小学六年级奥数比的应用一
- 格式:pptx
- 大小:999.59 KB
- 文档页数:14
六年级上数学能力训练(9) — 比的应用
班级: 姓名: 学号: 成绩: 在有些应用题中既有分数又有比,这时候就需要先转化,我们今天将学习这种类型的问题。
例1:有甲、乙两个粮食仓库,原来甲仓库存粮的吨数是乙仓库的7
5,如果从乙粮库调6吨粮食到甲粮库,甲粮库存粮的吨数与乙粮库存粮的比是4:5.原来甲、乙粮库各存粮多少吨?
练习1:一工程队原有的人数是二程队的7
3.现在从二工程队派30人到一工程队,那么,一工程队与二工程队的人数比是2:3。
两个工程队原来各有多少人?
例2:有甲、乙两个粮食仓库,原来甲仓库存粮的吨数与乙仓库 的比是4:5.如果从甲仓库调7
2到乙仓库,乙粮库存粮的吨数比甲粮库存粮的吨数多46吨。
原来甲、乙粮库各存粮多少吨?
练习2:甲、乙两个车间的人数比是8:5,甲车间调
4
1到乙车间后,甲车间人数比乙车间少24人,原来甲车间比乙车间多多少人?
巩固练习
1、甲仓库的水泥袋数是乙仓库的5
3。
现在从乙仓库搬10袋去甲仓库,那么甲仓库与乙仓库的比是7:9。
甲、乙仓库原来共有多少袋?
2、珍珍读一本故事书,已读的和未读的页数比是1:4.如果再读115页,已读的和未读的页数比是7:5.这本书共多少页?
3、左、右两个书架上书的册数比是5:4,如果都搬走5
1,左面的书架比右面书架的书多44册。
两个书架原来各有书多少册?
4、甲、乙两包糖的重量比是4:1,如果从甲包中取出10克放入乙包后,甲包糖是乙包糖5
7,那么,两包糖重量的总和是多少克?。
六年级下小升初典型奥数之比例问题在六年级下学期的小升初备考中,比例问题是一个非常重要的知识点,也是奥数中常常出现的题型。
掌握好比例问题,不仅能够提升我们的数学思维能力,还能在考试中取得更好的成绩。
首先,我们来了解一下什么是比例。
比例就是表示两个比相等的式子。
比如,2:3 = 4:6,这就是一个比例。
在比例中,两个内项的积等于两个外项的积,这就是比例的基本性质。
那么,比例问题在奥数中会以哪些形式出现呢?让我们一起来看看。
一、简单的比例计算比如这样一道题:已知甲、乙两个数的比是 3:5,甲数是 12,求乙数是多少。
我们可以设乙数为 x ,根据比例的性质,3:5 = 12:x ,通过交叉相乘得到 3x = 60 ,解得 x = 20 。
再比如:如果 a:b = 4:7 ,且 a + b = 66 ,求 a 和 b 分别是多少。
我们可以把 a 看作 4 份,b 看作 7 份,那么一共是 11 份,11 份是66 ,一份就是 6 。
所以 a = 4×6 = 24 ,b = 7×6 = 42 。
二、比例中的分数问题有这样一道题:已知甲、乙两数的比是 3:4 ,乙数比甲数多几分之几?我们先求出乙数比甲数多的部分,即 4 3 = 1 。
然后用多的部分除以甲数,1÷3 = 1/3 ,所以乙数比甲数多 1/3 。
反过来,如果问甲数比乙数少几分之几,同样先求出少的部分 1 ,再除以乙数,1÷4 = 1/4 ,甲数比乙数少 1/4 。
三、比例的应用比如:工厂要生产一批零件,原计划每天生产 60 个,20 天完成。
实际每天生产的零件数与原计划每天生产的零件数的比是 6:5 ,实际多少天完成?我们先算出这批零件的总数,60×20 = 1200 (个)因为实际每天生产的零件数与原计划每天生产的零件数的比是6:5 ,原计划每天生产 60 个,所以实际每天生产 60÷5×6 = 72 (个)最后用总数除以实际每天生产的个数,1200÷72 = 50/3 (天)四、比例中的图形问题例如:一个长方形的长和宽的比是 5:3 ,周长是 80 厘米,求这个长方形的面积。
六年级奥数比例分配的应用题(一)1.一个直角三角形,两个锐角度数的比是1:4,这两个锐角各多少度?2.三条绳长的和是84米,三条绳的比是3:4:5.三条绳各长多少米?3.一个三角形铁框,三个内角度数的比是1:2:3,这个铁框的三个角分别是多少度?4.42名同学到面积分别是60和80平方米的菜园去帮忙种菜。
如果按面积大小分配人员,这两处菜园各应去多少名同学种菜?5.学校把栽480棵树的任务按六年级三班的人数分配给各组,一组有47人,二组有38人,三组有35人,三个组各应栽树多少棵?6.粮食公司有三个汽车队,甲队有6辆货车,乙队有7辆货车,丙队有8辆货车,每辆载重量相等,有378吨粮食运往外地,按运输能力分配,各队应运粮食多少吨?7.学校把864本图书按人数借给三个年级。
一年级有49人,二年级有50人,三年级有45人,三个年级各分得图书多少本?8.分别以1:2:10的石灰、硫磺和水配农药,现在要配制农药650千克。
石灰、硫磺和水各需要多少千克?9,一个等腰三角形的铁片,顶角和一个底角的度数的比是4:3,求这个等腰三角形的顶角和底角各是多少度?10.一个长方形的周长是40为米,长与宽的比是3:2,这个长方形的面积多少平方米?六年级奥数比例分配的应用题(二)11.有840吨粮食,分给两个运输队运出去。
甲运输队有载重5吨的汽车12辆,乙运输队有载重3吨的汽车15辆,按两个队的运输能力分配。
甲、乙两运输队各应运粮食多少吨?12.甲、乙、丙三个班人数的和是420人,甲班和乙班人数的比是2:3,乙班和丙班人数的比是4:5。
甲、乙、丙三个班各有多少人?13.甲、乙、丙三个班的平均人数是25人,甲、乙、丙三个班人数的比是6:5:4。
甲、乙、丙三个班各有多少人?14.一个长方体的长、宽、高的比是5:3:1,棱长之和是144米。
这个长方体的体积是多少立方米?15.三个人的平均年龄是40岁,这三个人年龄的比是2:5:3,最小的年龄是多少岁?16.三个煤炭厂内共有煤炭1400万千克,甲厂和乙厂煤炭重量的比是3:4,乙厂和丙厂煤炭重量的比是6:7,三个煤炭厂各存煤炭多少万千克?17.甲、乙、丙三个数的平均数是7.2,它们的比是4:2:3。
第8讲 比的应用1知识装备1、在实际生活中,把一个数量按一定的比分成几部分,求每个部分各是多少,这就是按比分配。
在按比分配问题中,有时要先求出分配的数量,有时要先求出几个部分的比,有时把一个问题转换成按比分配的问题,可以找到解决问题的简便方法。
2、按比分配应用题的关键: (1)先找出或求出总数量。
(2)再找出或求出总份数。
(3)最后求出各部分的量。
初级挑战1一个长方体的棱长总和是48厘米,它的长、宽、高的比是3:2:1,那么这个长方体的体积是多少立方厘米?思路引领∶已知长方体的棱长总和及长、宽、高的比,可先找出长、宽、高之和,再根据比分别求出长、宽、高,即可求出体积。
答案: 48÷4=12(厘米),1份数:12÷(3+2+1)=2(厘米), 长:2×3=6(厘米);宽:2×2=4(厘米),高2×1=2(厘米)长方体的体积:6×4×2=48(立方厘米)。
能力探索1甲、乙、丙三个数的平均数是60。
甲、乙、丙三个数的比是3:2:1。
甲、乙、丙三个数各是多少?答案: 60×3=180 180÷(3+2+1)=30甲:30×3=90 乙:30×2=60 丙:30×1=30初级挑战2中心小学六(一)班共有学生51人,男生人数的43等于女生人数的32。
这个班男、女生各有多少人?思路引领:根据男、女生人数的关系,找出他们的人数比,再按比分配求男、女生人数各是多少。
答案:由男生人数的43等于女生人数的32,得知男生和女生人数之比为8:9,再按比例分配得:男生:51÷(8+9)×8=24(人) 女生:51÷(8+9)×9=27(人)能力探索21、粮店里有大米、面粉和玉米共900吨,大米重量的41等于面粉重量的31,玉米重200吨。
大米和面粉的重量各是多少吨?答案:大米和面粉共重:900-200=700(吨),大米重量和面粉重量之比为4:3。
比的应用经典例题讲解例1、光明小学将五年级的140名学生,分成三个小组进行植树活动,已知第一小组和第二小组人数的比是2:3,第二小组和第三小组人数比是4:5,第三小组比第一小组多多少人?例2、甲乙两校原有图书本数的比是7:5,如果甲校给乙校650本,甲、乙两校图书的比是3:4。
原来甲校有图书多少本?例3、甲、乙、丙三人同时从A向B跑,当甲跑到B地时,乙离B还有35米,丙离B还有68米;当乙跑到B时,丙离B还有40米,A、B相距多少米?例4、甲、乙两个学生放学回家,甲要比乙多走51的路,而乙走的时间比甲少111,求甲、乙两人的速度比是多少?例5、制造一个零件,甲需要6分钟,乙需要5分钟,丙需要4.5分钟,现在又1590个零件的制造任务分配给他们三个人,要求在相同时间内完成,每人应该分配多少个?例6、A 、B 两种商品价格比是7:3.如果它们的价格分别上涨70元,它们的价格比是7:4,这两种商品原来的价格各是多少元?经典练习1、黄山小学六年级的同学分成三组参加植树活动,第一组与第二组人数比5:4,第二组与第三组人数比是3:2。
已知第一组人数比第二、三组的总人数少15人。
六年级共有多少人参加植树活动?2、科技小组与作文小组的人数比是9:10,作文小组与数学小组人数比是5:7.已知数学小组与科技小组共有69人。
数学小组比作文小组多多少人?3、王明读一本故事书,已读和未读的页数比是1:5,如果再读30也,那么已读和未读页数之比是3:5,这本故事书有多少页?4、六年级三个班参加数学竞赛。
一班参加比赛的占全年级参赛总人数的31,二班与三班参赛人数的比11:13,二班比三班少8人参加比赛。
一班有多少人参加数学竞赛?5、甲、乙两车同时从A 、B 两地相向二行,当甲车到达B 地时,乙车距离A 地30千米,当乙车到达A 地时,甲车超过B 地40千米,A 、B 地相距多少千米?6、王刚和李明进行100米短跑比赛(假设二人的速度均不变)。
六年级奥数专项复习:比例应用题1、老赵、老钱、老孙三人凑钱买来一张彩票,没想到竟中了奖,领来奖金后,他们三人按照3:5:4的比例来分,结果老钱比老赵多分到了2000元,那么老孙分到了( )元。
2、中国古代的黑火药配制中的硝酸钾、硫磺、木炭的比例为15:2:3,今有木炭50千克,要配制黑火药1000千克,还需要木炭( )千克。
3、根据美学的观点及经验法则,一副彩色的作品其红、黄、蓝三原色之配色比例为5:3:8时,其色彩强度达到平衡,可使作品看起来比较柔和,不会有某种颜色特别突兀的感觉,我们都知道,橘色是由红色加黄色而成;紫色是有红色加蓝色而成;绿色是由黄色加蓝色而成。
请问一次法则,橘、紫、绿这三种中间色之配色比例为( )时,其色彩强度可达到平衡。
4、有三批货物共值152万元,第一,第二,第三批货物按重量比为2:4:3,按单价比为6:5:2,这三批货物分别价值( 、 、 )万元。
5、一个容器内注满了水,将大、中、小三个铁球这样操作:第一次次,沉入小球;第二次,取出小球,沉入中球:第三次,取出中球,沉入大球。
已知第一次溢出的水量是第二次的3倍,第三次溢出的水量是第一次的2倍,那么大、中、小三种球的体积比为( )。
6、今年儿子的年龄是父亲年龄的四分之一,15年后,儿子的年龄是父亲年龄的十一分之五。
今年儿子( )岁。
7、某校若干名学生参加某电视邀请赛,其中男生人数与女生人数的比为8:5.后来又有20名女生报名赛,这时女生人数占参赛总人数的十一分之五,现在参赛的学生共有( )人。
8、甲、乙两校参加数学竞赛的人数之比是7:8,获奖人数之比是2:3,两校各有320人未获奖,那么两校参赛的学生共有( )。
9、某学校六年级原来有三个班,现在要将三班的同学分插到一班和二班,如果将三班的学生的一半分到一班,另一半分到二班,则两班的人数之比为7:8;如果将三班的学生的八分之五分到一班,另外的分到二班,则新的两班人数相等,那么原来一班、二班和三班的人数之比为( )。
第14讲 比的应用(一)一、知识要点我们已经学过比的知识,都知道比和分数、除法其实是一回事,所有比与分数能互相转化。
运用这种方法解决一些实际问题可以化难为易,化繁为简。
二、精讲精练【例题1】甲数是乙数的32,乙数是丙数的54,甲、乙、丙三数的比是( ):( ):( )。
练习1:1、甲数是乙数的54,乙数是丙数的85,甲、乙、丙三数的比是( ):( ):( )。
2、甲数是乙数的54,甲数是丙数的94,甲、乙、丙三数的比是( ):( ):( )。
3、甲数是丙数的73,乙数是丙数的212,甲、乙、丙三数的比是( ):( ):( )。
【例题2】光明小学将五年级的140名学生,分成三个小组进行植树活动,已知第一小组和第二小组人数的比是2:3,第二小组和第三小组人数的比是4:5。
这三个小组各有多少人?练习2:1、某农场把61600公亩耕地划归为粮田与棉田,它们之间的比是7:2,棉田与其他作物面积的比6:1。
每种作物各是多少公亩?2、黄山小学六年级的同学分三组参加植树。
第一组与第二组的人数的比是5:4,第二组与第三组人数的比是3:2。
已知第一组的人数比二、三组人数的总和少15人。
六年级参加植树的共有多少人?【例题3】甲、乙两校原有图书本数的比是7:5,如果甲校给乙校650本,甲、乙两校图书本数的比就是3:4。
原来甲校有图书多少本?练习3:1、小明读一本书,已读的和未读的页数比是1:5。
如果再读30页,则已读和未读的页数之比为3:5。
这本书共有多少页?2、甲、乙两包糖的重量比是4:1。
从甲包取出130克放入乙包后,甲、乙两包糖的重量比为7:5。
原来甲包有多少克糖?【例题4】从前有个农民,临死前留下遗言,要把17头牛分给三个儿子,其中大儿子分得21,二儿子分得31,小儿子分得91,但不能把牛卖掉或杀掉。
三个儿子按照老人的要求怎么也不好分。
后来一位邻居顺利地把17头牛分完了,你知道这到底是怎么回事吗?练习4:1、图书室取出一批书,按照一年级得21,二年级得31,三年级得71,正好是41本,各年级各得多少本?2、古罗马富豪约翰逊再临终前,对怀孕的妻子写下这样一份遗嘱:如果生下来是个男孩,就把遗产的三分之二给儿子,母亲拿三分之一;如果生下来的是女孩就把遗产的三分之一给女儿,三分之二给母亲。
比及比的应用(2009-08-13 16:37:35)分类:奥数专题讲座标签:教育比及比的应用一、比的计算思维上的把握:比号就是除号,就是分数线。
这一点至关重要,把握住了这点,就掌握了所有比的计算的入门钥匙。
例:2:3=2/3=2÷3方法上的把握:运用比的基本性质(除法或分数的基本性质)来解题,即:比的前项(也称分子或被除数)和比的后项(也称分母或除数)同时乘以或除以不为零的数,比值(也称分数值或商)不变注意:化简比和求比值相同处:方法和过程相同;不同处:化简比结果有比号,求比值最后的结果是一个数。
二、比的应用解题思路:把比当份数,求出每份例1.男女生人数之比是2:7,男生是女生人数的几分之几?女生是男生人数的几分之几?男生占全班人数的几分之几?女生点全班人数的几分之几?男生比女生少几分之几?女生比男生多几分之几?解析:男女生人数之比是2:7,我们可以把男生看成2份人,女生看成7份人,全班就是9份人。
男生是女生人数的:2÷7=2/7;女生是男生人数的:7÷2=7/2;男生占全班的:2÷9=2/9;女生占全班人数的:7÷9=7/9;男生比女生人数少:(7-2)÷7=5/7;女生比男生人数多:(7-2)÷2=5/2。
应用题类型(一)题目告诉了总数和比:直接把比当份数例1.学校买来540本书,按4:5借给五、六年级,每个年级各借多少本?解析:把比当份数,求出每份。
五年级占4份,六年级5份,总共9份,每份是540÷9=60(本),那么五年级借了:60×4=240本,六年级借了:60×5=300本(二)题目告诉了总数,但没告诉比的:先求出各量的比,再把比当份数例1:学校把栽560棵树的任务按照六年级三个班的人数比分配给各班;一班有47人,二班有45人,三班有48人,三个班各应栽树多少棵?解析:三个班的人数比是:47:45:48,把比当份数,一班47份,二班45份,三班48份,总共47+45+48=140份,总共560棵,每份就是560÷140=4棵,那么,一班分:4×47=188棵;二班分:4×45=180棵;三班分:4×48=192棵例2.两个服装厂一个月内生产的西服数量是6:5,两厂西服价格比是11:10,已知这个月两厂的总产值为6960万元,两厂的产值各是多少万元?解析:题目告诉了总产值,没告诉两厂的产值比,所以先要求出两厂的产值比产值=件数×每件价格第一个厂:件数是6份,每件价格是11份,产值就是6×11=66份第二个厂:件数是5份,每件价格是10份,产值就是5×10=50份两个厂的产值比是66:50,剩下的解题思路和过程,同上.(三)题目没告诉总数,但告诉比的(1)间接告诉总数的:先求出总数,再把比当份数,求每份例1.已知甲乙丙三个数的比是2:3:5,这三个数的平均数60,这三个数分别是多少?解析:虽然题目未告诉总数,但由平均数可以求出三个数的总数。
1、比例的基本性质2、熟练掌握比例式的恒等变形及连比问题3、能够进行各种条件下比例的转化,有目的的转化;4、单位“1”变化的比例问题5、方程解比例应用题比例与百分数作为一种数学工具在人们日常生活中处理多组数量关系非常有用,这一部分内容也是小升初考试的重要内容.通过本讲需要学生掌握的内容有:一、比和比例的性质性质1:若a : b =c :d ,则(a + c ):(b + d )= a :b =c :d ; 性质2:若a : b =c :d ,则(a - c ):(b - d )= a :b =c :d ;性质3:若a : b =c :d ,则(a +x c ):(b +x d )=a :b =c :d ;(x 为常数) 性质4:若a : b =c :d ,则a ×d = b ×c ;(即外项积等于内项积) 正比例:如果a ÷b =k (k 为常数),则称a 、b 成正比; 反比例:如果a ×b =k (k 为常数),则称a 、b 成反比.二、主要比例转化实例①x a y b =⇒ y b x a =; x ya b =; a b x y =; ②x a y b = ⇒ mx a my b =; x ma y mb =(其中0m ≠); ③x a y b = ⇒ x a x y a b =++; x y a b x a --=; x y a b x y a b ++=-- ;④x a yb =,yc zd = ⇒ x ac z bd=;::::x y z ac bc bd =; ⑤ x 的ca等于y 的d b ,则x 是y 的ad bc ,y 是x 的bc ad .三、按比例分配与和差关系⑴按比例分配例如:将x 个物体按照:a b 的比例分配给甲、乙两个人,那么实际上甲、乙两个人各自分配到的物体数量与x 的比分别为():a a b +和():b a b +,所以甲分配到ax a b +个,乙分配到bxa b+个. ⑵已知两组物体的数量比和数量差,求各个类别数量的问题例如:两个类别A 、B ,元素的数量比为:a b (这里a b >),数量差为x ,那么A 的元素数量为axa b-,知识点拨教学目标比例应用题(一)B 的元素数量为bxa b-,所以解题的关键是求出()a b -与a 或b 的比值.四、比例题目常用解题方式和思路解答分数应用题关键是正确理解、运用单位“l ”。
比例的应用(1)例1:甲乙两个长方形,它们的周长相等,甲的长与宽之比是3:2,乙的长与宽之比是4:3,那么,甲与乙的面积之比是多少?练习:1、甲乙两人步行的速度比是7:5,甲乙分别由A、B两地同事出发,如果相向而行,0.5小时相遇。
如果他们同时同向而行,那么甲追上乙需要多少小时?2、客车和货车从甲、乙两地同时出发,相向而行,在距中点30千米处相遇。
已知货车与客车的速度比是5:8,求甲、乙两地的距离。
例2:一种大米每千克1.08元,另一种大米每千克1.48元,把这种大米混合后,售价为每千克1.23元,求两种大米混合的重量比?练习:1、用奶糖和水果糖混合在一起酿成一种礼品糖,已知奶糖每千克5.4元,水果糖每千克3元。
现在要想配出的礼品糖每千克为4.8元,那么奶糖和水果糖应该按怎样的比例混合?2、例3:两只蜡烛长度相等,粗蜡烛可以点5小时,细蜡烛可以点4小时,同时点燃一段时间后,粗蜡烛长度是细蜡烛长度的2倍。
此时已经点燃了多少小时?练习:1、有长度相同,粗细不同的两支蜡烛,细蜡烛点完需1小时,粗蜡烛点完需2小时。
有一次停电,将这两支蜡烛同时点燃,来电时,发现粗蜡烛是细蜡烛的2 倍时,问停电多长时间?2、两支粗细,长短都不相同的蜡烛,长的一支能燃4小时,短的一支能燃6小时,将它们同时点燃2小时后,两支蜡烛剩下的长度相等。
求两支蜡烛原来的长度比。
3、两支蜡烛粗细不同,细蜡烛之长是粗蜡烛之长的2倍,细蜡烛点完要1小时,粗蜡烛点完要2小时,有一次停电,将这两支蜡烛同时点燃,来电时发现两支蜡烛所剩的长度一样。
问:停电多长时间?能力检测:1、甲和乙同时分别从A、B两站相对出发,在离中点 8千米处相遇,已知乙的速度与甲的速度比是3:4,问A、B两站相距多少千米?2、话梅糖每千克5.1元,奶糖每千克8.9元,现把这两种糖混合后,要求混合后的糖价为每千克5.4元,话梅糖和奶糖应用怎样的重量比才合适?3、一个底面直径是24厘米的圆柱形玻璃中装有水,水里放着一个底面直径12厘米,高18厘米的圆锥形铅块,当铅块从水中取出时,杯里的水面会下降多少厘米?4、一个正方体的表面积是54平方厘米,如果以这个正方体一个面的对角线为棱长做一个新的正方体,如图所示。
六年级比例奥数题及答案六年级比例奥数题及答案 11、李明的爸爸经营个水果店,按开始的定价,每买出1千克水果,可获利0.2元。
后来李明建议爸爸降价销售,结果降价后每天的销量增加了1倍,每天获利比原来增加了50%。
问:每千克水果降价多少元?答案:设以前卖出X千克降价a元。
那么0.2X×(1+0.5)=(0.2-a)×2x则0.1X=2aXa=0.05答:每千克水果降价0.05元2、有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。
解析与答案:首先要确定3枚棋子的颜色可以有多少种不同的情况,可以有:3黑,2黑1白,1黑2白,3白共4种配组情况,看作4个抽屉。
把每人的3枚棋作为一组当作一个苹果,因此共有5个苹果。
把每人所拿3枚棋子按其颜色配组情况放入相应的抽屉。
由于有5个苹果,比抽屉个数多,所以根据抽屉原理,至少有两个苹果在同一个抽屉里,也就是他们所拿棋子的颜色配组是一样的。
六年级比例奥数题及答案 2猎狗发现在离它10米的前方有一只奔跑着的兔子,马上追上去,兔跑9步的路程狗只需跑5步,但狗跑2步的时间,兔却跑3步。
问狗追上兔时,共跑了多少米路程?答案与解析:60米对于追及问题,我们知道:10米=速度差×追及时间狗追上兔时,所跑路程应为:总路程=狗的速度×追及时间这就是要弄清狗的速度与兔的速度差之间的倍数关系。
另一方面,在分析速度时,一定是相同时间内狗与兔的速度之间的倍数,而不是相同的步数或相同的路程。
只要分析清楚这些,就可以解出本题了。
详解1:为了看相同时间的路程关系,也就是速度关系,我们进行如下处理:狗跑2步的时间兔跑3步,则狗跑6步的时间兔子跑了9步,也就是兔子跑了狗的5步,那么在这段时间内,狗追上了兔子,狗的一步或狗兔间的距离缩短了狗的1步,而狗跑了6步,所以狗的速度是速度差的6倍。
六年级奥数比例应用题【指点迷津】六年级奥数比例应用题. 它常常同分数应用题.工程问题.行程问题等交织在一起,使数量关系变得复杂. 解题的关键在于找出与问题有关的几种相关联的量,并判断它们的关系.【经典例题】1.小明和小方各走一段路,小明走的路程比小方多15 ,小方用的时间比小明多18,小明和小方的速度之比是多少?【思路导航】根据题意,小明和小方路程之比为6 : 5,小明和小方所用的时间的比是8:9,我们把这两个比看作最简整数比,利用路程与时间的关系, 可求出小明和小方的速度之比. 解: 68 : 59=27:20 答:小明和小方的速度之比是27: 20.【举一反三】1.1. 张师傅和李师傅加工一些零件,张师傅加工的个数比李师傅多16,李师傅用的时间比张师傅多18; ,张师傅和李师傅每小时加工的个数之比是多少?2.李刚和张亮各走一段路,李刚走的路程比张亮多25 ,张亮用的时问比李刚多38,李刚和张亮的速度之比是多少?【经典例题】2.甲.乙两仓库存货吨数比为4 : 3,如果由甲库中取出8吨放到乙库中,则甲.乙两仓库存货吨数比为4 : 5 ,两仓库原存货总吨数是多少吨?【思路导航】甲库中原来存货占甲.乙两库总数的44+3 =47,取出8吨后,那么甲库余下的吨数是甲.乙两库总吨数的 49 ,所以取出的8 吨是占甲.乙两库总数的47 — 49解:8÷(47 — 49)= 63(吨) 答:两仓库原存货总吨数是63吨.【举一反三】2.1.甲.乙两厂的人数比是7: 6,从甲厂调360人到乙厂后,甲.乙两厂人数的比是2:3, 甲.乙两厂原来一共有多少人?2 甲.乙两工程队的人数比是6: 5,从甲队调50人到乙队后,甲.乙两队人数的比是4 5,甲.乙两队原来一共有多少人?【经典例题】3.A.B两地相距360 米,前一半时间小华用速度A行走,后一半时间用速度B走完全程,又知A: B =5:4,前一半路程所用时间与后一半路程所用时间的比是多少?【思路导航】全程的一半是360 ÷ 2 = 180(米)第一种速度行:360×55+4=200(米) ,多于一半20米第二种速度行:360×45+4= 160(米) ,少于一半20米第一种速度行的后20米应属于后一半的路程了. 所以200-205:(205+1604)= 9:11答:前一半路程所用时间与后一半路程所用时间的比是9 :1l.【举一反三】3.l. 一段路320米,前一半时间小明用速度A行走,后一半时间用速度B走,又知A:B=3: 5 ,前一半路程所用时间与后一半路程所用时间的比是多少?2.甲.乙两地的距离为240千米,小明前一半时间用速度 A行定,后一半时间用速度B走,又知 A: B = l:3,前一半路程所用时间与后一半路程所用时间的比是多少?【经典例题】4.某船第一次顺流航行21千米又逆流航行4千米,第二次在同一河道中顺流航行12千米,逆流航行7千米,结果两次所用的时间相等.顺水船速与逆水船速之比是多少? (设船本身的速度及水流的速度都是不变的)【思路导航】根据題意,船第一次顺流航行21千米,第二次顺流航行12千米,21 -12 =9(千米),也就是第一次顺流多用了航行9千米所用的时间,第二次逆流航行比第一次多用时间于(7 -4) =3千米的航行上,总的时间两次都相等,就是顺流9千米用的时间等于逆流3千米所用的时间.所以顺流船速:逆流船速 = (2l - l2): (7 -4) =3:1.【举一反三】4.1 .“长江”号轮船第一次顺流航行 15千米又逆流航行6千米,第二次在同一河流中顺流航行l0千米,逆流航行8千米, 结果两次所用的时间相等.求顺水船速与逆水船速的比 . (设船本身的速度及水流的速度都是不变的)2.某轮船第一次顺流航行28千米又逆流航行6千米,第二次在同一河流中顺流航行18千米,逆流航行l2千米,结果两次所用的时间相等. 求顺水船速与逆水船速的比. (设船本身的速度及水流的速度都是不变的)【经典例题】5.洗衣机厂计划20天生产洗衣机1600台,生产5天后由于改进技术,效率提高25% ,完成计划还要多少天?【思路导航1】这是一道比例应用题,工效和工时是变量,不交量是计划生产5天后剩下的台数. 从工效看,有原来的效率1600 ÷20=80台/天,又有提高后的效率80×(1+25%) =100台/天.从时间看,有原来计划的天数,要求效率提高后还需要的天数.根据工效和工时成反比例的关系,得:提高后的效率×所需天数 = 剩下的台数.设完成计划还需X 天.1600÷20×X = 1600—1600÷20 ×580×1.25X = l600 —400100X = 1200X = 12答:完成计划还要12天.【举一反三】5.1.化肥厂计划生产化肥1400吨,由于改进技术5天就完成了计划的25% , 照这样计算,剩下的任务还需多少天完成?2.轴承厂计划20天生产轴承2400件,生产2天后由于改进技术,效率提高20% ,完成计划还要多少天?【经典例题】6.学前班有几十位小朋友,老师买来176个苹果,216块饼干,324粒糖,并将它们尽可能多的平均分给每位小朋友,余下的苹果.饼干.糖的数量之比是1: 2: 3.问:学前班有多少位小朋友?【思路导航】因为1 +2 =3,176+2l6-324=68,所以全班的人数应是68的约数.68的大于10的约数是17.34和68.如果全班人数为17,176÷17 = 10……6,216÷17=12……12,324÷17 =l9……1,l6:12:l≠1:2:3不符合题意.如果全班人数为34,176÷34 =5……6, 216÷34=6……12,324÷34=9……18, 6: l2: l8 =1:2:3 符合题意 .如果全班人数为68 ,176÷68=2……40,2l6 ÷68 =3……12,324 ÷68=4……52, 40:12:52≠l:2:3 不符合题意.答:学前班有34位小朋友. l【举一反三】6.1.甲.乙两列车分别从 A.B两站同时相向开出,已知甲车速度与乙车速度的比为3:2,C站在 A.B之间,甲.乙两列车到达 C站的时间分别是早晨5时和下午3时,甲.乙两车几点相遇?2.某学校某次招生考试,参加的男生与女生人数之比是4: 3,结果录取了91 人,其中男生与女生人数之比是8: 5 ,在未被录取的学生中,男生与女生人数之比是3: 4 ,那么报考的共有多少人?【经典例题】7.百米赛跑,甲比乙早到5米,甲比丙早到10 米,那么乙比丙早到多少米? (假设速度不变)【思路导航】根据题意“百米赛跑,甲比乙早到5 米,甲比丙早到10米”,可以知道,当甲到达时,乙跑了100-5 =95米,丙跑了100-10=90 米.由于两人的速度不变,我们只要算出乙跑剩下的5 米时,丙跑了多少米就可以了 .解:设乙跑了5米时,丙跑了X 米.95: 90= 5: XX = 9019所以,乙比丙早到的米数为:10- 9019 = 10019(米) 答: 乙比丙早到 10019米. 【举一反三】7.1.百米赛跑,甲比乙早到10米,甲比丙早到20 米,那么乙比丙早到多少米? (假设速度不变)2.百米赛跑,甲比乙早到8米,乙比丙早到12米,那么甲到的时候,丙还有多少米? (假设速度不变)【经典例题】8.甲.乙.丙三个互相咬合的齿轮,如果甲轮转5圈,那么乙轮转7圈,丙轮转2圈,这三个齿轮齿数最少应分别是多少齿?【思路导航】分别用甲齿.乙齿.丙齿代表三个齿轮的齿数.甲.乙.丙三个齿轮转数比为5 :7 :2,根据齿数与转数成反比例关系,如果认为甲.乙.丙三个齿轮的齿数比是2:7 :5就错了 .要求三个数的反比,应该分别求出它们之间的比式.甲齿:乙齿=7 :5(与转数成反比)乙齿:丙齿=2 :7(与转数成反比)现在把这两个单比化成连化. 乙齿在两个比中所占的份数分别为5和2,5和2的最小公倍数是l0,则把这两个比化为:甲齿:乙齿=7 :5 =14 :10乙齿:丙齿=2 :7 =10:35所以甲齿:乙齿:两齿=14 :l0:35由于l4,10,35三个数互质,且齿数需是自然数,所以甲.乙.丙三个齿轮齿数最少应分别为 14 ,10,35齿.【举一反三】7.1.甲.乙.丙三个互相咬合的齿轮,若使甲轮转7圈,乙轮转3圈,丙轮转1圈, 这三个齿轮齿数最少应分别是多少齿?2.甲.乙.丙三个互相咬合的齿轮,甲有48齿,若使甲轮转4圈时,乙轮转8圈,丙轮转3圈,乙.丙两个齿轮分别是多少齿?拓展应用1.一班和二班的人数之比是8:7,如果将一班的8名同学调到二班去,则一班和二班的人数比变为4: 5 ,求原来两班的数.2.某商贩按大个鸡蛋每个3 角6分,小个鸡蛋的每个2角8分卖出一批鸡蛋,共收入214 元,已知他卖出的大个鸡蛋与小个鸡蛋的个数比是8:5 ,他卖出大个鸡蛋与小个鸡蛋各多少个?3.搬运一批货物, 甲车单独运要运6次,乙车每次可运7.2 吨.现在甲.乙两车合运,运的次数相同.搬通货物的重量的比是5: 3,这批货物共有多少吨?4.两个相同的瓶子装满酒精溶液, 一个瓶子酒精与水的体之比为5 : l ,而另一个瓶子酒精与水的体积之比为4 :1 ,若把两瓶酒精溶液例入一个盆中混合,混合后酒精与水的体积之比是多少?5.某学校入学考试,参加的男生与女生人数之比是6 : 5 ,结果录取l00人,其中男生与女生人数之比是3 :2 ,在未被录取的学生中, 男生与女生人数之比是4: 5 ,那么报考的共有多少人?6.甲.乙.丙三个平行四边形的底之比是4: 7 :9,高之比是3 :2 :2,已知三个平行四边形的面积和是220平方分米,那么甲.乙.丙三个平行四边形的面积各是多少?7.电视机厂计划34天生产电视机1800台,生产10天后由于改进技术,效率提高20% ,完成计划还要多少天?8.6枝一分硬币叠在一起与5枚二分硬币叠在一起一样高,4枚一分硬币叠在一起与3枚五分硬币叠在一起一样高,用一分.二分.五分硬币各叠成一个圆柱体,并且三个圆柱体一样高,共用了124枚硬币,问:这些硬币的价値为多少元?。
六年级奥数 比例应用题【指点迷津】比例解题是小学数学综合能力的一个重要方面,这里的比例题要紧包括正比例和反比例的应用 。
它常常同分数应用题、工程问题、行程问题等交织在一路,使数量关系变得复杂。
解题的关键在于找出与问题有关的几种相关联的量,并判定它们的关系。
【经典例题】一、小明和小方各走一段路,小明走的路程比小方多15 ,小方用的时间比小明多18,小明和小方的速度之比是多少?【思路导航】依照题意,小明和小方路程之比为6 : 5,小明和小方所用的时刻的比是8:9,咱们把这两个比看做最简整数比,利用路程与时刻的关系, 可求出小明和小方的速度之比。
解: 68 : 59=27:20 答:小明和小方的速度之比是27: 20。
【触类旁通】一、1. 张师傅和李师傅加工一些零件,张师傅加工的个数比李师傅多16,李师傅用的时刻比张师傅多18; ,张师傅和李师傅每小时加工的个数之比是多少?2.李刚和张亮各走一段路,李刚走的路程比张亮多25 ,张亮用的时问比李刚多38,李刚和张亮的速度之比是多少?【经典例题】2、甲、乙两仓库存货吨数比为4 : 3,若是由甲库中掏出8吨放到乙库中,那么甲、乙两仓库存货吨数比为4 : 5 ,两仓库原存货总吨数是多少吨?【思路导航】甲库中原先存货占甲、乙两库总数的44+3 =47,掏出8吨后,那么甲库余下的吨数是甲、乙两库总吨数的 49 ,因此掏出的8 吨是占甲、乙两库总数的47 — 49解:8÷(47 — 49)= 63(吨) 答:两仓库原存货总吨数是63吨。
【触类旁通】2、一、甲、乙两厂的人数比是7: 6,从甲厂调360人到乙厂后,甲、乙两厂人数的比是2:3,甲、乙两厂原先一共有多少人?2 甲、乙两工程队的人数比是6: 5,从甲队调50人到乙队后,甲、乙两队人数的比是4 5,甲、乙两队原先一共有 多少人?【经典例题】3、A、B两地相距360 米,前一半时间小华用速度A行走,后一半时间用速度B走完全程,又知A: B =5:4,前一半路程所历时间与后一半路程所用时刻的比是多少?【思路导航】全程的一半是360 ÷ 2 = 180(米)第一种速度行:360×55+4=200(米) ,多于一半20米第二种速度行:360×45+4= 160(米) ,少于一半20米第一种速度行的后20米应属于后一半的路程了。
第14讲 比的应用(一)一、知识要点我们已经学过比的知识,都知道比和分数、除法其实是一回事,所有比与分数能互相转化。
运用这种方法解决一些实际问题可以化难为易,化繁为简。
二、精讲精练【例题1】甲数是乙数的32,乙数是丙数的54,甲、乙、丙三数的比是( ):( ):( )。
练习1: 1、甲数是乙数的54,乙数是丙数的85,甲、乙、丙三数的比是( ):( ):( )。
2、甲数是乙数的54,甲数是丙数的94,甲、乙、丙三数的比是( ):( ):( )。
3、甲数是丙数的73,乙数是丙数的212,甲、乙、丙三数的比是( ):( ):( )。
【例题2】光明小学将五年级的140名学生,分成三个小组进行植树活动,已知第一小组和第二小组人数的比是2:3,第二小组和第三小组人数的比是4:5。
这三个小组各有多少人?练习2:1、某农场把61600公亩耕地划归为粮田与棉田,它们之间的比是7:2,棉田与其他作物面积的比6:1。
每种作物各是多少公亩?2、黄山小学六年级的同学分三组参加植树。
第一组与第二组的人数的比是5:4,第二组与第三组人数的比是3:2。
已知第一组的人数比二、三组人数的总和少15人。
六年级参加植树的共有多少人?【例题3】甲、乙两校原有图书本数的比是7:5,如果甲校给乙校650本,甲、乙两校图书本数的比就是3:4。
原来甲校有图书多少本?练习3:1、小明读一本书,已读的和未读的页数比是1:5。
如果再读30页,则已读和未读的页数之比为3:5。
这本书共有多少页?2、甲、乙两包糖的重量比是4:1。
从甲包取出130克放入乙包后,甲、乙两包糖的重量比为7:5。
原来甲包有多少克糖?【例题4】从前有个农民,临死前留下遗言,要把17头牛分给三个儿子,其中大儿子分得21,二儿子分得31,小儿子分得91,但不能把牛卖掉或杀掉。
三个儿子按照老人的要求怎么也不好分。
后来一位邻居顺利地把17头牛分完了,你知道这到底是怎么回事吗?练习4:1、图书室取出一批书,按照一年级得21,二年级得31,三年级得71,正好是41本,各年级各得多少本?2、古罗马富豪约翰逊再临终前,对怀孕的妻子写下这样一份遗嘱:如果生下来是个男孩,就把遗产的三分之二给儿子,母亲拿三分之一;如果生下来的是女孩就把遗产的三分之一给女儿,三分之二给母亲。
第五讲 比的应用知识应用:我们已经学习了有关比的知识,比与分数、百分数和除法是密切相关的,且与分数可以相互转化。
运用这种方法解决实际问题就可以化难为易。
【课前小练笔】某工厂第一、二、三车间人数之比为8:12:21,第一车间比第二车间少80人,三个车间共多少人?【典型例题1】 甲工厂有工人120人,乙工厂有工人80人。
从乙工厂调几人到甲工厂,才能使甲、乙两工厂的工人人数比是5:3?解析:两厂的总人数不变,一共是120+80=200(人)。
要使甲、乙两厂人数比为5:3,甲厂要有200×355 =125(人),进而求出调进的人数。
解答:【随堂练习1】甲班有60人,乙班有80人。
从甲班调几人到乙班才能使甲、乙两班人数比是2:3?【典型例题2】光明小学将六年级140名学生分成3个植树小组。
已知第一组和第二组的人数比是2:3,第二组和第三组的人数比是4:5。
这三个小组各有学生多少人?解析:先求出三个小组的连比,再根据连比进行分配。
解答:【随堂练习2】马岗小学六年级的学生分三组进行植树活动。
第一组和第二组的人数比是5:4,第二组与第三组的人数比是3:2,已知第一组的人数比第二、第三组人数的总和少15人,求六年级参加植树活动共有多少人?【典型例题3】 甲、乙两校原有图书本数比是7:5,如果甲校给乙校650本,甲、乙两校的图书本数比就是3:4。
原来甲校有图书多少本?解析:由“甲、乙两校原有图书比是7:5”可知甲校原来图书本数是两校图书本数之和的577+,由于甲校给了乙校650本,这时“甲、乙两校的图书比就是3:4”,甲校图书数占甲、乙两校图书数和的433+。
假定甲、乙两校图书数和为1分,甲校给了乙校650本,对应的是(577+-433+)份,这样就可以求出两校图书本数之和。
解答:【随堂练习3】六年级三班举行数学竞赛。
一班参加人数占全年级参赛人数的31,二班和三班参赛人数比是11:13,二班参赛人数比三班少8人。