正确理解显著性检验
- 格式:docx
- 大小:23.91 KB
- 文档页数:2
正确理解显著性检验(Significance Testing)
什么是显著性检验
显著性检验是用于检验实验处理组与对照组或两种不同处理组的效应之间的差异是否为显著性差异的方法,其原理就是“小概率事件实际不可能性原理”。显著性检验可用于两组数据是否有显著性差异,从而可以检验这两组数据所代表的“内涵”,如不同实验方法的差异有无,实验人员受训练的效果有无,不同来源的产品的质量差异,某产品的某特征在一定时间内稳定性,产品保质期的判断等等。
原假设
为了判断两组数据是否有显著性差异,统计学上规定原假设(null hypothesis) 为“两组数据(或数据所代表的内涵)无显著差”,而与之对立的备择假设(alternative hypothesis),则为“两组数据有显著差异”。
⑴在原假设为真时,决定放弃原假设,称为第一类错误,即,弃真错误,其出现的概率,记作α;
⑵在原假设不真时,决定接受原假设,称为第二类错误,即,纳假错误,其出现的概率通常记作β。
通常只限定犯第一类错误的最大概率α,不考虑犯第二类错误的概率β。这样的“假设检验”又称为显著性检验,概率α称为显著性水平。
显著性检验的P值及有无显著性差异的判断:
通过显著性检验的计算方法计算而得的“犯第一类错误的概率p”,就是统计学上规定的P值。若p<或=α,则说明“放弃原假设,在统计意义上不会犯错误,即原假设是假的,也即,”两组数据无显著差异”不是真的,也即两组数据有显著差异”!反之,若p大于α,则说明两组数据间无显著差异。最常用的α值为0.01、0.05、0.10等。一般情况下,根据研究的问题,如果犯弃真错误损失大,为减少这类错误,α取值小些,反之,α取值大些。
P值及统计意义见下表