运用公式法分解因式(1)
- 格式:ppt
- 大小:612.01 KB
- 文档页数:8
运用公式法因式分解一、教学目标1. 认知目标:分解因式的意义.2. 能力目标:掌握公式法分解因式的步骤,灵活运用公式法分解因式.二、教学重难点1. 重点:观察各项多项式是否含有公因式.2. 难点:提取公因式要提“全”提“净”;合理选用公式进行因式分解.三、教学过程(一)温故1. 分解因式:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.2. 乘法公式:平方差公式:(a+b)(a-b)=a2-b2完全平方式:(a-b)2=a2-2ab+b2(a+b)2=a2+2ab+b23. 练一练(二)知新例1. 把下列各式分解因式:(1) (a+b)2 -1 (2) x4-1(1) (a+b)2 -1解析:应先观察多因式的特征,后利用公式法分解.解: (a+b)2 -1=(a+b)2 -12=(a+b+1)(a+b-1)(2) x4-1解析:发现两项均可写成平方的形式,并且两项符号相反,故可用平方差公式分解,且注意一定要分解彻底.x4-1= x4-12=(x2+1)(x2-1)= (x2+1)(x+1)(x-1)小练手1:(1) (x-3y)2-4x2(2) 9(a+2b)2-4(a-b)2例 2. x3-xy2分析:观察多项式的特征,主要看它的项数、次数,根据其特点,首先采取提公因式法,之后利用公式法分解。
x3-xy2=x(x2-y2)=x(x+y)(x-y)小小总结:分解因式步骤:提取公因式法---公式法---直到各个因式能化简到不能化简为止.小练手2(x-3y)2-4x2 9(a+2b)2-4(a-b)2例 3.把下列各式分解因式:(1) m2-12m+36 (2) –a2+2ab-b2(1) m2-12m+36解析:直接利用完全平方差公式m 2-12m+36=(m-6)2(2) –a 2+2ab-b 2解析:先提取-1,之后利用完全平方差公式–a 2+2ab-b 2=-(a 2-2ab+b 2)=-(a-b)2 小练手 3:(1) 19 m 2+1+23m (2)x 4+16y 2-8x 2y例 4.2a 3b+8a 2b 2+8ab 3解析:先提取公因式,然后再利用完全平方式。
公式法(一)【目标导航】能说出平方差公式的特征,并熟练地利用提取公因式法和平方差公式进行因式分解.【复习导入】把下列各式分解因式:1.-4m3+16m2-26m;2.(x-3)2+(3x-9);3.-m2n(x-y)n+mn2(x-y)n+1;4(2011福建福州)分解因式:225x-=. 5.y2-25【合作探究】1.由练习中4、5说出分解依据及多项式的特点:2.由乘法中的平方差公式反过来,得到因式分解中的平方差公式:【合作探究】练习:下列各多项式能否用平方差公式分解因式?为什么?(1) x2+y2;(2) x2-y2;(3)-x2+y2;(4)-x2-y2;(5) 14a2b2-1;(6) x4-y4.例1 把下列多项式分解因式(1) 4x2-9;(2) (x+p)2-(x+q)2;(3) 16-125m2;(4)-(x+2)2+16(x-1)2.例2 把下列多项式分解因式(1) x4-y4;(2) (2011贵州安顺)因式分解:x3-9x= .(3)-14xy3+0.09xy;(4)a2-b2+a-b;(5)(p-4)(p+1)+3p.练习:把下列多项式分解因式(1) a2-125b2;(2) 9a2-4b2;(3) (2011广西南宁)把多项式x3-4x分解因式所得的结果是()(A) x (x2-4) (B) x(x+4)(x-4)(C) x(x+2)(x-2)(D)(x+2)(x-2)(4)-a4+16;(5) m4(m-2)+4(2-m)例3 在实数范围内分解因式(1) x2-2;(2) 5x2-3.例4(1) 计算:9972-9(2)设n是整数,用因式分解的方法说明:(2n+1)2-25能被4整除.(3) 已知x、y为正整数,且4x2-9y2=31,你能求出x、y的值吗?【课堂操练】1.9a2- =(3a+b)(3a-b).2.分解因式:4x2-9y2= ;3x2-27y2= ;a2b-b3= ;2x4-2y4= .3.下列各式中,能用平方差公式分解的是()A. x2+y2B. x2+y4C. x2-y4D. x2-2x4.已知-(2a-b)(2a+b)是下列一个多项式分解因式的结果,这个多项式是()A. 4a2-b2B.4a2+b2C. -4a2-b2D. -4a2+b25.分解因式:(1)9a2-14b2;(2)2x3-8x;(3)(m+a)2-(n-b)2.【课后巩固】1.把下列各式分解因式:(1) 9(m+n)2-(m-n)2(2) p4-16(3) -(x+2y)2+(2x+3y)2(4)22 ()() 44a b a b +--(5) 36a4x10-49b6y8(6) b2-(a-b+c)2(7) (3x+y-1)2-(3x-y+1)2(8) 4(x+y+z)2-(x-y-z)2(9) (21135)2-(8635)2(10) 9×1.22-16×1.42(11) -12a2m+1b m+2+20a m+1b2m+4(12) (x-2y)(2x+3y)-2(2y-x)(5x-y)(13) -4a2+(2x-3y)2(14) 2(x+1)(x+2)-x(x+6)-8(15) (2011山东临沂)分解因式:9a-ab2=.(16) (a-b)2-(b-a)4(17) (2x-1)3-8x+4(18) 4x2-9y2-(2x+3y)(19) -(x2-y2)(x+y)-(y-x)3(20) (2011广西梧州)因式分解x2y-4y的正确结果是()A.y(x+2)(x-2)B.y(x+4)(x-4)C.y(x2-4)D.y(x-2)2(21) a4-81b4(22) a3(a-b)2-a(a+b)2(23) (x2-y2)+(x-y)(24) (a-b)(3a+b)2+(a+3b)2(b-a)(25) a n+1-a n-1b4(26)(2011山东枣庄)若622=-nm,且2m n-=,则=+nm.2.求证:两个连续奇数的平方差是8的倍数.3.设n是任一正整数,代入代数式n3-n中计算时,四名同学算出如下四个结果,其中正确的结果只可能是()A.388947B.388944C.388953D.3889494.已知:m2=n+2,n2=m+2(m≠n)求:m3-2mn+n3的值.公式法(一)参考答案【复习导入】把下列各式分解因式:1.解:原式=-2m(m²-8m+13)2.解:原式=(x-3)2+3(x-3)=(x-3)(x-6)3.解:原式=-mn(x-y)n(m-nx+ny)4.答案:(x+5)(x-5) .5.解:原式==(y+5)(y-5)【合作探究】1式子是两项,能写成两个式子的平方差的形式,即两项的符号一定是相反的。
因式分解——公式法(1)一.教课内容人教版八年级上册数学十四章因式分解——公式法第一课时二.教材剖析分解因式与数系中分解质因数近似,是代数中一种重要的恒等变形,它是在学生学习了整式运算的基础上提出来的,是整式乘法的逆向变形。
在后边的学习过程中应用宽泛,如:将分式通分和约分,二次根式的计算与化简,以及解方程都将以它为基础。
所以分解因式这一章在整个教材中起到了承上启下的作用。
同时,在因式分解中表现了数学的众多思想,如:“化归”思想、“类比”思想、“整体”思想等。
所以,因式分解的学习是数学学习的重要内容。
依据《课标》的要求,本章介绍了最基本的两种分解因式的方法:提公因式法和运用公式法(平方差、完好平方公式)。
所以公式法是分解因式的重要方法之一,是现阶段的学习要点。
三.教课目的知识与技术:理解和掌握平方差公式的构造特色,会运用平方差公式分解因式过程与方法: 1. 培育学生自主研究、合作沟通的能力2.培育学生察看、剖析和创新能力,深入学生逆向思想能力和数学应企图识,浸透整体思想感情、态度与价值观:让学生在合作学习的过程中体验成功的愉悦,进而加强学好数学的梦想和信心四.教课重难点要点:会运用平方差公式分解因式难点:正确理解和掌握公式的构造特色,并擅长运用平方差公式分解因式易错点:分解因式不完全五.教课方案(一)温故知新1.什么是因式分解?以下变形过程中,哪个是因式分解?为何?22(1)( 2x - 1) = 4 x- 4x + 1;(2)3x2 + 9xy - 3x = 3x( x+ 3y + 1);(3)x2 - 4+ 2x = ( x + 2)( x - 2) + 2x.2.我们已经学过的因式分解的方法是什么?将以下多项式分解因式。
(1) a3b3 - 2a2 b - ab ;( 2) - 9 x2 y + 3xy2 - 6 xy.【设计企图】经过复习因式分解的定义和方法,为持续学习公式法作好铺垫。
3.依据乘法公式进行计算:(1)( x + 1)(x -1);(2)( x + 2 y)(x - 2 y).4.依据上题结果分解因式:(1) x2 - 1;(2) x 2 - 4 y 2 .由以上 3、 4 两题,你发现了什么?【设计企图】经过整式乘法中的平方差公式引出公式法因式分解进而引出课题。
12、4用公式法进行因式分解(第1课时)学法指导:1.教学方法:讲练结合法、自主学习、小组探究合作.2.学生学习本节时,要注意:(1)进一步弄清因式分解与整式乘法的区别和联系。
(2)分解因式时,要先观察题目的结构特征,看使用哪个公式,同时要养成及时检验的学习习惯。
学习目标1.理解运用公式法因式分解的含义,熟记因式分解公式。
2.搞清楚每个公式的特征,能运用公式进行因式分解。
3.探究逆用乘法公式的过程中培养逆向思维和观察能力。
学习重难点:1、重点:用公式法进行因式分解。
2、难点:“灵活”运用平方差、完全平方公式解决实际问题。
学习过程:(一)温故知新,情境导航:1、什么叫因式分解?我们学过的因式分解的方法是什么?2、因式分解与整式乘法有什么区别和联系?你能对a 2-b 2,a 2+2ab+b 2,n 2-4进行因式分解吗?(二)课堂探究:探究一:平方差篇(一)根据乘法公式计算:① =_________ ② =_________③ =_________(二)根据等式的对称性填空① =_________② =_________③ =_________(2)(2)m m +-()()a b a b -+)22)(22(-+n n 42-m 22b a -442-n讨论:对比(一)和(二)你有什么发现?结合上面规律把平方差公式反过来进行因式分解,你会得到什么?(学生总结)平方差公式因式分解特征:典题探讨(1)4 x 2-25 (2) 16a 2 -9 b 2探究二:完全平方差篇(一)根据乘法公式计算:① =_________ ② =_________③ =_________(一)根据乘法公式计算:① =_________ ② =_________③ =_________讨论:对比(一)和(二)你有什么发现?结合上面规律把完全平方公式反过来进行因式分解,你会得到什么?(学生总结)完全平方公式因式分解特征:例2:把下列各式进行因式分解: (1)25x 2+20x+4 (2)9m 2-6mn+n 2 (3)(三)课堂小结,回顾反思学习了本节课,你有什么收获?如何利用乘法公式进行因式分解?说出来与大家分享吧!2)(b a +2)(b a -2)2(+m 222b ab a ++222b ab a +-442++m a 41x x 2++(四)课当堂检测1、因式分解(1) 4x 2-16y 2 (2)64m 2-25n 2(3)4x 2-12xy+9y 2 (4)81m 2-144mn+64n 22、多项式4 x 2-x 加上一个怎样的单项式,就成为一个完全平方式?并对其进行因式分解(五)课后作业必做题:习题12.4第1题。
因式分解——运用公式法因式分解是将一个多项式化简成一系列乘积的过程。
通常有两种方法用于进行因式分解:公式法和分组法。
公式法可以概括为以下几种常用的因式分解公式:1.a²-b²=(a+b)(a-b)这是平方差公式,用于因式分解差的平方。
例如,我们可以将x²-4分解为(x+2)(x-2)。
2. a³ + b³ = (a + b)(a² - ab + b²)这是立方和公式,用于因式分解和的立方。
例如,我们可以将x³+8分解为(x+2)(x²-2x+4)。
3. a³ - b³ = (a - b)(a² + ab + b²)这是立方差公式,用于因式分解差的立方。
例如,我们可以将x³-8分解为(x-2)(x²+2x+4)。
4. a⁴ + b⁴ = (a² + √2ab + b²)(a² - √2ab + b²)这是四次和公式,用于因式分解和的四次方。
例如,我们可以将x⁴+16分解为(x²+4√2x+4)(x²-4√2x+4)。
5. a⁴ - b⁴ = (a² - √2ab + b²)(a² + √2ab + b²)这是四次差公式,用于因式分解差的四次方。
例如,我们可以将x⁴-16分解为(x²-4√2x+4)(x²+4√2x+4)。
除了以上这些常用的因式分解公式外,还有一些其他形式的因式分解公式,以及一些特殊的因式分解技巧。
例如,对于一个二次方程式ax² + bx + c,我们可以使用求根公式x = (-b ± √(b² - 4ac)) / 2a 来因式分解。
根据求根公式,我们可以将二次方程ax² + bx + c 分解为两个因式的乘积 (x - x₁)(x - x₂),其中 x₁和 x₂是由求根公式得到的两个根。
因式分解的常用方法(7种)把一个多项式化成几个整式积的形式这种变形叫做把这个多项式因式分解(或分解因式) 因式分解X 2-1 (X+1)(X-1)整式乘法一、提公因式法.:ma+mb+mc = m(a+b+c)如何找公因式?(1)取各项系数的最大公约数;(2)取各项都含有的相同字母;(3)取相同字母的最低次幂.二、运用公式法.在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1) (a+b)(a-b) = a 2-b 2(2) (a ±b)2 = a 2±2ab+b 2(3) (a+b)(a 2-ab+b 2) = a 3-a 2b+ab 2+a 2b-ab 2+b 3= a 3+b 3 (4) (a-b)(a 2+ab+b 2) = a 3+a 2b+ab 2-a 2b-ab 2-b 3= a 3-b3 下面再补充两个常用的公式:(5)a 2+b 2+c 2+2ab+2bc+2ac=a 2+2ab+b 2+2ac+2bc+c 2=(a+b) 2+2(a+b)c +c 2=[(a+b)+c]2=(a+b+c)2; (6)a 3+b 3+c 3-3abc=(a 3+ab 2+ac 2-a 2b-abc-ca 2)+(a 2b+b 3+bc 2-ab 2-b 2c-abc)+(a 2c+b 2c+c 3-abc-bc 2-c 2a) =(a+b+c)(a 2+b 2+c 2-ab-bc-ca);例.已知a bc ,,是ABC ∆的三边,且222a b c ab bc ca ++=++,则ABC ∆的形状是( ) A.直角三角形 B 等腰三角形 C 等边三角形 D 等腰直角三角形解:222222222222a b c ab bc ca a b c ab bc ca ++=++⇒++=++222()()()0a b b c c a a b c ⇒-+-+-=⇒==三、分组分解法.(一)分组后能直接提公因式例1、分解因式:bn bm an am +++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。
因式分解的七种常见方法因式分解是代数学中非常重要的一个基本概念,可以帮我们优化计算过程,得到简化的式子。
在因式分解的过程中,需要运用不同的方法来将一个给定的式子分解为若干个简单的乘积,本文将会介绍七种常见的因式分解方法。
1. 公式法公式法是一种较为常见的因式分解方法,它可以应用于一些特定的式子。
公式法常用的公式有两个:(1)$a^2-b^2=(a+b)(a-b)$该公式被称为"a二次减b二次"公式。
它告诉我们,一个平方数减另一个平方数的结果可以表示为两个因子的乘积,并分别是它们的和与差。
例如:$16-9=7\times5=(4+3)\times(4-3)$(2)$a^3+b^3=(a+b)(a^2-ab+b^2)$该公式被称为"a立方加b立方"公式。
它告诉我们一个立方数加另一个立方数的结果可以表示为两个因子的乘积,并分别是它们的和与差减去它们的积。
例如:$8^3+1^3=513=(8+1)\times(8^2-8+1)$2. 提公因式法提公因式法是一种常用的因式分解方法。
它的主要思想是将式子中的公因式先提出来,再对剩下的部分进行因式分解。
例如:$ax^2+bx=a(x^2+\frac{b}{a}x)$在上述式子中,$a$是公因式,$(x^2+\frac{b}{a}x)$是剩余部分的因式分解。
这样我们就把原始式子分解成了两个因子的乘积。
3. 十字相乘法十字相乘法主要用于二次三项式的因式分解。
该方法基于以下思想:将二次三项式分解为两个一次三项式的乘积,其中每个一次三项式的首项系数积等于原始式子的二次项系数,常数项积等于原始式子的常数项。
例如:$ax^2+bx+c$,首先将它分解为两个一次三项式$(px+q)(rx+s)$,然后进行十字相乘运算$(px+q)(rx+s)=px\times rx+px\times s+qrx+qs$,其中最后两项括号里的$c$是常数项。
公式法分解因式公式法是一种将函数拆解为多个因式相乘的方法,用于分解多项式的因式。
它是数学中的一种重要的技巧,尤其在解决代数方程和求解多项式零点时经常使用。
公式法的基本思想是寻找函数的因式,并将其分解为多个较简单的因式相乘。
下面将详细介绍公式法分解因式。
步骤一:判断函数的类型首先,我们需要确定给定函数的类型,以便于采取相应的公式法。
函数可以是多项式函数、有理函数或三角函数等。
不同类型的函数需要采用不同的分解方法。
步骤二:因子分解在确定了函数的类型之后,我们需要寻找函数的因子。
对于多项式函数,我们可以使用多项式的因式分解公式,如二次函数或三次函数的因式分解公式。
对于有理函数,我们可以使用有理函数的因式分解公式。
而对于三角函数,我们可以使用特定的三角函数的因式分解公式。
步骤三:分解因式接下来,我们将找到的因子进行分解。
对于多项式函数,我们可以使用多项式的因式分解公式进行因式分解。
对于有理函数,我们可以使用有理函数的因式分解公式进行因式分解。
对于三角函数,我们可以使用特定的三角函数的因式分解公式进行因式分解。
步骤四:合并因式在完成因素的分解后,我们可以将所有的因素合并到一起,形成最终的因式分解结果。
这些因式相乘就可以得到原函数。
公式法分解因式的优点是能够将复杂的函数分解为多个较简单的因式相乘,从而让计算更加方便快捷。
公式法在代数方程的求解和多项式零点的求解中有着广泛的应用。
对于复杂的函数,我们可以通过分解因式来简化问题的解决过程,从而得到更加清晰简洁的结果。
需要注意的是,公式法分解因式需要对不同种类的函数有一定的了解和掌握。
对于不同类型的函数,我们需要使用相应的公式法进行分解。
此外,公式法的应用也需要一定的经验和技巧,通过不断的练习和实践,我们可以更加熟练地运用公式法分解因式。
运用公式法分解因式一、直接用公式:当所给的多项式是平方差或完全平方式时,可以直接利用公式法分解因式。
例1、 分解因式:(1)x 2-9; (2)9x 2-6x+1。
二、提公因式后用公式:当所给的多项式中有公因式时,一般要先提公因式,然后再看是否能利用公式法。
例2、 分解因式:(1)x 5y 3-x 3y 5; (2)4x 3y+4x 2y 2+xy 3。
三、系数变换后用公式:当所给的多项式不能直接利用公式法分解因式,往往需要调整系数,转换为符合公式的形式,然后再利用公式法分解.例3、 分解因式:(1)4x 2-25y 2; (2)4x 2-12xy 2+9y 4.四、指数变换后用公式:通过指数的变换将多项式转换为平方差或完全平方式的形式,然后利公式法分解因式,应注意分解到每个因式都不能再分解为止.例4、 分解因式:(1)x 4-81y 4; (2)16x 4-72x 2y 2+81y 4.五、重新排列后用公式:当所给的多项式不能直接看出是否可用公式法分解时,可以将所给多项式交换位置,重新排列,然后再利用公式。
例5、 分解因式:(1)-x 2+(2x-3)2; (2)(x+y)2+4-4(x+y).六、整理后用公式:当所给的多项式不能直接利用公式法分解时,可以先将其中的项去括号整理,然后再利用公式法分解。
例6 、分解因式: (x-y)2-4(x-y-1).七、连续用公式:当一次利用公式分解后,还能利用公式再继续分解时,则需要用公式法再进行分解,到每个因式都不能再分解为止。
例7、 分解因式:(x 2+4)2-16x 2.作 业(3.16):1、多项式2244x xy y -+-分解因式的结果是( )(A)2(2)x y - (B)2(2)x y -- (C)2(2)x y -- (D)2()x y + 2、下列多项式中,能用公式法进行因式分解的是( )(A)22x y +(B)222x xy y -+ (C)222x xy y +- (D)22x xy y ++ 3、 41x -的结果为( )A.22(1)(1)x x -+B.22(1)(1)x x +- C.2(1)(1)(1)x x x -++ D.3(1)(1)x x -+ 4、代数式42281969x x x x ---+,,的公因式为( ) A.3x -B.2(3)x + C.3x + D.29x + 5、222516a kab a ++是一个完全平方式,那么k 之值为( )A.40 B.40± C.20 D.20±6、填空: 22()m mn ++= .7、利用因式分解计算2100991981=++ . 8、 分解因式:241x -= .分解因式:24a -= .9、(1)运用公式法计算:222218161301181--.(2)用简便方法计算:228001600798798-+×. 10、 分解因式:(1)221664a x ax ++(2)216(23)a b -+ 11、把下列各式分解因式.(1)249x -; (2)224169x y -; (3)2125a -+; (4)220.01625m n -. 12、把下列各式分解因式.(1)2816a a ++;(2)2(2)6(2)9a b a b ++++; (3)221222x xy y ++; (4)2244mn m n ---. 13、已知1128a b ab -==,,求22332a b ab a b -++的值. 14、把下列各式分解因式.(1)269x x ++; (2)242025x x -+; (3)222816a b abc c -+;(4)221424a ab b ++; (5)2()4()4a b a b +-++. 15、把下列各式分解因式.(1)20042003()16()m n m n --- ; (2)22222()4x y x y +-.16、把(1)(3)1x x --+分解因式.真 实 自 测:选择题1、代数式x 4-81,x 2-9,x 2-6x +9的公因式为( )A 、x +3B 、(x +3)2C 、x -3D 、x 2+92、若9x 2-m x y +16y 2是一个完全平方式,则m=( )A 、12B 、24C 、±12D 、±243、若-b ax x -+221分解成)7)(4(21+--x x ,则a 、b 的值为( ) A 、3或28 B 、3和-28 C 、-23和14 D 、-23和-14 4、下列变形是因式分解的是( )A 、x 2+x -1=(x +1)(x -1)+x ,B 、(3a 2-b 2)2=9a 4-6a 2b 2+b 4C 、x 4-1=(x 2+1)(x +1)(x -1),D 、3x 2+3x =3x 2(1+x1)5、若81-k x 4=(9+ 4x 2)(3+2x )(3-2x ),则k 的值为( )A 、1B 、4C 、8D 、166、下列多项式不能用完全平方公式分解的是( )A 、91a 2+32ab +b 2 B 、a 2-6a +36 C 、-4x 2+12x y -9y 2 D 、x 2+x +41 7、在有理数范围内把y 9-y 分解因式,设结果中因式的个数为n,则n=( ),A 、3,B 、4C 、5D 、68、下列多项式不含因式a+b 的是( )A 、a 2-2ab +b 2B 、a 2-b 2C 、a 2+b 2D 、(a+b )49、下列分解因式错误的是( )A 、4x 2-12x y+9y 2=(2x +3y )2,B 、3x 2y+6x y 2+3y 3=3y (x 2+2x y+y 2)=3y (x +y )2C 、5x 2-125y 4=5(x -y 2)(x +y 2)D 、-81x 2+y 2=-(9x -y )(9x +y )10、下列分解因式正确的是( )A 、(x -3)2-y 2=x 2-6x +9-y 2,B 、a 2-9b 2=(a+9b )(a -9b )C 、4x 6-1=(2x 3+1)(2x 3-1),D 、2x y -x 2-y 2=(x -y )2填空题11、已知:x 2-6x +k 可分解为只关于x -3的因式,则k 的值为 。