高一数学期中考试试卷(必修1)
- 格式:doc
- 大小:177.50 KB
- 文档页数:5
2023-2024学年高一(上)期中数学试卷一、选择题:共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.(5分)已知集合A={1,2,3},集合B={x||x﹣1|<1},则A∩B=()A.∅B.{1}C.{1,2}D.{1,2,3} 2.(5分)已知x∈R,p:|x﹣2|<1,q:1<x<5,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(5分)命题“∃x∈(1,+∞),x2+2<0”的否定是()A.∃x∈(﹣∞,1],x2+2<0B.∃x∈(1,+∞),x2+2≥0C.∀x∈(1,+∞),x2+2>0D.∀x∈(1,+∞),x2+2≥04.(5分)下列函数中,f(x)和g(x)表示同一个函数的是()A.B.f(x)=1,g(x)=x0C.D.f(x)=|x+2|,5.(5分)已知不等式ax2+bx+c>0的解集为{x|x1<x<x2}且x1>0,则不等式cx2+bx+a>0的解集为()A.{x|x1<x<x2}B.{x|x>x2或x<x1}C.D.或6.(5分)已知函数,若函数f(x)=max{﹣x+1,x2﹣3x+2,x﹣1},则函数f(x)的最小值为()A.0B.1C.2D.37.(5分)已知正实数x,y满足2x+y+6=xy,记xy的最小值为a;若m,n>0且满足m+n=1,记的最小值为b.则a+b的值为()A.30B.32C.34D.368.(5分)已知函数f(x)满足f(x)+f(4﹣x)=4,f(x+2)﹣f(﹣x)=0,且f(1)=a,则f(1)+f(2)+f(3)+⋯+f(51)的值为()A.96B.98+a C.102D.104﹣a二、选择题(共4小题,每小题5分,满分20分)(多选)9.(5分)下列不等关系一定成立的是()A.若a>b,则B.若,则ab>0C.若,则a>0>bD.若a>b,a2>b2,则a>b>0(多选)10.(5分)已知x∈(1,+∞),下列最小值为4的函数是()A.y=x2﹣4x+8B.C.D.(多选)11.(5分)下列说法正确的是()A.“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件B.“0<a<4”是“ax2+ax+1>0在R上恒成立”的充要条件C.“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的必要不充分条件D.已知a,b∈R,则“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件(多选)12.(5分)已知x,y>0且满足x2+y2+1=(xy﹣1)2,则下列结论正确的是()A.xy≥2B.x+y≥4C.x2+y2≥8D.x+4y≥9三、填空题(共4小题,每小题5分,满分20分)13.(5分)已知函数,则函数f(x)的定义域为.14.(5分)已知函数f(x)满足,则函数f(x)的解析式为.15.(5分)已知函数,则f(﹣26)+f(﹣25)+⋯+f(﹣1)+f (1)+⋯+f(26)+f(27)的值为.16.(5分)已知x,y>0且满足x+y=1,若不等式恒成立,记的最小值为n,则m+n的最小值为.四、解答题:共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知集合A={x|x2﹣2x﹣3≤0},集合B={x|m﹣1<x<2m+1}.(1)当m=3时,求A∪B;(2)若“x∈A”是“x∈B”的必要不充分条件,求实数m的取值范围.18.(12分)已知函数f(x)=(2m2﹣m)x2m+3是幂函数,且函数f(x)的图象关于y轴对称.(1)求实数m的值;(2)若不等式(a﹣1)m<(2a﹣3)m成立,求实数a的取值范围.19.(12分)已知函数为定义在R上的奇函数.(1)求实数a,b的值;(2)求不等式|f(x)|≥3的解集.20.(12分)某高科技产品投入市场,已知该产品的成本为每件1000元,现通过灵活售价的方式了解市场,通过多日的市场销售数据统计可得,某店单日的销售额与日产量x(件)有关.当1≤x≤3时,单日销售额为(千元);当3≤x≤6时,单日销售额为(千元);当x>6时,单日销售额为21(千元).(1)求m的值,并求该产品日销售利润P(千元)关于日产量x(件)的函数解析式;(销售利润=销售额﹣成本)(2)当日产量x为何值时,日销售利润最大?并求出这个最大值.21.(12分)已知a,b,c是实数,且满足a+b+c=0,证明下列命题:(1)“a=b=c=0”是“ab+bc+ac=0”的充要条件;(2)“abc=1,a≥b≥c”是“”的充分条件.22.(12分)已知函数f(x)=ax2+bx+c(a≠0),满足f(0)=1,f(1)=3.(1)若函数f(x)有最小值,且此最小值为,求函数f(x)的解析式;(2)记g(a)为函数f(x)在区间[1,2]上的最大值,求g(a)的表达式.2023-2024学年高一(上)期中数学试卷参考答案与试题解析一、选择题:共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.(5分)已知集合A={1,2,3},集合B={x||x﹣1|<1},则A∩B=()A.∅B.{1}C.{1,2}D.{1,2,3}【分析】结合交集的定义,即可求解.【解答】解:集合A={1,2,3},集合B={x||x﹣1|<1}={x|0<x<2},故A∩B={1}.故选:B.【点评】本题主要考查交集及其运算,属于基础题.2.(5分)已知x∈R,p:|x﹣2|<1,q:1<x<5,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】根据题意,解绝对值不等式得1<x<3,结合充要条件的定义加以判断,即可得到本题的答案.【解答】解:根据题意,|x﹣2|<1⇒﹣1<x﹣2<1⇒1<x<3,由|x﹣2|<1可以推出1<x<5,且由1<x<5不能推出|x﹣2|<1.因此,若p:|x﹣2|<1,q:1<x<5,则p是q的充分不必要条件.故选:A.【点评】本题主要考查不等式的性质、充要条件的判断等知识,考查了计算能力、逻辑推理能力,属于基础题.3.(5分)命题“∃x∈(1,+∞),x2+2<0”的否定是()A.∃x∈(﹣∞,1],x2+2<0B.∃x∈(1,+∞),x2+2≥0C.∀x∈(1,+∞),x2+2>0D.∀x∈(1,+∞),x2+2≥0【分析】根据命题的否定的定义,即可求解.【解答】解:命题“∃x∈(1,+∞),x2+2<0”的否定是:∀x∈(1,+∞),x2+2≥0.故选:D.【点评】本题主要考查特称命题的否定,属于基础题.4.(5分)下列函数中,f(x)和g(x)表示同一个函数的是()A.B.f(x)=1,g(x)=x0C.D.f(x)=|x+2|,【分析】观察函数三要素,逐项判断是否同一函数.【解答】解:由题意得:选项A定义域不同,f(x)的定义域为R,g(x)中,x≠0;选项B定义域不同,f(x)的定义域为R,g(x)中,x≠0;选项C对应法则不同,g(x)=|x|;D项,三要素相同,为同一函数.故选:D.【点评】本题考查同一函数的判断,属于基础题.5.(5分)已知不等式ax2+bx+c>0的解集为{x|x1<x<x2}且x1>0,则不等式cx2+bx+a>0的解集为()A.{x|x1<x<x2}B.{x|x>x2或x<x1}C.D.或【分析】由题意可知,a<0,方程ax2+bx+c=0的两个根分别为x1,x2,再结合韦达定理求解即可.【解答】解:根据题意:a<0,方程ax2+bx+c=0的两个根分别为x1,x2,所以,,,,解得,即不等式的解集为{x|}.故选:C.【点评】本题主要考查了韦达定理的应用,考查了一元二次不等式的解法,属于基础题.6.(5分)已知函数,若函数f(x)=max{﹣x+1,x2﹣3x+2,x﹣1},则函数f(x)的最小值为()A.0B.1C.2D.3【分析】根据函数f(x)的定义可知,在一个坐标系中画出y=﹣x+1,y=x2﹣3x+2,y =x﹣1的图象,取最上面的部分作为函数f(x)的图象,由图象即可求出函数的最小值.【解答】解:根据题意,在同一个直角坐标系中,由﹣x+1=x2﹣3x+2,得x2﹣2x+1=0,解得x=1;由x2﹣3x+2=x﹣1,得x2﹣4x+3=0,解得x=3或x=1,所以f(x)=,同时画出函数y=﹣x+1,y=x2﹣3x+2,y=x﹣1,如图分析:所以函数f(x)的最小值为0.故选:A.【点评】本题考查利用函数的图象求函数的最值,属中档题.7.(5分)已知正实数x,y满足2x+y+6=xy,记xy的最小值为a;若m,n>0且满足m+n=1,记的最小值为b.则a+b的值为()A.30B.32C.34D.36【分析】由已知结合基本不等式先求出xy的范围,即可求a,然后利用乘1法,结合基本不等式可求b,进而可求a+b.【解答】解:∵xy=2x+y+6+6,当且仅当2x=y,即x=3,y=6时取等号,∴a=18.∵m+n=1,m>0,n>0.则=6,当且仅当n=3m且m+n=1,即m=,n=时取等号,∴,∴b=16;∴a+b=34.故选:C.【点评】本题主要考查了基本不等式在最值求解中的应用,属于基础题.8.(5分)已知函数f(x)满足f(x)+f(4﹣x)=4,f(x+2)﹣f(﹣x)=0,且f(1)=a,则f(1)+f(2)+f(3)+⋯+f(51)的值为()A.96B.98+a C.102D.104﹣a【分析】由已知结合函数的对称性先求出函数的周期,然后结合对称性及周期性即可求解.【解答】解:根据题意:函数f(x)满足f(x)+f(4﹣x)=4,可得函数f(x)关于点(2,2)成中心对称,函数f(x)满足f(x+2)﹣f(﹣x)=0,所以函数f(x)关于x=1对称,所以函数f(x)既关于x=1成轴对称,同时关于点(2,2)成中心对称,所以f(2)=2,T=4,又因为f(1)=a,所以f(3)=4﹣a,f(4)=f(﹣2)=f(﹣2+4)=f(2)=2,所以f(1)+f(2)+f(3)+f(4)=a+2+4﹣a+2=8,所以f(1)+f(2)+f(3)+⋯+f(51)=12[f(1)+f(2)+f(3)+f(4)]+f(1)+f(2)+f(3)=12×8+a+2+4﹣a=102.故选:C.【点评】本题主要考查了函数的奇偶性,对称性及周期性在函数求值中的应用,属于中档题.二、选择题(共4小题,每小题5分,满分20分)(多选)9.(5分)下列不等关系一定成立的是()A.若a>b,则B.若,则ab>0C.若,则a>0>bD.若a>b,a2>b2,则a>b>0【分析】由已知举出反例检验选项A,D;结合不等式的性质检验B,C即可判断.【解答】解:当a=1,b=﹣1时,A显然错误;若,则=<0,所以ab>0,B正确;若,即b﹣a<0,则=>0,所以ab<0,所以b<0<a,C正确;当a=2,b=﹣1时,D显然错误.故选:BC.【点评】本题主要考查了不等式的性质在不等式大小比较中的应用,属于基础题.(多选)10.(5分)已知x∈(1,+∞),下列最小值为4的函数是()A.y=x2﹣4x+8B.C.D.【分析】根据二次函数的性质检验选项A,结合基本不等式检验选项BCD即可判断.【解答】解:根据题意:选项A,y=x2﹣4x+8,根据二次函数的性质可知,x=2时取最小值4,故选A;,当且仅当时取最小值,不在x∈(1,+∞)范围内,故选项B错误;选项C,=,当且仅当,即x=3时成立,故选项C正确;选项D,,令,原式为,当且仅当t=,即t=2时等式成立,不在范围内,故选项D错误.故选:AC.【点评】本题主要考查了基本不等式及二次函数性质在最值求解中的应用,属于中档题.(多选)11.(5分)下列说法正确的是()A.“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件B.“0<a<4”是“ax2+ax+1>0在R上恒成立”的充要条件C.“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的必要不充分条件D.已知a,b∈R,则“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件【分析】根据充分必要条件的定义,对各个选项中的两个条件进行正反推理论证,即可得到本题的答案.【解答】解:对于选项A,a>1,b>1⇒a﹣1>0,b﹣1>0⇒(a﹣1)(b﹣1)>0,反之,若(a﹣1)(b﹣1)>0,则可能a=b=0,不能得出a>1,b>1.故“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件,A正确;对于选项B,ax2+ax+1>0在R上恒成立,当a=0时,可得1>0恒成立,而区间(0,4)上没有0,故“0<a<4”不是“ax2+ax+1>0在R上恒成立”的充要条件,B不正确;对于选项C,f(x)=x2﹣ax在(1,+∞)上单调递增,可以推出是a⩽2的子集,故“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的充分不必要条件,C不正确;对于选项D,a3+a2b﹣a2﹣ab+a+b=a2(a+b)﹣a(a+b)+(a+b)=(a+b)(a2﹣a+1),,ab>0⇎(a+b)>0,因此,“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件,D正确.故选:AD.【点评】本题主要考查了充分条件与必要条件的判断、不等式的性质、二次函数的单调性等知识,属于基础题.(多选)12.(5分)已知x,y>0且满足x2+y2+1=(xy﹣1)2,则下列结论正确的是()A.xy≥2B.x+y≥4C.x2+y2≥8D.x+4y≥9【分析】将所给等式化简整理,得到(x+y)2=x2y2,结合x,y>0可得x+y=xy,.由此出发对各个选项逐一加以验证,即可得到本题的答案.【解答】解:根据题意,x2+y2+1=(xy﹣1)2,即x2+y2=x2y2﹣2xy,整理得x2+y2+2xy =x2y2,所以x2+y2+2xy=x2y2,即(x+y)2=x2y2,而x、y均为正数,故x+y=xy,可得.对于A,,两边平方得x2y2≥4xy,可得xy≥4,故A错误;对于B,由A的计算可知x+y=xy≥4,当且仅当x=y=2时取到等号,故B正确;对于C,x2+y2=x2y2﹣2xy=(xy﹣1)2+1≥32﹣1=8,当且仅当x=y=2时取到等号,故C正确;对于D,,当且仅当x=2y,即时取到等号,故D正确.故选:BCD.【点评】本题主要考查了不等式的性质、基本不等式及其应用等知识,考查了计算能力、逻辑推理能力,属于中档题.三、填空题(共4小题,每小题5分,满分20分)13.(5分)已知函数,则函数f(x)的定义域为[﹣2,1].【分析】根据函数的解析式,列出使函数解析式有意义的不等式组,求出解集即可.【解答】解:函数∴﹣x2﹣x+2⩾0,解得﹣2⩽x⩽1.∴函数的定义域为[﹣2,1].故答案为:[﹣2,1].【点评】本题主要考查函数定义域的求解,属于基础题.14.(5分)已知函数f (x )满足,则函数f (x )的解析式为.【分析】利用解方程组的方法求函数解析式即可.【解答】解:根据题意:①,令代替x ,可得②,①﹣②×2得:,∴函数f (x )的解析式为.故答案为:.【点评】本题考查求函数解析式,属于基础题.15.(5分)已知函数,则f (﹣26)+f (﹣25)+⋯+f (﹣1)+f(1)+⋯+f (26)+f (27)的值为.【分析】根据已知条件,结合偶函数的性质,即可求解.【解答】解:令函数,可得函数f (x )=g (x )+2,∵函数为奇函数,∴g (﹣x )=﹣g (x )⇒g (﹣x )+g (x )=0,f (﹣26)+f (﹣25)+⋯+f (﹣1)+f (1)+⋯+f (26)+f (27)=g (﹣26)+g (﹣25)+⋯+g (﹣1)+g (1)+⋯+g (26)+g (27)+2×53=g (27)+2×53=.故答案为:.【点评】本题主要考查函数值的求解,属于基础题.16.(5分)已知x ,y >0且满足x +y =1,若不等式恒成立,记的最小值为n ,则m +n 的最小值为.【分析】由恒成立,可知左边的最小值大于等于9,因此求的最小值,结合基本不等式求出m+n的最小值.【解答】解:∵实数x,y>0满足x+y=1,∴x+y+1=2,而=,当时,等号成立,所以,解得m⩾8.而=,令,则原式,当时,等号成立,∴实数n的值为,可得实数m+n的最小值为.故答案为:.【点评】本题主要考查基本不等式及其应用,考查了计算能力、逻辑推理能力,属于基础题.四、解答题:共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知集合A={x|x2﹣2x﹣3≤0},集合B={x|m﹣1<x<2m+1}.(1)当m=3时,求A∪B;(2)若“x∈A”是“x∈B”的必要不充分条件,求实数m的取值范围.【分析】(1)把m=3代入求得B,再由并集运算求解;(2)“x∈A”是“x∈B”的必要不充分条件,得B⫋A,然后分B=∅和B≠∅分别求解m 的范围,取并集得答案.【解答】解:(1)∵集合A={x|x2﹣2x﹣3⩽0},由x2﹣2x﹣3⩽0,即(x+1)(x﹣3)⩽0,解得﹣1⩽x⩽3,∵集合B={x|m﹣1<x<2m+1},当m=3时,即B={x|2<x<7},∴A∪B={x|﹣1⩽x<7}.(2)“x∈A”足“x∈B”的必要不充分条件,可得集合B是集合A的真子集,当m﹣1⩾2m+1⇒m⩽﹣2时,集合B为空集,满足题意;当m﹣1<2m+1⇒m>﹣2时,集合B是集合A的真子集,可得,∴实数m的取值范围为{m|m⩽﹣2或0⩽m⩽1}.【点评】本题考查并集的运算,考查分类讨论思想,是中档题.18.(12分)已知函数f(x)=(2m2﹣m)x2m+3是幂函数,且函数f(x)的图象关于y轴对称.(1)求实数m的值;(2)若不等式(a﹣1)m<(2a﹣3)m成立,求实数a的取值范围.【分析】(1)结合幂函数的性质,以及偶函数的性质,即可求解;(2)结合函数的性质,即可求解.【解答】解:(1)由题意可知,2m2﹣m=1,解得m=或1,又∵函数f(x)关于y轴对称,当,满足题意;当m=1⇒f(x)=x5,此时函数f(x)为奇函数,不满足题意,∴实数m的值为;(2)函数,分析可得该函数在(0,+∞)单调递减,∴由(a﹣1)m<(2a﹣3)m可得:.∴实数a的取值范围为.【点评】本题主要考查函数的性质,是基础题.19.(12分)已知函数为定义在R上的奇函数.(1)求实数a,b的值;(2)求不等式|f(x)|≥3的解集.【分析】(1)当x<0时,﹣x>0,代入已知函数解析式,对比函数解析式即可求解a,b;(2)结合奇函数的对称性及二次不等式的求法即可求解.【解答】解:(1)根据题意:当x<0时,﹣x>0,则f(x)=﹣f(﹣x)=﹣[(﹣x)2+2(﹣x)]=﹣x2+2x,故a=﹣1,b=2;(2)当x⩾0时,|f(x)|⩾3可得f(x)⩾3,即x2+2x⩾3⇒x2+2x﹣3⩾0,解得x⩾1,根据奇函数可得:|f(x)|⩾3的解集为{x|x⩾1或x⩽﹣1}.【点评】本题主要考查了奇函数的定义在函数解析式求解中的应用,还考查了奇函数的对称性在不等式求解中的应用,属于中档题.20.(12分)某高科技产品投入市场,已知该产品的成本为每件1000元,现通过灵活售价的方式了解市场,通过多日的市场销售数据统计可得,某店单日的销售额与日产量x(件)有关.当1≤x≤3时,单日销售额为(千元);当3≤x≤6时,单日销售额为(千元);当x>6时,单日销售额为21(千元).(1)求m的值,并求该产品日销售利润P(千元)关于日产量x(件)的函数解析式;(销售利润=销售额﹣成本)(2)当日产量x为何值时,日销售利润最大?并求出这个最大值.【分析】(1)根据单日销售额函数,列方程求出m的值,再利用利润=销售额﹣成本,即可得出日销售利润函数的解析式.(2)利用分段函数求出每个区间上的最大值,比较即可得出结论.【解答】解:(1)根据题意知,单日销售额为f(x)=,因为f(3)=+6+3=+9,解得m=,因为利润=销售额﹣成本,所以日销售利润为P(x)=,化简为P (x )=.(2)根据题意分析:①日销售利润P (x )=+x +3=+(x +1)+2,令t =x +1=2,3,4,所以函数为,分析可得当t =2时,取最大值,其最大值为;②日销售利润P (x )=+2x =+2x =﹣+2x ,该函数单调递增,所以当x =6时,P (x )取最大值,此最大值为15;③日销售利润P (x )=21﹣x ,该函数单调递减,所以当x =7时,P (x )取最大值,此最大值为14;综上知,当x =6时,日销售利润最大,最大值为15千元.【点评】本题考查了分段函数模型应用问题,也考查了运算求解能力,是中档题.21.(12分)已知a ,b ,c 是实数,且满足a +b +c =0,证明下列命题:(1)“a =b =c =0”是“ab +bc +ac =0”的充要条件;(2)“abc =1,a ≥b ≥c ”是“”的充分条件.【分析】(1)根据完全平方公式,等价变形,可证出结论;(2)利用基本不等式,结合不等式的性质加以证明,即可得到本题的答案.【解答】证明:(1)∵(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac ,充分性:若a =b =c =0,则ab +bc +ac =0,充分性成立;必要性:若ab +bc +ac =0,由a +b +c =0,得(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac ,所以a 2+b 2+c 2=0,可得a =b =c =0,必要性成立.综上所述,a =b =c =0是ab +bc +ac =0的充要条件;(2)由a ⩾b ⩾c ,且abc =1>0,可知a >0,b <0,c <0,由a +b +c =0,得,当且仅当b =c 时等号成立,由,得,a 3⩾4,可知≤a =﹣b ﹣c ≤﹣2c ,解得,因此,abc=1且a⩾b⩾c是的充分条件.【点评】本题主要考查等式的恒等变形、不等式的性质与基本不等式等知识,考查了计算能力、逻辑推理能力,属于基础题.22.(12分)已知函数f(x)=ax2+bx+c(a≠0),满足f(0)=1,f(1)=3.(1)若函数f(x)有最小值,且此最小值为,求函数f(x)的解析式;(2)记g(a)为函数f(x)在区间[1,2]上的最大值,求g(a)的表达式.【分析】(1)根据题意,由f(0)=1,f(1)=3分析可得f(x)=ax2+(2﹣a)x+1,由二次函数的最小值求出a的值,进而计算可得答案;(2)根据题意,由二次函数的性质分a>0与a<0两种情况讨论,分析g(a)的解析式,综合可得答案.【解答】解:(1)根据题意,函数f(x)=ax2+bx+c满足f(0)=1,f(1)=3,则有f(0)=c=1,f(1)=a+b+c=3,变形可得b=2﹣a,函数f(x)=ax2+(2﹣a)x+1,∵函数f(x)有最小值,∴a>0,函数f(x)的最小值为=,解可得:a=4或1,∴当a=4时,b=﹣2,函数f(x)的解析式为f(x)=4x2﹣2x+1;当a=1时,b=1,函数f(x)的解析式为f(x)=x2+x+1.(2)根据题意,由(1)的结论,f(x)=ax2+(2﹣a)x+1,是二次函数,分2种情况讨论:①当a>0时,i.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(2)=2a+5,ii.当对称轴时,与a>0矛盾,故当a>0时,函数f(x)在区间[1,2]上的最大值g(a)=2a+5;②当a<0时,i.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(1)=3,ii.当对称轴时,函数f(x)在区间[1,2]上的最大值,iii.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(2)=2a+5.综上所述,【点评】本题考查函数的最值,涉及二次函数的性质,属于中档题.。
普通高中数学必修一期中测试题(含答案)本页仅作为文档页封面,使用时可以删除This document is for reference only-rar21year.March必修一第一学期期中考试高一数学试题本试卷满分150分 考试时间120分钟一、选择题(每小题5分,共60分)1.设{}{}{}5,3,5,4,2,1,60|==≤<∈=S P x N x U ,则S C P U 等于( ) A .{}4,2,1 B .{}6,5,4,2,1 C .{}2,1 D .{}6,3,2,1 2.集合{}1,0的所有非空真子集的个数为( ) A .1 B .2 C .3 D .4 3.函数()x x f lg =为( )A.奇函数,在区间()+∞,0上是减函数B.奇函数,在区间()+∞,0上是增函数C.偶函数,在区间()0,∞-上是减函数D.偶函数,在区间()0,∞-上是增函数4.下列四组函数中,表示相等函数的一组是( ) A .2)(,)(x x g x x f == B .33)(,)(x x g x x f ==C .0)1()(,)(-==x x g x x f D .3)(,39)(2-=+-=x x g x x x f5.已知n m a a ==5log ,3log ,则n m a +2的值是( )6.某林场计划第一年造林10000亩,以后每年比前一年多造林20%,则第四年造林为( )亩 亩 亩 亩7.下列函数中在区间[]2,1上有零点的是( ) A.()5432+-=x x x f B. ()553--=x x x fC. ()63ln +-=x x x fD. ()63-+=x e x f x8.函数a x y +-=与x a y -=(0>a 且1≠a ) 在同一坐标系中的图象可能为( )A .B .C .D .9.若函数()x f y =的定义域是[]1,0,则函数()()()121+++=x f x f x F 的定义域是( )A. ⎥⎦⎤⎢⎣⎡-0,21B.⎥⎦⎤⎢⎣⎡-1,21C.[]0,1-D. ⎥⎦⎤⎢⎣⎡-21,110.函数()()2122+-+=x a ax x f 在区间()4,∞-上为减函数,则a 的取值范围为( ) A.510≤<a B. 510≤≤a C.510<<a D.51>a 11.已知2.03.023.0,2,3.0log ===c b a ,则c b a ,,三者的大小关系是( ) A.a c b >> B. c a b >> C. c b a >> D. a b c >>12.定义在R 上的奇函数()x f 在()+∞,0上是增函数,又()03=f ,则不等式()0<⋅x f x 的解集为( )A.()()3,00,3⋃-B. ()()+∞⋃-∞-,33,C. ()()+∞⋃-,30,3D. ()()3,03,⋃-∞- 二、填空题(每小题5分,共20分)13.已知集合{}{}a x x B x x A ≥=≤=|,1|,且R B A =⋃,则实数a 的取值范围为_______14.)(x f 为R 上奇函数,当0≥x 时,x x x f 2)(2+=,则当0<x 时,=)(x f 15.函数()23log 32-=x y 的定义域为_________________16.二次函数c bx ax y ++=2中,若0<ac ,则函数的零点个数是个.三、解答题(共70分,写出必要的步骤与过程)17.(10分)已知集合{}{}81|,53|<≤=<≤=x x B x x A ,求()B A C B A C R R ⋂⋃)(, 18.(12分)已知集合A={}31|≤≤-x x ,集合B={}R m R x m x m x ∈∈+≤≤-,,22 (1)若]3,0[=B A ,求实数m 的值; (2)若B C A R ⊆,求实数m 的取值范围。
2023-2024学年天津一中高一(上)期中数学试卷一、选择题:(每小题3分,共30分)在每小题给出的四个选项中,只有一项是符合题目要求的1.已知全集U={x|0≤x<5,x∈N*},集合P={1,2,3},Q={2,4},则(∁U P)∪Q=()A.{0,2,3,4}B.{2,4}C.{2,3,4}D.{1,2,4}2.“a=b”是“a+b2=√ab”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.存在量词命题p:∃x∈[﹣1,1],x2﹣1≤0的否定是()A.∀x∈[﹣1,1],x2﹣1>0B.∀x∈[﹣1,1],x2﹣1≥0 C.∃x∈[﹣1,1],x2﹣1>0D.∃x∈[﹣1,1],x2﹣1≥0 4.已知a,b∈R,则下列命题正确的是()A.若a>b,则a2≠b2B.若a2≠b2,则a>bC.若a>b,则a2>b2D.若a>|b|,则a2>b25.已知x>y>z,且x+y+z=1,则下列不等式中恒成立的是()A.xy>yz B.x|y|>z|y|C.xy>xz D.xz≥yz6.已知函数f(x)的定义域为(0,+∞),且满足f(x)+2f(1x )=5x+4x,则f(x)的最小值为()A.2B.3C.4D.2√27.若函数f(x)=2ax2+bx+c的部分图象如图所示,则f(5)=()A.−13B.−23C.−16D.−1128.定义在R上的奇函数f(x),满足f(12+x)=f(12−x),在区间[−12,0]上递增,则()A.f(0.3)<f(√2)<f(2)B.f(2)<f(0.3)<f(√2)C .f (0.3)<f (2)<f (√2)D .f (√2)<f (2)<f (0.3)9.已知a ,b ∈R ,若√4a 2+b 2⋅√a 2+4b 2a 2+b2的最大值为m ,且不等式x 2﹣ax +b <0的解集为(1,2m ),则a +b =( ) A .3B .43C .7D .1110.定义区间长度m 为这样的一个量:m 的大小为区间右端点的值减去区间左端点的值,若关于x 的不等式x 2﹣ax ﹣6a <0有解,且解集的区间长度不超过5个单位长,则a 的取值范围是( ) A .(﹣∞,25]∪[1,+∞) B .[﹣25,﹣24)∪(0,1] C .[﹣25,0)∪(1,24) D .[﹣25,1]二、填空题:(每小题4分,共24分) 11.已知函数f(x)=√2+x 1√16−x 的定义域为 .12.已知命题p :x >m ,q :2+x ﹣x 2<0,如果命题p 是命题q 的充分不必要条件,则实数m 的取值范围是 .13.某班共48人,其中25人喜爱篮球运动,20人喜爱乒乓球运动,16人对这两项运动都不喜爱,则既喜爱篮球运动又喜爱乒乓球运动的人数为 .14.已知函数f(x)={x +3,x ≤0√x ,x >0,若f (a ﹣3)=f (a +2),则f (a )= .15.已知函数f(x)={x 2−(a +4)x +5,x <2(2a −3)x ,x ≥2在R 上单调递减,则实数a 的取值范围为 .16.定义在R 上的函数f (x )满足f (﹣x )=f (x ),且当x ≥0时,f (x )={−x 2+1,0≤x <11−x ,x ≥1,若对任意的x ∈[m ,m +1],不等式f (1﹣x )≤f (x +m )恒成立,则实数m 的最大值为 . 三、解答题:(本题共4小题,共46分)解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知集合A ={x |x 2﹣2x =0},B ={x |x 2+(m ﹣1)x ﹣m 2+1=0} (1)若A ∩B ={2},求实数m 的取值范围; (2)若A ∩B =B ,求实数m 的取值范围. 18.(12分)已知a >0,b >0,2a +b =2. (1)求b a +4b的最小值;(2)求4a 2+8ab +b 2的最大值. 19.(12分)已知函数f(x)=x 2+2x.(1)求f(1),f(2)的值;(2)判断函数f(x)在区间(1,+∞)的单调性并证明;(3)若不等式f(x−1)≥2(x−1)+2x−1+m对一切x∈[1,6]恒成立,求实数m的取值范围.20.(12分)已知函数f(x)=x+1−aa−x(x∈R且x≠a).(1)求f(x)+f(2a﹣x)的值;(2)当函数f(x)的定义域为[a+12,a+1]时,求f(x)的值域;(3)设函数g(x)=x2+|(x﹣a)f(x)|,求g(x)的最小值.2023-2024学年天津一中高一(上)期中数学试卷参考答案与试题解析一、选择题:(每小题3分,共30分)在每小题给出的四个选项中,只有一项是符合题目要求的1.已知全集U={x|0≤x<5,x∈N*},集合P={1,2,3},Q={2,4},则(∁U P)∪Q=()A.{0,2,3,4}B.{2,4}C.{2,3,4}D.{1,2,4}解:因为U={x|0≤x<5,x∈N*}=U={1,2,3,4},所以(∁U P)∪Q={4}∪{2,4}={2,4}.故选:B.2.“a=b”是“a+b2=√ab”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解:a=b<0时,a+b2=√ab不成立,“a=b”不是“a+b2=√ab”的充分条件;a+b2=√ab时,有a≥0且b≥0,a+b−2√ab=0,即(√a−√b)2=0,得a=b,故“a=b”是“a+b2=√ab”的必要条件;所以“a=b”是“a+b2=√ab”的必要不充分条件.故选:B.3.存在量词命题p:∃x∈[﹣1,1],x2﹣1≤0的否定是()A.∀x∈[﹣1,1],x2﹣1>0B.∀x∈[﹣1,1],x2﹣1≥0 C.∃x∈[﹣1,1],x2﹣1>0D.∃x∈[﹣1,1],x2﹣1≥0解:命题是特称命题,则命题的否定是:∀x∈[﹣1,1],x2﹣1>0.故选:A.4.已知a,b∈R,则下列命题正确的是()A.若a>b,则a2≠b2B.若a2≠b2,则a>bC.若a>b,则a2>b2D.若a>|b|,则a2>b2解:对于A,当a=﹣b时,如a=2,b=﹣2时a2=b2成立,故A错误;对于B,当a=1,b=2,显然a2≠b2,但a<b,故B错误;对于C,当a=2,b=﹣3时,显然a>b,但a2<b2,故C错误;对于D,a>|b|,则a2>|b|2=b2,故D正确.故选:D.5.已知x>y>z,且x+y+z=1,则下列不等式中恒成立的是()A.xy>yz B.x|y|>z|y|C.xy>xz D.xz≥yz解:当x=2,y=0,z=﹣1时,不等式xy>yz,x|y|>z|y|,xz≥yz均不成立,故选项A、B、D错误;因为x>y>z,且x+y+z=1,所以x>0,所以xy>xz,故选项C正确.故选:C.6.已知函数f(x)的定义域为(0,+∞),且满足f(x)+2f(1x )=5x+4x,则f(x)的最小值为()A.2B.3C.4D.2√2解:由f(x)+2f(1x )=5x+4x,取x=1x,则f(1x)+2f(x)=5x+4x,联立解得f(x)=x+2x,x∈(0,+∞).∴f(x)=x+2x≥2√x⋅2x=2√2,当且仅当x=2x,即x=√2时等号成立.∴f(x)的最小值为2√2.故选:D.7.若函数f(x)=2ax2+bx+c的部分图象如图所示,则f(5)=()A.−13B.−23C.−16D.−112解:根据题意,函数f(x)=2ax2+bx+c,由函数的图象,其定义域为{x|x≠2且x≠4},在区间(2,4)上,f(x)>0,且当x=3时,f(x)取得最小值1,在区间(﹣∞,2)和(4,+∞)上,f(x)<0,设g(x)=ax2+bx+c,则g(x)=0的两个零点为2和4,必有a<0,且当x=3时,g(x)取得最大值2,则有{−ba =2+4=6c a =2×4=89a +3b +c =2,解可得{a =−2b =12c =−16,则f (x )=2−2x 2+12x−16=−1x 2−6x+8, 则f (5)=−13.故选:A .8.定义在R 上的奇函数f (x ),满足f (12+x )=f (12−x ),在区间[−12,0]上递增,则( )A .f (0.3)<f(√2)<f(2)B .f (2)<f (0.3)<f (√2)C .f (0.3)<f (2)<f (√2)D .f (√2)<f (2)<f (0.3)解:定义在R 上的奇函数f (x ),满足f (12+x )=f (12−x ),可得f (x )的图象关于直线x =12对称,由f (﹣x )=﹣f (x ),f (﹣x )=f (x +1), 可得f (x +2)=﹣f (x +1)=f (x ), 即f (x )的周期为2,奇函数f (x )在区间[−12,0]上递增,可得f (x )在(0,12)递增,由f (x )的图象关于直线x =12对称,可得f (x )在(12,1)递减,即有f (12)>f (0)=0,f (−12)<0,f (0.3)>0,即有f (2)=f (0)=0,f (√2)=f (1−√2)<0, 可得f (√2)<f (2)<f (0.3), 故选:D .9.已知a ,b ∈R ,若√4a 2+b 2⋅√a 2+4b 2a 2+b2的最大值为m ,且不等式x 2﹣ax +b <0的解集为(1,2m ),则a +b =( ) A .3B .43C .7D .11解:根据不等式xy ≤x 2+y 22可得√4a 2+b 2⋅√a 2+4b 2≤4a 2+b 2+a 2+4b 22=52(a 2+b 2),当且仅当4a 2+b 2=a 2+4b 2,即a 2=b 2时等号成立, 所以,√4a 2+b 2⋅√a 2+4b 2a 2+b 2≤52,所以m =52.所以,不等式x2﹣ax+b<0的解集为(1,5).根据一元二次不等式的解集与一元二次方程解的关系可知,1和5是方程x2﹣ax+b=0的两个解,由根与系数的关系知{1+5=a1×5=b,解得{a=6b=5,所以a+b=11.故选:D.10.定义区间长度m为这样的一个量:m的大小为区间右端点的值减去区间左端点的值,若关于x的不等式x2﹣ax﹣6a<0有解,且解集的区间长度不超过5个单位长,则a的取值范围是()A.(﹣∞,25]∪[1,+∞)B.[﹣25,﹣24)∪(0,1]C.[﹣25,0)∪(1,24)D.[﹣25,1]解:∵关于x的不等式x2﹣ax﹣6a<0有解,∴Δ=a2+24a>0,解得a>0或a<﹣24.由x2﹣ax﹣6a=0解得.x1=a−√△2,x2=a+√△2∵x1<x2,∴不等式解集为(x1,x2),∵解集的区间长度不超过5个单位长x2﹣x1≤5,解得﹣25≤a≤1,∵a>0或a<﹣24,∴﹣25≤a<﹣24或0<a≤1.故选:B.二、填空题:(每小题4分,共24分)11.已知函数f(x)=√2+x√16−x2的定义域为[﹣2,4).解:由题意得函数f(x)=√2+x1√16−x2要有意义,需满足{2+x≥016−x2>0,解得﹣2≤x<4,即函数f(x)=√2+x1√16−x2的定义域为[﹣2,4).故答案为:[﹣2,4).12.已知命题p:x>m,q:2+x﹣x2<0,如果命题p是命题q的充分不必要条件,则实数m的取值范围是[2,+∞).解:不等式2+x﹣x2<0,即x2﹣x﹣2>0,解得x<﹣1或x>2.设A={x|x>m},B={x|x<﹣1或x>2},由命题p是命题q的充分不必要条件,可知A⫋B,所以有m≥2,即实数m的取值范围是[2,+∞).故答案为:[2,+∞).13.某班共48人,其中25人喜爱篮球运动,20人喜爱乒乓球运动,16人对这两项运动都不喜爱,则既喜爱篮球运动又喜爱乒乓球运动的人数为 13 .解:某班共48人,其中25人喜爱篮球运动,20人喜爱乒乓球运动,16人对这两项运动都不喜爱, 设两项运动都喜欢的人数为x ,作出维恩图,可得:25﹣x +x +20﹣x +16=48,解得x =13, 则既喜爱篮球运动又喜爱乒乓球运动的人数为13. 故答案为:13.14.已知函数f(x)={x +3,x ≤0√x ,x >0,若f (a ﹣3)=f (a +2),则f (a )= √2 .解:当a +2≤0,即a ≤﹣2时,则由f (a ﹣3)=f (a +2)可得,a =a +5,无解; 当a ﹣3≤0,且a +2>0,即﹣2<a ≤3时,由f (a ﹣3)=f (a +2)可得,a =√a +2,所以a >0, 整理可得,a 2﹣a ﹣2=0,解得a =﹣1(舍去)或a =2; 当a ﹣3>0,即a >3时,由f (a ﹣3)=f (a +2)可得,√a −3=√a +2,无解. 综上所述,a =2. 所以,f(a)=f(2)=√2. 故答案为:√2.15.已知函数f(x)={x 2−(a +4)x +5,x <2(2a −3)x ,x ≥2在R 上单调递减,则实数a 的取值范围为 [0,76] .解:函数f(x)={x 2−(a +4)x +5,x <2(2a −3)x ,x ≥2在R 上单调递减,则{2a −3<0a+42≥24−2(a +4)+5≥2(2a −3),解得0≤a ≤76,即实数a 的取值范围为[0,76].故答案为:[0,76].16.定义在R 上的函数f (x )满足f (﹣x )=f (x ),且当x ≥0时,f (x )={−x 2+1,0≤x <11−x ,x ≥1,若对任意的x ∈[m ,m +1],不等式f (1﹣x )≤f (x +m )恒成立,则实数m 的最大值为 −13.解:因为 f (﹣x )=f (x ),x ∈R ,所以函数f (x )为偶函数, 又当x ⩾0时,f (x )={−x 2+1,0≤x <11−x ,x ≥1是减函数,所以不等式 f (1﹣x )⩽f (x +m ),等价于不等式 f (|1﹣x |)⩽f (|x +m |), 即|1﹣x |⩾|x +m |,平方化简得 2(m +1)x ⩽1﹣m 2, 当m +1=0时,x ∈R ,符合题意,所以m =﹣1; 当m +1>0,即 m >﹣1时 ,x ⩽1−m2,又x ∈[m ,m +1], 所以 m +1⩽1−m 2,解得 m ⩽−13,所以−1<m ⩽−13; 当m +1<0,即m <﹣1 时,x ⩾1−m2,又x ∈[m ,m +1], 所以m ⩾1−m 2,解得m ⩾13,这与m <﹣1矛盾,舍去. 综上,−1⩽m ⩽−13,因此实数 m 的最大值是 −13.三、解答题:(本题共4小题,共46分)解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知集合A ={x |x 2﹣2x =0},B ={x |x 2+(m ﹣1)x ﹣m 2+1=0} (1)若A ∩B ={2},求实数m 的取值范围; (2)若A ∩B =B ,求实数m 的取值范围.解:(1)因为A ={x |x 2﹣2x =0}={0,2},由A ∩B ={2}可得2∈B , 则22+2(m ﹣1)﹣m 2+1=0, 化简可得m 2﹣2m ﹣3=0, 解得m =﹣1或m =3,当m =﹣1时,x 2+(m ﹣1)x ﹣m 2+1=0⇒x 2﹣2x =0,则B ={0,2},此时A ∩B ={0,2},不满足题意; 当m =3时,x 2+(m ﹣1)x ﹣m 2+1=0⇒x 2+2x ﹣8=0,则B ={4,2},此时A ∩B ={2},满足题意; 所以m =3.(2)由A ∩B =B 可得,B ⊆A ,当B =∅时,Δ=(m ﹣1)2+4(m 2﹣1)<0, 化简可得5m 2﹣2m ﹣3<0,解得−35<m <1;当B为单元素集合时,Δ=(m﹣1)2+4(m2﹣1)=0,解得m=−35或m=1,当m=−35时,x2+(m−1)x−m2+1=0⇒x2−85x+1625=0,解得x=45,即B={45},不满足B⊆A;当m=1时,x2+(m﹣1)x﹣m2+1=0⇒x2=0,解得x=0,即B={0},满足B⊆A;当B为双元素集合时,则其两个元素分别是0,2,由韦达定理得{Δ=(m−1)2+4(m2−1)>0−(m−1)=0+2−m2+1=0×2,解得m=﹣1,此时x2+(m﹣1)x﹣m2+1=0⇒x2﹣2x=0,即B={0,2},满足B⊆A,综上所述,m∈(−35,1]∪{1}.18.(12分)已知a>0,b>0,2a+b=2.(1)求ba +4b的最小值;(2)求4a2+8ab+b2的最大值.解:(1)a>0,b>0,2a+b=2,所以ba+4b=ba+2(2a+b)b=ba+4ab+2≥2√ba⋅4ab+2=6,当且仅当ba=4ab且2a+b=2,即a=12,b=1时等号成立,故ba+4b的最小值为6.(2)由2a+b=2≥2√2ab,得ab≤12,当且仅当2a=b且2a+b=2,即a=12,b=1时等号成立,4a2+8ab+b2=(2a+b)2+4ab=4+4ab≤4+4×12=6,故4a2+8ab+b2的最大值为6.19.(12分)已知函数f(x)=x2+2x.(1)求f(1),f(2)的值;(2)判断函数f(x)在区间(1,+∞)的单调性并证明;(3)若不等式f(x−1)≥2(x−1)+2x−1+m对一切x∈[1,6]恒成立,求实数m的取值范围.解:(1)f(x)=x2+2x,则f(1)=1+2=3,f(2)=4+1=5.(2)函数f(x)在区间(1,+∞)的单调递增,证明如下:任取1<x1<x2,则f(x1)−f(x2)=x12+2x1−(x22+2x2)=(x12−x22)+(2x1−2x2)=(x1−x2)(x1+x2−2x1x2),由1<x1<x2,得x1﹣x2<0,x1+x2>2,x1x2>1,2x1x2<2,x1+x2−2x1x2>0,则f(x1)﹣f(x2)<0,即f(x1)<f(x2),所以函数f(x)在区间(1,+∞)的单调递增.(3)不等式f(x−1)≥2(x−1)+2x−1+m,即(x﹣1)2﹣2(x﹣1)≥m,依题意有(x﹣1)2﹣2(x﹣1)≥m对一切x∈[1,6]恒成立,(x﹣1)2﹣2(x﹣1)=(x﹣1)2﹣2(x﹣1)+1﹣1=(x﹣2)2﹣1,由1≤x≤6,得﹣1≤x﹣2≤4,0≤(x﹣2)2≤16,﹣1≤(x﹣2)2﹣1≤15,则有﹣1≥m,实数m的取值范围(﹣∞,﹣1].20.(12分)已知函数f(x)=x+1−aa−x(x∈R且x≠a).(1)求f(x)+f(2a﹣x)的值;(2)当函数f(x)的定义域为[a+12,a+1]时,求f(x)的值域;(3)设函数g(x)=x2+|(x﹣a)f(x)|,求g(x)的最小值.解:(1)已知函数f(x)=x+1−aa−x(x∈R且x≠a).则f(x)+f(2a−x)=x+1−aa−x+2a−x+1−aa−2a+x=x+1−aa−x+a−x+1x−a=x+1−a−a+x−1a−x=−2.(2)f(x)=1−(a−x)a−x=−1+1a−x,由a+12≤x≤a+1,有−a−1≤−x≤−a−1 2,得−1≤a−x≤−1 2,则有−2≤1a−x≤−1,可得−3≤−1+1a−x≤−2,所以f(x)值域为[﹣3,﹣2].(3)由题意,函数g(x)=x2+|(x﹣a)f(x)|,所以g(x)=x2+|x+1﹣a|(x≠a),①当x≥a﹣1且x≠a时,g(x)=x2+x+1−a=(x+12)2+34−a,如果a−1≥−12,即a≥12时,g(x)min=g(a−1)=(a−1)2;如果a−1<−12,即a<12且a≠−12时,g(x)min=g(−12)=34−a;如果a=−12时,g(x)无最小值.②当x<a﹣1时,g(x)=x2−x−1+a=(x−12)2+a−54;如果a−1>12,即a>32时,g(x)min=g(12)=a−54;如果a−1≤12,即a≤32时,g(x)min=g(a−1)=(a−1)2,当a>32时,(a−1)2−(a−54)=(a−32)2>0,当a<12时,(a−1)2−(34−a)=(a−12)2>0,综上所述,当a<12且a≠−12时,g(x)的最小值是34−a;当12≤a≤32时,g(x)的最小值是(a﹣1)2;当a>32时,g(x)的最小值是a−54;当a=−12时,g(x)无最小值.。
北师大版高一数学必修1上期中试题及答案高一数学期中试卷(满分120分,考试时间90分钟)一、选择题(共12小题,每小题4分,共48分)1.设集合 $A=\{(x,y)|y=-4x+6\}$,$B=\{(x,y)|y=5x-3\}$,则 $A\cap B=$()A。
$\{1,2\}$ B。
$\{x=1,y=2\}$ C。
$\{(1,2)\}$ D。
$(1,2)$2.已知函数 $f(x)$ 是定义在 $[1-a,5]$ 上的偶函数,则$a$ 的值是()A。
0 B。
1 C。
6 D。
-63.若 $a>0$ 且 $a\neq1$,则函数 $y=ax-1$ 的图像一定过点()A。
$(0,1)$ B。
$(0,-1)$ C。
$(1,0)$ D。
$(1,1)$4.若 $f(x)=x+1$,则 $f^{-1}(2)=$()A。
3 B。
2 C。
1 D。
$-1/3$5.下列四个图像中,是函数图像的是()A。
B。
C。
D。
6.下列函数中既是奇函数,又在区间 $(0,+\infty)$ 上单调递增的是()A。
$y=-x^2$ B。
$y=1/x$ C。
$y=x+1/x$ D。
$y=e^{|x|}$7.若方程 $2ax^2-x-1=0$ 在 $(0,1)$ 内恰好有一个解,则$a$ 的取值范围是()A。
$a1$ C。
$-1<a<1$ D。
$a\leq1$8.已知函数 $f(x)=\begin{cases} \log_2x & (x>1) \\ x^3 & (x\leq1) \end{cases}$,则 $f[f(9)]=$()A。
1 B。
3 C。
4 D。
99.为了得到函数 $y=3x$ 的图像,可以把函数 $y=3|x|$ 的图像()。
A。
向左平移3个单位长度 B。
向右平移3个单位长度C。
向左平移1个单位长度 D。
向右平移1个单位长度10.设 $a=\log_{0.3}4$,$b=\log_43$,$c=0.3^{-2}$,则$a$、$b$、$c$ 的大小关系为()A。
班级 ________ 姓名___________ .学号__________ 分数《必修一期中备考综合测试卷(一)》(A卷)(测试时问:120分钟满分:150分)第I卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分•在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列给出的命题正确的是()A.高中数学课本中的难题可以构成集合B.有理数集Q是最大的数集C.空集是任何非空集合的真子集D.自然数集N中最小的数是1【答案】C【解析】难题不具有确定性,不能构造集合,A错误;实数集R就比有理数集Q犬,疗错误;空集是任何非空集合的真子集,C正确;自然数集N中最小的数是0, D错误;故选C・2.若P={x|x<l),Q={x|x>-l},则()A. PcQB. QcpC. C(! P cQD. Qc Q, P【答案】C【解析】C v P={x|x^l},而Q二{x|x>T},故有C v PCQ故选C.3.已知集合N, P为全集U的子集,且满足McpcN,则下列结论不正确的是()A. [uNcQPB. C N P C GMC. (C U P) AM=0D. ((>M) AN=0【答案】D【解析】因为PUN,所以C V N C QP,故A正确;因为Mcp,所以C N P C C N M,故B正确;因为MCP,所以(CiP) AM=0,故C正确;因为MG N,所以(C U M)DNH0.故D不正确. 故选D.4.[2018届黑龙江省佳木斯市鸡东县第二中学高三第一次月考】若集合A = {l,2,4,8},B = {x|2x<5}, 则A c B =()A. {1}B. {2}C. {1,2}D. {1,2,3}【答案】C【解析】B = {x|2A <5} =(^o,log25)/.AnB = {l,2},选B.5.【2018届福建省数学基地校高三联考】下列函数屮,定义域是R且为增函数的是()A. y = e~xB. y = x^C. y = larD. y = x【答案】B【解析】分别画出四个函数的图象,如图:故选B.6.【2018届广西钦州市高三第一次检测】已知集合A = {1, 2, 3, 4},集合B = {3,4, 5, 6},集合C=AnB, 则集合C的子集的个数为()A. 1B. 2C. 3D. 4【答案】D【解析】2, 3, 4}, B={3, 4, 5, 6},/.C=AnB={l, 2, 3, 410(3, 4, 5, 6} = {3, 4打•:集合C的子集为0, {3},⑷,{3, 4} f共4个.故选:D・7.集合A= {-1,0,1}, A的子集中含有元素0的子集共有()A. 2个B. 4个C. 6个D. 8个【答案】B【解析】含有元素0的子集有{0}, {0,-1}, {0,1}, {0,-1, 1},共4个.故选B.8.[2018届福建省数学基地校高三联考】函数/(对二 _ 的定义域为()71og2x-lA. (0,2)B.「(0,2]C. (2,4W)D. [2,-H X))【答案】C【解析】因为log 2x>l=>x>2,所以选C.X 2,XG [-1,0]9. 函数/(%) = { 1 ([的最值情况为()-,xe(O,ll x A.最小值0,最大值1 B.最小值0,无最大值 C.最小值0,最大值5 D.最小值1,最大值5【答案】B【解析1 xe [-1,0], f(x)的最大值为1,最小值为0; xe(o,l]时,f(x)e [1,+8)无最大值,有最小{Hl,所以f(x)有最小值0,无最大值.故选B.10. 若函数/(尢)的定义域为[—2,2],则函数/(x+l) + /(l-2x)的定义域为() 1 ~| [ 1 ~| 1~ 3~A. —, 1B. —, 2C. [—2,21rD. —3,—_ 2」 L 2」 L 」|_ 2_【答案】A【解析】因为函数/(x)的定义域为[-2=2],所以函数/(x+l)+/(l-2x)中有:-2<x+l<2 -2<l-2x<2故选A.( )A. 4B. —4C. 1 r 1 _D.―一 4 4【答案】 C【解析】 /(-2)= 2-2 =1 _ 4故选C.即函数/(x+l) + /(l-2x)的定义域为11.【2018届新疆呼图壁县第一屮学高三9月】设/(x) = {-J x + 22Xx>0 x<0,求f(-2)的值12. 【2018届甘肃省武威市第六屮学高三第一次】若a 满足a + lga = 4, b 满足b + 10b = 4,函数 f (x )=F + (a ;:)::2zO 则关于x 的方程f (x )=x 解的个数是() A. 1 B. 2 C. 3 D. 4【答案】C【解析】Ta 满足a + 1駅=4, b 满足b + 10b = 4,.・・a, b 分别为函数y = 4-泻函数y = lgx, y = 10週象 交点的横坐标,由于y = x^y = 4-X @象交点的横坐标为2,函数y = lgx, y = 10啲图象关于y = x 对称, y2 1 Ay -L 0 丈 V・・.a + b = 4, .I 函数f (x )=' 一 ,当XMO 时,关于x 的方程f (x ) = x,即P + 4X+2二須 2, x> 0即疋+ 3x4-2=0, /.X = -2或x = -1,满足题鼠 当x > 0时,关于x 的方程f (x ) = x,即x = 2,满足题意, ・•・关于x 的方程f (x ) = x 的解的个数是3,故选C.第II 卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 【2018届浙江省温州市高三9月测试】(J log2S = ___________ ・【答案】;【解析】@10§23= 2』諮=210g23 = |,故答案为*(1 \14.【2018届河北省石家庄二中八月模拟】已知幕函数/(兀)的图彖经过点-,V2,M/(x ) = 丿_1【答案】x 4[ 1 1V2=>c^ = --,所以/(x) = x 4,应填答案兀J 15. 【2018届宁夏育才中学高三第一次月考】函数y = lo&(x+l ) + 2(d>0且dHl )恒过定点A,则A 的坐【解析】由题意- 丿标为____ .【答案】(0, 2)【解析】log 」=0.・.x = 0R 寸y = 2,即A 的坐标为(0, 2).(3X - 1 x > 016. [2018届贵•州省贵阳市第一中学高三月考一】已知函,数f (x )=L ;x2_;;;:0'若方程£(*)=皿有3个不等的实根,则实数m 的取值范围是 __________ . 【答案】(0, 2)【解析】画出函数图像,得二次函数最高•点位(-12),常函数y = m 和曲线有三个交点,则位于x 轴上方, 最高点「下方即可•故得m e (0,2).三、解答题(本大题共6小题,共70分•解答应写出文字说明、证明过程或演算步骤・)17. (本小题 10 分)计算:(1)(0.064戶 + (-2)‘ 3+16_0-75+(0.25)251 19 【答案】(1) —;(2)—16 4【解析】试题分析:(1)主要利用指数幕的运算法则(a ,n )n =a ,,ut 即可得出;(2)利用对数的运算法则、换 底公式即可得出.2 2 16 8 2 16(2)原式ulogQ 石+lgl00+2 +些•坐=—丄 + 4 + 1= —lg2 21g3 4418. (本小题12分)已知函数/(x) = {x 2+l,-l<x<l2x + 3,x v -1(1) 求 /(/(/(-2)))的值。
考试时间:100分钟,满分100分.一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.下列关系正确的是:A .Q ∈2B .}2{}2|{2==x x x C .},{},{a b b a = D .)}2,1{(∈∅2.已知集合}6,5,4,3,2,1{=U ,}5,4,2{=A ,}5,4,3,1{=B ,则)()(B C A C U U ⋃A .}6,3,2,1{B .}5,4{C .}6,5,4,3,2,1{D .}6,1{ 3.下列函数中,图象过定点)0,1(的是A .x y 2=B .x y 2log =C .21x y = D .2x y =4.若b a ==5log ,3log 22,则59log 2的值是: A .b a -2B .b a -2C .b a 2D .ba25.函数3log )(3-+=x x x f 的零点所在的区间是A .(0,1)B .(1,2)C .(2,3)D .(3,+∞) 6.已知函数ax x x f +=2)(是偶函数,则当]2,1[-∈x 时,)(x f 的值域是: A .]4,1[ B .]4,0[ C .]4,4[- D .]2,0[8.某林场计划第一年造林10 000亩,以后每年比前一年多造林20%,则第四年造林 A .14400亩 B .172800亩 C .17280亩 D .20736亩9.设c b a ,,均为正数,且a a21log 2=,b b 21log 21=⎪⎭⎫ ⎝⎛,c c2log 21=⎪⎭⎫ ⎝⎛.则A .c b a <<B .a b c <<C .b a c <<D .c a b <<10.已知函数()log a f x x =(0,1a a >≠),对于任意的正实数,x y 下列等式成立的是A .()()()f x y f x f y +=B .()()()f x y f x f y +=+C .()()()f xy f x f y =D . ()()()f xy f x f y =+二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卷中的横线上.11.若幂函数()f x 的图象过点2,2⎛ ⎝⎭,则()9f = _________12.函数()f x =的定义域是13. 用二分法求函数)(x f y =在区间]4,2[上零点的近似解,经验证有0)4()2(<⋅f f 。
高一数学(必修1)期中测试题(全卷满分150分,考试时间120分钟)班级 姓名一、选择题(本大题共12小题,每小题5分,共60分)1.设全集{}1,2,3,4,5,6,7U =,{}1,2,3,4,5P =,{}3,4,5,6,7Q =,则Q C p U =( )(A ){}1,2 (B ){}3,4,5 (C ){}1,2,6,7 (D ){}1,2,3,4,52.已知集合{}{}|47,|23M x x N x x x =-≤≤=<->或,则M N 为(A ){}|4237x x x -≤<-<≤或 (B ){}|4237x x x -<≤-≤<或(C ){}|23x x x ≤->或 (D ){}|23x x x <-≥或3. 下列四个函数中,与y =x 表示同一函数的是 ( )A.y =(x )2B.y =33xC.y =2xD.y =xx 24.函数 x x y 3112-++=的定义域是 ( )⎥⎦⎤ ⎝⎛-31,21.A ⎪⎭⎫ ⎝⎛-31,21.B ⎥⎦⎤⎢⎣⎡-31,21.C ⎥⎦⎤ ⎝⎛31,21.D 5.已知函数⎩⎨⎧<≥=0,0,2)(2x x x x x f ,则=-)]2([f f ( ) (A )16 (B )8 (C )-8 (D )8或-86. 在(2)log (5)a b a -=-中,实数a 的取值范围是 ( )A 、52a a ><或B 、2335a a <<<<或C 、25a <<D 、34a <<7.下列函数是偶函数的是( )A. x y =B. 322-=x yC. 21-=xy D. ]1,0[,2∈=x x y 8. 三个数3.0222,3.0log ,3.0===c b a 之间的大小关系是( )A b c a <<. B.c b a << C. c a b << D.a c b <<9. 下列指数式与对数式互化不正确的一组是( )A. 01ln 10==与eB. 31log 218218)31(-==-与 C. 3929log 213==与 D. 7717log 17==与10. 当10<<a 时,在同一坐标系中,函数x y a y a x log ==与的图象是( )A B C D11.函数652-+-=x x y 的零点是( )A. —2 ,3B. 2 ,3C. 2 ,—3D. —2 , —312.设()833-+=x x f x ,用二分法求方程()2,10833∈=-+x x x 在内近似解的过程中得()()(),025.1,05.1,01<><f f f 则方程的根在区间( )A.(1, 1.25)B.(1.25, 1.5)C.(1.5, 2)D.不能确定二、填空题(共4小题.每小题4分,共16分.)13、已知幂函数)(x f y =的图象过点)2,2(,则)9(f = ;14. 若 =+=-x x x 44,1log 43则15.当[]1,1-∈x 时,函数()23-=x x f 的值域为16.1992年底世界人口达到54.8亿,若人口的年平均增长率为x ℅,2005年底世界人口为y(亿),那么y 与x 的函数关系式为三、解答题(本大共5小题,共74分.)17、已知集合A={}0652=+-x x x ,B={}01=-mx x ,且B B A = ,求由实数m 所构成的集合M ,并写出M 的全部子集。
2024-2025学年高一数学上学期期中模拟卷01
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:人教A版2019必修第一册第一章~第三章。
5.难度系数:0.65。
第一部分(选择题共58分)
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
或C或D
由图知:()040f x x >⇒-<<.故选D.
二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部
选对的得6分,部分选对的得部分分,有选错的得0分.
第二部分(非选择题共92分)三、填空题:本题共3小题,每小题5分,共15分。
四、解答题:本题共5小题,共77分。
解答应写出文字说明、证明过程或演算步骤。
15.(13分)
的取值范围为.
16.(15分)
17.(15分)
18.(17分)
19.(17分)。
高一数学必修一期中试卷及答案1、已知,当时,求(). [单选题] * A.7B.-7(正确答案)C.0D.无法确定2. 下列语句中是集合的是() [单选题] *A.浙江的所有高楼大厦的全体B.面积较小的三角形的全体C.与0相差不多的数的全体D.中国队的女排运动员的全体(正确答案)3.的定义域是(). [单选题] *A.(-∞,0)B.(0,+∞)C.(-∞,+∞)(正确答案)D.∅4.函数,则当时,(). [单选题] *A.1B.10(正确答案)C.-10D.-35.已知 A={a,0},B={1,2}, A∩B={1},则(). [单选题] * A.1(正确答案)B.1,2C.2D.06.,此函数是()函数. [单选题] *A.一次函数B.二次函数(正确答案)C.反比例函数D.正比例函数7.选出下列选项中正确的一项,4(). [单选题] * A.∈(正确答案)B.∉C.D.8.,,则的结果是(). [单选题] *A.{1,2,3,4,5,6}B.{1,2,3,4,6}C.{2,6}(正确答案)D.∅9.集合,用区间的形式表示出来是(). [单选题] *A. (-∞,7)B. (0,7)C. (7, +∞)(正确答案)D.∅10.已知m,n为实数,则∣m∣=∣n∣是的()条件. [单选题] * A.充分B.必要C.既不充分也不必要D.充分必要(正确答案)11.比较大小() [单选题] *A.>B.<(正确答案)C.≥D.≤12. 下列关系正确的是() [单选题] *A.0∈c80937d345258f239c80937d345258f239b630bd428ad-20221229-13401620.png' />B.π∈QC. ∈R(正确答案)D. ∈Q13.下列关系中,正确的是() [单选题] *A. ∅∈{a}B.a∉{a}C.{a}∈{a,b}D.a∈{a,b}(正确答案)14. 设集合M={x|x},a=4,则下列正确的关系是() [单选题] *A.a∉M(正确答案)B.{a}∈MC. a∈MD.{a}∉M15. 集合M={x|2≤x≤8,且x Z},则集合M元素个数为() [单选题] *A.6B.64C.7(正确答案)D.12816. 集合A={1,2,4,7,9},B={1,3,5,6,7,9},则A B=() [单选题] *A.{1,2,3,4,5,6,7,9}B.{1,7,9}(正确答案)C.{2,4,3,5}D. ∅17. 若M={2,4,6},N={1,3},则M N=() [单选题] *A.{1,2,4}B.{1,2,3,4,6}(正确答案)C. ∅D.{ ∅}18. 集合M={(x ,y)|x+y=2},N={(x ,y)|x-y=4},则集合M N为() [单选题] *A.x=3,y=-1B.(3,-1)C.{3, -1}D.{(3,-1)}(正确答案)19. 设集合A={1},B={1,2},C={1,2,3},则(A B) C=() [单选题] *A.{1,2,3}B.{1,2}(正确答案)C.{1}D.{3}20. 已知全集U=R,A={x|x1},则=() [单选题] *A.{x|x>1}B.{x|0C.{x|x<1}(正确答案)D. ∅21.下列命题正确的是() [单选题] *A. 若a>-(正确答案)b,则c+a>c-bB.若a>b,则a-b>2d则ac>bdD.若a>b,c>b,则a>c22.若a>b,则(). [单选题] *A.b ²≤a ²B.a²>b²C.a²≤b²D.以上都不对(正确答案)23.若,则下列关系式中正确的是(). [单选题] * A. 2x>x²>xB. x²>2x>xC. 2x>x>x²(正确答案)D. x²>x>2x24.不等式的解集为(). [单选题] *A. (-∞,2)∪(3, +∞)B. (-∞,-1) ∪(6, +∞)(正确答案)C.(2,3)D.(-1,6)25.不等式+->0的解集为(). [单选题] *A.(–1,3)(正确答案)B.(–3,1)C.(-∞,–1 )∪(3,+ ∞)D.(-∞,3)26.解集为{x|x<–2或x>3}的不等式为(). [单选题] * A.(x+1)(x-2)<0B.(x+2)(x-3)>0(正确答案)C.x2–2x–3>0D.x2-2x-3<027.若不等式的解集是(-4,3),则c的值等于(). [单选题] * A.12B.-12(正确答案)C.11D.-1128.若|m-5|=5-m,则m的取值是(). [单选题] *A.m >5B.m≥5C.m<5D.m≤5.(正确答案)29.求不等式︱-1︱≤2的解集为(). [单选题] *A.(-∞,3]B.[-1,+∞)C.[-1,3](正确答案)D.(-∞,-1)∪(3,+∞)30.设不等式的解集为(-1,2),则=(). [单选题] *A.1/4B.1/2C.2/3D.3/2(正确答案)31.已知函数的定义域是() [单选题] * A.{x|x≥1}(正确答案)B.{x|x≤1}C. {x|x>1}D. {x|x<1}32.与函数相等的函数是() [单选题] * A. y=(x+1) ºB. y=t+1(正确答案)C.D. y=|x+1|33.设函数f(x)=则f(3)=() [单选题] * A.0.2B.3C.2/3(正确答案)D.13/934.函数的定义域为() [单选题] * A. (1, +∞)B. [1, +∞)C. [1,2)D.[1,2) ∪(2, +∞)(正确答案)35.已知函数,其定义域为() [单选题] *A.{x|x≥1或x≤-3}B. {x|-1≤x≤3}C.{x|x≥3或x≤-1}(正确答案)D. {x|-3≤x≤1}36.已知函数,则f(f(4))=() [单选题] *A.-2B.0C.4(正确答案)D.1637.已知函数f(x)=ax³+bx+4(a,b不为零),且,则等于() [单选题] *A.-10B.-2(正确答案)C.-6D.1438.设函数f(x)=x²+2(4-a)x+2在区间 (-∞,3]上是减函数,则实数a的取值范围是() [单选题] *A.a≥-7B.a≥7(正确答案)C.a≥3D.a≤-739.已知函数,若,则的值是(). [单选题] * A.-2(正确答案)B.2或-2.5C.2或-2D.2或-2或-2.540.一个偶函数定义在[-7,7]上,它在[0,7]上的图象如图所示,下列说法正确的是()[单选题] *A.这个函数仅有一个单调增区间B.这个函数有两个单调减区间C.这个函数在其定义域内有最大值是7(正确答案)D.这个函数在其定义域内有最小值是-741.如果偶函数在区间(0,1)上是减函数且最大值为3,则在区间(-1,0)上是() [单选题] *A.增函数且最大值为3(正确答案)B.增函数且最小值为3C.减函数且最大值为3D.减函数且最小值为342.本场考试需要2小时,在本场考试中,钟表的时针转过的弧度数为() [单选题] *A.B.(正确答案)C.D.43.930°=() [单选题] *A.B.C.D.(正确答案)44.将轴正半轴绕原点逆时针旋转30°,得到角α,则下列与α终边相同的角是() [单选题] *A.330°B.-330°(正确答案)C.210°D.-210二、判断题,正确的打√,错误的打×(每小题2分,共6题,共12分)1. 集合可以写成. [判断题] *对(正确答案)错2.是一个函数解析式. [判断题] *对错(正确答案)3.集合,集合,则集合. [判断题] *对错(正确答案)4.是空集. [判断题] *对错(正确答案)5.. [判断题] *对(正确答案)错6.,其中元素一共有5个. [判断题] *对(正确答案)错。
高一年级数学学科(期中试卷)说明:本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共120分,时间90分钟第I 卷一、选择题(每小题5分,共50分) 1.设集合A={x ∈Z|x >-1},则( )A 、A ∅∈ BA C 、0A ∈ D 、{}2-A2.方程062=+-px x 的解集为M ,方程062=-+q x x 的解集为N ,且}2{=⋂N M ,那么=+q p ( )A 、21B 、8C 、6D 、7 3.下列四组函数中,表示相等函数的一组是( ) A 、2)(,)(x x g x x f == B 、22)()(,)(x x g x x f ==C 、1)(,11)(2+=--=x x g x x x f D 、1)(,11)(2-=-∙+=x x g x x x f 4.已知集合}1{},4,2{},4,3,2,1{===A B I ,则)(B C A I ⋃等于( ) A 、{1} B 、{1,3} C 、{3} D 、{1,2,3} 5.图中阴影部分所表示的集合是( )A .)]([C A CB U ⋃⋂ B.)()(C B B A ⋃⋃⋃ C.)()(B C C A U ⋂⋃ D. )]([C A C B U ⋂⋃6.设集合A 和B 都是自然数集,映射f :A →B 把A 中的元素 n 映射到B 中的元素2n +n ,则在映射f 下,象3的原象是( ) A.1 B.3 C.9 D.117.已知函数xxx x f -++=11)(的定义域是( ) A 、),1[+∞- B 、]1,(--∞ C 、),1()1,1[+∞- D 、R 8.已知:f (x -1)=x 2,则f (x+1)=( )A .(x -1)2B .(x+1)2C .(x+2)2D .x 2+2 9.若偶函数)(x f 在(]1,-∞-上是增函数,则下列关系式中成立的是( )A .)2()1()23(f f f <-<- B .)2()23()1(f f f <-<-C .)23()1()2(-<-<f f fD .)1()23()2(-<-<f f f10. 在物理实验课上,小明用弹簧称将铁块A 悬于盛有水的水槽中,然后匀速向上提起,直至铁块完全露出水面一定高度,则下图能反映弹簧称的读数y (单位N )与铁块被提起的高度x (单位cm )之间的函数关系的大致图象是( )第II 卷二、填空题(每小题4分,共16分) 11. 设1,(0)(), (0)0, (0)x x f x x x π⎧⎪⎨⎪⎩+>==<,则{[(1)]}f f f -=_______________12. 某航空公司规定,乘机所携带行李的重量 (kg )与其运费(元)由如图的一次函数图象确定,那么乘客可免费携带行李的最大重量为 .13. 设()f x 是R 上的奇函数,且当[)0,x ∈+∞时,()(1f x x =,则当(,0)x ∈-∞时,()f x =_____________________。
高一数学必修一期中考试试题及答案一、选择题1.(20 13年高考四川卷)设集合a={1,2,3},集合b={ -2,2},则a∩b等于( b )(a) (b){2}(c){-2,2} (d){-2,1,2,3}解析:a∩b={2},故挑选b.(a){2} (b){0,2}(c){-1,2} (d){-1,0,2}解析:依题意得集合p={-1,0,1},(a)1个 (b)2个 (c)4个 (d)8个4.(年高考全国新课标卷ⅰ)已知集合a={x|x2-2x>0},b={x|-(a)a∩b= (b)a∪b=r解析:a={x|x>2或x<0},∴a∪b=r,故挑选b.5.已知集合m={x ≥0,x∈r},n={y|y=3x2+1,x∈r},则m∩n等于( c )(a) (b){x|x≥1}(c){x|x>1} (d){x|x≥1或x<0}解析:m={x|x≤0或x>1},n={y|y≥1}={x|x≥1}.∴m∩n={x|x>1},故选c.6.设子集a={x + =1},子集b={y - =1},则a∩b等同于( c )(a)[-2,- ] (b)[ ,2](c)[-2,- ]∪[ ,2] (d)[-2,2]解析:集合a表示椭圆上的点的横坐标的取值范围a=[-2,2],集合b表示双曲线上的点的纵坐标的取值范围b=(-∞,- ]∪[ ,+∞),所以a∩b=[-2,- ]∪[ ,2].故选c.二、填空题7.( 年高考上海卷)若集合a={x|2x+1>0},b={x||x-1|<2},则a∩b=.解析:a={x x>- },b={x|-1所以a∩b={x -答案:{x -解析:因为2∈a,所以 <0,即(2a-1)(a- 2)>0,Champsaura>2或a< .①若3∈a,则 <0,即为( 3a-1)(a-3)>0,解得a>3或a< ,①②挑关连得实数a的值域范围就是∪(2,3].答案: ∪(2,3]若a≠0,b=(- ),∴- =-1或- =1,∴a=1或a=-1.所以a=0或a=1或a=-1组成的集合为{-1,0,1}.答案:{-1,0,1}10.已知集合a={x|x2+ x+1=0},若a∩r= ,则实数m的取值范围是.解析:∵a∩r= ,∴a= ,∴δ=( )2-4<0,∴0≤m<4.答案:[0,4)11.已知集合a={x|x2-2x-3>0},b={x|x2+ax+b≤0},若a∪b=r,a∩b={x| 3解析:a={x|x<-1或x>3},∵a∪b=r,a∩b={x|3∴b={x|-1≤x≤4},即方程x2+ax+b=0的两根为x1=-1,x2=4.∴a=-3,b=-4,∴a+b=-7.答案:-7三、解答题12.未知子集a={-4,2a-1,a2},b={a-5,1-a,9},分别谋适宜以下条件的a的值.(1)9∈(a∩b);(2){9}=a∩b.解:(1) ∵9∈(a∩b),∴2a-1= 9或a2=9,∴a=5或a=3或a=-3.当a=5时,a={-4,9,25},b={0,-4,9};当a=3时,a-5=1-a=-2,不满足集合元素的互异性;当a=-3时,a={-4,-7,9},b={-8,4,9},所以a=5或a=-3.(2)由(1)所述,当a=5时,a∩b={-4,9},相左题意,当a=-3时,a∩b={9}.所以a=- 3.13.已知集合a={x|x2-2x-3≤0};b={x|x2-2mx+m2-4≤0,x∈r,m∈r}.(1)若a∩b=[0,3],谋实数m的值;解:由已知得a={x|-1≤x≤3},b={x|m-2≤x≤m+2}.(1)∵a∩b=[0,3],∴∴m=2.∴m-2>3或m+2<-1,即m>5或m<-3.14.设u=r,子集a={x |x2+3x+2=0},b={x|x2+(m+1)x+m=0},若解:a={x|x=-1或x=-2},方程x2+(m+1)x+m=0的根是x1=-1,x2=-m,当-m=-1,即m=1时,b={-1},当-m≠-1,即m≠1时,b={-1,-m},∴-m=-2,即m=2.所以m=1或m=2.集合的三个特性(1)无序性指集合中的元素排列没有顺序,如集合a={1,2},集合b={2,1},则集合a=b。
高一级第一学期期中调研考试数学考生注意:1.本试卷分选择题和非选择题两部分。
满分150分,考试时间120分钟。
2.考生作答时,请将答案答在答题卡上。
选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题....区域书写的答案无效.........,在试题卷....、草稿纸上作答无效........。
3.本卷命题范围:新人教版必修第一册第一章~第四章。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若集合{123}A =,,,{}223B x x x =->,则A B =A .{12},B .∅C .{23},D .{1}2.命题“R x ∃∈,||0x ”的否定是A .R x ∀∈,||0x ≥B .R x ∃∈,||0x <C .R x ∀∈,||0x <D .R x ∃∉,||0x <3.若a b >,则下列不等式中成立的是 A .11<a bB .33a b >C .22a b >D .a b >4.函数y =的定义域为 A .(12)-,B .(02),C .[12)-,D .(12]-,5.某企业一个月生产某种商品x 万件时的生产成本为2()410C x x x =++(万元)。
一万件售价是30万元,若商品能全部卖出,则该企业一个月生产该商品的最大利润为 A .139万元B .149万元C .159万元D .169万元6.已知集合2{Z |Z}1A x x =∈∈-,则集合A 的真子集的个数为 A .13B .14C .15D .167.若0.33a =,3log 0.3b =,13log 3c =,则a ,b ,c 的大小关系为 A .b c a <<B .c a b <<C .a b c <<D .b a c <<8.若函数()f x 是奇函数,且在定义域R 上是减函数,(2)3f -=,则满足3(3)3f x -<-<的实数x 的取值范围是 A .(15),B .(24),C .(36),D .(25),二、选择题:本题共4小题,每小题5分,共20分。
A高一数学(必修1)第I 卷 选择题(共60分)一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U ={0,1,2,3,4},M ={0,1,2},N ={2,3},则(C u M )∩N =A .B .C .D .{}4,3,2{}2{}3{}4,3,2,1,02.设集合,,给出如下四个图形,其中能表示从集{}02M x x =≤≤{}02N y y =≤≤合到集合的函数关系的是M NA .B .C .D .3. 设,用二分法求方程内近似解的过程中()833-+=x x f x()2,10833∈=-+x x x在得,则方程的根落在区间()()()025.1,05.1,01<><f f f A. B. C. D. 不能确定(1,1.25)(1.25,1.5)(1.5,2)4. 二次函数的值域为])5,0[(4)(2∈-=x x x x f A. B. C. D.),4[+∞-]5,0[]5,4[-]0,4[-5. =+--3324log ln 01.0lg 2733e A .14 B .0C .1 D . 66. 在映射,,且,则中B A f →:},|),{(R y x y x B A ∈==),(),(:y x y x y x f +-→A 中的元素在集合B 中的像为)2,1(-A . B .C .D . )3,1(--)3,1()1,3()1,3(-7.三个数,,之间的大小关系为231.0=a 31.0log 2=b 31.02=c A .a <c <b B .a <b <c C .b <a <cD .b <c <a8.已知函数在上为奇函数,且当时,,则当时,()y f x=R0x≥2()2f x x x=-0x<函数的解析式为()f xA. B.()(2)f x x x=-+()(2)f x x x=-C. D.()(2)f x x x=--()(2)f x x x=+9.函数与在同一坐标系中的图像只可能是xy a=log(0,1)ay x a a=->≠且A. B. C. D.10.设,则2log2log<<baA. B.10<<<ba10<<<abC . D.1>>ba1>>ab11.函数在区间上的最大值为5,最小值为1,则实数m的取值54)(2+-=xxxf],0[m范围是A. B.[2,4] C. [0,4] D.),2[+∞]4,2(12.若函数()f x为定义在R上的奇函数,且在(0,)+∞内是增函数,又(2)f0=,则不等式的解集为)(<xxfA.(2,0)(2,)-+∞B.(,2)(0,2)-∞-C.(,2)(2,)-∞-+∞D.)2,0()0,2(-高一数学(必修1)答题卷题 号一二三总分得 分一、选择题:(本大题小共12题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)题号123456789101112答案第II 卷 非选择题(共90分)二、填空题:(本大题共4小题,每小题4分,共16分)13.函数,则的值为.⎩⎨⎧≥<--=-)2(2)2(32)(x x x x f x )]3([-f f 14.计算:.=⋅8log 3log 9415.二次函数在区间上是减少的,则实数k 的取值范围为 842--=x kx y ]20,5[.16.给出下列四个命题:①函数与函数表示同一个函数;||x y =2)(x y =②奇函数的图像一定通过直角坐标系的原点;③函数的图像可由的图像向右平移1个单位得到;2)1(3-=x y 23x y =④若函数的定义域为,则函数的定义域为;)(x f ]2,0[)2(x f ]4,0[⑤设函数是在区间上图像连续的函数,且,则方程()x f []b a ,()()0<⋅b f a f 在区间上至少有一实根;()0=x f []b a ,得分评卷人得分评卷人其中正确命题的序号是 .(填上所有正确命题的序号)三、解答题:(本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤)17.(本题满分12分)已知全集,集合,,R U ={}1,4>-<=x x x A 或{}213≤-≤-=x x B (1)求、;B A )()(BC A C U U (2)若集合是集合A 的子集,求实数k 的取值范围.{}1212+≤≤-=k x k x M 18. (本题满分12分)已知函数.1212)(+-=x x x f ⑴判断函数的奇偶性,并证明;)(x f ⑵利用函数单调性的定义证明:是其定义域上的增函数.)(x f 19. (本题满分12分)已知二次函数在区间上有最大值,求实数的值2()21f x x ax a =-++-[]0,12a 20. (本题满分12分)函数)1,0)(3(log )(≠>-=a a ax x f a (1)当时,求函数的定义域;2=a )(x f (2)是否存在实数,使函数在递减,并且最大值为1,若存在,求出的值;a )(x f ]2,1[a 若不存在,请说明理由.21. (本题满分13分)广州亚运会纪念章委托某专营店销售,每枚进价5元,同时每销售一枚这种纪念章需向广州亚组委交特许经营管理费2元,预计这种纪念章以每枚20元的价格销售时该店一年可销售2000枚,经过市场调研发现每枚纪念章的销售价格在每枚20元的基础上每减少一元则得分评卷人增加销售400枚,而每增加一元则减少销售100枚,现设每枚纪念章的销售价格为元.x (1)写出该专营店一年内销售这种纪念章所获利润(元)与每枚纪念章的销售价格(元)y x 的函数关系式(并写出这个函数的定义域);(2)当每枚纪念章销售价格为多少元时,该特许专营店一年内利润(元)最大,并求出x y 最大值.22. (本题满分13分)设是定义在R 上的奇函数,且对任意a 、b ,当时,都有)(x f R ∈0≠+b a .0)()(>++ba b f a f (1)若,试比较与的大小关系;b a >)(a f )(b f (2)若对任意恒成立,求实数k 的取值范围.0)92()329(>-⋅+⋅-k f f xx x ),0[+∞∈x 高一数学参考答案一、选择题:题号123456789101112答案CDBCBDCAABBD二、填空题:13.14. 15. 16. ③⑤8143101,0()0,( -∞三、解答题:17. (1){}{}32213≤≤-=≤-≤-=x x x x B ………2分,∴{}31≤<=x x B A ………4分{}3,1)()(>≤=x x x B C A C U U 或 ………6分(2)由题意:或, 112>-k 412-<+k ………10分解得:或. 1>k 25-<k ………12分18. (1)为奇函数.)(x f ………1分 的定义域为,,012≠+x∴)(x f R ………2分又 )(121221211212)(x f x f x x x x xx -=+--=+-=+-=--- 为奇函数.)(x f ∴………6分(2)1221)(+-=x x f 任取、,设,1x R x ∈221x x <)1221(1221()()(2121+--+-=-x x x f x f )121121(212+-+=x x )12)(12()22(22121++-=x x x x , 又,022********<-∴<∴<x x x x x x 或 12210,210x x +>+>.在其定义域R 上是增函数.)()(0)()(2121x f x f x f x f <∴<-∴或)(x f ∴………12分19. 函数的对称轴为:,)(x f x a =当时,在上递减,,即; 0<a ()f x ]1,0[2)0(=∴f 1,21-=∴=-a a ………4分当时,在上递增,,即; 1>a ()f x ]1,0[2)1(=∴f 2=a ………8分当时,在递增,在上递减,,即,01a ≤≤()f x ],0[a ]1,[a 2)(=∴a f 212=+-a a 解得:与矛盾;综上:或 251±=a 01a ≤≤1a =-2=a ………12分20. (1)由题意:,,即,)23(log )(2x x f -=023>-∴x 23<x 所以函数的定义域为;)(x f 23,(-∞………4分(2)令,则在上恒正,,在ax u -=3ax u -=3]2,1[1,0≠>a a ax u -=∴3上单调递减,]2,1[,即023>⋅-∴a )23,1()1,0( ∈a ………7分又函数在递减,在上单调递减,,即)(x f ]2,1[ax u -=3 ]2,1[1>∴a )23,1(∈a ………9分又函数在的最大值为1,, )(x f ]2,1[1)1(=∴f 即,1)13(log )1(=⋅-=a f a 23=∴a ………11分与矛盾,不存在. 23=a )23,1(∈a a ∴………12分21. (1)依题意⎩⎨⎧∈<<---∈≤<--+=++N x x x x N x x x x y ,4020),7)](20(1002000[,207),7)](20(4002000[ ∴, ⎪⎩⎪⎨⎧∈<<---∈≤<---=++N x x x N x x x y ,4020],41089)247[(100,207],81)16[(40022………5分定义域为{}407<<∈+x N x ………7分 (2) ∵,⎪⎩⎪⎨⎧∈<<---∈≤<---=++N x x x N x x x y ,402041089247[(100,207],81)16[(40022∴ 当时,则,(元)020x <≤16x =max 32400y =………10分当时,则,(元)2040x <<472x =max 27225y =综上:当时,该特许专营店获得的利润最大为32400元. 16x =………13分22. (1)因为,所以,由题意得:b a >0>-b a ,所以,又是定义在R 上的奇函数,0)()(>--+ba b f a f 0)()(>-+b f a f )(x f ,即.)()(b f b f -=-∴0)()(>-∴b f a f )()(b f a f >………6分(2)由(1)知为R 上的单调递增函数,)(x f ………7分对任意恒成立,0)92()329(>-⋅+⋅-k f f x x x ),0[+∞∈x ,即,)92()329(k f f x x x -⋅->⋅-∴)92()329(x x x k f f ⋅->⋅-………9分,对任意恒成立,x x x k 92329⋅->⋅-∴x x k 3293⋅-⋅<∴),0[+∞∈x 即k 小于函数的最小值. ),0[,3293+∞∈⋅-⋅=x u xx………11分令,则,xt 3=),1[+∞∈t 13131(323329322≥--=-=⋅-⋅=∴t t t u x x .1<∴k (13)。
2024-2025学年高一数学上学期期中试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:北师大版2019必修第一册第一章~第三章。
5.难度系数:0.65。
第一部分(选择题共58分)一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
.B.C.D.【答案】D二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.第二部分(非选择题共92分)三、填空题:本题共3小题,每小题5分,共15分。
四、解答题:本题共5小题,共77分。
解答应写出文字说明、证明过程或演算步棸。
15.(13分)16.(15分)设集合{}|(3)()0,R A x x x a a =--=∈,{}2|540B x x x =-+=.(1)当4a =时,求A B ⋂,A B ;(2)记C A B = ,若集合C 的真子集有7个,求:所有实数a 的取值所构成的集合.【解析】(1)当4a =时,{}}|(3)(4)R {30,4,x x x a A ==∈=--,2540x x -+=,即(4)(1)0x x --=,解得4x =或1,{1,4}B ∴=,{4}A B ∴= ,{1,3,4}A B ⋃=.(7分)(2)若集合C 的真子集有7个,则217n -=,可得3n =,即C A B = 中的元素只有3个,而(3)()0x x a +-=,解得3x =或a ,则{3,}A a =,由(1)知{1,4}B =,则当1,3,4a =时,{1,3,4}C A B == ,故所有实数a 的取值所构成的集合为{1,3,4}.(15分)17.(15分)18.(17分)19.(17分)。
人教版新教材高中数学高一上学期期中考试数学试卷(一)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{0,1,2}A =,那么( ) A .0A ⊆B .0A ∈C .{1}A ∈D .{0,1,2}A2.集合{|14}A x x =∈-<<N 的真子集个数为( ) A .7B .8C .15D .163.命题“x ∀∈R ,||10x x -+≠”的否定是( ) A .x ∃∈R ,||10x x -+≠ B .x ∃∈R ,||10x x -+= C .x ∀∈R ,||10x x -+=D .x ∀∉R ,||10x x -+≠4.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是( ) A .62%B .56%C .46%D .42%5.已知集合{|10}A x x =-≥,2{|280}B x x x =--≥,则()AB =R( )A .[2,1]-B .[1,4]C .(2,1)-D .(,4)-∞6.甲、乙两人沿着同一方向从A 地去B 地,甲前一半的路程使用速度1v ,后一半的路程使用速度2v ;乙前一半的时间使用速度1v ,后一半的时间使用速度2v ,关于甲,乙两人从A 地到达B 地的路程与时间的函数图像及关系(其中横轴t 表示时间,纵轴s 表示路程12v v <)可能正确的图示分析为( )A .B .C .D .7.若函数24()43x f x mx mx -=++的定义域为R ,则实数m 的取值范围是( )A .3(0,]4B .3[0,]4C .3[0,)4D .3(0,)48.若定义在R 的奇函数()f x 在(,0)-∞单调递减,且(2)0f =,则满足(1)0xf x -≥的x 的取值范围是( ) A .[1,1][3,)-+∞ B .[3,1][0,1]-- C .[1,0][1,)-+∞ D .[1,0][1,3]-二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.21x ≤的一个充分不必要条件是( ) A .10x -≤<B .1x ≥C .01x <≤D .11x -≤≤10.下列各项中,()f x 与()g x 表示的函数不相等的是( )A .()f x x =,()g x =B .()f x x =,2()g x =C .()f x x =,2()x g x x=D .()|1|f x x =-,1(1)()1(1)x x g x x x -≥⎧=⎨-<⎩11.若函数22,1()4,1x a x f x ax x ⎧-+≤-=⎨+>-⎩在R 上是单调函数,则a 的取值可能是( )A .0B .1C .32D .312.下列函数中,既是偶函数又在(0,3)上是递减的函数是( )A .21y x =-+B .3y x =C .1y x =-+D .y =第Ⅱ卷三、填空题:本大题共4小题,每小题5分.13.若{}21,,0,,b a a a b a ⎧⎫=+⎨⎬⎩⎭,则20182018a b +=________.14.已知(1)f x +的定义域为[2,3)-,则(2)f x -的定义域是 . 15.若12a b <-≤,24a b ≤+<,则42a b -的取值范围_________.16.已知函数21()234f x x x =-++,3()|3|2g x x =-,若函数(),()()()(),()()f x f xg x F x g x f x g x <⎧=⎨≥⎩, 则(2)F = ,()F x 的最大值为 .四、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(10分)设集合{25}A x x =-≤≤,{121}B x m x m =-≤≤+. (1)若A B =∅,求m 的范围; (2)若A B A =,求m 的范围.18.(12分)已知命题:p x ∃∈R ,2(1)(1)0m x ++≤,命题:q x ∀∈R ,210x mx ++>恒成立.若,p q 至少有一个为假命题,求实数m 的取值范围.19.(12分)已知函数26,0()22,0x x f x x x x +≤⎧=⎨-+>⎩.(1)求不等式()5f x >的解集;(2)若方程2()02m f x -=有三个不同实数根,求实数m 的取值范围.20.(12分)已知奇函数222,0()0,0,0x x x f x x x mx x ⎧-+>⎪==⎨⎪+<⎩. (1)求实数m 的值; (2)画出函数的图像;(3)若函数()f x 在区间[1,||2]a --上单调递增,试确定a 的取值范围.21.(12分)在一个月内分批购入每张价值为20元的书桌共36台,每批都购入x 台(x 是正整数),且每批均需付运费4元,储存购入的书桌一个月所付的保管费与每批购入书桌的总价值(不含运费)成正比,若每批购入4台,则该月需用去运费和保管费共52元,现在全月只有48元资金可以用于支付运费和保管费. (1)求该月需用去的运费和保管费的总费用()f x ;(2)能否恰当地安排每批进货的数量,使资金够用?写出你的结论,并说明理由.22.(12分)已知()f x 是定义在[5,5]-上的奇函数,且(5)2f -=-,若对任意的m ,[5,5]n ∈-,0m n +≠,都有()()0f m f n m n+>+.(1)若(21)(33)f a f a -<-,求a 的取值范围;(2)若不等式()(2)5f x a t ≤-+对任意[5,5]x ∈-和[3,0]a ∈-都恒成立,求t 的取值范围.【参考答案】第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】B【解析】∵集合{0,1,2}A =,∴0A ∈,故A 错误,B 正确; 又∵{1}A ⊆,∴C 错误; 而{0,1,2}A =,∴D 错误. 2.【答案】C【解析】{0,1,2,3}A =中有4个元素,则真子集个数为42115-=. 3.【答案】B【解析】全称量词命题的否定是存在量词命题. 4.【答案】C【解析】由Venn 图可知,既喜欢足球又喜欢游泳的学生所占比60%82%96%46%X =+-=, 故选C .5.【答案】C【解析】∵{|10}{|1}A x x x x =-≥=≥,2{|280}{|2B x x x x x =--≥=≤-或4}x ≥,∴{|2A B x x =≤-或1}x ≥,则()(2,1)A B =-R.6.【答案】A【解析】因为12v v <,故甲前一半路程使用速度1v ,用时超过一半,乙前一半时间使用速度1v , 行走路程不到一半. 7.【答案】C【解析】2430mx mx ++≠,所以0m =或000m m Δ≠⎧⇒=⎨<⎩或2030416120m m m m ≠⎧⇒≤<⎨-<⎩. 8.【答案】D【解析】∵()f x 为R 上奇函数,在(,0)-∞单调递减,∴(0)0f =,(0,)+∞上单调递减.由(2)0f =,∴(2)0f -=,由(1)0xf x -≥,得0(1)0x f x ≥⎧⎨-≥⎩或0(1)0x f x ≤⎧⎨-≤⎩,解得13x ≤≤或10x -≤≤,∴x 的取值范围是[1,0][1,3]-,∴选D .二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分. 9.【答案】AC【解析】∵不等式21x ≤,∴11x -≤≤,“01x <≤”和“10x -≤<”是不等式21x ≤成立的一个充分不必要条件. 10.【答案】ABC【解析】A ,可知()||g x x =,()f x x =,两个函数对应关系不一样,故不是同一函数;B ,()f x x =,x ∈R ,2()g x x ==,0x ≥,定义域不一样;C ,()f x x =,x ∈R ,2()x g x x=,0x ≠,定义域不一样;D ,1(1)()|1|1(1)x x f x x x x -≥⎧=-=⎨-<⎩与()g x 表示同一函数.11.【答案】BC【解析】当1x ≤-时,2()2f x x a =-+为增函数, 所以当1x >-时,()4f x ax =+也为增函数,所以0124a a a >⎧⎨-+≤-+⎩,解得503a <≤.12.【答案】AC【解析】A :21y x =-+是偶函数,且在(0,3)上递减,∴该选项正确; B :3y x =是奇函数,∴该选项错误;C :1y x =-+是偶函数,且在(0,3)上递减,∴该选项错误;D :y =第Ⅱ卷三、填空题:本大题共4小题,每小题5分. 13.【答案】1【解析】由集合相等可知0ba=,则0b =, 即{}{}21,,00,,a a a =,故21a =,由于1a ≠,故1a =-,则20182018101a b +=+=. 14.【答案】[)1,6【解析】∵(1)f x +的定义域为[2,3)-,∴23x -≤<,∴114x -≤+<, ∴()f x 的定义域为[1,4)-; ∴124x -≤-<,∴16x ≤<,∴(2)f x -的定义域为[1,6). 15.【答案】(5,10)【解析】由题设42()()a b x a b y a b -=-++,42()()a b x y a y x b -=++-,则42x y y x +=⎧⎨-=-⎩,解得31x y =⎧⎨=⎩,所以423()()a b a b a b -=-++,12a b <-≤,33()6a b <-≤,24a b ≤+<,所以53()()10a b a b <-++<,故54210a b <-<. 16.【答案】0,6【解析】因为(2)6f =,(2)0g =,所以(2)0F =,画出函数()F x 的图象(实线部分),由图象可得,当6x =时,()F x 取得最大值6.四、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.【答案】(1)6m >或32m <-;(2)2m <-或12m -≤≤.【解析】(1)已知{25}A x x =-≤≤,{121}B x m x m =-≤≤+. 当B =∅时,有121m m ->+,即2m <-,满足A B =∅; 当B ≠∅时,有121m m -≤+,即2m ≥-,又A B =∅,则15m ->或212m +<-,即6m >或322m -≤<-,综上可知,m 的取值范围为6m >或32m <-.(2)∵A B A =,∴B A ⊆,当B =∅时,有121m m ->+,即2m <-,满足题意;当B ≠∅时,有121m m -≤+,即2m ≥-,且12215m m -≥-⎧⎨+≤⎩,解得12m -≤≤,综上可知,m 的取值范围为2m <-或12m -≤≤. 18.【答案】2m ≤-或1m >-.【解析】当命题p 为真时,10m +≤,解得1m ≤-; 当命题q 为真时,24110Δm =-⨯⨯<,解得22m -<<,当命题p 与命题q 均为真时,则有12122m m m ≤-⎧⇒-<≤-⎨-<<⎩,命题q 与命题p 至少有一个为假命题,所以此时2m ≤-或1m >-.19.【答案】(1)(1,0](3,)-+∞;(2)(2,(2,2)-. 【解析】(1)当0x ≤时,由65x +>,得10x -<≤; 当0x >时,由2225x x -+>,得3x >, 综上所述,不等式的解集为(1,0](3,)-+∞.(2)方程2()02m f x -=有三个不同实数根, 等价于函数()y f x =与函数22m y =的图像有三个不同的交点,如图所示,由图可知,2122m <<,解得2m -<<2m <<,所以实数m 的取值范围为(2,(2,2)-.20.【答案】(1)2m =;(2)图像见解析;(3)[3,1)(1,3]--. 【解析】(1)当0x <时,0x ->,22()()2()2f x x x x x -=--+-=--, 又因为()f x 为奇函数,所以()()f x f x -=-, 所以当0x <时,2()2f x x x =+,则2m =.(2)由(1)知,222,0()0,02,0x x x f x x x x x ⎧-+>⎪==⎨⎪+<⎩,函数()f x 的图像如图所示.(3)由图像可知()f x 在[1,1]-上单调递增,要使()f x 在[1,||2]a --上单调递增, 只需1||21a -<-≤,即1||3a <≤,解得31a -≤<-或13a <≤, 所以实数a 的取值范围是[3,1)(1,3]--. 21.【答案】(1)144()4f x x x=+(036x <≤,*x ∈N );(2)只需每批购入6张书桌,可以使资金够用.【解析】(1)设题中比例系数为k ,若每批购入x 台,则共需分36x批,每批价值为20x 元,由题意36()420f x k x x=⋅+⋅, 由4x =时,()52f x =,得161805k ==,所以144()4f x x x=+(036x <≤,*x ∈N ). (2)由(1)知,144()4f x x x=+(036x <≤,*x ∈N ),所以()48f x ≥=(元),当且仅当1444x x=,即6x =时,上式等号成立,故只需每批购入6张书桌,可以使资金够用.22.【答案】(1)8(2,]3;(2)3(,]5-∞.【解析】(1)设任意1x ,2x 满足1255x x -≤<≤, 由题意可得12121212()()()()()0()f x f x f x f x x x x x +--=-<+-,即12()()f x f x <,所以()f x 在定义域[5,5]-上是增函数,由(21)(33)f a f a -<-,得521553352133a a a a -≤-≤⎧⎪-≤-≤⎨⎪-<-⎩,解得823a <≤,故a 的取值范围为8(2,]3.(2)由以上知()f x 是定义在[5,5]-上的单调递增的奇函数,且(5)2f -=-, 得在[5,5]-上max ()(5)(5)2f x f f ==--=,在[5,5]-上不等式()(2)5f x a t ≤-+对[3,0]a ∈-都恒成立, 所以2(2)5a t ≤-+,即230at t -+≥,对[3,0]a ∈-都恒成立, 令()23g a at t =-+,[3,0]a ∈-,则只需(3)0(0)0g g -≥⎧⎨≥⎩,即530230t t -+≥⎧⎨-+≥⎩,解得35t ≤,故t 的取值范围为3(,]5-∞.人教版新教材高中数学高一上学期期中考试数学试卷(二)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2011—2012学年度
第一学期期中高一数学(必修1)试卷
考试时间:120分钟 试卷总分:150分
(第一卷:此卷答题无效)
一、选择题(本大题共12小题,每小题5分,共60分.每小题只有一项是符合题目要求)
1.设{
}{},631521,,N ,,M ,,,==那么N M ⋂等于 ( ) A. ∅ B. {}31
, C. }1{ D. {}32, 2.已知函数⎩⎨⎧≤+>-=0
,40
,4)(x x x x x f , 则=-)2(f ( )
A . 1
B . 2
C .-1
D .-2
3.下列函数中是奇函数是( ) A. y=x
x x
1
3
+- B. x
x y 1
+
=
C. 2
4
x x y -= D. 22
6
++=x x y
4.函数y=2x-5在R 上的单调性是 ( )
A.增函数
B.减函数
C.不增不减
D.无法确定
5.指数函数y=x
a 的图像经过点(1,4)则a 的值是 ( )
A.2
B.3
C.4
D.9
6.已知定义域在R 上的函数f(x)的图象是连续不断的,且有如下对应值表:那么函数f(x)一定存在零点的区间是( ). A .(-∞,1) B .(1,2)
C .(2,3)
D .(3,+∞)
7.已知函数 f(x)=x 2+1,那么f(a)的值为 ( ). A .a 2+a +2 B .a 2+1 C .a 2+2a +2 D .a 2+2a +1 8.二次函数f(x)=x 2
-2x 则有 ( ).
A .f(3)<f(2)<f(4)
B .f(2)<f(3)<f(4)
C .f(2)<f(4)<f(3)
D .f(4)<f(2)<f(3) 9.式子27log 3的值为 ( )
A.9
B.18
C.2
D.3 10.已知35=a ,25=b ,45=c 则c b a ,,三者的大小关系是( )
A .c a b >>
B .b a c >>
C .c b a >>
D .a c b >> 11.若f(x)=2x+b 满足f(3)=9,则)1(f 的值是 ( )
A . 5
B .5-
C .6
D .6- 12. 下列函数中,值域是{y|y ≠0}的是 ( )
A. 322++=x x y
B. 63+=x y
C .x
y 1= D. )12(log 2
-=x a y
二、填空题(本大题共4小题,每小题5分,共20分)
13.已知A={a , b },则A 的所有子集为 . 14. 比较大小:1.53 1.52
, 3lg 5lg (用“<” 或“>”表示). 15.函数)1,0()(≠>+=a a b a
x f x
且的图象经过点(0,4),且6)1(=f ,
则a
b = .
16. 已知f(x)是定义域在[-2,0)∪(0,2] 上的奇函数,当x >0时,f(x)的图象如右图
所示,那么f(x)的值域是
x 1 2 3 f(x)
6.1
2.9
-3.5
(第16题)
2
三、解答题(本大题共6个小题,共70分.解答应写出文字说明,证明过程或演算步骤)
17.(本题满分10分)设U={x ∈N ∣x ≤7},A={2,4,5 },B={ 4,5,6 },C={3,5,7},求(A ∩B )∪C , (A ∪B )∩C , )()(B C A C u u ⋂.
18. 计算(本题满分10分)
(1)20
2
1)3
1()7(81---+ (2)2log 4
994lg 25lg 64log +++
19.(本题满分12分)已知一次函数)(x f 满足9)3(,5)1(==f f
(1)求)(x f 的解析式. (2)若21)(≤a f 求a 的取值范围.
20.(本题满分12分) 设函数.)
2(2)
2(2
)(2⎩⎨
⎧>≤+=x x
x x x f (1)求)9(f 的值; (2)若8)(0=x f ,求0x
21.(本题满分12分) 函数1)(2
++=
x b ax x f 是定义在(,)-∞+∞上的奇函数,且5
2)21(=f . (1)求实数b a ,的值.
(2)求)(x f 的值域.
22.(本题满分14分) 某工厂现有80台机器,每台机器平均每天生产384件产品,现准备增加一批同类机器以提高生产总量,在试生产中发
现,由于其他生产条件没变,因此每增加一台机器,每台机器平均每天将少生产4件产品.
(1)如果增加x 台机器,每天的生产总量为y 件,请你写出y 与x 之间的关系式;
(2)增加多少台机器,可以使每天的生产总量最大?最大生产总量是多少?
……………………………..密…………………………………….封………………………………………….线……………………………
第一学期期中高一数学试卷
考试时间:120分钟 试卷总分:150分 命题人: 王 华 一、 选择题(本大题共12小题,每小题5分,共60分) 二、
题(本大题共6小题,每小题5分,共30分)
13. 14 . ① ②
15. 16.
三、解答题(本大题共5个小题,共60分)
17.(本题满分10分)设U={x ∈N ∣x ≤7},A={2,4,5 },B={ 4,5,6 },C={3,5,7},求(A ∩B )∪C , (A ∪B )∩C , )()(B C A C u u ⋂.
18. 计算(本题满分10分)
(1)20
2
1)3
1()7(81---+ (2)2log 4
994lg 25lg 64log +++
19.(本题满分12分)已知一次函数)(x f 满足9)3(,5)1(==f f
(1)求)(x f 的解析式. (2)若21)(≤a f 求a 的取值范围.
20.(本题满分12分) 20.(本题满分12分) 设函数.)
2(2)
2(2
)(2⎩⎨
⎧>≤+=x x
x x x f (1)求)9(f 的值; (2)若8)(0=x f ,求0x
21.(本题满分12分) 函数1)(2++=
x b ax x f 是定义在(,)-∞+∞上的奇函数,且5
2)21(=f . (1)求实数b a ,的值.
(2)求)(x f 的值域.
22.(本题满分14分) 某工厂现有80台机器,每台机器平均每天生产384件产品,现准备增加一批同类机器以提高生产总量,在试生产中发现,由于其他生产条件没变,因此每增加一台机器,每台机器平均每天将少生产4件产品.
(1)如果增加x 台机器,每天的生产总量为y 件,请你写出y 与x 之间的关系式;
(2)增加多少台机器,可以使每天的生产总量最大?最大生产总量是
多少?。