当前位置:文档之家› 隧道台车结构计算书

隧道台车结构计算书

隧道台车结构计算书
隧道台车结构计算书

贵阳9米台车

一概括

模板台车就位完毕,整个台车两端各设一个底托传力到初支底面上。

枕木高度:H=200mm;钢轨型号为:43Kg/m(H=140mm);台车长度为9米,面板为δ10mm×1500mm,二衬混凝土灌注厚度0.5米,一次浇注成型。模板台车支架如图1。计算参照《建筑结构载荷规范》(GB5009-2001)、《混凝土结构工程施工质量验收规范》(GB50204-2002)、《水工混凝土施工规范》(DL/T5144-2001)、《钢结构设计规范》(GB50017-2003)。

模板支架图

二载荷计算

(1)载荷计算

1)上部垂直载荷

永久载荷标准值:

上部混凝土自重标准值:1.9×0.5×9×24=205.2KN

钢筋自重标准值:9.8KN

模板自重标准值:1.9×9×0.01×78.5=13.4KN

弧板自重标准值:9×0.3×0.01×2×78.5=4.2KN

台梁立柱自重:0.0068×(1.0 +1.25)×2×78.5=2.4KN

上部纵梁自重:(0.0115×5.2+0.015×1.9×2)×78.5=9.17KN 可变载荷标准值:

施工人员及设备载荷标准值:2.5KN/㎡

振捣混凝土时产生的载荷标准值:2.0KN/㎡

2)中部侧向载荷

永久载荷标准值:

新浇注混凝土对模板侧面的压力标准值:

F=0.22r c t0β1β2v1/2=0.22×25×8×1.2×1.15×10.5=60.6KN/㎡

F=r c H=25×3.9=97.5KN/㎡

取两者中的较小值,故最大压力为60.6KN/㎡

有效压力高度h=2.42m

换算为集中载荷:

60.6×1.9×0.6=69.1KN

其中:F——新浇混凝土对模板的最大侧压力;

r c——混凝土的表观密度;

t0——新浇混凝土的初凝时间;

v——混凝土的浇注速度;

H——混凝土侧压力计算位置处至新浇混凝土顶面的总高度;

β1——外加剂影响修正系数;

β2——混凝土坍落度影响修正系数;

h——有效压力高度。

可变载荷标准值:

倾倒混凝土载荷值:2.0KN/㎡

振捣混凝土时产生的载荷标准值:4.0KN/㎡

(2)载荷组合

1)组合1 恒载↓×1.2+活载↓×1.4

2)组合2 恒载↓×1.0+活载↓×1.0

三钢模板设计

钢模板的作用是保持隧洞衬砌混凝土浇注的外形及承担混凝土浇注载荷。钢模板主要有面板、弧形板、支撑槽钢、立筋板、活动铰构成,活动铰将其分成几段,利用连接螺栓合成整理。

A)设计假定:面板弧形板按照双铰耳设计,最大正负弯矩区采用加强措施;面板按四边支撑或三边支撑一边自由板计算。

B)载荷及其组合:顶拱钢模面板的计算载荷包括设计衬砌混凝土浇注载荷、允许超挖及局部过大超挖部分的混凝土浇注载荷和面板的自重等。

q=q0+q1+q2+q3式中q—面板计算载荷;

q0—面板自重,按照初选面板厚度计算;

q1—设计衬砌混凝土载荷,q1=γh;

γ—钢筋混凝土容重;

h—设计衬砌厚度;

q2—允许超挖部分的混凝土载荷(按允许0.2—0.3m计);

q3—局部过大超挖部分回填的混凝土载荷(不包括允许超挖部分),为

1.2m;

q4—含义同,仅加载部位有异;

q5混凝土侧压力;

q5=γR,+ C;

R,—内部插入振捣器影响半径,采用0.75m;

C—混凝土入仓对模板的冲击力,目前,设计中采用0.2tf/㎡。

载荷载荷组合

q0

设计衬砌混凝土q1

允许超挖部分回填q2

局部过大超挖回q3

同q3,加载部位有q4

混凝土侧压力q5

面板q1+q2+q3

设计情况Ⅰ(顶拱浇注完时)q0+q1+q2

设计情况Ⅱ(侧墙浇注到顶拱

时)

q5

校核情况Ⅰ(中间1/4跨有局

部超挖时)

q0+q1+q2+q4

校核情况Ⅱ(半跨有局部超挖

时)

q0+q1+q2+q3

(1)模板面板计算

面板是以肋板为支座的连续梁,可简化为五跨连续梁进行计算。按照荷载组合1,取1m宽的板条计算:

面板计算简图

对拱顶面板:

q=1.2×1.0×(25×1.0+78.5×0.01)+2.0×1.4=33.6KN/m

对侧墙面板:

q=1.2×1.0×60.6+6.0×1.4=81.12KN/m 取侧墙模板进行验算,取载荷调整系数0.85,有: q=81.12×0.85=68.95KN/m

故:M max =0.105ql 2=0.105×68.95×0.282=0.57KN.m

模板钢材Q235,10mm 厚钢板的截面力学参数截面惯性矩Ⅰ和截面抵抗矩W 分别为:

W=1.8×10-5m 3; I=8.5×10-8m 4; 所以有:

强度验算:σ=

nx

x x W M =90.4N/mm 2 安全

刚度验算:v =0.644ql 4/100EI

=0.644×66.0×0.2864/(100×2.06×105×1.8×10-8) =0.77mm <l /250=1.1mm 满足要求 根据计算结果,钢模板面板适合采用10mm 厚的钢板。 (2) 模板肋板计算

横肋板布置按200mm 考虑,计算简图如下:

肋板计算简图

P=0.23×68.95=15.8KN q=0.06KN/m

故:M max =0.125ql 2=0.125×0.06×0.22+0.25PL=0.9KN.m

模板钢材Q235,10#槽钢的截面力学参数截面惯性矩I 和截面抵抗矩W 分别为:

W=6.4×10-6m 3;

I=1/12×0.006×0.0753=2.56×10-7m 4

所以有:

强度验算:σ=nx x x

W M =134.9N/mm 2<f =215N/mm 2 安全 刚度计算:v =5ql 4/384EI=0.2mm <l /250=1.1mm 满足要求 (3) 弧板计算

弧板采用A3δ12钢板,宽度320mm ,加强筋采用10#槽钢,中心间距265mm 。载荷为模板载荷和自重,采用ANSYS 分析内力如下:

工钢梳型模的弯矩图和剪力图

最不利的弯矩和剪力为:

M x =209000N.m V =115000N

弧板的截面力学参数截面惯性矩I 和截面抵抗矩W 分别为: W=1.303×10-3m 3; I=1.954×10-4m 4 所以有:

σ=nx

x x W M =160.4N/mm 2<f =215N/mm 2 安全

τ=

w

It VS =76.9N/mm 2<f v =125N/mm 2

安全

DMX=0.047402

DMX=0.047402

工钢梳型模的位移图

采用组合1计算结果:

刚度验算:v =47.4mm <l /250=48.4mm 满足要求 (4) 模板支架的计算

模板支架按照钢框架结构计算,荷载见“二 荷载计算”,钢材Q235, 门架横梁截面尺寸1000×300mm ,结构为工字型上下面板为δ14,立板为δ10。门架横梁钢的截面力学参数截面惯性矩I 和截面抵抗矩W 分别为: W=3.132×10-3m 3; I=9.396×10-4m 4;

立柱截面尺寸482×300mm ,结构为焊接工字型。立柱的截面力学参数截面惯性矩I 和截面抵抗矩W 分别为:

W=2.145×10-3m 3; I=5.361×10-4m 4;

图2支架计算简图采用SAP2000计算,组合2计算结果如下:

支架弯矩图

支架剪力图

位置 弯矩(KN.m ) 剪力(KN ) 立柱顶 225.47 167.30 立柱中 22.28 31.52 立柱下 44.47 38.08 顶梁边 252.47 360.85 顶梁中 99.46 4.07 中梁边 27.84 13.65 中梁中 1.21

4.00

1)立柱计算

对各点进行受力验算,立柱最不利的弯矩和剪力、轴力为: M x =252470N.m V=167295N N=378290N 所以有: σ=nx

x x W γ M =102.3N/mm 2<f =215N/mm 2 安全

τ=

w

It VS =75.8 N/mm 2<f v =125 N/mm 2 安全

σ=n A N

=27.8N/mm 2<f v =215 N/mm 2 安全

采用组合1计算结果:

刚度验算:v =1.6mm <l /250=12mm 满足要求 2)框架梁计算

对各点进行受力验算,顶梁最不利的弯矩和剪力、轴力伟: M x =252470N.m V=360860N N=167300N 所以有: σ=nx

x x W γ M =70.1N/mm 2<f =215N/mm 2 安全

τ=

w

It VS =108.0 N/mm 2<f v =125 N/mm 2 安全

采用组合1计算结果:

刚度验算:v =16.1mm <l /250=32mm 满足要求 对中梁进行受力计算,结果满足要求。 (5) 底部大梁的计算

大梁按照简支梁结构计算不考虑中间支座作用。大梁箱型截面500×750mm ,δ14,钢材Q235,底梁的截面力学参数截面惯性矩I 和截面抵抗矩W 分别为:

W=5.077×10-3m 3; I=1.523×10-3m 3;

图3大梁计算简图

采用SAP2000计算,组合2计算结果如下:

底部大梁弯矩图

底部大梁剪力图

最不利的弯矩和剪力、轴力为:

M x =3278310N.m V=719680N 所以有: σ=nx

x x W M γ=610N/mm 2>f =215N/mm 2

τ=

w

It VS =85 N/mm 2<f v =125 N/mm 2 安全

采用组合1计算结果:

刚度验算:v =59.7mm >l /250=48mm 不满足要求 整体稳定性验算:

σ=

x

x W M b ?=3278310/(1.6×5077)>f =215N/mm 2

考虑中间支座作用,计算结果如下:

底部大梁弯矩图

底部大梁剪力图

最不利的弯矩和剪力、轴力为:

M x =97860N.m V=142050N 所以有: σ=nx

x x W M γ=28N/mm 2<f =215N/mm 2 安全

τ=

w

It VS =9.2 N/mm 2<f v =125 N/mm 2 安全

采用组合1计算结果:

刚度验算:v =0.5mm >l /250=48mm 满足要求 整体稳定性验算:

σ=x

x W M

b =97860/(1.6×5077)<f =215N/mm 2

故考虑底梁下设置千斤顶支座,结构满足要求。

xxx隧道衬砌台车结构计算书(建筑助手)

XXXXXXXXXX引水隧道项目衬砌台车计算书 编制: 校核: 审核: 2017年10月

xxxxx项目衬砌台车计算书 1.计算依据 1、《xxxxx施工图设计》 2、《衬砌台车结构设计图》 3、《钢结构设计规范》(GB 50017-2003) 4、《混凝土结构设计规范》(GB 50010-2002) 2. 概况 xxxxx隧道衬砌模板系统及台车布置图如下图2.1-2.2。隧道二衬模板由一顶模、两侧模组成,模板均由6mm钢板按照二衬外轮廓线卷制而成。顶模模板拱架环向主肋采用I10工字钢,加工成R=1447mm,L=3650mm的圆弧拱形,拱架环向肋板间距1m,拱架纵肋采用∠45*45*6的角钢,间距30cm;侧模模板拱架环向肋板采用1524mm长的I14工字钢,侧模环向肋板在隧洞腰线以上部分加工成加工成R=1447mm,L=527mm的圆弧拱形,腰线以下加工成R=3327mm,L=997mm的圆弧拱形,拱架环向肋板间距1m,拱架纵肋采用∠45*45*6的角钢,间距30cm。 衬砌台车由顶拱支撑、台车门架结构、走行系统、顶升系统及侧模支撑系统组成,纵向共9m长。顶拱支撑采用H200×200×8.0立柱,纵向焊接通长的∠45*45*6的角钢组成钢桁架,焊接于台车门市框架主横梁上,支撑顶模。衬砌台车门式框架立柱采用H200×200×8.0型钢、横梁、纵梁均采用I20a工字钢焊接组成,其节点处焊接1cm厚的三角连接钢板缀片进行加固。本衬砌台车与顶拱支撑焊接为一个整体。进行顶模的安装及拆除时,在轨道两侧支垫20*20*60cm的枕木,枕木上安放千斤顶进行台车和顶拱支撑系统的整体升降。侧模支撑系统的螺旋丝杆,每断面设置4个。下部螺旋丝杆水平支承于台车的I20a 纵梁上,上部螺旋丝杆水平支撑于台车的I20a立柱上。三角板与构件之间焊接为满焊,焊脚高度10mm;焊缝不允许出现咬边、未焊透、裂纹等缺陷。模板系统及台车构件均采用Q235普通型刚。

地铁区间隧道结构设计计算书

地下工程课程设计 《地铁区间隧道结构设计计算书》

目录 一、设计任务 (3) 1、1工程地质条件 (3) 1、2其他条件 (3) 二、设计过程 (5) 2.1 根据给定的隧道或车站埋深判断结构深、浅埋; (5) 2.2 计算作用在结构上的荷载; (5) 2.3 进行荷载组合 (8) 2.4 绘出结构受力图 (10) 2.5 利用midas gts程序计算结构内力 (10) 附录: (15)

地铁区间隧道结构设计计算书 一、设计任务 对某区间隧道进行结构检算,求出荷载大小及分布,画出荷载分布图,同时利用软内力。具体设计基本资料如下: 1、1工程地质条件 工程地质条件 线路垂直于永定河冲、洪积扇的轴部,第四纪地层沉积韵律明显,地层由上到下依次为:杂填土、粉土、细砂、圆砾土、粉质粘土、卵石土。其主要物理力学指标如表1。 1、2其他条件 其他条件 地下水位在地面以下5m处;隧道顶部埋深6m;采用暗挖法施工。隧道段面为圆形盾构断面。断面图如下:

二、设计过程 2.1 根据给定的隧道或车站埋深判断结构深、浅埋; 可以采用《铁路隧道设计规范》推荐的方法,即有 上式中s为围岩的级别;B为洞室的跨度;i为B每增加1m时的围岩压力增减率。 由于隧道拱顶埋深6m,位于杂填土、粉土层、细砂层中,根据《地铁设计规范》10.1.2可知 “暗挖结构的围岩分级按现行《铁路隧道设计规范》确定”。 围岩为Ⅵ级围岩。则有 因为埋深,可知该隧道为极浅埋。 2.2 计算作用在结构上的荷载;

1 永久荷载 A 顶板上永久荷载 a. 顶板(盾构上部管片)自重 b. 地层竖向土压力 由于拱顶埋深6 m,则顶上土层有杂填土、粉土,且地下水埋深5m,应考虑土层压力和地下水压力的影响。(粉土使用水土合算) B 底板上永久荷载 a. 底板自重 b. 水压力(向上): C 侧墙上永久荷载 地层侧向压力按主动土压力的方法计算,由于埋深在地下水位以下,需考虑地下水的影响。(分图层水土合算,砂土层按水土分算) a. 侧墙自重 b. 对于隧道侧墙上部土压力: 用朗肯主动土压力方法计算

隧洞衬砌结构计算书

隧洞衬砌结构计算书 项目名称___________ 日期________________ 设计者____________ 校对者______________ 一、示意图: 1.依据规范及参考书目: 《水工隧洞设计规范》(DL/T 5195-2004,以下简称《规范》)《水工混凝土结构 设计规范》(SL 191-2008),以下简称《砼规》《隧洞》(中国水利水电出版社,熊启钧编著) 《水工隧洞和调压室水工隧洞部分》(水利电力出版社,潘家铮编著)2.几何参数: 半跨宽度L1 = 2.000 m ;顶拱半中心角α=60.00° 拱顶厚度D1 =0.400 m;拱脚厚度D2 =0.600 m 侧墙厚度D3 =0.600 m;侧墙高度H2 = 4.000 m 隧洞衬砌断面形式:圆拱直墙形 底板厚度D4 =0.600 m 3.荷载信息:0.00 m 6.00 m ;外水压力折减系数β=0.40 Q1=70.00kN/m ;顶部 山岩压力中间值Q3=40.00kN/m ; 侧向山岩压力下侧值Q5= 0.00kN/m ;底部山岩压力中间值 顶拱围岩弹抗系数K1 =500.0 MN/m 3 侧墙围岩弹抗系数K2 =500.0 MN/m 3 底板围岩弹抗系数K3 =500.0 MN/m 3顶拱灌浆压力P d =0.00 kPa;P d 作用半中心角αp =0.00° 其他部 位灌浆压力P e =0.00 kPa 4.分项系数: 基本资料: 内水压力水头H i = 外水压力水头Ho = 顶部山岩压力端部值 侧向山岩压力上侧值 底部山岩压力端部值 Q2= 70.00kN/m Q4= 50.00kN/m

台车计算

店子梁隧道台车力学计算书 一、基本情况 店子梁隧道台车,长度为9m。模板面板厚度为10mm,门架面板厚14mm,门架腹板厚12mm。本计算书针对台车的主要受力构件的强度和刚度进行检算,以验证台车的力学性能能否满足要求。本文主要根据《GB50017-2003钢结构设计规范》《路桥施工计算手册》与《结构力学》,借助结构力学求解器来对本台车进行结构检算。 1.计算参数3砼的重力密度为:24kN/m;砼浇筑速度:2m/h;砼入模时的温度取25℃;掺外加剂。3 钢材取Q235钢,重力密度:78.5kN/m;弹性模量为206Gpa,容许拉压应力以及容许弯曲应力为215 Mpa,有部分零件为45钢,容许拉压应力计算取250Mpa(《钢结构设计规范》表3.4.1-1)。本文计算时取2倍安全系数,所以本文计算时Q235钢容许拉压应力以及容许弯曲应力取215 Mpa/2=108Mpa,45钢容许拉压应力以及容许弯曲应力取250Mpa/2=125Mpa。 2.计算载荷21)振动器产生的荷载:4.0kN/m;或倾倒混凝土产生的冲击荷2载:4.0kN/m;二者不同时计算。 2)对侧模产生的压力 砼对侧模产生的压力主要为侧压力,侧压力计算公式为: P=kγh (1) 当v/T<0.035时, h=0.22+24.9v/T; 当v/T>0.035时,h=1.53+3.8v/T; 式中:P-新浇混凝土对模板产生的最大侧压力(kPa); h-有效压头高度(m); v-混凝土浇筑速度(m/h); T-混凝土入模时的温度(℃); 3γ-混凝土的容重(kN/m);

K-外加剂影响修正系数,不掺外加剂时取k=1.0,掺缓凝剂作用的外加剂时k=1.2; 根据前述已知条件: 因为:v/T=2/20=0.1>0.035, 所以 h=1.53+3.8v/T=1.53+3.8×0.1=1.91m 2最大侧压力为:P=kγh =1.2×24×1.91=55kN/m;2检算强度时载荷设计值为:p=55+1.4×4.0= 60.6kN/m; a3)砼对顶模产生的压力 砼对顶模产生的压力由砼的重力和灌注砼的侧压力组成: 32重力p=γδ=24kN/m×0.7m=16.8kN/m 1其中δ为浇注砼的厚度。 由于圆弧坡度变小,取灌注为1m/h。 因为:v/T=1/20=0.05>0.035 所以 h=1.53+3.8v/T=1.53+3.8×0.05=1.72m 2侧压力为:p=kγh =1.2×24×1.72=49.5kN/m 22 p=49.5+1.4×4.0=55.1kN/m32所以顶模受到的压力 p=p+p=16.8+55.1=71.9kN/m b12可知顶模略大于侧模受到的压力。 4)台车结构自重,影响不大,不计入检算载荷。 二、侧模和顶模的检算 通过对侧模和顶模的面板、弧板以及背肋(8#槽钢)的强度和刚度检算,来验证台车模板的强度和刚度是否满足受力要求。侧模面板和顶模面板的支撑结构相同,因为顶模面板受混凝土重力作用所受压力略大,所以只需检算顶模板的强度和刚度是否能满足要求。

隧道结构计算

一.基本资料 惠家庙公路隧道,结构断面尺寸如下图,内轮廓半径为 6.12m ,二衬 厚度为 0.45m 。围岩为 V 级,重度为19.2kN/m3,围岩弹性抗力系数为 1.6×105kN/m3,二衬材料为 C25 混凝土,弹性模量为 28.5GPa ,重度 为 23kN/m 3。考虑到初支和二衬分别承担部分荷载,二衬作为安全储备,对其围岩压力进行折减,对本隧道按照 60%进行折减。求二衬内力,作出内力图,偏心距分布图。 1)V1级围岩,二衬为素混凝土,做出安全系数分布图,对二衬安全性进行验算。 2)V2级围岩,二衬为钢筋混凝土,混凝土保护层厚度 0.035m ,按结构设计原理对其进行配筋设计。 二.荷载确定 1.围岩竖向均布压力:q=0.6×0.45?1 2-S γω 式中: S —围岩级别,此处S=5; γ--围岩重度,此处γ=19.2KN/3m ; ω--跨度影响系数,ω=1+i (m l -5),毛洞跨度m l =13.14+2?0.06=13.26m ,其中0.06m 为一侧平均超挖量,m l =5—15m 时,i=0.1,此处ω=1+0.1?(13.26-5)=1.826。 所以,有:q=0.6×0.451 -52 ??19.2?1.826=151.456(kPa )

此处超挖回填层重忽略不计。 2.围岩水平均布压力:e=0.4q=0.4?151.456=60.582(kPa ) 三.衬砌几何要素 5. 3.1 衬砌几何尺寸 内轮廓线半径126.12m , 8.62m r r == 内径12,r r 所画圆曲线的终点截面与竖直轴的夹角1290,98.996942φφ=?=?; 拱顶截面厚度00.45m,d = 墙底截面厚度n 0.45m d = 此处墙底截面为自内轮廓半径2r 的圆心向内轮廓墙底做连线并延长至与外轮廓相交,其交点到内轮廓墙底间的连线。 外轮廓线半径: 110 6.57m R r d =+= 2209.07m R r d =+= 拱轴线半径: '1200.5 6.345m r r d =+= '2200.58.845m r r d =+= 拱轴线各段圆弧中心角: 1290,8.996942θθ=?=? 5.3.2 半拱轴线长度S 及分段轴长S ? 分段轴线长度: '1 1190π 3.14 6.3459.9667027m 180180S r θ? = = ??=?? '2228.996942π 3.148.845 1.3888973m 180180S r θ?==??=?? 半拱线长度: 1211.3556000m S S S =+= 将半拱轴线等分为8段,每段轴长为: 11.3556 1.4194500m 88 S S ?= ==

模板台车

模板台车分析介绍 一、在限元计算模型 本计算模型是采用MSC/PARAN有限元分析软件进行建立的,并经过反复完善后得到的。 该12m全液压钢模板台车的有限元模型主要由3部分组成,即:顶模、边模、架体。其中顶模、边模的模型较为简单,主要由平面单元和L型梁单元构成,中间加以必要的连接法兰板,而架体主要由各种截面形状的梁单元组成。其中划分有限元单元62221个划分出节点共80271个,关联节点24356个。 对该模型简单介绍分为以下三个部分: 1、顶模部分 为真实反映L型钢、连接法兰与顶模面板,顶纵梁与顶模台梁的连接关系,L型钢、连接法兰、顶纵梁做了偏置,顶模单元3维加偏置模型。 2、边模部分 与顶模类似,边模的L型钢及连接法兰也做了偏置。对于顶模与边模之间的铰接关系,在有限元模型中用两端处理为单向铰的刚性单元表现。 3、架体模型 架体有限元模型为二维杆件梁单元构成,边模通梁与架体通过丝杆连接,丝杆两端处理为单向铰接。 二、边界的处理 在有限元计算中,对边界与荷载的处理是最为重要的五环节,依据模板台车在实际施工过程中的使用情况,我信计算模型中采用了以下几种边界条件的处理方式。 1、对轨千斤顶与钢轨接触处 对轨千顶在施工过程中作用有限,不约束其高度方向(总体坐标Y向)位移是合理的,所以在实际模型中仅仅约束对丝杆下端X、Z两个方向位移。 2、行走车轮与钢轨接触处的处理 模板台车车轮与钢轨始终保持接触,所以约束其X、Y、Z三向平动位移是合理的; 3、对地丝杆与地面的接触 由于模板台车实际使用中对地丝支撑在混凝土地面上,因此在模型中将地丝杆与地面的接触处处理为约束X、Y、Z平动自由度。 三、载荷的施加 台车在工作时受混凝土的压力,压力由混凝土自重、震捣力,混凝土入仓产生的冲击力组合而成,台车模板所承受的载荷可以按静水压力计算,计算公式为: P=γ*h γ为混凝土比重,h为混凝土灌注高度 四、分析结果 此次分析计算是采用MSC/NASTRAN程序进行的,具体分析结果简介如下: 1、衬砌高度H=3.5m时,模板最大变形为2.38mm。 1、衬砌高度H=4.5m时,模板下部最大变形为1.03mm,边模板最大变形为3.85mm。 1、在台车最后封顶时,最大变形在台梁处,为3.56mm。 第四章技术说明 一、概要: 客运专线模板台车标准高,要求严,各个施工单位对此都比较重视,我们中隧集团多次组织专家对客运专线模板台车进行研讨,制定了中隧集团客运专线模板台车设计制造标准。为了进一步提高衬砌台车的可靠性和经济性,我公司特联合中国航天科技集团第十一研

台车计算书

中铁四局宝兰客专隧道台车设计计算书此份台车结构强度设计计算及校核书是根据中铁四局宝兰客专项目经理部提供的台车设计要求及所附图纸中提供的技术参数进行结构受力演算,其结果仅对该台台车的结构受力有效。 一、工程概况及其对钢模台车设计要求 1、钢模台车的制作和安装需执行《隧道衬砌模板台车设计制造标准规范》和GB50204-92《混凝土结构工程施工及验收规范》中相关要求。 2、钢模台车设计成边墙顶拱整体浇筑的自行式台车形式,并满足施工设备通行要求,最下部横梁距离底板砼面净高不低于4m。 3、对钢模台车的结构设计必须要有准确的计算,确保在重复使用过程中结构稳定,刚度满足要求。对模板变形同样有准确的计算,最大变形值不得超过2mm,且控制在弹性变形范围内。 4、钢模台车设计长度为12米。 5、钢模台车设计时,承载混凝土厚度按0.6m设计校核。 6、钢模台车面板伸缩系统采用液压传力杆,台车就位后采用丝杆承载,不采用行走轮承载。 7、侧模和顶模两侧设置窗口,以便进人和泵管下料。 8、钢模台车两端及其它操作位置需设置操作平台和行人通道,平台和通道均应满足安全要求。

二、设计资料 1、钢模台车设计控制尺寸钢模台车外形控制尺寸,依据隧道设计断面和其他的相关施工要求和技术要求确定。见总图《正视图》。 2、设计衬砌厚度钢模台车设计时,承载混凝土厚度按0.6m设计校核。 3、车下通行的施工机械的控制尺寸最大高度不高于4m; A)台车轨距 7500mm。 B)洞内零星材料起吊重量一般不超过3吨。 C)浇筑段长度浇筑段长12m。 3、钢模台车设计方案 钢模台车的设计如图所视《中铁十六局成兰铁路台车正视图》。该台车特点:采用全液压立收模;电机驱动行走;横向调节位移也采用液压油缸。结构合理,效果良好。 4、钢模板设计控制数据 (1)、模板:控制数据(见下表) 项目所对中心角外沿弧 长(mm) 法兰宽 度(mm) 备注 顶拱模板半径6460 88°9956 300 边拱模板半径6460 63°7170 300 左右各一段边拱小模板半径2300 12°505 300 左右各一段

隧道台车计算书

隧道台车计算书 (一)概述: 根据贵单位承建的隧道工程可知:贵方所需台车是全液压边顶拱砼衬砌钢模台车(以下简称台车)。此台车是以电机驱动行走机构带动台车移动,利用液压油缸和螺旋千斤进行模板立模和脱模来进行隧洞砼浇注的设备。根据对隧道衬砌长度的要求,台车设计为12米,总重量126T,全液压边顶拱砼具有结构合理可靠、操作方便、成本较低、衬砌速度快、隧道砼成形面好等优点。 (二)台车的结构设计: 台车主要由模板部份、台架部份、平移机构、门架部份、行走机构、液压系统、支承千斤、电气控制系统等组成。 1、模板部份: 模板部份由两块顶模和两块侧模组成一个砼横向断面,两块顶模 用螺栓连接两侧模与顶模用铰耳销轴连接,8块模板的宽度均为 1.5米,,纵向由8块组成12米的模板总长,每块模板之间用螺 栓连接,模板面板厚度为δ12mm,模板加强筋用槽钢[12B和槽 钢[16A做成,加强筋的间距为250m m,其弧板宽度为300 m m。 模板连接梁采用槽钢[20b合成.。 2、台架部份:台架由4根上纵梁,9根弦梁和63根小立柱组成。主要是承受顶 模上部砼及模板的自重。其上纵梁由钢板δ=14mm/δ=12mm焊成 工字截面,横梁采用工字钢I25b.小立柱采用工字钢I20b制成。 3、平移机构:平移机构在前后门架横梁各安装一套,平移油缸4个(HSGK02— B100/55)。平移油缸的作用是利用其左右移动来调整模板中心线

与隧洞中心线相吻合,其工作压力为16 MPa,最大推力为20吨, 水平移动行程为左右各100 m m。 4、门架部份:门架由下纵梁、立柱、横梁及纵向连接梁组成。各横梁及立柱用 连接梁和斜拉杆连接,各构件均用螺栓连接成一个整体。是整个 台车的主要承重结构件。门架下纵梁用δ14mm和δ12m m钢板 焊成箱形截面。立柱和横梁采用δ14mm和δ12mm钢板焊接成工 字截面,以增加门架抗砼的侧压力。 5、行走机构:台车行走机构由2套主动机构,2套从动机构组成。主动机构由2 台5.5KW同步电机驱动摆线减速器,再通过链条、链轮减速驱动 门架行走。利用电机的正反转可实现台车的前进与后退,其行走 速度为6m/min,行走轮直径为φ300mm。从动机构不安装电机和 减速器。起支撑和行走作用。 6、液压系统:液压系统由4个竖向油缸(前已作叙述)、6个侧向油缸(HSGK— B100/55 mm)、4个平移油缸(前面已作叙述)和一套泵站组成。 侧模板的立模和脱模由侧模油缸来完成。同时起着支承侧模板及 侧墙砼压力的作用,其工作压力为16MPa,推力为30吨。泵站系 统利用一个三位四通换向阀进行换向,控制各油缸的伸缩。4个 竖向油缸各由一个换向阀控制,侧模每边3个油缸由一个换向阀 控制,4个平移油缸前后各2个由一个换向阀控制。每个竖向油 缸安装1个液压锁紧阀来锁定每个竖向油缸,确保台车在浇注时 不致下降.液压油泵流量为10L/ min,电机功率为4KW,液压系 统工作压力为16M Pa。 7、支承千斤:支承千斤由台架千斤、侧向千斤和门架支承千斤三部份组成。侧 向千斤主要用来支承砼的侧向压力和调整侧模板位置,螺杆直径

(完整版)XX水库供水隧洞结构计算书.doc

龙洞河水电站有压引水隧洞结构计算书 1工程概况 公明供水调蓄工程供水隧洞是从鹅颈至公明水库连通隧洞L0+387 桩号接往石岩水库的一条供水隧洞,全长 6.397km,桩号为 G0+000~G6+397。根据初步设计报告供水隧洞为 2 级建筑物,设计流量为 10.24m3/s,采用圆型断面,内径为 3.4m。供水隧洞进口底高程为 29.60m,出口底高程为 27.50m,隧洞全段纵坡为 -0.0328%。供水隧洞Ⅱ类围岩 3576m、Ⅲ 类围岩 1836m、Ⅳ类围岩 345m、Ⅴ类围岩 310m。 2设计依据 2.1 规范、规程 《水工隧洞设计规范》( SL279-2002)(以下简称“隧洞规范”) 《水工隧洞设计规范》( DL/T 5195-2004)(电力行业标准,下称“电力隧洞规范”)《水工钢筋混凝土结构设计规范(试行)》(SDJ20-78)(以下简称“砼规” ) 《锚杆喷射混凝土支护技术规范》(GB 50086-2001) 2.2 参考资料 《深圳市公明水库调蓄工程初步设计报告》(深圳市水利规划设计院, 2007.05) 《G-12 隧洞衬砌内力及配筋计算通用程序》 《PC1500 程序集地下结构计算程序使用中的几个问题》(新疆水利厅,张校正) 《取水输水建筑物丛书-隧洞》 《水工设计手册-水电站建筑物》(水利电力出版社, 1989) 《水击理论与水击计算》(清华大学出版社, 1981) 《水力学-下册》(吴持恭,高等教育出版社,1982) 3计算方法 隧洞支护及衬砌结构按新奥法理论进行设计,支护型式采用锚喷支护通过工程类比确 定,喷锚支护类型及其参数参照电力隧洞规范附录 F 表 F.1 选取;衬砌型式采用钢筋混凝 土衬砌。根据隧洞规范 6.1.8 条第 2 点规定,围岩具有一定的抗渗能力、内水外渗可能造 成不良地质段的局部失稳,经处理不会造成危害者,宜提出一般防渗要求,本工程按限制

隧道结构力学分析计算书

有限元基础理论与 ANSYS应用 —隧道结构力学分析 专业: 姓名: 学号: 指导教师: 2014年12月

隧道结构力学分析

目录 目录 (2) 1. 问题的描述........................................................ 错误!未定义书签。 2. 建模.................................................................... 错误!未定义书签。 2.1 定义材料....................................................................... 错误!未定义书签。 2.2 建立几何模型............................................................... 错误!未定义书签。 2.3 单元网格划分 (5) 3. 加载与求解 (6) 3.1 施加重力加速度 (6) 3.2 施加集中力、荷载位移边界条件 (6) 4. 后处理 (8) 4.1 初次查看变形结果 (8) 4. 2 除去受拉弹簧网格.............. (9) 4.3 除去弹簧单元网格 (10) 4. 4 查看内力和变形结果 (11) 4. 5 绘制变形图 (12) 5. 计算结果对比分析 (14) 6. 结语 (14) 7. 在做题过程中遇到的问题及解决方法 (16) 8. 附录 (16)

山岭隧道结构力学分析 1.问题的描述 已知双线铁路隧道总宽为13.3米,高为11.08米,以III级围岩深埋段为例,隧道而衬厚度为35cm,带仰拱,采用钢筋混凝土C30=25kN/m3,弹性模量为31GPa,泊松比为0.2,。该段该隧道的埋深为5米,围岩平均重度为23kN/m3,侧压力系数为0.3,计算围岩高度为6.588m,地层弹性抗力系数为500MPa/m。 试分析结构的应力和变形 图1双线铁路隧道断面(cm)

模板台车设计计算书

隧道衬砌台车设计 计算书 中煤第三建设(集团)有限责任公司二O一二年四月二十七日

隧道衬砌台车设计计算书 一、台车系统结构概述 本台车适用于中煤第三建设(集团)有限责任公司,大连市地铁2号线工程项目,湾家站至红旗西路站区间、红旗西路至南松路区间隧道衬砌的模筑混凝土施工。 台车系统由模板系统、门架支撑系统、电液控制系统组成。支收模采用液压控制,行走采用电动自动行走系统。 模板结构: 台车模板长度为9m,共5榀支撑门架,门架间距为2.05m;上上纵连梁3根,单侧支撑连梁4根(结构见台车设计图)。 面板Q235,t=10mm钢板; 连接法兰-12*220钢板; 背肋,[12#槽钢,间距300mm; 门架采用H2940*200*8*12型钢; 底梁采用H482*300*11*15型钢; 上纵连梁采用H200*200*8*12型钢; 侧面模板支撑连梁采用双拼[16a#槽钢。 顶升油缸4个,侧向油缸4个,平移油缸2个;行走系统为两组主动轮系和两组被动轮系组成。电液控制系统一套。 二、设计计算依据资料 1、甲方提供的台车性能要求及工况资料、区间断面图纸;

2、《钢结构设计规范(GB50017—2003)》 3、《模板工程技术规范(GB50113—2005)》 4、《结构设计原理》 5、《铁路桥涵施工规范(TB10230—2002)》 6、《钢结构设计与制作安装规程》 7、《现代模板工程》 三、结构计算方法与原则 台车的主受力部件为龙门架、底粱、上部纵联H钢及钢模板,只需进行抗弯强度或刚度校核。 根据衬砌台车结构形式,各主要受力部件均不需要进行剪切强度校核和稳定性校核。 四、计算荷载值确定依据 泵送混凝土施工方式以20立方米/小时计。 混凝土初凝时间为t=4.5小时。 振动设备为50插入式振动棒和高频附着式振动器。 混凝土比重值取r=2.4t/m3=24kN/m3 ; 坍落度16—20cm。 荷载检算理论依据;以《模板工程技术规范(GB50113—2005)》中附录A执行。 钢材容许应力(单位;N/mm2)

隧道衬砌台车结构计算书

隧道衬砌台车结构计算 书 The manuscript was revised on the evening of 2021

XXXXXXXXXX引水隧道项目衬砌台车计算书 编制: 校核: 审核: 2017年10月

xxxxx项目衬砌台车计算书 1、《xxxxx施工图设计》 2、《衬砌台车结构设计图》 3、《钢结构设计规范》(GB 50017-2003) 4、《混凝土结构设计规范》(GB 50010-2002) 2. 概况 xxxxx隧道衬砌模板系统及台车布置图如下图。隧道二衬模板由一顶模、两侧模组成,模板均由6mm钢板按照二衬外轮廓线卷制而成。顶模模板拱架环向主肋采用I10工字钢,加工成R=1447mm,L=3650mm的圆弧拱形,拱架环向肋板间距1m,拱架纵肋采用∠45*45*6的角钢,间距30cm;侧模模板拱架环向肋板采用1524mm长的I14工字钢,侧模环向肋板在隧洞腰线以上部分加工成加工成R=1447mm,L=527mm的圆弧拱形,腰线以下加工成R=3327mm,L=997mm的圆弧拱形,拱架环向肋板间距1m,拱架纵肋采用∠45*45*6的角钢,间距30cm。 衬砌台车由顶拱支撑、台车门架结构、走行系统、顶升系统及侧模支撑系统组成,纵向共9m长。顶拱支撑采用H200×200×立柱,纵向焊接通长的∠45*45*6的角钢组成钢桁架,焊接于台车门市框架主横梁上,支撑顶模。衬砌台车门式框架立柱采用H200×200×型钢、横梁、纵梁均采用I20a工字钢焊接组成,其节点处焊接1cm厚的三角连接钢板缀片进行加固。本衬砌台车与顶拱支撑焊接为一个整体。进行顶模的安装及拆除时,在轨道两侧支垫20*20*60cm的枕木,枕木上安放千斤顶进行台车和顶拱支撑系统的整体升

隧道台车结构计算书

贵阳9米台车 结 构 计 算 书 一概括

模板台车就位完毕,整个台车两端各设一个底托传力到初支底面上。 枕木高度:H=200mm;钢轨型号为:43Kg/m(H=140mm);台车长度为9米,面板为δ10mm×1500mm,二衬混凝土灌注厚度0.5米,一次浇注成型。模板台车支架如图1。计算参照《建筑结构载荷规范》(GB5009-2001)、《混凝土结构工程施工质量验收规范》(GB50204-2002)、《水工混凝土施工规范》(DL/T5144-2001)、《钢结构设计规范》(GB50017-2003)。 模板支架图 二载荷计算 (1)载荷计算 1)上部垂直载荷 永久载荷标准值: 上部混凝土自重标准值:1.9×0.5×9×24=205.2KN

钢筋自重标准值:9.8KN 模板自重标准值:1.9×9×0.01×78.5=13.4KN 弧板自重标准值:9×0.3×0.01×2×78.5=4.2KN 台梁立柱自重:0.0068×(1.0 +1.25)×2×78.5=2.4KN 上部纵梁自重:(0.0115×5.2+0.015×1.9×2)×78.5=9.17KN 可变载荷标准值: 施工人员及设备载荷标准值:2.5KN/㎡ 振捣混凝土时产生的载荷标准值:2.0KN/㎡ 2)中部侧向载荷 永久载荷标准值: 新浇注混凝土对模板侧面的压力标准值: F=0.22r c t0β1β2v1/2=0.22×25×8×1.2×1.15×10.5=60.6KN/㎡ F=r c H=25×3.9=97.5KN/㎡ 取两者中的较小值,故最大压力为60.6KN/㎡ 有效压力高度h=2.42m 换算为集中载荷: 60.6×1.9×0.6=69.1KN 其中:F——新浇混凝土对模板的最大侧压力; r c——混凝土的表观密度; t0——新浇混凝土的初凝时间; v——混凝土的浇注速度; H——混凝土侧压力计算位置处至新浇混凝土顶面的总高度; β1——外加剂影响修正系数;

兴隆引水隧洞结构计算书2015.7.1

重庆市酉阳县龙潭河上游重点河段综合治理工程(兴隆镇) 隧洞衬砌计算书 计算书编号:J53-3E30-03 设计阶段:施工图设计阶段 编制单位:重庆分公司设计一室 设计:年月日 校核:年月日 审查:年月日 长江勘测规划设计研究有限责任公司 二〇一五年七月

目录 1 工程概况 (3) 2 设计依据 (3) 2.1 规范、规程 (3) 2.2 参考资料 (3) 3 计算方法 (4) 4 计算工况 (4) 4.1基本组合 (4) 4.2特殊组合 (4) 5 典型计算断面及其选择原则 (5) 6 荷载计算 (7) 6.1 围岩压力 (7) 6.2 弹性抗力 (8) 6.3 内水压力 (8) 6.4 外水压力 (8) 6.5 动水压力 (9) 6.6 灌浆压力 (9) 7 程序计算结果 (9)

重庆市酉阳县 兴隆镇排洪隧洞衬砌结构配筋计算书 1 工程概况 重庆市酉阳县梅江河支流龙潭河上游重点河段(兴隆镇)防洪排涝综合治理工程为重庆市中小流域治理规划建设项目。工程任务为城镇防洪排涝,保护对象为兴隆镇房屋和人口。工程等别为Ⅴ等,建筑物级别为5级,防洪标准为10年一遇。工程由引水渠,排洪隧洞等组成。进口引水渠总长588.31m,隧洞总长2915.68m。 工程方案为隧洞进口由胸墙控制,隧洞内按无压流设计,排洪隧洞的下泄洪水直接排入土坪河支流林木沟,隧洞出口设挑流消能。10年一遇洪水时,排洪隧洞设计下泄流量115.4m3/s。 据《中国地震动参数区划图》(GB 18306-2001),工程区区域地震动峰值加速度值于为0.05g,地震动反应谱特征周期0.35s,相应地震基本烈度Ⅵ度。 本工程建筑物可不进行抗震计算,建筑物可不设防。 2 设计依据 2.1 规范、规程 《水工隧洞设计规范》(SL279-2002)(以下简称“隧洞规范”) 《水工钢筋混凝土结构设计规范》(SL191-2008)(以下简称“砼规”) 《锚杆喷射混凝土支护技术规范》(GB 50086-2001) 《中华人民共和国工程建设标准强制性条文(水利工程部分)》2010年版; 2.2 参考资料 《重庆市酉阳县梅江河支流龙潭河上游重点河段(兴隆镇)综合治理工程

隧道衬砌计算

第五章隧道衬砌结构检算 5.1结构检算一般规定 为了保证隧道衬砌结构的安全,需对衬砌进行检算。隧道结构应按破损阶段法对构件截面强度进行验算。结构抗裂有要求时,对混凝土应进行抗裂验算。5.2 隧道结构计算方法 本隧道结构计算采用荷载结构法。其基本原理为:隧道开挖后地层的作用主要是对衬砌结构产生荷载,衬砌结构应能安全可靠地承受地层压力等荷载的作用。计算时先按地层分类法或由实用公式确定地层压力,然后按照弹性地基上结构物的计算方法计算衬砌结构的内力,并进行结构截面设计。 5.3 隧道结构计算模型 本隧道衬砌结构验算采用荷载—结构法进行验算,计算软件为ANSYS10.0。 取单位长度(1m)的隧道结构进行分析,建模时进行了如下简化处理或假定: ①衬砌结构简化为二维弹性梁单元(beam3),梁的轴线为二次衬砌厚度中线位置。 ②围岩的约束采用弹簧单元(COMBIN14),弹簧单元以铰接的方式支撑在衬砌梁单元之间的节点上,该单元不能承受弯矩,只有在受压时承受轴力,受拉时失效。计算时通过多次迭代,逐步杀死受拉的COMBIN14单元,只保留受压的COMBIN14单元。

图5-1 受拉弹簧单元的迭代处理过程 ③衬砌结构上的荷载通过等效换算,以竖直和水平集中力的模式直接施加到梁单元节点上。 ④衬砌结构自重通过施加加速度来实现,不再单独施加节点力。 ⑤衬砌结构材料采用理想线弹性材料。 ⑥衬砌结构单元划分长度小于0.5m。 隧道结构计算模型及荷载施加后如图5-2所示。

5.4 结构检算及配筋 本隧道主要验算明洞段、Ⅴ级围岩段和Ⅳ级围岩段衬砌结构。根据隧道规范深、浅埋判定方法可知,Ⅴ级围岩段分为超浅埋段、浅埋段和深埋段。Ⅳ级围岩段为深埋段。根据所给的材料基本参数和修改后的程序,得出各工况下的结构变形图、轴力图、建立图和弯矩图。从得出的结果可知,Ⅴ级围岩深埋段,所受内力均较大,故对此工况进行结构检算。 5.4.1 材料基本参数 (1)Ⅴ级围岩 围岩重度318.5/kN m γ=,弹性抗力系数300/k MPa m =,计算摩擦角 045?=o ,泊松比u=0.4。 (2) C25钢筋混凝土 容重325/kN m γ=,截面尺寸 1.00.6b h m m ?=?,弹性模量29.5Pa E G =。轴心抗压强度:12.5cd a f MP =;弯曲抗压强度:13.5cmd a f MP =;轴心抗拉强度: 1.33cd a f MP =;泊松比u=0.2; (3) HPB235钢筋物理力学参数 密度:37800/s kg m ρ=; 抗拉抗压强度:188std scd a f f MP ==; 弹性模量: 210s a E GP =; 5.4.2 结构内力图和变形图(Ⅴ级围岩深埋段) 5.4.3 结构安全系数 从上面的轴力图和弯矩图可知,需要对截面8、11、21、47、73进行检算, 而根据对称性可知只需要对截面8、11、47进行检算。 (1)配筋前检算 混凝土和砌体矩形截面轴心及偏心受压构件的抗压强度应按下式计算:

明挖隧道计算书

隧道结构检算计算书 一.E型截面 结构厚度为:底板厚120cm,侧墙底厚120cm,侧墙顶厚为55cm,抗拔桩径 为100cm。 采用荷载-结构法检算结构内力,基坑高度H=8.8m。 计算软件:midas civil(2006) 取土的重度值:γ=20kN/m3; 1、荷载计算:(计算断面取埋深最大处计算,水土分算) (1)侧水压力e w1 =0kN/m e w2=γ w ?H?ω =10?8.8?0.5 =44kN/m (2)侧土压力e t1 =0kN/m e t2=λ?(γ-γ w )?H =0.33?(20-10)?8.8 =29.04kN/m 基底水浮力P w =γ w ?(h 1 +H)?ω=10?(1.2+8.8)?0.5=50kN/m (3)边墙顶地面超载:q cz =20kN/m 边墙汽车冲击荷载: 冲击系数μ=20/(80+L)=20/(80+14)=0.213 q cj =q cz ?μ=20?0.213=4.26 kN/m 汽车超载引起侧压力 e cz =q cz ?λ=20?0.33=6.6 kN/m 汽车冲击荷载引起侧压力 ecj=q cj ?λ=4.26?0.33=1.41 kN/m (4)无地下水情况 侧土压力e t1 =0kN/m e t2 =λ?γ?H =0.33?20?8.8 =58.1kN/m。

(5)地层抗力 地层抗力是用地层弹簧来模拟的。地层抗力系数根据土层条件确定,按温克假定计算。在计算中,消除受拉的弹簧。 结合相近工程地质资料,弹性抗力系数取K=50MN/m3 2、荷载工况 (1)、自重 (2)、侧土压力 (3)、侧水压力 (4)、基底浮力 (5)、无地下水时侧土压力 (6)、汽车超载和冲击引起侧压力 其中1~5为永久作用,6为可变作用。 3、计算简图如下图所示。 计算简图 计算模型中采用梁单位模拟隧道结构的侧墙、底板和抗拔桩,在底板两端设置2个水平和竖向的约束,模拟抗浮牛腿的作用,侧墙、底板和抗拔桩分别设置土弹簧约束模拟地层对结构的作用,在计算中消除受拉的弹簧结构受力,计算所取纵向5m的平面框架有限元模型,相应的荷载在每延米数值的基础上。 4、荷载组合 荷载效应根据《建筑结构荷载规范》GB50009—2001的相关规定,并结合《公路桥涵设计通用规范》进行组合;荷载组合包括承载能力极限状态组合和正常使用状态长期组合和短期组合,几种荷载组合情况如下: (1)、cLCB1 承载能力极限状态(基本组合):

盾构区间隧道结构计算书

西场站~西村站~广州火车站~草暖公园区间盾构 隧道结构计算书 一、结构尺寸 隧道内径:5400;隧道外径:6000;管片厚度:300mm;管片宽度:1500mm。 二、计算原则 选择区间隧道地质条件较差、隧道埋深较大、地面有特殊活载(地面建筑物桩基、铁路线等)等不同地段进行结构计算。 三、计算模型 计算模型采用修正惯用设计法。考虑管片接头影响,进行刚度折减后按均质圆环进行计算;水平地层抗力按三角形抗力考虑;计算结果考虑管片环间错缝拼装效应的影响进行内力调整。弯曲刚度有效率η=0.8,弯矩增大系数ξ=0.3。计算简图如下图所示。使用ANSYS程序软件进行结构计算。 修正惯用设计法计算模型

计算模型节点划分 四、计算荷载 荷载分为永久荷载、活载、附加荷载和特殊荷载等四种。 1)永久荷载:管片自重、水土压力、上部建筑物基础产生的荷载。考虑地层特征采取水土合算或水土分算。 2)活载:地面超载一般按20KN/m2计;有列车通过地段按40KN/m2计。 3)附加荷载:施工荷载——盾构千斤顶推力,不均匀注浆压力,相邻隧道施工影响等。 4)特殊荷载:地震力——按抗震基本烈度为7度计算,人防荷载按六级人防计算,按动载化为静载计算。 五、内力计算 1、一般地段:地质条件较差、埋深较大地段(地面超载20KN/m2):里程YCK5+990

选取地质钻孔为MEZ2-A073。隧道埋深约33.9m,地下水位在地面下5.0m。地层由上至下分别为<1>-7.3m;<5-1>-39.2m;<5-2>-20m。隧道所穿过地层为<5-2>。隧道横断面与地层关系如下图所示: 隧道横断面与地层关系 2、列车通过地段:地面超载40KN/m2,里程YCK6+050 选取地质钻孔为MEZ2-A166。隧道埋深约35.5m,地下水位在地面下12.5m。地层由上至下分别为<1>-8.5m;<5-2>-12.7m;<6>-19.3m;<7>-20m。隧道所穿过地层为<6>。隧道横断面与地层关系如下图所示:

台车设计计算书

台车设计计算书 (一)工程概况及其对钢模版台车设计要求 1.钢模台车的制作和安装需执行GB50204-92《混凝土结构工程施工及验收规范》中相关要求。 2.钢模台车设计成边墙顶拱整体浇筑的自行式台车形势,并满足施工设备的通行要求,最下部横梁的距离底板砼面净高不低于4m。 3.钢模台车的支撑系统尽量设计成一种高度可叠加的模块式结构使之能适应宽度为12m,高度为8~10m衬砌洞室要求。 4.钢模板台车的结构设计必须要有准确的计算,确保在重复使用过程中结构稳定,刚度满足要求。对模板变形同样要有准确的计算,最大变形值不能超过2mm,且控制在弹性变形范围内。 5.模台车的设计长度为6m,满足圆弧段的混凝土衬砌要求。 6.一般位置衬砌厚度为0.35~1m,钢模台车设计时,承载混凝土按1.0m,设计按2.0m校核。 7.模台车面板伸缩系统采用液压传力杆,台车就为后按丝杆承载,不采用行走轮承载。 8.为避免顶拱浇筑产生空洞,顶模需设置2~3个封拱器。 9.模和顶模两侧设计窗口,以便进入和泵管下料。 10.模板台车两端及其它操作位置需设置操作平台和行人通道,平台和通道均应满足安全要求。 11.控制尺寸钢模台车外形控制尺寸,依据设计断面和其他相关施工要求和技术要求确定。(见正视图)。 12.该隧道一般位置衬砌厚度0.4~0.5m,钢模台车设计时,承载混凝土厚度按1.0m设计,按照2.0校核。 13.下通行的施工机械控制尺寸最高高度不低于4m。 A)台车轨距 2.8m B)浇筑段长度浇筑段长度 6m

14.模台车的设计方案 钢模台车的设计方案如图所示(正视图)。该台车的特点:完全采用液压式收模;电机驱动行走;横向调节位移也采用液压油缸。结构合理效果良好。 台车正视图 15.板设计控制数据 1、模板:控制数据(见下表) 3、台车机械设备控制数据(见下表)

隧道结构计算

重庆交通大学教案 第6章隧道结构计算 6.1 概述 6.1.1 引言 隧道结构工程特性、设计原则和方法与地面结构完全不同,隧道结构是由周边围岩和支护结构两者组成共同的并相互作用的结构体系。各种围岩都是具有不同程度自稳能力的介质,即周边围岩在很大程度上是隧道结构承载的主体,其承载能力必须加以充分利用。隧道衬砌的设计计算必须结合围岩自承能力进行,隧道衬砌除必须保证有足够的净空外,还要求有足够的强度,以保证在使用寿限内结构物有可靠的安全度。显然,对不同型式的衬砌结构物应该用不同的方法进行强度计算。 隧道建筑虽然是一门古老的建筑结构,但其结构计算理论的形成却较晚。从现有资料看,最初的计算理论形成于十九世纪。其后随着建筑材料、施工技术、量测技术的发展,促进了计算理论的逐步前进。最初的隧道衬砌使用砖石材料,其结构型式通常为拱形。由于砖石以及砂浆材料的抗拉强度远低于抗压强度,采用的截面厚度常常很大,所以结构变形很小,可以忽略不计。因为构件的刚度很大,故将其视为刚性体。计算时按静力学原理确定其承载时压力线位置,检算结构强度。 在十九世纪末,混凝土已经是广泛使用的建筑材料,它具有整体性好,可以在现场根据需要进行模注等特点。这时,隧道衬砌结构是作为超静定弹性拱计算的,但仅考虑作用在衬砌上的围岩压力,而未将围岩的弹性抗力计算在内,忽视了围岩对衬砌的约束作用。由于把衬砌视为自由变形的弹性结构,因而,通过计算得到的衬砌结构厚度很大,过于安全。大量的隧道工程实践表明,衬砌厚度可以减小,所以,后来上述两种计算方法已经不再使用了。进入本世纪后,通过长期观测,发现围岩不仅对衬砌施加压力,同时还约束着衬砌的变形。围岩对衬砌变形的约束,对改善衬砌结构的受力状态有利,不容忽视。衬砌在受力过程中的变形,一部分结构有离开围岩形成“脱离区”的趋势,另一部分压紧围岩形成所谓“抗力区”,如图6-1所示。在抗力区内,约束着衬砌变形的围岩,相应地产生被动抵抗力,即“弹性 94

相关主题
文本预览
相关文档 最新文档