九年级数学圆知识点归纳
- 格式:doc
- 大小:75.00 KB
- 文档页数:3
九年级圆知识点总结百度九年级圆知识点总结圆是几何学中最基础、最重要的几何图形之一。
它不仅在数学中扮演着重要的角色,而且在我们的日常生活中也有广泛的应用。
在九年级数学学习中,我们需要掌握关于圆的基本概念、性质、公式等知识点。
本文将对九年级圆的知识进行总结,以帮助大家更好地理解和应用。
一、圆的基本概念与性质1. 圆的定义:圆是由平面上到一个固定点距离相等的所有点组成的图形。
2. 圆的要素:圆心和半径。
圆心是固定点,用O表示;半径是从圆心到圆上任意一点的距离,用r表示。
3. 圆的直径:通过圆心的两个点,称之为圆的直径。
直径是半径的两倍,用d表示。
4. 圆的弦:在圆上任取两点,并将这两点连线,所得的线段称之为圆的弦。
5. 圆的切线:在圆上取一点,通过该点作一条直线,与圆只有这个点相交,这个直线称之为圆的切线。
6. 圆的弧:在圆上任取两点,并连接圆心与这两点,得到的扇形所对应的圆弧,称之为圆的弧。
7. 圆的内切与外切:当两个圆的内部或外部的某一点刚好触碰到两个圆时,这个点称之为内切或外切。
内切的两个圆与直线的切点数量相等;外切的两个圆与直线的切点数量也相等。
8. 圆的面积:圆的面积公式为A=πr²,其中π近似取值为3.14。
二、圆的常见公式1. 弧长:圆的弧长即为圆上一段弧的长度。
弧长公式为L=2πr,其中L表示弧长,r表示半径。
2. 扇形面积:圆的扇形是由圆心、圆上两点和夹在这两点的圆弧组成的图形。
扇形面积公式为A=½r²θ,其中A为扇形面积,r为半径,θ为圆心角的度数。
3. 弦长:弦是连接圆上两点的线段。
弦长公式为L=2r sin(θ/2),其中L表示弦长,r表示半径,θ为圆心角的度数。
4. 弓形面积:圆的弓形是由圆上一段弧和连接该弧两端点的直线段组成的图形。
弓形面积公式为A=½(r²θ-填字部分),其中填字部分为由弧所割出的三角形的面积。
三、圆的应用圆在我们的日常生活中有广泛的应用。
九年级圆知识点总结在九年级数学学习中,圆作为一个重要的概念和知识点,被广泛涉及和应用。
本文将对九年级圆的相关知识进行总结和归纳,旨在提供一个全面而清晰的概述。
一、圆的基本性质1. 定义:圆是平面上到定点的距离等于定长的点的集合。
2. 要素:圆心、半径、直径、弧、弦、边界等。
3. 关键概念:- 圆心角:以圆心为顶点的两条射线所夹的角。
- 弧度制:用弧长和半径的比值来度量圆心角的单位制。
- 弧长:沿着圆周的一段弧的长度。
- 弦长:圆周上的两个点之间的弦的长度。
- 弦切线定理:若一条弦与一条切线相交,那么切线所对的弦长等于弧切分的弧长。
二、圆的计算公式1. 圆的周长:C = 2πr,其中r为半径。
2. 圆的面积:A = πr²,其中r为半径。
三、圆与其他图形的关系1. 圆与直线的关系:- 点到圆的位置关系:在圆内、在圆上、在圆外。
- 切线与圆的关系:内切线、外切线、相切。
- 弦与圆的关系:一条弦平分圆,当且仅当它垂直于半径。
- 弧与圆的关系:圆周角、弦心角、相交弧、相等弧、截弧等。
2. 圆与三角形的关系:- 角平分线与圆的关系:三角形内接圆的圆心是角平分线的交点。
- 三角形内切圆的性质:内切圆与三角形的切点构成的线段相等、角度相等等。
- 外接圆与三角形的关系:外接圆的圆心是三角形外角的角平分线的交点。
三、实际问题中的圆1. 圆的应用:在现实生活中,圆的概念和性质常被用于解决与圆相关的问题,如圆的轨迹、钟表等。
2. 圆的建模:圆的模型可以应用于建筑、设计等领域,例如环形结构的承重分析、圆形花坛的设计等。
3. 圆的测量:利用测量工具可以测量圆的直径、半径、弧长等。
结语:通过对九年级圆的知识点总结,我们可以更好地理解圆的基本概念、性质与计算公式,并应用于实际问题中。
深入掌握圆的知识对于进一步学习几何学和解决实际问题都具有重要的意义。
注:文章中的内容不完全围绕九年级圆的知识点展开,因为题目描述没有提供具体的要求,请知悉。
九年级数学圆知识点总结在九年级数学学习的过程中,我们接触到了许多关于圆的知识。
圆是几何学中的重要概念之一,它有着特殊的性质和应用价值。
接下来,本文将对九年级数学中的圆知识点进行总结。
一、圆的定义与性质1. 圆的定义:圆是由平面上所有到一个给定点距离相等的点组成的图形。
这个给定点称为圆心,到圆心的距离称为半径。
2. 相关性质:- 圆的直径是圆上任意两点之间的最长距离,直径的长度是半径长度的两倍。
- 圆的半径相等,且平行于任意切线。
- 圆的弦是连接圆上任意两点的线段,直径是最长的弦。
- 相等弧所对的圆心角相等,且圆心角大于它所对的弧上任意角。
二、圆的周长与面积1. 周长:- 弧长:圆的周长也被称为圆的周长,用C表示。
弧长是圆上一段弧的长度,计算公式为:C = 2πr,其中r是圆的半径。
- 弧度制:弧度制是角度的一种衡量方式,常用的单位是弧度(radian)。
一个完整的圆周对应的弧度数为2π。
2. 面积:- 圆的面积:用A表示,计算公式为:A = πr^2,其中r是圆的半径。
三、圆的位置关系1. 内切与外切:- 内切:当一个圆的圆心与另一个圆的圆心重合,并且两个圆唯一的内外切点是同一个时,我们称这两个圆为内切圆。
- 外切:当一个圆的圆心与另一个圆的圆心之间的距离等于两个圆的半径之和,并且两个圆唯一的内外切点是同一个时,我们称这两个圆为外切圆。
2. 切线与割线:- 切线:从圆外一点引出的与圆相切的直线称为切线,切线与半径垂直。
- 割线:与圆相交于两点的直线称为割线。
四、圆的常见定理和应用1. 切线定理:如果一条直线与一个圆相切,那么它与半径的垂直角都是直角。
2. 弧长与圆心角关系:弧长等于半径与对应圆心角的乘积。
3. 弧度制与角度制的转换关系:一周的弧度数为360°。
4. 圆心角、弦与弧的关系:圆心角的度数是对应的弧度数的两倍。
5. 弦切角定理:一个弦与切线所夹的角等于被切割的弧所对的圆心角。
九年级数学上册圆的知识点总结一、圆的概念1.圆的定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆(或圆可以看做是所有到定点O的距离等于定长r的点的集合)。
2.圆心O、半径r、直径d:使圆上任意一点与定点O的距离等于r的动点O叫做圆心,连接圆心与圆上任意一点的线段叫做半径,圆心O与定点A之间的距离叫做直径。
二、圆的性质1.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等,所对的弦的弦心距相等。
2.在同圆或等圆中,同弧等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。
3.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。
4.圆内接四边形的对角互补。
三、垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
四、圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半;在同圆或等圆中,同弧等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。
五、点和圆的三种位置关系设⊙O的半径为r,点P到圆心的距离OP=d,则有:1.d>r 点P在⊙O外;2.d=r 点P在⊙O上;3.d<r 点P在⊙O内。
六、直线和圆的三种位置关系设⊙O的半径为r,圆心O到直线l的距离为d,则有:1.d>r 直线l与⊙O相离;2.d=r 直线l与⊙O相切;3.d<r 直线l与⊙O相交。
七、正多边形和圆各边相等,各内角都相等的多边形叫做正多边形。
在平面内,各边相等,各内角也都相等的多边形叫做正多边形。
正多边形的外接圆的半径叫做半径;正多边形的中心叫做中心;正多边形的内切圆的半径叫做内心;正多边形的一组邻边的垂直平分线的交点叫做中心。
正n边形的中心角公式:360°/n;正n边形一条边的长度公式:2rsin(180°/n)。
九年级圆知识点总结圆是几何学中最基本的图形之一,由于其特殊的性质和重要的应用,是中学数学中一个重点和难点的内容。
以下是针对九年级学习的圆知识点总结,包括圆的定义、性质、常见的定理和应用。
一、圆的定义及基本概念1. 圆的定义:圆是平面上与一个固定点距离恒定的点的集合。
2. 圆的要素:圆心、半径、弦、弧、切线等。
二、圆的性质1. 圆的周长公式:C=2πr,其中C是圆的周长,r是圆的半径。
2. 圆的面积公式:S=πr²,其中S是圆的面积,r是圆的半径。
3. 内接圆和外接圆:内接圆是一个圆,恰好与一个多边形的所有顶点相切;外接圆是一个圆,恰好与一个多边形的所有边相切。
4. 相交圆的性质:两个相交圆的交点到两个圆心的距离相等。
两个相交圆的交点确定的两条弦相互垂直的充要条件是两个弦的弧度相等。
三、常见的圆的定理1. 切线定理:切线与半径垂直。
2. 弦切角定理:弦切角等于弦对应的弧的一半。
3. 弦弧角定理:弦弧角等于弦对应的弧的一半。
4. 弦角定理:弦角等于其对应的弧缺角的一半。
5. 弧长定理:弧长等于圆心角的弧度数除以2π乘以圆的周长。
四、圆的应用1. 圆的引理:如欲使直线在给定的点上下夹定一个给定的角,只需作两条通过该点的圆,并使直线分别与两圆相切即可。
2. 圆的内切与外切:两个圆相切,其中一个圆在另一个圆内部,称为内切;两个圆相切,其中一个圆在另一个圆外部,称为外切。
3. 勾股定理的圆证法:利用圆的性质,可以简化勾股定理的证明过程。
4. 圆柱、圆锥和圆球的体积计算:圆柱的体积公式为V=πr²h,其中V是体积,r是底面半径,h是高;圆锥的体积公式为V=1/3πr²h,其中V是体积,r是底面半径,h是高;圆球的体积公式为V=4/3πr³,其中V是体积,r是半径。
以上只是关于九年级圆的知识点的简要总结,实际上圆还有许多其他的性质、定理和应用,需要通过练习和实际问题的解决来进一步加深理解和掌握。
中考数学圆的知识点总结归纳一、圆的定义(1)平面上到定点的距离等于定长的所有点组成的图形叫做圆。
(2)平面上一条线段,绕它的一端旋转360°,留下的轨迹叫圆。
二、圆心(1)如定义(1)中,该定点为圆心(2)如定义(2)中,绕的那一端的端点为圆心。
(3)圆任意两条对称轴的交点为圆心。
(4)垂直于圆内任意一条弦且两个端点在圆上的线段的二分点为圆心。
注:圆心一般用字母O表示直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。
直径一般用字母d表示。
半径:连接圆心和圆上任意一点的线段,叫做圆的半径。
半径一般用字母r表示。
圆的直径和半径都有无数条。
圆是轴对称图形,每条直径所在的直线是圆的对称轴。
在同圆或等圆中:直径是半径的2倍,半径是直径的二分之一.d=2r或r=二分之d。
圆的半径或直径决定圆的大小,圆心决定圆的位置。
圆的周长:围成圆的曲线的长度叫做圆的周长,用字母C表示。
圆的周长与直径的比值叫做圆周率。
圆的周长除以直径的商是一个固定的数,把它叫做圆周率,它是一个无限不循环小数(无理数),用字母π表示。
计算时,通常取它的近似值,π≈3.14。
直径所对的圆周角是直角。
90°的圆周角所对的弦是直径。
圆的面积公式:圆所占平面的大小叫做圆的面积。
πr^2,用字母S表示。
一条弧所对的圆周角是圆心角的二分之一。
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。
在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。
在同圆或等圆中,如果两条弦相等,那么他们所对的圆心角相等,所对的弧相等,所对的弦心距也相等。
三、周长计算公式1.、已知直径:C=πd2、已知半径:C=2πr3、已知周长:D=c\π4、圆周长的一半:1\2周长(曲线)5、半圆的长:1\2周长+直径四、面积计算公式1、已知半径:S=πr平方2、已知直径:S=π(d\2)平方3、已知周长:S=π(c\2π)平方五、点、直线、圆和圆的位置关系1、点和圆的位置关系①点在圆内<=>点到圆心的距离小于半径②点在圆上<=>点到圆心的距离等于半径③点在圆外<=>点到圆心的距离大于半径2.过三点的圆不在同一直线上的三个点确定一个圆。
九年级数学圆的知识点在九年级的数学学习中,圆是一个重要的概念。
掌握圆的基本知识点对于学生正确理解和应用数学知识至关重要。
本文将介绍九年级数学圆的知识点,包括圆的定义、性质、公式以及与圆相关的几何图形等。
让我们一起来详细了解吧。
1. 圆的定义在九年级数学中,我们定义圆为平面上到一个固定点距离相等的所有点的集合。
这个固定点叫做圆心,到圆心的距离叫做半径。
圆由圆心和半径唯一确定。
2. 圆的性质- 半径相等的两个圆是相等的。
- 圆上任意两点到圆心的距离相等。
- 圆的直径是通过圆心的一条线段,它的长度是半径的两倍。
- 圆的周长是圆周长的一半,用公式C = 2πr表示,其中C表示周长,r表示半径。
- 圆的面积由公式A = πr²给出,其中A表示面积。
3. 圆与直线的关系- 圆内的点到圆心的距离小于半径,称为圆内部的点;到圆心的距离等于半径,称为圆上的点;到圆心的距离大于半径,称为圆外的点。
- 切线是与圆只有一个交点的直线。
- 弦是连接圆上两点的线段。
直径是一种特殊的弦,它通过圆心。
- 弧是圆上的一段弯曲的部分。
4. 弧与角的关系- 弧长是弧上的一段长度。
圆的弧长公式为L = 2πr,其中L表示弧长,r表示半径。
- 圆心角是以圆心为顶点的角,它所对的弧长是整个圆的弧长的一部分。
- 弦与其所对的弧所夹的圆心角相等。
5. 圆与其他几何图形的关系- 正方形的内接圆是正方形内接圆周围的正方形。
- 正方形的外接圆是正方形外接圆周围的正方形。
- 直角三角形的内切圆是三角形内接圆周围的圆。
- 直角三角形的外接圆是三角形外接圆周围的圆。
除了上述的知识点,还有关于圆的弦的性质、圆与切线的性质、圆的切线与切点定理、切线长的性质等内容需要学生在九年级进行深入的学习和理解。
通过掌握圆的相关知识点,可以帮助学生在解决几何问题、计算圆的周长和面积等方面得到更好的应用。
总结起来,九年级的数学圆的知识点主要包括圆的定义、性质、公式以及圆与其他几何图形的关系等。
九年级数学知识点总结圆数学中的圆是我们学习的重要几何形状之一,也是九年级数学中的一个重要知识点。
学习圆的相关知识,不仅可以提高我们的几何直观能力,还有助于我们解决实际问题。
接下来,我们就一起来总结九年级数学中关于圆的知识点。
一、圆的概念及性质圆是平面上所有到一个固定点距离相等的点的集合。
在圆上,我们常见的有圆心、半径、直径、弦、弧等概念。
1. 圆心:圆心是圆上离任何一点距离相等的点,通常用字母O 表示。
2. 半径:从圆心到圆上任一点的线段称为半径,通常用字母r 表示。
3. 直径:通过圆心的任意两点构成的线段称为直径,通常用字母d表示,直径等于半径的两倍。
4. 弦:在圆上任意选取的两点之间的线段称为弦。
5. 弧:在圆上两个点之间的曲线部分称为弧。
圆的性质有很多,比如圆心角是指圆上两条半径之间的夹角,它的度数等于它所对应的弧所对的圆心角的一半。
此外,对于一个圆,任意一条直径将圆分为两个相等的半圆,而一个圆只有一个圆心和一个半径。
圆的任意两条弦的长度相等,且直径是一个弦的最长长度。
二、圆的计算在九年级数学中,我们还需要学习如何计算与圆相关的一些特性,包括圆的周长和面积的计算。
1. 周长:圆的周长也被称为圆周长,通常用公式2πr表示,其中π是一个约等于3.14的常数,r是圆的半径。
2. 面积:圆的面积可以用公式πr²来计算,其中π是一个约等于3.14的常数,r是圆的半径。
三、圆的相交关系及定理在几何学中,圆与直线或其他圆的相交关系是我们需要掌握的重要知识。
1. 圆与直线的相交:若直线和圆有两个交点,则该直线被称为圆的切线,若直线与圆相交于两个不同的交点,则直线被称为圆的弦。
2. 圆与圆的相交:两个圆可以有三种相交关系,即相离、相切和相交。
当两个圆内部没有公共点时为相离,当两个圆的外切线只有一个公共点时为相切,当两个圆内外各有一个公共点时为相交。
在圆的相交关系中,我们还有一些重要的相关定理,比如切线定理和割线定理等,它们有助于我们计算圆内外的线段长度。
1.圆的定义与性质-定义:圆是平面上所有距离等于半径的点的集合。
-圆心:圆上任意两点的连线的垂直平分线的交点。
-半径:从圆心到圆上任意一点的长度。
-直径:通过圆心的两个点所确定的线段的长度,等于半径的2倍。
-弦:连接圆上两点的线段。
-弧:圆上的一段弯曲的连续的部分。
-弧长:弧所对应的圆的周长的比例,弧长等于弧所对应的圆的弧度乘以半径。
-圆周角:以圆心为顶点的角,大小等于所对弧的弧度。
2.圆心角与弧长的关系-弧度制:弧所对应的圆的半径长的角,记作弧长/半径。
-弧度制与度角制的换算:180°=Π弧度,1°=Π/180弧度。
-圆心角的弧度等于所对弧的弧长除以半径。
3.圆的位置关系-相交:两个圆的内部有公共点。
-外切:一个圆与另一个圆的外部只有一个公共点。
-两圆相切:两个圆的外部有一个公共点。
-相离:两个圆的内部没有公共点,也没有公共切点。
4.弧与弦的关系-弦分弧:一个弦所对的两条弧,互为补角。
-等弧等价:等长的弧。
5.切线与圆的关系-切线:与圆仅有一个公共点的直线。
-切线的性质:切线与半径垂直,半径在切点上的垂线上。
6.直径、弦与切线的关系-直径是两个切点的连线。
-沿切线作的直径过切点的垂线,则直径上的垂直弦与切线相交于切点。
-公共切线:与两个圆分别有且仅有一个公共切点的直线。
7.线段与圆的位置关系-线段在圆内:线段的两个端点在圆内部。
-线段与圆相交:线段的一个端点在圆内部,另一个端点在圆外部。
-线段切圆:线段的一个端点在圆上,另一个端点在圆外部。
-线段被圆所截:线段的两个端点都在圆外部。
8.弦的性质-弦的中点:连接圆弧两端点的线段的中点在圆的内部。
-等弧等价:等长的弦所对的两条弧相等。
-弦的位置:两个相等长的弦互为等幅弦。
-垂直弦:以圆心为直径的弦是直径。
-到圆心的距离:从圆心到弦的中点的距离等于半径的长度。
一、圆的定义和性质1.圆的定义:平面上到定点的距离等于定长的点的集合。
2.圆的要素:圆心、半径、圆周。
3.圆的性质:(1)半径相等的两个圆是同心圆;(2)同圆中,圆心角等于圆周角的1/2;(3)同弧上的两条弦所对的圆心角相等;(4)圆心角相等的弧相等;(5)相等弧所对的弦相等;(6)正多边形的内角和是定值,因此内接于一个圆的正多边形的各个内角相等;(7)直径是弦中最长的。
二、弧与圆周角1.弧的定义:圆上两点间的弧是以这两点为端点的两条互不相交的圆弧中,长的那一段。
2.弧的性质:(1)圆周角所对的弧是唯一确定的;(2)全周角所对的弧是定长的。
3.圆周角的定义:以圆心为端点的两条互不相交的射线所夹的角。
4.圆周角的度量:可以用角的度数来衡量。
三、切线与弦1.切线的定义:切线是与圆只有一个公共点的直线。
2.切线与半径的关系:切线与半径的关系是切线⊥半径。
3.弦的定义:两点之间的线段叫做弦。
4.弦的性质:(1)圆内的弦比它们所对的圆心角小,而且与一个圆心角的两个弧所对的弧一样;(2)相等的弦所对的圆心角相等。
四、相交弦定理1.弦上的点:如果一个点在弦上,则这个点到两个端点的距离相等。
2.相交弦定理:如果两个弦相交于圆内的一个点,则这两个弦上的两个点一定分别在另一个弦上的两侧。
五、余弦定理1.面积的性质:圆内、圆外的面积相等,夹在一个圆内的圆周弧的面积也相等。
2.余弦定理:在一个圆上,任意两条弧所对的圆心角的余弦值相等。
六、正多边形的面积公式1.正六边形的面积:正六边形的面积=3×(边长)²×√3÷22.正八边形的面积:正八边形的面积=2×(边长)²×√23.正十二边形的面积:正十二边形的面积=3×(边长)²×√34. 正十六边形的面积:正十六边形的面积=4×(边长)²×tan(22.5°)。
九年级圆知识点总结归纳完整版圆是初中数学中一个重要的几何概念,它有着广泛的应用。
本文将对九年级圆的相关知识点进行总结和归纳,帮助同学们更好地理解和掌握这一内容。
一、圆的定义圆是平面上的一个几何图形,由与其内部距离相等的所有点组成。
其中,距离圆心最远的点称为圆上的点,这个距离称为半径,用字母r表示。
圆上的任意两点之间的距离称为弦,圆的直径是一条穿过圆心并且与圆上的两点相接的弦,直径的长度是半径的两倍。
二、圆的性质1. 圆的周长公式:C = 2πr,其中C是圆的周长,r是圆的半径,π是一个无理数,近似值为3.14或22/7。
周长是圆上一周的长度,也可以说是圆的边界长度。
2. 圆的面积公式:A = πr²,其中A是圆的面积。
面积是圆所包围的平面区域的大小。
3. 切线的性质:切线是与圆只有一个交点的直线。
圆与切线相切时,切线与半径的夹角是直角。
4. 弦的性质:圆的直径是最长的弦,且直径平分圆。
如果两弦在圆内或圆上的交点连线通过圆心,则交线垂直于这两条弦。
三、圆的定位1. 圆的内切和外切:当一个圆与一个三角形的三条边都相切时,该圆称为三角形的内切圆;当一个圆与一个三角形的每条边的延长线相切时,该圆称为三角形的外切圆。
2. 圆的相似:两个圆的半径之比等于两个圆的周长之比,它们是相似的。
四、圆的推理与证明1. 直径在同一直线上的圆是同心圆:当两个圆的直径重合时,它们是同心圆。
2. 圆内接四边形的性质:一个四边形能够内切于一个圆的充要条件是,这个四边形的对角线互相垂直。
3. 正多边形外接圆的性质:一个正n边形可以内切与一个圆的充要条件是,这个正n边形的对角线互相垂直。
五、圆的应用1. 圆与三角形的应用:可以利用圆的性质来解决三角形的推理证明题,如证明三角形内切圆的性质、利用相似三角形证明圆的性质等。
2. 圆的平移、旋转和镜像:圆可以通过平移、旋转和镜像等变换来进行操作,这在解决几何问题时有着重要的作用。
第四章:《圆》一、知识回顾圆的周长: C=2πr或C=πd、圆的面积:S=πr²圆环面积计算方法:S=πR²-πr²或S=π(R²—r²)(R是大圆半径,r是小圆半径)二、知识要点一、圆的概念集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;固定的端点O为圆心.连接圆上任意两点的线段叫做弦,经过圆心的弦叫直径.圆上任意两点之间的部分叫做圆弧,简称弧。
2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线;3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
二、点与圆的位置关系1、点在圆内⇒d r<⇒点C在圆内;2、点在圆上⇒d r=⇒点B在圆上;3、点在圆外⇒d r>⇒点A在圆外;三、直线与圆的位置关系A1、直线与圆相离⇒d r>⇒无交点;2、直线与圆相切⇒d r=⇒有一个交点;3、直线与圆相交⇒d r<⇒有两个交点;四、圆与圆的位置关系外离(图1)⇒无交点⇒d R r>+;外切(图2)⇒有一个交点⇒d R r=+;相交(图3)⇒有两个交点⇒R r d R r-<<+;内切(图4)⇒有一个交点⇒d R r=-;内含(图5)⇒无交点⇒d R r<-;五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
图4图5推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。
圓知識點總結知識回顧圓の周長: C=2πr 或C=πd 、圓の面積:S=πr ²圓環面積計算方法:S=πR ²-πr ²或S=π(R ²-r ²)(R 是大圓半徑,r 是小圓半徑) 知識要點 一、圓の概念集合形式の概念: 1、 圓可以看作是到定點の距離等於定長の點の集合; 2、圓の外部:可以看作是到定點の距離大於定長の點の集合; 3、圓の內部:可以看作是到定點の距離小於定長の點の集合 軌跡形式の概念:1、圓:到定點の距離等於定長の點の軌跡就是以定點為圓心,定長為半徑の圓;固定の端點O 為圓心。
連接圓上任意兩點の線段叫做弦,經過圓心の弦叫直徑。
圓上任意兩點之間の部分叫做圓弧,簡稱弧。
2、垂直平分線:到線段兩端距離相等の點の軌跡是這條線段の垂直平分線;3、角の平分線:到角兩邊距離相等の點の軌跡是這個角の平分線;4、到直線の距離相等の點の軌跡是:平行於這條直線且到這條直線の距離等於定長の兩條直線;5、到兩條平行線距離相等の點の軌跡是:平行於這兩條平行線且到兩條直線距離都相等の一條直線。
二、點與圓の位置關係1、點在圓內 ⇒ d r < ⇒ 點C 在圓內;2、點在圓上 ⇒ d r = ⇒ 點B 在圓上;3、點在圓外 ⇒ d r > ⇒ 點A 在圓外; 三、直線與圓の位置關係1、直線與圓相離 ⇒ d r > ⇒ 無交點;2、直線與圓相切 ⇒ d r = ⇒ 有一個交點;3、直線與圓相交 ⇒ d r < ⇒ 有兩個交點;四、圓與圓の位置關係外離(圖1)⇒ 無交點 ⇒ d R r >+;A外切(圖2)⇒ 有一個交點 ⇒ d R r =+; 相交(圖3)⇒ 有兩個交點 ⇒ R r d R r -<<+; 內切(圖4)⇒ 有一個交點 ⇒ d R r =-; 內含(圖5)⇒ 無交點 ⇒ d R r <-;五、垂徑定理垂徑定理:垂直於弦の直徑平分弦且平分弦所對の弧。
一、圆的基本概念和性质1.圆的定义:平面上的点到圆心的距离等于半径的点的集合。
2.圆的要素:圆心、半径、圆周。
3.圆的性质:a.对于圆上任意一点P和圆心O,OP是半径;b.圆上任意两点P和Q的半径相等;c.圆上两个不同的弧所对的圆心角相等;d.圆心角的度数等于它所对的弧的度数;e.圆的内切四边形的对角线互相垂直;f.圆的内切四边形的对边互相平行且相等;g.圆内接正方形的边长等于半径的2倍。
4.圆心角与弧的关系:a.弧所对的圆心角是其两倍;b.圆心角相等的弧相等;c.同弧度数的圆心角相等;d.弧需要圆的整个周长的弧数表示。
二、圆的运算1.圆周长:圆周长是圆周上的弧长,可以通过半径和直径推导得到。
2.圆的面积:圆的面积是圆心角度和圆的半径之间的数学关系,可以通过面积公式πr²计算得到。
三、圆的位置关系1.圆的判定:a.两个圆相交,如果两个圆的圆心距离小于半径之和但大于半径之差;b.两个圆相切,如果两个圆的圆心距离等于半径之和或半径之差;c.两个圆外离,如果两个圆的圆心距离大于半径之和;d.两个圆内含,如果一个圆完全位于另一个圆内部。
2.相切圆的性质:a.相切圆的切点在半径的连线上;b.相切圆的切线相互垂直;c.相切圆的切线公共切点的连线通过两个圆的圆心。
四、圆与线的位置关系1.弦的性质:a.弦和圆心连线垂直,那么弦是直径;b.弦的中点位于圆心。
2.弧与弦:a.弧上的两个弦相等,则它们所对的圆心角相等;b.两个等圆弧所对的圆心角相等;c.弦所夹的圆弧是圆心角的一半。
3.弦的长度:等于两个切线段的和。
4.直线和圆的位置关系:a.直线与圆相交于两点;b.直线与圆相切于一点;c.直线与圆不相交。
五、切线和切线长1.切线的定义:从圆外的一点引一条直线,直线与圆相交于该点,这条直线叫做切线。
2.切线的性质:a.切线与半径垂直;b.切线与切线垂直;c.相切圆的切线相互垂直。
3.切线长的计算:可以通过勾股定理得到切线长的计算公式。
数学九年级圆知识点总结圆是我们学习数学中的重要内容之一,它涉及到诸多的知识点和概念。
在本文中,将对九年级数学中与圆相关的知识点进行总结和归纳,帮助大家更好地理解和掌握这些知识。
1. 圆的定义和基本性质圆是由平面上与一个确定点的距离相等的所有点组成的集合。
圆上的距离被称为半径,用符号r表示。
圆心到任意一点的距离都为半径r。
圆上的线段叫做弦,通过圆心的弦叫做直径,直径的长度是半径的两倍。
圆的周长等于直径的π倍,记作C = 2πr。
圆的面积是πr²,记作A = πr²。
2. 弧长和扇形面积弧长是圆上一段弧的长度,它可以用角度来表示。
圆心角是以圆心为顶点的角,它的大小和圆心上两条边所对应的弧长有关。
扇形是由一条圆弧和两个半径所围成的图形,扇形的面积可以通过圆心角的大小来计算,即扇形面积 = (圆心角 / 360) ×圆的面积。
3. 切线和切点切线是与圆交于一个点且只有这个点在圆上的直线。
切点是切线与圆相交的点。
切线与半径的关系是切线是半径的垂直平分线。
4. 相交弧定理和相切弦定理相交弧定理指出,两条相交的弦所对应的弧的长度之和相等。
即,如果两条弦交于一点,则它们所对应的弧的长度之和相等。
相切弦定理指出,相切弦所对应的弧的长度相等。
即,如果两条弦分别是相切于一个圆的内、外切弦,则它们所对应的弧的长度相等。
5. 同切弦和等弧长弦的性质同切弦是指在同一个圆上,与两个不同点相交的弦。
同切弦的特点是它们所对应的弧的长度相等。
而等弧长弦是指在同一个圆上,与一条弦交于圆上一点的弦。
等弧长弦的特点是它们与切线所围成的弧的长度相等。
6. 弧与角的关系弧是角所对应的一段圆上的弧。
当角的大小为360°时,其所对应的弧为整个圆,当角的大小小于360°时,其所对应的弧为小于整个圆的一段弧。
7. 圆的平行线和垂直线圆的平行线是指与圆相交的直线中与半径垂直的直线。
圆的垂直线是指与圆相交的直线中与半径平行的直线。
圆是一种特殊的几何图形,是平面上所有到一些点的距离相等的点的集合。
在九年级数学中,我们学习了许多与圆相关的知识点,包括圆的性质、圆的方程、圆的切线和弦、圆与直线的位置关系等。
下面是对这些知识点的详细总结。
一、圆的性质1.圆的定义:平面上到一个固定点的距离相等的点的集合叫做圆。
2.圆的元素:圆心、半径、直径、弦、弧等。
3.圆的表示方法:圆心为O,半径为r的圆可以表示为O(r),或者简写为O。
二、圆的方程1.标准方程:以圆心为原点O(0,0),半径为r的圆的方程为x²+y²=r²。
2.一般方程:以圆心为(h,k),半径为r的圆的方程为(x-h)²+(y-k)²=r²。
三、圆的切线和弦1.切线:与圆只有一个交点的直线叫做圆的切线。
切线垂直于半径。
2.弦:连接圆上两个不相邻点的线段叫做圆的弦。
圆心到弦的中点的线段垂直于弦。
四、圆与直线的位置关系1.直线与圆的位置关系有三种情况:a.直线与圆相交于两点:直线穿过圆的内部,与圆有两个交点。
b.直线与圆相切:直线与圆只有一个交点,且切点在圆上。
c.直线与圆相离:直线没有与圆的交点。
五、圆的相关定理1.切线定理:切线与半径的垂直定理。
切线与半径的垂线相互垂直。
2.弦切角定理:圆弦上的两个角对相同弧的度数相等。
3.弧上的角等于圆心角的一半:弧上的角等于它所对的圆心角的一半。
4.切线垂直半径定理:过圆的切点作切线,与过切点的半径垂直。
六、圆的计算1.弧长公式:弧长L=2πr(θ/360°),其中r为半径,θ为圆心角度数。
2.弧度制与角度制转换:1°=π/180,1弧度=180/π。
以上是九年级数学中圆的主要知识点的总结,通过对这些知识点的学习和理解,能够更好地理解和解决与圆相关的问题。
圆知识点归纳
一、圆的定义。
1、以定点为圆心,定长为半径的点组成的图形。
2、在同一平面内,到一个定点的距离都相等的点组成的图形。
二、圆的各元素。
1、半径:圆上一点与圆心的连线段。
2、直径:连接圆上两点有经过圆心的线段。
3、弦:连接圆上两点线段(直径也是弦)。
4、弧:圆上两点之间的曲线部分。
半圆周也是弧。
(1)劣弧:小于半圆周的弧。
(2)优弧:大于半圆周的弧。
5、圆心角:以圆心为顶点,半径为角的边。
6、圆周角:顶点在圆周上,圆周角的两边是弦。
7、弦心距:圆心到弦的垂线段的长。
三、圆的基本性质。
1、圆的对称性。
(1)圆是轴对称图形,它的对称轴是直径所在的直线。
(2)圆是中心对称图形,它的对称中心是圆心。
(3)圆是旋转对称图形。
2、垂径定理。
(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。
(2)推论:
➢ 平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。
➢ 平分弧的直径,垂直平分弧所对的弦。
3、圆心角的度数等于它所对弧的度数。
圆周角的度数等于它所对弧度数的一半。
(1)同弧所对的圆周角相等。
(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。
4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距
五对量中只要有一对量相等,其余四对量也分别相等。
5、夹在平行线间的两条弧相等。
6、设⊙O 的半径为r ,OP=d 。
7、(1)过两点的圆的圆心一定在两点间连线段的中垂线上。
(2)不在同一直线上的三点确定一个圆,圆心是三边中垂线的交点,它到三
个点的距离相等。
(直角三角形的外心就是斜边的中点。
)
8、直线与圆的位置关系。
d 表示圆心到直线的距离,r 表示圆的半径。
直线与圆有两个交点,直线与圆相交;直线与圆只有一个交点,直线与圆相切;
d = r
点P 在⊙O 上 d < r (r > d 点P 在⊙O 内 d > r (r <d 点P 在⊙O 外
直线与圆没有交点,直线与圆相离。
2
9、平面直角坐标系中,A (x 1,y 1)、B (x 2,y 2)。
则AB=221221)()(y y x x -+-
10、圆的切线判定。
(1)d=r 时,直线是圆的切线。
切点不明确:画垂直,证半径。
(2)经过半径的外端且与半径垂直的直线是圆的切线。
切点明确:连半径,证垂直。
11、圆的切线的性质(补充)。
(1)经过切点的直径一定垂直于切线。
(2)经过切点并且垂直于这条切线的直线一定经过圆心。
12、切线长定理。
(1)切线长:从圆外一点引圆的两条切线,切点与这点之间连线段的长叫这个
点到圆的切线长。
(2)切线长定理。
∵ PA 、PB 切⊙O 于点 A 、
∴ PA=PB ,∠1=∠2。
13、内切圆及有关计算。
(
1)三角形内切圆的圆心是三个内角平分线的交点,它到三边的距离相等。
(2)如图,△ABC 中,AB=5,BC=6,AC=7,⊙O 切△ABC 三边于点D 、E 、F 。
求:AD 、BE 、CF 的长。
分析:设AD=x ,则AD=AF=x ,BD=BE=5-x ,CE=CF=7-x. 可得方程:5-x +7-x=6,解得x=3 (3)△ABC 中,∠C=90°,AC=b ,BC=a ,AB=c 。
求内切圆的半径r 。
分析:先证得正方形ODCE ,
得CD=CE=r
AD=AF=b -r ,BE=BF=a -r b -r +a -r=c
得r=2c
b a -+
(4)S △ABC =)(2
1
c b a r ++
d = r 直线与圆相切。
d < r (r > d 直线与圆相交。
d > r (r <d 直线与圆相离。
12(2)图
P B
13(2)图
5-x B C
E 6 7-x a-r B
C E r
14、(补充)
(1)弦切角:角的顶点在圆周上,角的一边是圆的切线,另一边是圆的弦。
如图,BC 切⊙O 于点B ,AB 为弦,∠ABC 叫弦切角,∠ABC=∠D 。
(2)相交弦定理。
圆的两条弦AB 与CD 相交于点P ,则PA ·PB=PC ·PD 。
(3)切割线定理。
如图,PA 切⊙O 于点A ,PBC 是⊙O 的割线,则PA 2=PB ·PC 。
(4)推论:如图,PAB 、PCD 是⊙O 的割线,则PA ·PB=PC ·PD 。
15、圆与圆的位置关系。
(1)外离:d >r 1+r 2, 交点有0个; 外切:d=r 1+r 2, 交点有1个; 相交:r 1-r 2<d <r 1+r 2,交点有2个; 内切:d=r 1-r 2, 交点有1个; 内含:0≤d <r 1-r 2, 交点有0个。
(2)性质。
相交两圆的连心线垂直平分公共弦。
相切两圆的连心线必经过切点。
16、圆中有关量的计算。
(1)弧长有L 表示,圆心角用n 表示,圆的半径用R 表示。
L==
⨯R n π2360180
R
n π (2)扇形的面积用S 表示。
S=36036022
R n R n ππ=⨯ S=lR R R n 2
12180=⨯π (3)圆锥的侧面展开图是扇形。
r 为底面圆的半径,a 为母线长。
✧ 扇形的圆心角α=0360⨯a
r
✧ S 侧=πar S 全=πar +πr 2
B
O A
(1)
C B A P O
D (2)
(3)
P
B A
C
D O
(4)图
D C
B
A O
相
相离。