上海临港第一中学数学全等三角形单元测试卷附答案

  • 格式:doc
  • 大小:1.52 MB
  • 文档页数:18

下载文档原格式

  / 18
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、八年级数学全等三角形解答题压轴题(难)

1.如图1,等腰△ABC中,AC=BC=42, ∠ACB=45˚,AO是BC边上的高,D为线段AO上一动点,以CD为一边在CD下方作等腰△CDE,使CD=CE且∠DCE=45˚,连结BE.

(1) 求证:△ACD≌△BCE;

(2) 如图2,在图1的基础上,延长BE至Q, P为BQ上一点,连结CP、CQ,若CP=CQ=5,求PQ的长.

(3) 连接OE,直接写出线段OE的最小值.

【答案】(1)证明见解析;(2)PQ=6;(3)OE=422

-

【解析】

试题分析:()1根据SAS即可证得ACD BCE

≌;

()2首先过点C作CH BQ

⊥于H,由等腰三角形的性质,即可求得45

DAC

∠=︒,则根据等腰三角形与直角三角形中的勾股定理即可求得PQ 的长.

()3OE BQ

⊥时,OE取得最小值.

试题解析:()1证明:∵△ABC与△DCE是等腰三角形,

∴AC=BC,DC=EC,45

ACB DCE

∠=∠=,

45

ACD DCB ECB DCB

∴∠+∠=∠+∠=,

∴∠ACD=∠BCE;

在△ACD和△BCE中,

,

AC BC

ACD BCE

DC EC

=

∠=∠

⎪=

(SAS)

ACD BCE

∴≌;

()2首先过点C作CH BQ

⊥于H,

(2)过点C作CH⊥BQ于H,

∵△ABC是等腰三角形,∠ACB=45˚,AO是BC边上的高,45

DAC

∴∠=,

ACD BCE

≌,

45

PBC DAC

∴∠=∠=,

∴在Rt BHC中,

22

424

22

CH BC

=⨯=⨯=,

54

PC CQ CH

===

,,

3

PH QH

∴==,

6.

PQ

∴=

()3OE BQ

⊥时,OE取得最小值.

最小值为:42 2.

OE=-

2.(1)已知△ABC是等腰三角形,其底边是BC,点D在线段AB上,E是直线BC上一点,且∠DEC=∠DCE,若∠A等于60°(如图①).求证:EB=AD;

(2)若将(1)中的“点D在线段AB上”改为“点D在线段AB的延长线上”,其他条件不变(如图②),(1)的结论是否成立,并说明理由.

【答案】(1)证明见解析(2)证明见解析

【解析】

试题分析:(1)作DF∥BC交AC于F,由平行线的性质得出∠ADF=∠ABC,∠AFD=∠ACB,∠FDC=∠DCE,证明△ABC是等边三角形,得出∠ABC=∠ACB=60°,证出△ADF是等边三角形,∠DFC=120°,得出AD=DF,由已知条件得出∠FDC=∠DEC,ED=CD,由AAS证明

△DBE≌△CFD,得出EB=DF,即可得出结论;

(2)作DF∥BC 交AC 的延长线于F ,同(1)证出△DBE≌△CFD,得出EB=DF ,即可得出结论.

试题解析:(1)证明:如图,作DF ∥BC 交AC 于F ,

则△ADF 为等边三角形

∴AD=DF ,又∵ ∠DEC=∠DCB ,

∠DEC+∠EDB=60°,

∠DCB+∠DCF=60° ,

∴ ∠EDB=∠DCA ,DE=CD ,

在△DEB 和△CDF 中,

120EBD DFC EDB DCF DE CD ,,

∠=∠=︒⎧⎪∠=∠⎨⎪=⎩

∴△DEB

≌△CDF ,

∴BD=DF ,

∴BE=AD .

(2). EB=AD 成立;

理由如下:作DF ∥BC 交AC 的延长线于F ,如图所示:

同(1)得:AD=DF ,∠FDC=∠ECD ,∠FDC=∠DEC ,ED=CD ,

又∵∠DBE=∠DFC=60°,

∴△DBE ≌△CFD

(AAS ),

∴EB=DF ,

∴EB=AD.

点睛:此题主要考查了三角形的综合,考查等边三角形的判定与性质,全等三角形的判定与性质,等腰三角形的判定与性质,等腰直角三角形的判定与性质,平行线的性质等知识,综合性强,有一定的难度,证明三角形全等是解决问题的关键.

3.如图,在ABC ∆中,ACB ∠为锐角,点D 为射线BC 上一动点,连接AD .以AD 为直角边且在AD 的上方作等腰直角三角形ADF .

(1)若AB AC =,90BAC ∠=︒

①当点D 在线段BC 上时(与点B 不重合),试探讨CF 与BD 的数量关系和位置关系; ②当点D 在线段C 的延长线上时,①中的结论是否仍然成立,请在图2中面出相应的图形并说明理由;

(2)如图3,若AB AC ≠,90BAC ∠≠︒,45BCA ∠=︒,点D 在线段BC 上运动,试探究CF 与BD 的位置关系.

【答案】(1)①CF ⊥BD ,证明见解析;②成立,理由见解析;(2)CF ⊥BD ,证明见解析.

【解析】

【分析】

(1)①根据同角的余角相等求出∠CAF=∠BAD ,然后利用“边角边”证明△ACF 和△ABD 全等,②先求出∠CAF=∠BAD ,然后与①的思路相同求解即可;

(2)过点A 作AE ⊥AC 交BC 于E ,可得△ACE 是等腰直角三角形,根据等腰直角三角形的性质可得AC=AE ,∠AED=45°,再根据同角的余角相等求出∠CAF=∠EAD ,然后利用“边角边”证明△ACF 和△AED 全等,根据全等三角形对应角相等可得∠ACF=∠AED ,然后求出∠BCF=90°,从而得到CF ⊥BD .

【详解】

解:(1)①∵∠BAC=90°,△ADF 是等腰直角三角形,

∴∠CAF+∠CAD=90°,∠BAD+∠ACD=90°,

∴∠CAF=∠BAD ,

在△ACF 和△ABD 中,

∵AB=AC ,∠CAF=∠BAD ,AD=AF ,

∴△ACF ≌△ABD(SAS),

∴CF=BD ,∠ACF=∠ABD=45°,

∵∠ACB=45°,

∴∠FCB=90°,

∴CF ⊥BD ;

②成立,理由如下:如图2:

相关主题