(完整版)2017新湘教版九年级数学上知识点,推荐文档
- 格式:docx
- 大小:228.07 KB
- 文档页数:10
湘教版九年级数学上册第一章反比例函数(一)反比例函数1.()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件;2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式;(二)反比例函数的图象与性质1.函数解析式:()2.自变量的取值范围:3.图象:反比例函数的图象:在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称). (1)图象的形状:双曲线越大,图象的弯曲度越小,曲线越平直.越小,图象的弯曲度越大. (2)图象的位置和性质:自变量,函数图象与x轴、y轴无交点,两条坐标轴是双曲线的渐近线. 当时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小; 当时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大. (3)对称性:图象关于原点对称,若(a,b)在双曲线的一支上,(,)在双曲线的另一支上.图象关于直线对称,即若(a,b)在双曲线的一支上,则(,)和(,)在双曲线的另一支上. 4.k的几何意义: 如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y 轴于B点,则矩形PBOA的面积是(三角形PAO和三角形PBO的面积都是).,由双曲线的对称性可知,P关于原点的对称点的面积为.图2)直线与双曲线的关系:当时,两图象没有交点;当时,如果方程化成的形式,那么可得;如果方程能化成 (的形式,那么进而得出方程的根。
配方式基本步骤:①把方程化成一元二次方程的一般形式;②将二次项系数化成(可作为公式记也可以说AB:DE=BC:EF;推论:(1)平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。
逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。
2)平行于三角形一边且和其他两边相交的直线截得的三角形的三边与原三角形的三边对应成比例。
湘教版九年级数学上册知识点归纳总结九年级数学上册第一章反比例函数一)反比例函数1.反比例函数可以写成y=k/x的形式,注意自变量x的指数为-1,在解决有关量指数问题时应特别注意系数这一限制条件。
2.y=kx可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式。
二)反比例函数的图象与性质1.函数解析式:y=k/x2.自变量的取值范围:x≠03.图象:反比例函数的图象:在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称)。
1)图象的形状:双曲线越大,图象的弯曲度越小,曲线越平直;双曲线越小,图象的弯曲度越大。
2)图象的位置和性质:自变量x越接近0,函数图象与x 轴、y轴无交点,两条坐标轴是双曲线的渐近线。
当x>0时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;当x<0时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大。
3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上,则(-a,-b)和(1/a,1/b)在双曲线的另一支上。
4.k的几何意义:如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是2k。
如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,则有三角形PQC的面积为k。
5.说明:1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论。
2)直线与双曲线的关系:当直线与双曲线不相交时,两图象没有交点;当直线与双曲线相切时,两图象有一个交点;当直线与双曲线相交时,两图象必有两个交点,且这两个交点关于原点成中心对称。
三)反比例函数的应用1.求函数解析式的方法:(1)待定系数法;(2)根据实际意义列函数解析式。
2.反比例函数与一次函数的联系。
九(上)数学知识点答案第一章一元二次方程一元二次方程:只含有一个未知数x的整式方程,并且都可以化作ax2+bx+c=0(a,b,c为常数,a≠0)的形式。
(2)一元二次方程的一般式及各系数含义一般式:ax2+bx+c=0(a,b,c为常数,a≠0),其中,a是二次项系数,b是一次项系数,c是常数项。
2、分解因式法(1)分解因式的概念当一元二次方程的一边为0,而另一边易于分解成两个一次因式的乘积时,根据a·b=0,那么a=0或b=0,这种解一元二次方程的方法称为分解因式。
(2)分解因式法解一元二次方程的一般步骤一、将方程右边化为零;二、将方程左边分解为两个一次因式的乘积;三、设每一个因式分别为0,得到两个一元二次方程;四、解这两个一元二次方程,它们的解就是原方程的解。
3、配方法(1)直接开平方法的定义利用平方根的定义直接开平方求一元二次方程的解的方法叫直接开平方法。
(2)配方法的步骤和方法一、移项,把方程的常数项移到等号右边;二、配,方程两边都加上一次项系数的一半的平方,把原方程化为(x+m)2=n(n≥0)的形式;三、直接用开平方法求出它的解。
4、公式法(1)求根公式b2-4ac≥0时,x=a acb b24 2-±-(2)求一元二次方程的一般式及各系数的含义一、将方程化为一元二次方程的一般ax2+bx+c=0(a,b,c为常数,a≠0);二、计算b2-4ac 的值,当b2-4ac≥0时,方程有实数根,否则方程无实数根;三、代入求根公式,求出方程的根;四、写出方程的两个根。
命题与证明二、知识要点梳理知识点一:定义要点诠释:一般地,能清楚地规定某一名称或术语的意义的句子叫做该名称或术语的定义.知识点二:命题要点诠释:一般地,对某一件事情作出正确或不正确的判断的句子叫做命题.(句子根据其作用分为判断、陈述、疑问、祈使四个类别.定义属于陈述句,是对一个名称或术语的意义的规定.而命题属于判断句或陈述句,且都对一件事情作出判断.与判断的正确与否没有关系.)知识点三:命题的结构要点诠释:命题可看做由题设(或条件)和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项.知识点四:公理要点诠释:人类经过长期实践后公认为正确的命题,作为判断其他命题的依据。
湘教版九年级数学上册知识点归纳总结一、反比例函数反比例函数及其图象的性质k 第一章反比例函数y=—1.函数解析式:X (k-:t:-0)2.自变量的取值范围:x;t=O3.图象:(1)图象的形状:双曲线.l k l I叶越大,图象的弯曲度越小,曲线越平直.越小,图象的弯曲度越大.照简化平均数的计算方法,将每个数据同时减去一个与它们的平均数接近的常数a,得到一组新数据X 1= x, -4 , X 2 = X2 -0 , …,x,』=x,.-a,那么.s =—f(入,+x2+---+式)]-了2 I立,2(此公式的记忆方法是:方差等于新数据平方的平均数减去新数据平均数的平方)(3)新数据法:原数据X i,X1,···,X11,的方差与新数据x\= x1 -a , x'2 = x�-a. …,x',. = x,1 -a的方差相等,也就是说,根据方差的基本公式,求得x'i,x'i ,···,x'11, 的方差就等千原数据的方差。
3、标准差:方差的算数平方极叫做这组数据的标准差,用"s"'表示,即s=N =J如-守+(X1三)l+…+(x,, -x)2](方差或标准差越大,离散程度越大,稳定性越差,反之越稳定)识点用样本平均数、方差估计总体平均数、方差由于简单随机样本客观地反映了实际情况,能够代表总体,因此我们可用简单随机样本的平均数与方差分别去估计总体的平均数与方差.统计的简单应用1 . 从统计的观点看,一个“卑”就是总伈中共有某些特牲的个休在总休中所占的百分比2· 在实践中,我们常常通过简单随机抽样,用样本的�去估计总体相应的率.3· 通过科学调查,在取得真实可靠的数据后,我们可以运用正确的统计方法来推断总体,除此之外,还可以利用已有的统计数据来对事物在未来一段时间内的发展趋势做出皿和预测,为正确的决策提供服务.。
湘教九年级数学上册知识点湘教九年级数学上册是学生在初中阶段数学学习的重要部分,掌握其中的知识点对于学生的学习成绩至关重要。
本文将围绕湘教九年级数学上册的几个重点知识点进行介绍和讲解。
一、线性方程式在数学上,线性方程式是学习代数的基础。
在湘教九年级数学上册中,线性方程式的学习是一个重要的部分。
学生需要掌握如何解一元一次方程、一元一次方程的应用以及解二元一次方程等内容。
通过理论的学习和大量的练习,学生可以逐渐掌握解方程的方法和技巧,并能够灵活运用到实际问题中。
二、因式分解与整式运算因式分解与整式运算是代数学习中的重点内容。
在湘教九年级数学上册中,学生需要掌握如何进行整式的加减乘除、整式的因式分解等操作。
这些知识点不仅在数学中有广泛的应用,也会对学生的逻辑思维和数学能力有较大的提升。
三、平方根与勾股定理平方根与勾股定理是湘教九年级数学上册中的几个重要知识点之一。
学生需要了解平方根的定义和性质,并能够运用平方根解决一些实际问题。
此外,勾股定理作为数学中的重要定理之一,学生需要熟练掌握勾股定理的表达形式,并能够运用勾股定理解决直角三角形相关的问题。
四、统计初步在湘教九年级数学上册中,学生也会接触到统计学的初步内容。
学生需要了解统计学的基本概念和统计图表的绘制方法,并能够利用统计学的方法进行数据的分析和总结。
这些知识点对于学生提高数据分析和解决实际问题的能力具有重要意义。
五、平面向量与坐标系平面向量与坐标系是湘教九年级数学上册的重点内容之一。
学生需要了解平面向量的定义和性质,并能够进行平面向量的加减、数乘等运算。
此外,学生还需要熟练掌握直角坐标系和极坐标系的基本概念和相关运算。
综上所述,湘教九年级数学上册的知识点包括线性方程式、因式分解与整式运算、平方根与勾股定理、统计初步以及平面向量与坐标系等内容。
这些知识点不仅为学生的中学数学学习打下了坚实基础,也对于学生在高中数学和大学数学的学习中具有重要的指导作用。
数学九上知识点总结湘教版一、集合与常用逻辑量词1. 集合的概念和基本运算集合是指具有某种特定属性的对象的全体。
常见的集合运算有并集、交集、补集和差集。
并集:将两个集合中的所有元素合并在一起,重复的元素只保留一个。
交集:两个集合中共有的元素组成的集合。
补集:对于给定的全集U,全集与某个集合A的交集的补集称为A的补集。
差集:集合A-B是指属于A但不属于B的元素组成的集合。
2. 常用逻辑量词常用的逻辑量词有“对于一切”、“存在”、“存在唯一”、“或”的逻辑量词等。
二、多项式与因式分解1. 多项式的概念和基本性质多项式是由一个或多个项相加或相减得到的代数式。
多项式的次数是指最高次项的次数。
2. 因式分解因式分解是指将一个多项式表示成若干个一次或多次乘积的形式。
常见的因式分解包括提公因式法、配方法、分组、公式等方法。
三、一元二次方程1. 一元二次方程的概念和解法一元二次方程是形如ax^2+bx+c=0的方程,其中a≠0。
解一元二次方程可以用因式分解、配方法、根的情况、求根公式等方法。
2. 一元二次方程的性质一元二次方程有两个根,可以用解的情况、求根公式来证明一元二次方程的性质。
四、平面直角坐标系上的概念1. 平面直角坐标系的基本概念平面直角坐标系是以两条相交的直线为坐标轴建立的坐标系,平面直角坐标系上可以表示点、直线、函数、图形等。
2. 距离的计算平面直角坐标系上两点之间的距离可以通过距离公式或勾股定理计算得到。
五、平面向量1. 平面向量的概念和基本性质平面向量是具有大小和方向的量,可以表示为有向线段,平面向量的加法、数乘、夹角公式等都是平面向量的基本性质。
2. 平面向量的坐标表示平面向量可以用坐标表示,其中向量的坐标表示是指将向量的起点移动到原点,终点的坐标称为向量的坐标。
六、函数1. 函数的概念和性质函数是一个集合,它的每一个元素(x)与另一个元素(f(x))有对应关系。
函数的定义域、值域、奇偶性、单调性等都是函数的性质。
第1章反比例函数1.1 反比例函数【知识与技能】理解反比例函数的概念,根据实际问题能列出反比例函数关系式.【过程与方法】经历从实际问题抽象出反比例函数的探索过程,发展学生的抽象思维能力.【情感态度】培养观察、推理、分析能力,体会由实际问题转化为数学模型,认识反比例函数的应用价值.【教学重点】理解反比例函数的概念,能根据已知条件写出函数解析式.【教学难点】能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想.一、情境导入,初步认识1.复习小学已学过的反比例关系,例如:(1)当路程s一定,时间t与速度v成反比例,即vt=s(s是常数)(2)当矩形面积一定时,长a和宽b成反比例,即ab=S(S是常数)2.电流I、电阻R、电压U之间满足关系式U=IR,当U=220V时,请你用含R的代数式表示I吗?【教学说明】对相关知识的复习,为本节课的学习打下基础.二、思考探究,获取新知探究1:反比例函数的概念(1)一群选手在进行全程为3000米的赛马比赛时,各选手的平均速度v(m/s)与所用时间t(s)之间有怎样的关系?并写出它们之间的关系式.(2)利用(1)的关系式完成下表:(3)随着时间t 的变化,平均速度v 发生了怎样的变化?(4)平均速度v 是所用时间t 的函数吗?为什么?(5)观察上述函数解析式,与前面学的一次函数有什么不同?这种函数有什么特点?【教学说明】一般地,如果两个变量x ,y 之间可以表示成(k 为常k y x=数且k ≠0)的形式,那么称y 是x 的反比例函数.其中x 是自变量,常数k 称为反比例函数的比例系数.【教学说明】先让学生进行小组合作交流,再进行全班性的问答或交流.学生用自己的语言说明两个变量间的关系为什么可以看作函数,了解所讨论的函数的表达形式.探究2:反比例函数的自变量的取值范围思考:在上面的问题中,对于反比例函数,其中自变量t 可以取3000v t=哪些值呢?分析:反比例函数的自变量的取值范围是所有非零实数,但是在实际问题中,应该根据具体情况来确定该反比例函数的自变量取值范围.由于t 代表的是时间,且时间不能为负数,所有t 的取值范围为t>0.【教学说明】教师组织学生讨论,提问学生,师生互动.三、运用新知,深化理解1.见教材P3例题.2.下列函数关系中,哪些是反比例函数?(1)已知平行四边形的面积是12cm 2,它的一边是acm ,这边上的高是h cm ,则a 与h 的函数关系;(2)压强p 一定时,压力F 与受力面积S 的关系;(3)功是常数W 时,力F 与物体在力的方向上通过的距离s 的函数关系.(4)某乡粮食总产量为m 吨,那么该乡每人平均拥有粮食y(吨)与该乡人口数x 的函数关系式.分析:确定函数是否为反比例函数,就是看它们的解析式经过整理后是否符合 (k 是常数,k ≠0).所以此题必须先写出函数解析式,后解答.k y x=解:(1),是反比例函数;12a h=(2)F =pS ,是正比例函数;(3),是反比例函数;W F s=(4),是反比例函数.m y x =3.当m 为何值时,函数是反比例函数,并求出其函数解析式.224m y x -=解:由反比例函数的定义可知:2m-2=1,.32m =所以反比例函数的解析式为.4y x=4.当质量一定时,二氧化碳的体积V 与密度ρ成反比例.且V=5m 3时,ρ=1.98kg /m 3(1)求p 与V 的函数关系式,并指出自变量的取值范围.(2)求V=9m 3时,二氧化碳的密度.解:略5.已知y =y 1+y 2,y 1与x 成正比例,y 2与x 2成反比例,且x =2与x =3时,y 的值都等于19.求y 与x 间的函数关系式.分析:y 1与x 成正比例,则y 1=k 1x ,y 2与x 2成反比例,则,又由y 222k y x ==y 1+y 2,可知,,只要求出k 1和k 2即可求出y 与x 间的函数关系212k y k x x=+式.解:因为y 1与x 成正比例,所以y 1=k 1x ;因为y 2与x 2成反比例,所以,222k y x =而y =y 1+y 2,所以,212k y k x x =+当x =2与x =3时,y 的值都等于19.所以.21211924193.9k k k k ⎧=+⎪⎪⎨⎪=+⎪⎩解得12536k k =⎧⎨=⎩所以.2365y x x=+【教学说明】加深对反比例函数概念的理解,及掌握如何求反比例函数的解析式.四、师生互动,课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“习题1.1”中第1、3、5题.学生对于反比例函数的概念理解的都很好,但在求函数解析式时,解题不够灵活,如解答第5题时,不知如何设未知数.在这方面应多加练习.1.2 反比例函数的图象与性质第1课时 反比例函数(k>0)的图象与性质【知识与技能】1.会用描点法画反比例函数图象;2.了解并学会应用反比例函数(k>0)图象的基本性质.k y x =【过程与方法】观察、比较、合作、交流、探索.【情感态度】通过对反比例函数的图象的分析,探索并掌握反比例函数(k>0)的k y x =图象的性质.【教学重点】画反比例函数的图象,理解反比例函数(k>0)的性质.k y x =【教学难点】理解反比例函数(k>0)的性质,并能灵活应用.k y x =一、情境导入,初步认识你还记得一次函数的图象吗?一次函数的图象怎样画呢?一次函数有什么性质呢?反比例函数的图象又会是什么样子呢?【教学说明】在回忆与交流中,进一步认识函数,图象的直观有助于理解函数的性质.二、思考探究,获取新知探究1:反比例函数图象的画法画出反比例函数的图象.6y x=分析∶画出函数图象一般分为列表、描点、连线三个步骤.k y x=(1)列表:取自变量x 的哪些值?x 是不为零的任何实数,所以不能取x 的值为零,但仍可以以零为基准,左右均匀,对称地取值.(2)描点:用表里各组对应值作为点的坐标,在直角坐标系中描出各点(-6,-1)、(-3,-2)、(-2,-3)等.(3)连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一个分支.这两个分支合起来,就是反比例函数的图象.思考:(1)观察上图,y 轴右边的各点,当横坐标x 逐渐增大时,纵坐标y 如何变化?y 轴左边的各点是否也有相同的规律?(2)这两条曲线会与x 轴、y 轴相交吗?为什么?探究2:反比例函数(k>0)所在的象限k y x =画出函数的图形,并思考下列问题:3y x=(1)函数图形的两个分支分别位于哪些象限?(2)在每一象限内,函数值y 随自变量x 的变化是如何变化的?【归纳结论】一般地,当k>0时,反比例函数的图象由分别在第一、k y x=三象限内的两支曲线组成,它们与x 轴、y 轴都不相交,在每个象限内,函数值y 随自变量x 的增大而减小.探究3:下图是反比例函的图象,根据图象,回答下列问题:k y x =(1)k 的取值范围是k>0还是k<0?说明理由;(2)如果点A(-3,y 1),B(-2,y 2)是该函数图象上的两点,试比较y 1,y 2的大小.分析:(1)由图象可知,反比例函数的图象的两支曲线分别位于第k y x=一、三象限内,在每个象限内,函数值y 随自变量x 的增大而减小,因此,k>0.(2)因为点A(-3,y 1),B(-2,y 2)是该函数图象上的两点且-3<0,-2<0.所以点A 、B 都位于第三象限,又因为-3<-2,由反比例函数的图像的性质可知:y 1>y 2.【教学说明】通过观察图象,使学生掌握利用函数图象比较函数值大小的方法.三、运用新知,深化理解1.如果函数y =2x k +1的图象是双曲线,那么k =_________.【答案】 -22.反比例函数的图象大致是图中的( ).1y x =解析:因为k=1>0,所以双曲线的两支分别位于第一、三象限.【答案】 C3.下列反比例函数图象一定在第一、三象限的是( )【答案】 C4.已知点A(x 1,y 1),B(x 2,y 2)是反比例函数 (k >0)的图象上的两点,k y x =若x 1<0<x 2,则有( ).A. y 1<0<y 2B.y 2<0<y 1C.y 1<y 2<0D.y 2<y 1<0【答案】 A5.作出反比例函数的图象,并根据图象解答下列问题: 12y x=(1)当x =4时,求y 的值;(2)当y =-2时,求x 的值;(3)当y >2时,求x 的范围.解:列表:由图知:(1)y =3;(2)x =-6;(3)0<x <6四、师生互动,课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“习题1.2”中第1、3、4题.通过本节课的学习使学生理解了反比例函数(k>0)的图象和性质,k y x并掌握了用描点法画函数图象的方法.同时也为后面的学习奠定基础.从练习上来看,学生掌握的不够好,应多加练习.第2课时 反比例函数(k<0)的图象与性质【知识与技能】1.了解并学会应用反比例函数(k<0)图象的基本性质;k y x=2.巩固反比例函数图象和性质,通过对图象的分析,进一步探究反比例函数的增减性.【过程与方法】经历观察、分析、交流的过程,逐步提高运用知识的能力.【情感态度】提高学生的观察、分析能力和对图形的感知水平.【教学重点】理解反比例函数(k<0)的性质.k y x=【教学难点】反比例函数(k<0)图象和性质的运用.k y x =一、情境导入,初步认识我们学会了反比例函数(k>0)的图象与性质,那么反比例函数k y x =k y x =(k<0)的图象与性质又有什么不同呢?【教学说明】复习上节课的内容,同时引入新课.二、思考探究,获取新知探究1:反比例函数的图象.6y x=-可以引导学生采用多种方式进行自主探索活动:(1)可以用画反比例函数的图象的方式与步骤进行自主探索其图象;6y x=-(2)可以通过探索函数与之间的关系,画出的图象.6y x =6y x =-6y x=-【归纳结论】一般地,当k<0时,反比例函数的图象由分别在第二、k y x=四象限内的两支曲线组成,它们与x 轴、y 轴都不相交,在每个象限内,函数k y x=值y 随自变量x 的增大而增大.探究2:反比例函数的性质反比例函数与的图象有什么共同特征?6y x =-6y x=【教学说明】引导学生从通过与一次函数的图象的对比感受反比例函数图象“曲线”及“两支”的特征.【归纳结论】反比例函数 (k ≠0)的图象是由两个分支组成的曲线.当ky x=k>0时,图象在一、三象限;当k<0时,图象在二、四象限.反比例函数与 (k ≠0)的图象关于x 轴或y 轴对称.k y x =ky x=-【教学说明】学生动手画反比函数图象,进一步掌握画函数图象的步骤.观察函数图象,掌握反比例函数的性质.三、运用新知,深化理解1.如果反比例函数的图象位于第二、四象限内,那么满足条件的3k y x-=正整数k 的值是________.【答案】 1,22.已知直线y =kx +b 的图象经过第一、二、四象限,则函数的图象kby x=在第_______象限.【答案】 二、四3.若点A(7,y 1),B(5,y 2)在双曲线上,则y 1、y 2中较小的是3y x=-_______.【答案】 y 24.若A(a 1,b 1),B(a 2,b 2)是反比例函数图象上的两个点,且a 1<a 2,则b 1与b 2的大小关系是()A.b 1<b 2B.b 1=b 2C.b 1>b 2D.大小不确定【答案】 D5.函数的图象上有两点A(x 1,y 1),B(x 2,y 2),若0<x 1<x 2,则1y x=-( )A.y 1<y 2B.y 1>y 2C.y 1=y 2D.y 1、y 2的大小不确定【答案】 A6.已知函数为反比例函数.()232m y m x -=-(1)求m 的值;(2)它的图象在第几象限内?在各象限内,y 随x 的增大如何变化?(3)当-3≤x ≤时,求此函数的最大值和最小值.12-解: (1)由反比例函数的定义可知:解得,m =-2.231,20.m m ⎧-=-⎨-≠⎩(2)因为k=-4<0,所以反比例函数的图象在第二、四象限内,在各象限内,y 随x 的增大而增大.(3)因为在每个象限内,y 随x 的增大而增大,所以当x =时,y 最大值=;12-4812-=-当x =-3时,y 最小值=.4433-=-所以当-3≤x ≤时,此函数的最大值为8,最小值为.12-437.作出反比例函数的图象,结合图象回答:4y x=-(1)当x =2时,y 的值;(2)当1<x ≤4时,y 的取值范围;(3)当1≤y <4时,x 的取值范围.解:列表:由图知:(1)y=-2;(2)-4<y≤-1;(3)-4≤x<-1.【教学说明】为了让学生灵活的用反比例函数的性质解决问题,在研究每一题时,要紧扣性质进行分析,达到理解性质的目的.四、师生互动,课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“习题1.2”中第2、7题.解决问题的基本技巧,使学生能够适应考试命题方向.第3课时 反比例函数的图象与性质的综合应用【知识与技能】1.会求反比例函数的表达式;2.综合运用一次函数和反比例函数的知识解决有关问题;3.借助一次函数和反比例函数的图象解决某些简单的实际问题.【过程与方法】经历观察、分析、交流的过程,逐步提高运用知识的能力.【情感态度】能灵活运用函数图象和性质解决一些较综合的问题,培养学生看图(象)、识图(象)能力、体会用“数、形”结合思想解答函数题.【教学重点】1.会用待定系数法求反比例函数的表达式;2.理解并掌握一次函数,反比例函数的图象和性质,并能利用它们解决一些综合问题.【教学难点】学会从图象上分析、解决问题,理解反比例函数的性质.一、情境导入,初步认识1.正比例函数有哪些性质?2.一次函数有哪些性质?3.反比例函数有哪些性质?4.我们学会了根据函数表达式画函数图象,那么你能根据一些条件求反比例函数的表达式吗?【教学说明】对所学的三种函数的性质教学复习,让学生对它们的性质有系统的了解.二、思考探究,获取新知1.思考:已知反比例函数的图象经过点P (2,4)ky x(1)求k 的值,并写出该函数的表达式;(2)判断点A (-2,-4),B(3,5)是否在这个函数的图象上;(3)这个函数的图象位于哪些象限?在每个象限内,函数值y 随自变量x 的增大如何变化?分析: (1)题中已知图象经过点P (2,4),即表明把P 点坐标代入解析式成立,这样能求出k ,解析式也就确定了.(2)要判断A 、B 是否在这条函数图象上,就是把A 、B 的坐标代入函数解析式中,如能使解析式成立,则这个点就在函数图象上.否则不在.(3)根据k 的正负性,利用反比例函数的性质来判定函数图象所在的象限、y 随x 的值的变化情况.【归纳结论】这种求解析式的方法叫做待定系数法求解析式.2.已知一个正比例函数与一个反比例函数的图象交于P (-3,4),试求出它们的表达式,并在同一坐标系内画出这两个函数的图象.解:设正比例函数,反比例函数的表达式分别为y=k 1x ,,其中,2k y x=k 1,k 2是常数,且均不为0.由于这两个函数的图象交于P (-3,4),则P (-3,4)是这两个函数图象上的点,即点P 的坐标分别满足这两个表达式.因此,()2143,43k k =⨯-=-解得,124123k k =-=-所以,正比例函数解析式为,反比例函数解析式为.43y x =-12y x=-函数图象如下图.【教学说明】通过图象,让学生掌握一次函数与反比例函数的综合应用.3.在反比例函数的图象上取两点P (1,6),Q (6,1),过点P 分别6y x=作x 轴、y 轴的平行线,与坐标轴围成的矩形面积为S 1=_______;过点Q 分别作x 轴、y 轴的平行线,与坐标轴围成的矩形面积为S 2=_______;S 1与S 2有什么关系?为什么?【归纳结论】反比例函数(k ≠0)中比例系数k 的几何意义:过双曲ky x=线(k ≠0)上任意一点引x 轴、y 轴的平行线,与坐标轴围成的矩形面积ky x=为k 的绝对值.【教学说明】引导学生根据一定的分类标准研究反比例函数的性质,同时鼓励学生用自己的语言进行表述,从而提高学生的表达能力与数学语言的组织能力.三、运用新知,深化理解1.已知如图,A 是反比例函数的图象上的一点,ky x=AB 丄x 轴于点B ,且△ABO 的面积是3,则k 的值是()A.3B.-3C.6D.-6分析:过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 是个定值,即S =.12k 解:根据题意可知:S △AOB ==3,12k 又反比例函数的图象位于第一象限,k >0,则k =6.【答案】 C2.反比例函数与在第一象限的图象如图所6y x =2y x=示,作一条平行于x 轴的直线分别交双曲线于A 、B 两点,连接OA 、OB ,则△AOB 的面积为()A.B.2C.3D.112分析:分别过A 、B 作x 轴的垂线,垂足分别为D 、E ,过B 作BC ⊥y 轴,点C 为垂足,再根据反比例函数系数k 的几何意义分别求出四边形OEAC 、△AOE 、△BOC 的面积,进而可得出结论.解:分别过A 、B 作x 轴的垂线,垂足分别为D 、E ,过B 作BC ⊥y 轴,点C 为垂足,∵由反比例函数系数k 的几何意义可知,S 四边形OEAC =6,S △AOE =3,S △BOC =1,∴S △AOB =S 四边形OEAC -S △AOE -S △BOC =6-3-1=2.【答案】 B3.已知点P(2,2)在反比例函数 (k ≠0)的图象上,ky x=(1)当x=-3时,求y 的值;(2)当1<x <3时,求y 的取值范围.解: (1)∵点P (2,2)在反比例函数的图象上,ky x=∴2=,即k=4,2k∴反比例函数的解析式为.4y x=∴当x=-3时,y=.43-(2)∵当x=1时,y=4;当x=3时,y=,43又反比例函数在x >0时y 值随x 值的增大而减小,4y x=∴当1<x <3时,y 的取值范围为<y <4.434.已知直线y =x +b 经过点A(3,0),并与双曲线的交点为B(-2,m)和ky x=C ,求k 、b 的值.解:点A(3,0)在直线y =x +b 上,所以0=3+b ,b =-3.一次函数的解析式为:y =x-3.又因为点B(-2,m)也在直线y =x-3上,所以m =-2-3=-5,即B(-2,-5).而点B(-2,-5)又在反比例函数上,所以k =-2×(-5)=10.ky x=5.已知反比例函数的图象与一次函数y =k 2x-1的图象交于A(2,1).1k y x=(1)分别求出这两个函数的解析式;(2)试判断A 点关于坐标原点的对称点与两个函数图象的关系.分析: (1)因为点A 在反比例函数和一次函数的图象上,把A 点的坐标代入这两个解析式即可求出k 1、k 2的值.(2)把点A 关于坐标原点的对称点A ′坐标代入一次函数和反比例函数解析式中,可知A ′是否在这两个函数图象上.解:(1)因为点A(2,1)在反比例函数和一次函数的图象上,所以k 1=2×1=2.1=2k 2-1,k 2=1.所以反比例函数的解析式为:;一次函数解析式为:y =x-1.2y x=(2)点A(2,1)关于坐标原点的对称点是A ′(-2,-1).把A ′点的横坐标代入反比例函数解析式得,,所以点A 在反212y ==--比例函数图象上.把A ′点的横坐标代入一次函数解析式得,y =-2-1=-3,所以点A ′不在一次函数图象上.6.如图,一次函数y =kx +b 的图象与反比例函数的图象交于A 、B 两my x=点.(1)利用图象中的条件,求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值大于反比例函数值的x 的取值范围.分析: (1)把A 、B 两点坐标代入两解析式,即可求得一次函数和反比例函数解析式.(2)因为图象上每一点的纵坐标与函数值是相对应的,一次函数值大于反比例函数值,反映在图象上,自变量取相同的值时,一次函数图象上点的纵坐标大于反比例函数图象上点的纵坐标.解∶(1)观察图象可知,反比例函数的图象过点A(-2,1),m =-2×1=-my x=2.所以反比例函数的解析式为:.又点B(1,a)也在反比例函数图象2y x=-上,a=.即B(1,-2).221-=-因为一次函数图象过点A 、B .所以解得,12,2.k b k b =-+⎧⎨-=+⎩1,1.k b =-⎧⎨=-⎩一次函数解析式为:y =-x-1.(2)观察图象可知,当x <-2或0<x <1时,一次函数的值大于反比例函数值.【教学说明】检测题采取多种形式呈现,增加了灵活性,以基础题为主,也有少量综合问题,可使不同层次水平的学生均有机会获得成功的体验.四、师生互动,课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“习题1.2”中第6题.教学中,我深深地体会到:要想让学生真正掌握求函数解析式的方法,教师应在给出相应的典型例题的条件下,让学生自己去寻找答案,自己去发现规律.最后,教师清楚地向学生总结每一种函数解析式的适用范围,以及一般应告知的条件.在信息社会飞速发展的今天,教师要从以前的教师教、学生学的观念中解放出来,教会学生如何学,让学生自己去探究,自己去学习,去获取知识.在《中学数学课程标准》中明确规定:教师不仅是学生的引导者,也是学生的合作者.教学中,要让学生通过自主讨论、交流,来探究学习中碰到的问题、难题,教师从中点拨、引导,并和学生一起学习,探讨,才能真正做到教学相长,也才能真正让每一个学生都学有所获.1.3 反比例函数的应用【知识与技能】经历通过实验获得数据,然后根据数据建立反比例函数模型的一般过程,体会建模思想.【过程与方法】观察、比较、合作、交流、探索.【情感态度】体验数形结合的思想.【教学重点】建立反比例函数的模型,进而解决实际问题.【教学难点】经历探索的过程,培养学生学习数学的主动性和解决问题的能力.一、情境导入,初步认识复习回顾1.什么是反比例函数?2.反比例函数的图象是什么?3.反比例函数图象有哪些性质?4.反比例函数的图象对称性如何?【教学说明】通过提出问题,引发学生思考,培养学生解决问题的能力.二、思考探究,获取新知1.某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地,为了安全、迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成了任务.你能解释他们这样做的道理吗?(1)根据压力F(N)、压强p(Pa)与受力面积S(m 2)之间的关系式,请F p S你判断:当F 一定时,p 是S 的反比例函数吗?(2)如人对地面的压力F=450N ,完成下表:(3)当F=450N 时,试画出该函数的图象,并结合图象分析当受力面积S 增大时,地面所受压强p 是如何变化的,据此,请说出它们铺垫木板通过湿地的道理.解:(1)对于,当F 一定时,根据反比例函数的定义可知,p 是S F p S=的反比例函数.(2)因为F=450N ,所以当S=0.005m 2时,由得:=90000F p S =4500.005p =(Pa)类似的,当S=0.01m 2时,p=45000Pa ;当S=0.02m 2时,p=22500Pa ;当S=0.04m 2时,p=11250Pa(3)当F=450N 时,该反比例函数的表达式为,它的图象如下图所450p S =示,由图象的性质可知,当受力面积S 增大时,地面所受压强p 会越来越小,因此,该科技小组通过铺垫木板的方法来增大受力面积.以减小地面所受压强,从而可以顺利地通过湿地.2.你能根据玻意耳定律(在温度不变的情况下,气体的压强p 与它的体积V 的乘积是一个常数K(K>0),即pV=K)来解释:为什么使劲踩气球时,气体会爆炸?【教学说明】逐步提高学生从函数图象中获取信息的能力,提高感知水平;此外,在解决实际问题时,要引导学生体会知识之间的联系及知识的综合运用.三、运用新知,深化理解1.教材P15例题.2.一个水池装水12m 3,如果从水管中每小时流出x m 3的水,经过y h 可以把水放完,那么y 与x 的函数关系式是_____________,自变量x 的取值范围是_____________.【答案】 ;x >012y x=3.若梯形的下底长为x ,上底长为下底长的,高为y ,面积为60,则y 与13x 的函数关系是_____________ (不考虑x 的取值范围).【答案】 .90y x=4.某一数学课外兴趣小组的同学每人制作一个面积为200cm 2的矩形学具进行展示.设矩形的宽为x cm ,长为y cm ,那么这些同学所制作的矩形的长y(cm)与宽x(cm)之间的函数关系的图象大致是()【答案】 A5.下列各问题中两个变量之间的关系,不是反比例函数的是( )A.小明完成百米赛跑时,所用时间t(s)与他的平均速度v(m/s)之间的关系B.长方形的面积为24,它的长y 与宽x 之间的关系C.压力为600N 时,压强p(Pa)与受力面积S(m 2)之间的关系D.一个容积为25L 的容器中,所盛水的质量m(kg)与所盛水的体积V(L)之间的关系【答案】 D6.在温度不变的条件下,通过一次又一次地对汽缸顶部的活塞加压,测出每一次加压后缸内气体的体积和气体对汽缸壁所产生的压强,如下表:则可以反映y 与x 之间的关系的式子是( ).【答案】 D7.一张正方形的纸片,剪去两个一样的小矩形得到一个“E ”图案,如图所示,设小矩形的长和宽分别为x 、y ,剪去部分的面积为20,若2≤x ≤10,则y 与x 的函数图象是( )【答案】 A8.一个长方体的体积是100cm 3,它的长是y(cm),宽是5cm ,高是x(cm).(1)写出长y(cm)关于高x(cm)的函数关系式,以及自变量x 的取值范围;(2)画出(1)中函数的图象;(3)当高是3cm 时,求长.解:(1)(x>0);(2)图象略;(3)长为cm.20y x 203【教学说明】用函数观点来处理实际问题的应用,加深对函数的认识.四、师生互动,课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“习题1.3”中第1、2、4题.本节课通过学生自主探索,合作交流,以认知规律为主线,以发展能力为目标,以从直观感受到分析归纳为手段,培养学生的合情推理能力和积极的情感态度,促进良好的数学观的形成.在教学手段上,本节课大量使用多媒体辅助教学,既能体现知识的背景材料,又能一下子引起学生的注意力,有效地节省了时间,增大了课堂容量.生动形象的动画演示,动感强,直观性好,既加深了学生的理解,又培养了学生的抽象思维能力,同时也向学生渗透了归纳类比,数形结合的数学思想方法.章末复习【知识与技能】理解反比例函数、图象及其主要性质,能根据所给信息确定反比例函数表达式,画出反比例函数的图象,并利用它们解决简单的实际问题.【过程与方法】经历探索反比例函数的概念、性质、图象的过程,了解数学与实际问题相结合.【情感态度】初步了解数学在实际生活中的应用,增强应用意识,体会数学的重要性.【教学重点】能根据所给信息确定反比例函数表达式,画出反比例函数的图象,并利用它们解决简单的实际问题.【教学难点】反比例函数的应用.一、知识结构【教学说明】通过回顾知识点,使学生掌握各知识点之间的联系.二、释疑解惑,加深理解1.反比例函数的概念一般地,如果两个变量x ,y 之间可以表示成(k 为常数且k ≠0)的k y x形式,那么称y 是x 的反比例函数.2.反比例函数的性质:。
九年级上数学知识点湘教版在九年级上册湘教版的数学课程中,我们将继续学习各种数学知识和技能,为高中数学的学习打下坚实的基础。
下面是本学期我们需要掌握的几个重要数学知识点。
1. 实数的运算实数是我们数学中最基础的概念之一。
在九年级上册中,我们将学习实数的加减乘除运算规则,包括正数、负数、零以及分数等。
我们将学习如何在数轴上表示实数,并且掌握实数的大小比较。
2. 平方根和立方根平方根和立方根是数学中常见的概念。
在本学期,我们将学习如何计算平方根和立方根,并且学习如何使用它们解决实际问题。
我们还将学习如何简化根式,并且掌握根式的性质。
3. 一元一次方程一元一次方程是九年级数学的一个重要内容。
我们将学习如何解一元一次方程,包括使用加减消元法、配方法和图解法等。
我们还将学习如何应用一元一次方程解决实际问题,如找到未知数的值或者求某个量的变化规律。
4. 三角形的性质与计算在九年级上册,我们将学习三角形的性质与计算。
我们将学习如何计算三角形的面积,包括等边三角形、等腰三角形和一般三角形。
我们还将学习三角形内角和的性质,以及三角形的相似性质。
5. 概率与统计概率与统计是九年级数学的最后一个重要知识点。
我们将学习如何计算事件的概率,包括基本事件、互斥事件和相互独立事件。
我们还将学习如何进行数据处理和统计分析,包括图表的绘制和数据的解读。
通过学习以上数学知识点,我们将能够更加熟练地运用数学知识解决实际问题,提高数学思维能力和分析问题的能力。
希望同学们认真学习,掌握这些数学知识点,为高中的数学学习打下坚实的基础。
【最新整理,下载后即可编辑】九上第一章反比例函数(一)反比例函数1.()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件;2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式;(二)反比例函数的图象与性质1.函数解析式:()2.自变量的取值范围:3.图象:反比例函数的图象:在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称).(1)图象的形状:双曲线越大,图象的弯曲度越小,曲线越平直.越小,图象的弯曲度越大.(2)图象的位置和性质:自变量,函数图象与x轴、y轴无交点,两条坐标轴是双曲线的渐近线.当时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;当时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大.(3)对称性:图象关于原点对称,若(a,b)在双曲线的一支上,(,)在双曲线的另一支上.图象关于直线对称,即若(a,b)在双曲线的一支上,则(,)和(,)在双曲线的另一支上.4.k的几何意义: 如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是(三角形PAO和三角形PBO的面积都是).如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,则有三角形PQC 的面积为.图1图25.说明:(1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论.(2)直线与双曲线的关系:当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点关于原点成中心对称.(三)反比例函数的应用1、求函数解析式的方法:(1)待定系数法;(2)根据实际意义列函数解析式.2、反比例函数与一次函数的联系.3、充分利用数形结合的思想解决问题.第二章一元二次方程(一)一元二次方程1、只含有一个未知数的整式方程(分母不含未知数),且都可以化为20++=(a、b、c为常数,ax bx ca≠0)的形式,这样的方程叫一元二次方程。
第一章 一元二次方程1、一元二次方程:只含有一个未知数x 的整式方程,并且都可以化作ax 2+bx+c=0(a,b,c 为常数,a ≠0)的形式。
一般式:ax 2+bx+c=0(a,b,c 为常数,a ≠0),其中,a 是二次项系数,b 是一次项系数,c 是常数项。
方程的根:是能使方程左右两边相等的未知数的值。
2、因式分解法(1)因式分解法解一元二次方程的一般步骤①、将方程右边化为零;②、将方程左边分解为两个一次因式的乘积;③、设每一个因式分别为0,得到两个一元二次方程;④、解这两个一元二次方程,它们的解就是原方程的解。
(2)因式分解法常用的方法:①、提公因式法:如:ax 2+bx=0→x(ax+b)=0→x=0或ax+b=0→1x =0,2x =-a b ②、利用平方差公式、完全平方公式进行因式分解。
[平方差公式:2a -2b =(a+b)(a-b)完全平方公式:2a +2ab+2b =(a+b 2)]③、形如:2x +(p+q)x+pq=0→(x+p)(x+q)=0→x+p=0或x+q=03、配方法(1)直接开平方法:形如(x+m )2=n(n ≥0)的一元二次方程可用直接开平方法。
(2)配方法的步骤和方法①、移项,使方程的右边为0;②方程左右两边同除以二次项系数,把二次项系数化为1;③、配法,方程的左边加上一次项系数的一半的平方,再减去这个数,把原方程化为(x+m )2-n=0(n ≥0)的形式;④、直接用开平方法或因式分解法求出它的解。
4、公式法(1)求根公式2b -4ac ≥0时,x=a ac b b 242-±- (2)求一元二次方程的一般式及各系数的含义5、根的判别式:2b -4ac(1)当2b -4ac>0时,一元二次方程ax 2+bx+c=0有两个不相等的实数根;(2)当2b -4ac=0时,一元二次方程ax 2+bx+c=0有两个相等的实数根;(3)当2b -4ac<0时,一元二次方程ax 2+bx+c=0没有实数根。
九(上)数学知识点覃勉相似三角形周长的比等于相似比, 相似三角形面积的比等于相似比的平方第一章一兀二次方程一元二次方程:只含有一个未知数 x 的整式方程,并且都可以化作 ax 2+bx+c=0(a,b,c 为常数, 0)的形式。
(2 )一元二次方程的一般式及各系数含义一般式:ax 2+bx+c=0(a,b,c 为常数,a * 0),其中,a 是二次项系数,b 是一次项系数,c 是 常数项。
2、 分解因式法3、 配方法4、 公式法 (1 )求根公式: b .b 2 4acx=—2a(2)求一元二次方程的一般式及各系数的含义 一、将方程化为一元二次方程的一般ax 2+bx+c=0(a,b,c 为常数,a * 0);二、计算 b-4ac的值,当b 2-4ac > 0时,方程有实数根(> 0有两个实数根,=0两个相等实数根)•当b2-4ac v 0时,方程无实数根;三、代入求根公式,求出方程的根;四、写出方程的两个根。
第三章图形的相似1、 线段的比一般地, 在四条线段中, 如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫作成比例线段2、 比例的基本性质如果a / b = c / d,那么ad = be. 3、 相似三角形的性质和判定角对应相等,且三条边对应成比例的两个三角形叫作相似三角形.如果△A'E'C '与AAEC 相似,且A', E', C'分别与A, B, C 对应, 那么记作△A'B'C's^ABC, 读作“△A'B'C '相似于AABC” .相 似三角形的对应边的比k 叫作相似比判定定理1 三边对应成比例的两个三角形相似. 判定定理2 两角对应相等的两个三角形相似 •判定定理3 两边对应成比例且夹角相等的两个三角形相似。
b 2-4ac > 0 时,4、 相似多边形把对应角相等, 并且对应边成比例的两个多边形叫作相似多边形. 相似多边形的对应边的比k叫作相似比.相似多边形周长的比等于相似比, 相似多边形面积的比等于相似比的平方.取定一点O,把图形上任意一点P对应到射线OP(或它的反向延长线)上一点P ',使得线段OP '与OP 的比等于常数k (k > 0),点O 对应到它自身, 这种变换叫作位似变换 ,点O 叫作位似中心, 常数k 叫作位似比, 一个图形经过位似 变换得到的图形叫作与原图形位似的图形•从位似变换和位似的图形的定义立即得出:两个位似的图形上每一对对应点都与位似中心在一条直线上, 并且新图形与原图形上对应点到位似中心的距离之比等于位似比. 5、 相似多边形的性质性质1相似多边形的对应边成比例 性质2相似多边形的对应角相等. 性质3相似多边形周长的比等于相似比, 相似多边形面积的比等于相似比的平方.6、 相似多边形的判定对应角相等, 对应边成比例的两个多边形相似.第四章、解直角三角形锐角三角函数的概念锐角A 的正弦、余弦、正切、余切都叫做 /A 的锐角三角函数锐角三角函数的取值范围: O W sin a< 1, 0< COS aW 1, tan a 》0.锐角三角函数之间的关系(1) 平方关系sin 2 A cos 2 A 1(2) 倒数关系如图,在△ ABC 中,/ C=90°sin AA 的对边斜边cos AA 的邻边斜边tan AA 的对边A 的邻边 cotAA 的邻边 A 的对边/A 的邻辺NR 的時边tan A?ta n(90 —A)=1(3)弦切关系sin A 仆cos A ta nA= cotA=-cos A si nA(4)互余关系sinA=cos(90 —A), cosA=sin(90 —A)tanA=cot(90 —A), cotA=tan(90 —A)特殊角的三角函数值a sin a cos a tan a cot a30°1273pF45°孚孚1160°"2-12矣T(1)正弦值随着角度的增大(或减小)而增大(或减小)(2)余弦值随着角度的增大(或减小)而减小(或增大)(3)正切值随着角度的增大(或减小)而增大(或减小)(4)余切值随着角度的增大(或减小)而减小(或增大)阳越小,图象的弯曲度越大.九下(2)图象的位置和性质: 与坐标轴没有交点当上>0时,图象的两支分别位于一、三象限;在每个象限内, y 随x 的增大而减小; 当时,图象的两支分别位于二、四象限;在每个象限内,y 随x 的增大而增大.、二次函数相关概念及定义二次函数的概念:一般地,形如 y ax' bx c ( a , b , c 是常数,a 0 )的函数,叫做二 次函数。
九(上)数学知识点第一章反比例函数反比例函数及其图象的性质[y ——1.函数解析式:孟(上=0) 2 .自变量的取值范围:兀3 •图象:(1)图象的形状: 双曲线.科越大,图象的弯曲度越小,曲线越平直. 旧 越小,图象的弯曲度越大.(2) 图象的位置和性质: 与坐标轴没有交点当时,图象的两支分别位于一、三象限;在每个象限内, y 随x 的增大而减小; 当上咗。
时,图象的两支分别位于二、四象限;在每个象限内,y 随x 的增大而增大.第二早一兀二次方程(1) 一元二次方程:只含有一个未知数 x 的整式方程,并且都可以化作ax 2+bx+c=0(a,b,c为常数,0)的形式。
(2 )一元二次方程的一般式及各系数含义一般式:ax 2+bx+c=0(a,b,c 为常数,a * 0),其中,a 是二次项系数,b 是一次项系数,c 是 常数项。
1、 直接开平方法2、 分解因式法:(1、提公因式法;2、公式法;3、十字交叉相乘法) 3、 配方法:加上一次项系数一半的平方。
4、 公式法 (1) 根的判别式: b 2 4ac ,>0时,同实数根; <0时,方程无实数根。
(2) 求根公式:当b 2 4ac >0时,(3)韦达定理:x 1 x 2 — , x i ? x 2 —a a第三章图形的相似方程有两不等实数根;=0时,方程有两相b b 2 4acx=—2a1、线段的比一般地,在四条线段中, 如果其中两条线段的比等于另外两条线段的比, 叫作成比例线段2、比例的基本性质 如果a C , 那么ad = be.b d3、 相似三角形的性质和判定三个角对应相等, 且三条边对应成比例的两个三角形叫作相似三角形. 如果△A'E'C'与AAEC 相似,且A', E', C'分别与A, B, C 对应,那么记作AA'E'C's^AEC ,读作“ AA/B'C '相似于AABC”.相似三角形的对应边的比k 叫作相似比判定定理1 三边对应成比例的两个三角形相似. 判定定理2 两角对应相等的两个三角形相似 •判定定理3 两边对应成比例且夹角相等的两个三角形相似。
九年级上数学湘教知识点一、整式的加减运算整式是由代数式的字母及其系数经过加、减、乘运算得到的代数式。
在九年级上数学湘教课程中,我们需要掌握整式的加减运算。
整式的加减运算可以通过合并同类项的方式进行。
合并同类项就是将具有相同字母部分的项合并在一起,并按其系数的和进行运算。
二、一元二次方程一元二次方程是形如ax^2+bx+c=0的方程,其中a、b、c是已知的实数且a≠0。
解一元二次方程的方法主要有因式分解法、配方法、求根公式等。
在九年级上数学湘教课程中,我们需要熟练掌握这些解法,能够灵活运用它们解决实际问题。
三、平面直角坐标系平面直角坐标系是由两条互相垂直的数轴构成的坐标系。
我们通常将水平轴称为x轴,垂直轴称为y轴。
在九年级上数学湘教课程中,我们需要理解平面直角坐标系的基本概念,能够根据给定的坐标点确定其在坐标系中的位置,并能够进行相应的坐标运算,如计算两点之间的距离、确定点的对称点等。
四、线性方程组线性方程组是由若干个一元线性方程组成的方程组。
求解线性方程组的方法有代入法、消元法、矩阵法等。
在九年级上数学湘教课程中,我们需要学会运用这些方法解决实际问题,并能够判断方程组的解的情况(无解、唯一解、无数解)。
五、相似三角形相似三角形是指具有相同形状但尺寸不同的三角形。
我们知道,相似三角形的对应角相等,对应边成比例。
在九年级上数学湘教课程中,我们需要熟练掌握相似三角形的性质,并能够灵活运用它们解决各种问题,如求角度、求边长比等。
六、立体图形的表面积和体积在九年级上数学湘教课程中,我们还将学习一些常见立体图形的表面积和体积的计算方法。
比如,长方体的表面积等于底面积的两倍加上侧面积,体积等于底面积乘以高;球的表面积等于4πr²,体积等于4/3πr³等。
掌握这些计算方法对于解决与立体图形相关的实际问题非常重要。
通过学习九年级上数学湘教知识点,我们将对整式的加减运算、一元二次方程、平面直角坐标系、线性方程组、相似三角形以及立体图形的表面积和体积有更深刻的理解与运用能力。
九年级湘教版数学知识点汇总初三数学上册知识点归纳1、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。
正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
(1)一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.即:﹝另有两种写法﹞(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值就是数轴上表示这个数的点到原点的距离.(3)几个非负数的和等于零则每个非负数都等于零。
注意:│a│≥0,符号"││"是"非负数"的标志;数a的绝对值只有一个;处理任何类型的题目,只要其中有"││"出现,其关键一步是去掉"││"符号。
2、解一元二次方程解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。
(1)直接开平方法:用直接开平方法解形如(x-m)2=n(n≥0)的方程,其解为x=±m.直接开平方法就是平方的逆运算.通常用根号表示其运算结果.(2)配方法通过配成完全平方式的方法,得到一元二次方程的根的方法。
这种解一元二次方程的方法称为配方法,配方的依据是完全平方公式。
1)转化:将此一元二次方程化为ax^2+bx+c=0的形式(即一元二次方程的一般形式)2)系数化1:将二次项系数化为13)移项:将常数项移到等号右侧4)配方:等号左右两边同时加上一次项系数一半的平方5)变形:将等号左边的代数式写成完全平方形式6)开方:左右同时开平方7)求解:整理即可得到原方程的根(3)公式法公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项系数a,b,c的值代入求根公式x=(b2-4ac≥0)就可得到方程的根。
初三数学复习方法总结按部就班数学是环环相扣的一门学科,哪一个环节脱节都会影响整个学习的进程。
(一)反比例函数湘教版九年级数学上册第一章反比例函数1.()可以写成()的形式,注意自变量x 的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件;2.()也可以写成 xy=k 的形式,用它可以迅速地求出反比例函数解析式中的 k,从而得到反比例函数的解析式;(二)反比例函数的图象与性质1.函数解析式:()2.自变量的取值范围:3.图象:反比例函数的图象:在用描点法画反比例函数的图象时,应注意自变量 x 的取值不能为0,且x 应对称取点(关于原点对称).(1)图象的形状:双曲线越大,图象的弯曲度越小,曲线越平直.越小,图象的弯曲度越大.(2)图象的位置和性质:自变量,函数图象与x 轴、y 轴无交点,两条坐标轴是双曲线的渐近线.当时,图象的两支分别位于一、三象限;在每个象限内,y 随x 的增大而减小;当时,图象的两支分别位于二、四象限;在每个象限内,y 随x 的增大而增大.(3)对称性:图象关于原点对称,若(a,b)在双曲线的一支上,(,)在双曲线的另一支上.图象关于直线对称,即若(a,b)在双曲线的一支上,则(,)和(,)在双曲线的另一支上.4.k 的几何意义: 如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A 点,PB⊥y 轴于B 点,则矩形PBOA 的面积是(三角形PAO 和三角形PBO 的面积都是).如图2,由双曲线的对称性可知,P 关于原点的对称点Q 也在双曲线上,作QC⊥PA的延长线于C,则有三角形PQC 的面积为.图1 图25.说明:(1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论.(2)直线与双曲线的关系:当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点关于原点成中心对称.(三)反比例函数的应用1、求函数解析式的方法:(1)待定系数法;(2)根据实际意义列函数解析式.2、反比例函数与一次函数的联系.3、充分利用数形结合的思想解决问题.第二章一元二次方程(一)一元二次方程1、只含有一个未知数的整式方程(分母不含未知数),且都可以化为ax2 +bx +c = 0 (a、b、c 为常数,a≠0)的形式,这样的方程叫一元二次方程。
2、把ax2 +bx +c = 0 (a、b、c 为常数,a≠0)称为一元二次方程的一般式,a 为二次项系数;b 为一次项系数;c 为常数项(包括符号)。
(二)一元二次方程的解法1、直接开平方法:如果方程化成的形式,那么可得;如果方程能化成(p≥0)的形式,那么进而得出方程的根。
2、配方法:配方式基本步骤:①把方程化成一元二次方程的一般形式;②将二次项系数化成 1;③把常数项移到方程的右边;④两边加上一次项系数的一半的平方;⑤把方程转化成左边为一个完全平方式,右边化为一个常数;两边开方求其根。
3、公式法x =-b ±b2 - 4ac(注意在找 a、b、c 时须先把方程化为一般形式)2a4、分解因式法把方程的一边变成0,另一边变成两个一次因式的乘积来求解。
(主要包括“提公因式”(x1+x )22 - 4x x1 2x和“十字相乘”)(3)一元二次方程根的判别式判别式⊿=b2-4ac 与根的关系:当 b2-4ac>0 时,则方程有两个不等的实数根;当 b2-4ac=0 时,则方程有两个相等的实数根;当b2-4ac≥0时,则方程有两个实数根;当 b2-4ac<0 时,则方程无实数根(,上述结论反之也成立,但注意都同时要满足二次项系数 a≠0)(四)一元二次方程根与系数的关系:1、根与系数关系:如果一元二次方程ax2 +bx +c = 0 的两根分别为 x1、x2,则有:x +x =-b, x ⋅x =c.(韦达定理)1 2 a 1 2 a2、一元二次方程的两根与系数的关系的作用:(1)已知方程的一根,求另一根;(2)不解方程,求二次方程的根 x1、x2的对称代数式的值,特别注意以下公式:① x2+x2= (x +x )2-2x x ② 1 +1 =x1 +x2 ③(x -x )2= (x +x )2- 4x x1 2 1 2 1 21 2x1x21 2 1 2 1 2④ | x -x |=⑤(| x | + | x |)2 = (x +x )2 - 2x x + 2 | x x |1 2 1 2 1 2 1 2 1 2⑥ x3+x3= (x +x )3- 3x x (x +x ) ⑦其他能用x +x 或x x 表达的代数式。
1 2 1 2 1 2 1 2 1 2 1 2(3)已知方程的两根 x 、x ,可以构造一元二次方程:x2 - (x +x )x +x x = 0 ,1 2 1 2 1 2(4)已知两数 x 、x 的和与积,求此两数的问题,可以转化为求一元二次方程x2 - (x +x )x +x x = 01 2 1 2 1 2的两根。
(五)一元二次方程的应用1、配方法作用:一元二次方程配方可以解该方程:ax 2 +bx +c = 0(a≠0)(两边同时除以 a 得)x2 +bx +c= 0 (一次项系数b除以2 并写成完全平方式得)(可作为公式记a a a忆)。
2、二次代数式配方可以求最值(应用题常考):二次代数式ax2 +bx +c提取二次项系数 a 得=a(x2 +bx) +ca(不能同时除以二次项系数 a)合并常数项得=a(x +b 2) +4ac -b22a 4a(作为公式记忆,一步化到位)x2 b = 如果作为比例内项的是两条相同的线段,即此时可知当 x = - 时, ax 2 + bx + c 有最大值( a < 0 )最大值为2a 当 x = -bax 2 + bx + c时,有最小值( a . >0 )最小值为4ac - b 24a4ac - b 22a4a3、平均增长率问题:(设月增长率为 x )①一月产量为 a ,二、三月平均增长率为 x ,三月产量为b ,则有 a (1+ x )2= b②一月产量为 a ,二、三月平均增长率为 x ,第一季度产量为b ,则有 a + a (1+ x ) + a (1+ x )2= b4、翻几番增长率问题:(设年增长率为 x )①两年翻一番 ,则 a (1+ x )2 = 2a , 解得 x = -1 ≈ 41.4%(次数 2 是指两年翻了两次,翻一番指起初数量 a 变成 2a )②两年翻两番,则 a (1+ x )2 = 4a ,解得 x = 100%(次数 2 是指两年翻了两次,翻一番指起初数量 a 变成 2a ,再翻一番就变成了 4a )5、互相握手、互相送礼问题:①互相握手:②互相送礼:1n (n -1) = 握手次数 2n (n -1) = 礼物总数( n 是指人数)( n 是指人数)6、涨价总利润问题:(设涨价 x 元)总利润=(定价+上涨价格 x —进价)(原销量— 7、降价总利润问题:(设降价 x 元) 总利润=(定价—降价价格 x —进价)(原销量+x每上涨的价格x每上涨的价格相应减少的销量 )每下降的价格相应增加的销量 )(一)比例线段1、比例线段的相关概念每下降的价格第三章图形的相似a m 如果选用同一长度单位量得两条线段 a ,b 的长度分别为 m ,n ,那么就说这两条线段的比是,或写成 a :b=m :nbn 在两条线段的比 a :b 中,a 叫做比的前项,b 叫做比的后项。
在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段a = c 若四条 a ,b ,c ,d 满足或 a :b=c :d ,那么 a ,b ,c ,d 叫做组成比例的项,线段 a ,d 叫做比例外项,线段 b ,c 叫做比例内项,线段的 d 叫做 a ,b ,c 的第四比例项。
b da =b 或 a :b=b :c ,那么线段 b 叫做线段a ,cbc的比例中项。
2、比例的性质(1) 基本性质①a :b=c :d ⇔ ad=bc ②a :b=b :c ⇔ b 2 = a c(2) 更比性质(交换比例的内项或外项)a = b(交换内项) c d a = c ⇒d = c (交换外项) bd bad = b(同时交换内项和外项) a c b d c a(3) 反比性质(交换比的前项、后项): = ⇒ = b d a ca c (4) 合比性质: =b d⇒ a ± b b =c ± dd (5) 等比性质: a = c =e = = m (b + d +f + + n ≠ 0) ⇒ a + c + e + + m =a 3、黄金分割b d f n b + d + f + + n b把线段 AB 分成两条线段 AC ,BC (AC>BC ),并且使 AC 是 AB 和 BC 的比例中项,叫做把线段 AB黄金分割,点 C 叫做线段 AB 的黄金分割点值得关注的近似数:假设AB=1 BC=AD ≈ 0.382)ACB则 AC ≈ 0.618定义:AC= CB = 5 -1 ≈ 0.618 (较长最=短= 5 -1 ≈ 0.618 )AB AC 2 最长较长2(二)平行线分线段成比例三条平行线截两条直线,所得的对应线段成比例。
如图:如图,因为 AD ∥BE ∥CF ,所以 AB :BC=DE :EF ; AB :AC=DE :DF ; BC :AC=EF :DF 。
也可以说 AB :DE=BC :EF ; AB :DE=AC :DF ; BC :EF=AC :DF推论:(1)平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。
逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。
(2) 平行于三角形一边且和其他两边相交的直线截得的三角形的三边与原三角形的三边对应成比例。
(三)相似图形1、对应角相等,对应边的比相等的两个图形就叫相似图形。
2、相似多边形:(1)如果两个边数相同的多边形的对应角相等,对应边成比例,那么这两个多边形 叫做相似多边形。
相似多边形对应边的比叫做相似比(或相似系数) (2)相似多边形的性质:①相似多边形的对应角相等,对应边成比例②相似多边形周长的比、对应对角线的比都等于相似比③相似多边形中的对应三角形相似,相似比等于相似多边形的相似比④相似多边形面积的比等于相似比的平方(四)相似三角形的判定和性质1、相似三角形的概念对应角相等,对应边成比例的三角形叫做相似三角形。
相似用符号“∽”来表示,相似三角形对应边的比叫做相似比(或相似系数)。
2、相似三角形的基本定理(1)反身性:对于任一△ABC,都有△ABC∽△ABC;(2)对称性:若△ABC∽△A’B’C’,则△A’B’C’∽△ABC(3)传递性:若△ABC∽△A’B’C’,并且△A’B’C’∽△A’’B’’C’’,则△ABC∽△A’’B’’C’’。