(3)相加能得到整数的数;(4)分母相同的数;(5)易于通分的数.典例剖析【例2】计算下列各题:(1)15(19)18(12)(14);(2)(13.5)22.5(13.26)(8.5)19.4;521(3)(3)(15.5)(18)(5);77211(4)(18)(71).42+-++-+--++-+-+-+-+-+++-解析:几个有理数相加,可以先把正数和负数相加,这样能简化计算,几个带分数相加,可以先把每个带分数拆成整数部分与真分式部分相加的形式,再把整数部分与真分数部分分别结合在一起,再相加.答案:(1)15(19)18(12)(14);=15+18+[(-19)+(-12)+(-14)]=33+(-45)=12;(2)(13.5)22.5(13.26)(8.5)19.4;22.519.4[(13.5)(13.26)(8.5)]41.9(35.26)6.64;521(3)(3)(15.5)(18)(5)7725=[(3)7+-++-+---++-+-+=++-+-+-=+-=-+-+-+-+21(18)][(15.5)(5)]7222(10)32;11(4)(18)(71).4211[(18)()][(71)()]4211(18)()(71)()4211(18)(71)[()()]42153()4153.4-+-+=-+-=-++-=++++-+-=++++-+-=++-+++-=-+-=-方法提示:将带分数拆成整数部分与真分数相加的形式要注意:(1)分开的整数部分进而小数部分必须保持原带分数的符合;(2)运算符号和数的性质符号要同括号区分开,如2+(-3)这个符号不能连在一起写成“2+-3”.【类型突破】计算52315(9)17(3)6342-+-++-. 答案:原式=5231[(5)()][(9)()](17)[(3)()]63425231[(5)(9)17(3)][()()()]6342110(1)1.44-+-+-+-+++-+-=-+-++-+-+-++-=+-=-。
北师大版初一上册第二章有理数概念及其运算知识点总结一、有理数有理数包括正整数、负整数、0和分数。
其中正整数和负整数统称为整数。
有理数可以用分数的形式表示,即分子、分母都是整数,并且分母不为0。
二、有理数的比较两个有理数的大小关系取决于它们的大小和符号,具体规则如下:- 同号,比大小;- 异号,比绝对值大小,正数大于负数。
三、有理数的加减运算有理数的加减运算遵循以下规则:- 同号相加,不改变符号,绝对值相加;- 异号相加,绝对值相减,符号与绝对值较大的数相同。
例如:- $2-3=-1$- $-2+3=1$- $-2-(-3)=1$- $-2+(-3)=-5$四、有理数的乘法有理数的乘法运算遵循以下规则:- 同号相乘得正,异号相乘得负;- 0乘任何数都得0。
例如:- $2\times 3=6$- $-2\times 3=-6$- $-2\times (-3)=6$- $0\times 5=0$五、有理数的除法有理数的除法其实就是乘以倒数,即$\dfrac{a}{b}\div\dfrac{c}{d}=\dfrac{a}{b}\times \dfrac{d}{c}$。
其中$b\neq 0$,$c\neq 0$。
例如:- $\dfrac{2}{3}\div \dfrac{4}{5}=\dfrac{2}{3}\times\dfrac{5}{4}=\dfrac{5}{6}$- $(-2)\div \dfrac{3}{4}=(-2)\times \dfrac{4}{3}=-\dfrac{8}{3}$六、绝对值一个数的绝对值表示这个数到0点的距离,记作$|a|$。
其中:- 若$a>0$,则$|a|=a$;- 若$a<0$,则$|a|=-a$;- 若$a=0$,则$|a|=0$。
例如:$|-5|=5$,$|6|=6$,$|0|=0$。
七、有理数的混合运算有理数的混合运算是指有理数的加减乘除四则运算的有理数表达式计算。
北师大版七年级上册数学各章节知识点总结第一章 丰富的图形世界1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。
立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。
平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。
2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
3、生活中的立体图形圆柱 棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、…… 球 圆锥棱锥4、棱柱及其有关概念:棱:在棱柱中,相邻两个面的交线,叫做棱。
侧棱:相邻两个侧面的交线叫做侧棱。
棱柱的所有侧棱长都相等。
棱柱的上、下底面的形状相同,侧面的形状都是平行四边形。
长方体和正方体都是四棱柱。
棱柱可以分为直棱柱和斜棱柱。
直棱柱的侧面是长方形。
n 棱柱有两个底面,n 个侧面,共(n+2)个面;3n 条棱,n 条侧棱;2n个顶点。
5、正方体的平面展开图:11种6、截一个正方体:截面:用一个平面去截一个几何体,截出的面叫做截面。
用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。
7、三视图物体的三视图指主视图、俯视图、左视图。
主视图:从正面看到的图,叫做主视图。
左视图:从左面看到的图,叫做左视图。
俯视图:从上面看到的图,叫做俯视图。
锥 柱 生活中的立体图形(按名称分)第二章有理数及其运算1、有理数的分类有理数:整数和分数统称为有理数。
正有理数有理数零有限小数和无限循环小数负有理数整数或有理数分数2、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
任何一个有理数都可以用数轴上的一个点来表示。
数轴上两个点表示的数,右边的总比左边的大。
正数大于0,负数小于0,正数大于负数。
第二章 有理数及其运算一、知识结构二、有理数相关知识 1、有理数的两种分类方式:例(1)如果把顺时针转30记作30+,那么60-表示_____________________(2)下列各数中: ,14.3 ,0 (),2-- 1.2-, ,80- 2.2-, 22-, ()23-正数有___________ _____________, 负数有_______________________ ___, 分数有_________________ _______ , 正整数有____________________ ____. 2、数轴:一条规定了________ 、__________和_____________的水平直线。
例(1)把下列各数在数轴上表示出来,并用“>”把它们连接起来 ,4- (),5-- ,0 ,3 ,5.2- 4(2)写出符合下列条件的数大于3.2-且不大于3的所有整数________________________________不超过 的最大整数是______________________3、相反数:(1)如果两个数___________不同,则这两个数互为相反数。
(2)在数轴上,表示互为相反数的两个点,位于_______的两侧,并且与原点的距离__________.(3)a 和b 互为相反数 ⇔ a+b=_________ ⇔ =_______(0≠b )4、绝对值:(1)在_______上,一个数所对应的点与_________的________叫做该数的绝对值.(2)5、非负性: _______和________统称非负数。
a ____0 ; 2a _____0例(1)如果x 、y 满足 ,则有x=________, y=________, xy =_______ 6、倒数: a 和b 互为倒数⇔ab _____1(0,0≠≠b a ) 7、科学记数法:)n ,101(10为正整数<≤⨯a a n例(1)3.0-的相反数是_________, 绝对值是__________, 倒数是__________. (2)比较大小; ()4_____4---- ; 0 3-;(3)x 、y 互为相反数, m 、n 互为倒数,则=-+mn y x 10)(3____________ (4)绝对值不大于2.5的所有负整数 _______________(5)相反数大于2且不大于6的整数有______________________(6)最小的正整数是____________,立方等于其本身的数是_________________ ※(7)a +2的绝对值的相反数为6,则a 是_______________※(8)如图所示 则=-2a _________________(9)洞庭湖的蓄水量约为17080000000m ³,将这一数据用科学记数法表示为____________________m ³三、有理数的运算 1、有理数的加法法则:异号两数相加,______________________________________________________________________________; 同号两数相加,_______________________________________________________________________________; 一个数同0相加,_________________________________________. 2、有理数的减法法则:减去一个数,等于____________________________________________.3、有理数的乘法法则:两个有理数相乘,同号得____,异号得____,绝对值__________.4、有理数的除法法则:(1)两个有理数相除,同号得______,异号得______,绝对值________. (2)除以一个数等于___________________________________________. 例:______6)18(=÷-, ()()______936=-÷- , ()_______40=-÷, , ,5、有理数的乘方例:(1)a 的平方为9,则a 为_______________(2)()22--= , 2--= , ()2--= , ()32-= , ()22-= , 22-= ___-以上各数中负数有______________个(3)1米长的小棒,第1次截去一半,第2次截去剩下的一半,如此截下去,第7次后剩下的小棒有多长?__________(4)拉面师傅先是用一根很粗的面条,把两头捏起来拉长,然后再把两头捏起来拉长,不断地这样,就将一根335⎪⎭⎫⎝⎛-()0232=++-y x ()()______2.012=-÷-_______521=⎪⎭⎫⎝⎛-÷()_______4.08.0=-÷______717=⎪⎭⎫ ⎝⎛-÷nan a a =⨯⨯⨯⨯ 个a a a 78_____87--411_______721--⎩⎨⎧<≥=)0_____()0_____(a a a ba,312-,411-粗面条拉成许多根细面条了。
七年级上册第二章知识点归纳
1、整数和分数统称为有理数。
正整数
整数零
有理数负整数
正分数
分数
负分数
2、数轴:规定了原点、单位长度、正方向的直线叫做数轴。
任何一个有理数都可以用数轴
上的点表示。
3、相反数:只有符号不同的两个数互为相反数。
零的相反数为零。
4、绝对值:在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值。
5、有理数的运算:加、减、乘、除
0除以任何不为0的数都为0;0不能做除数。
6、有理数的乘方:求n个相同因数a的积的运算叫做乘方。
(冪、底数、指数)
正数的任何次幂都是正数;负数的奇次冪是负数,偶次幂是正数。
7、有理数运算顺序:先算乘方、后算乘除、最后算加减,有括号先算括号。
8、科学记数法
习题。
北师大版七年级数学上册第二章知识点整
理
七年级上册第二章有理数及其运算
有理数:
有理数=整数+分数
整数=正整数+0+负整数分数=正分数+负分数
有理数=正有理数+0+负有理数
正有理数=正整数+正分数负有理数=负整数+负分数
l正数的概念:数轴上0右边的数即比0大的数叫正数,形如+1,+0.5,+10.1,0.001…
l负数的概念:数轴上0左边的数,形如-3,-0.2,-100….
l0既不是正数也不是负数,0是整数也是偶数.
①正负数的表示方法:
盈利,亏损;足球比赛胜,负;收入,支出;提高,降低;上升,下降;
②不投入不支出,不盈也不亏,海平面的海拔,某一个标准或基准….用0表示;
数轴:概念:规定了原点,正方向和单位长度的直线
数轴是一条可以向两端无限延伸的直线,数轴有三要素:原点,正方向,单位长度;
画法:首先画一条直线;在这条直线上任取一点,作为
原点;再确定正方向,一般规定向右为正,画上箭头,反方向为负方向;最后选取适应的长度作为单位长度;
数轴上的点与有理数的关系:任意一个有理数都可以用数轴上的点来表示。
有理数的大小比较:在数轴上表示的两个数,右边的数比左边的数大,正数都大于0,负数都小于0,正数大于负数.
相反数:
只有符号不同的两个数叫做互为相反数,0的相反数是0;
a,b互为相反数a+b=0;
求一个数的相反数,只要在它的前面添上负号“-”即得原数的相反数,当原数是多个数的和差时,要用括号括起来再添“-”;下面的a,b即可以是数字,字母,也可以是代数式;
一般地,数a的相反数是-a,这里的a表示任意一个数,可以是正数、负数、0.
绝对值:
几何定义:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值;
代数定义:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0;互为相反数的两个数的绝对值
相等.
对于任何有理数a,都有a的绝对值≥0,即绝对值非负性;若几个数的绝对值的和等于0,则这几个数同时为0;
比较两个负数,绝对值大的反而小;
倒数:乘积为1的两个数互为倒数,所以数a的倒数是1/a,0没有倒数;
求一个整数的倒数,写成这个整数分之一;求一个小数的倒数,先将其化成分数,再求其倒数;求一个带分数的倒数,先将其化为假分数,再求出倒数.
用1除以一个非0数,商就是这个数的倒数.
有理数的四则运算:
⑴加法法则:
①同号两数相加,符号不变,把绝对值相加;
②异号两数相加,绝对值相等时相加得0;绝对值不相等时,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.
③一个数同0相加,仍得这个数;
有理数加法运算律:交换律和结合律.
⑵减法法则:
①减去一个数,等于加上这个数的相反数,依据加法法则
②加减混合运算,通过减法法则将减法转化为加法,统
一成只含有加法运算的和式;
减法没有交换律.
⑶乘法法则:
①两数相乘,同号得正,异号得负,把绝对值相乘;
②任何数同0相乘,得0;
③几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数的个数是奇数时,积为负;当负因数的个数是偶数时,积为正.
乘法的运算律:交换律、结合律、乘法对加法的分配律.
⑷除法法则:
①两数相除,同号得正,异号得负,把绝对值相除;
②0除以任何非0的数都得0.
③除以一个数,等于乘上这个数的倒数,即.
⑸乘方:
①求几个相同因数积的运算,叫做乘方;乘方的结果叫做幂;,表示n个相同因数乘积的运算;
②负数乘方要用括号括起来;分数乘方要用括号括起来;当指数是1时,可省略不写;
③正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的正整数次幂都是0.
⑹混合运算:
①从左到右的顺序进行;
②先乘方,再乘除,后加减;如有括号,应先算括号里面的;
科学记数法
把一个大于10的数表示成的形式,这种记数方法叫科学记数法;
准确数与近似数:与实际完全相符的数是准确数;与实际相接近的数是近似数;
精确度:近似数与准确数的接近程度,可以用精确度表示;一般地,把一个数四舍五入到哪一位,就说这个数精确到了那一位;所以,精确度是描述一个近似数的近似程度的量;
有效数字:在近似数中,从左边个不是0的数字起,到精确的数位止,所有的数字都叫做这个数的有效数字;一共包含的数字的个数,叫做有效数字的个数;。