九年级数学模拟试题及答案
- 格式:doc
- 大小:260.00 KB
- 文档页数:11
(第2题)(第3题)(第6题)九年级数学期末模拟精品测试题及答案,精品3套九年级上全册精品试卷(满分:150分)一、选择题。
(本题共10个小题,每小题4分,共40分)1、2010上海世博会刚刚圆满闭幕,下列各图是选自历届世博会徽中的图案,其中是中心对称图形的是()A、 B、 C、 D、2、如图,AB与⊙O切于点B,AO=6cm,AB=4cm,则⊙O•的半径为()A、、、cm3、图中∠BOD的度数是()A、55°B、110°C、125° D.150°4、若x<0,则xxx2-的结果是()A.0 B.-2 C.0或-2 D.25、下列各式中,最简二次根式是()A、32B、22+a C、a8 D、23a6、我们知道,“两点之间线段最短”,“直线外一点与直线上各点连线的所有线段中,垂线段最短”在此基础上,人们定义了点与点的距离,•点到直线的距离.类似地,如图,若P是⊙O外一点,直线PO交⊙O 于A、B两点,PC•切⊙O于点C,则点P到⊙O的距离是()A、线段PO的长度B、线段PA的长度C、线段PB的长度 D、线段PC的长度7、下列命题错误..的是()A、经过三个点一定可以作圆B、三角形的外心到三角形各顶点的距离相等C、同圆或等圆中,相等的圆心角所对的弧相等D、经过切点且垂直于切线的直线必经过圆心8、如图,△COD是△AOB绕点O顺时针方向旋转40°后所得的图形,点C恰好在AB上,(第8题)(第14题)(第15题)(第16题)∠AOD =90°,则∠B 的度数是( )A 、500B 、400C 、450D 、6009、已知一元二次方程230x px ++=的一个根为3-,则p 的值为( )A .1B .2C .3D .410、若m,n 是方程020102=--x x 的两根,则代数式)20102()20102(22++-⨯--n n m m 的值为( ).A .-2010 B.2010 C.0 D.1二、填空题。
2023_2024学年山东省济南市高新区九年级上册期中数学模拟测试卷本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷为1-3页,满分为40分;第Ⅱ卷为3-10页,满分为110分.本试题共10页,满分为150分.考试时间为120分钟.答卷前,考生务必用0.5毫米黑色墨水签字笔将自己的考点、姓名、准考证号、座号填写在答题卡上和试卷规定的位置上.考试结束后,将本试卷和答题卡一并交回.本考试不允许使用计算器.第I 卷(选择题 共40分)注意事项:第Ⅰ卷为选择题,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号.答案写在试卷上无效.一、选择题(本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列几何体中,同一个几何体从正面看和从上面看形状图不同的是( )A .B .C .D .2.下列给出长度的四条线段中,是成比例线段的是( )A .1,2,3,4B .1,2,3,6C .2,3,4,5D .1,3,4,73.若反比例函数的图象经过点A (﹣3,4),则下列各点中也在这个函数图象的xky =()0≠k 是( )A .(﹣2,3)B .(4,﹣3)C .(﹣6,﹣2)D .(8,)234.如图,过原点的一条直线与反比例函数的图象分别交于A 、B 两点,若A 点xky =()0≠k的坐标为(3,﹣5),则B 点的坐标为( )A .(3,﹣5)B .(﹣5,3)C .(﹣3,5)D .(3,﹣5)5.已知,,则它们的周长比为( )DEF ABC ∽△△41∶∶△△=DEF ABC S S A .1:2B .1:4C .2:1D .4:16.“敬老爱老”是中华民族的优秀传统美德.小刚、小强计划利用寒假从A ,B ,C 三处养老服务中心中,随机选择一处参加志愿服务活动,则两人恰好选到同一处的概率是( )A .B .C .D .213161927.已知点A (x 1,﹣3),B (x 2,﹣2),C (x 3,1)在反比例函数的图象上,则xa y 122+-=x 1,x 2,x 3的大小关系是( )A .x 1<x 2<x 3B .x 3<x 1<x 2C .x 2<x 1<x 3D .x 3<x 2<x 18.如图,在△ABC 中,点D 在AC 边上,连接BD ,若∠ABC =∠ADB ,AD =2,AC =6,则AB 的长为( )A .3B .4C .D .332第8题图 第9题图 第10题图9.如图所示的是反比例函数()和一次函数的图象,x ky =10,0>≠x k )0(2≠+=m n mx y 则下列结论正确的是( )A .反比例函数的解析式是 B .一次函数的解析式为xy 61=62+-=x y C .当时,最大值为1D .若,则6>x 1y 21y y <61<<x 10.勾股定理的证明方法丰富多样,其中我国古代数学家赵爽利用“弦图”的证明简明、直观,是世界公认最巧妙的方法.“赵爽弦图”已成为我国古代数学成就的一个重要标志,千百年来倍受人们的喜爱.小亮在如图所示的“赵爽弦图”中,连接EG ,DG .若正方形ABCD 与EFGH 的边长之比为,则sin ∠DGE 等于( )15∶A .B .C .D .10105510103552第Ⅱ卷(非选择题 共110分)注意事项:1.第II 卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.2.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.二、填空题:(本大题共6个小题,每小题4分,共24分.)11.若,则= .72=-bb a ba 12.如图,飞镖游戏板中每一块小正方形除颜色外都相同,任意投掷飞镖1次(假设每次飞镖均落在游戏板上),击中有颜色的小正方形(阴影部分)的概率为 .第12题图 第13题图13.如图,直线AD ,BC 交于点O ,AB ∥EF ∥CD ,若AO =2,OF =1,FD =2,则的值为 ECBE .14.如图,为了测量一栋楼的高度,小王在他的脚下放了一面镜子,然后向后退,直到他刚好在镜子中看到楼的顶部.如果小王身高1.55m ,他的眼睛距地面1.50m ,同时量得BC =0.3m ,CE =2m ,则楼高DE 为 m .第14题图 第15题图15.如图,在平面直角坐标系内,O 为坐标原点,点A 为直线上一动点,过A 作12+=x y AC ⊥x 轴,交x 轴于点C (点C 在原点右侧),交双曲线于点B ,且AC +BC =4,则当xy 1=△OAB 存在时,其面积为 .16.已知曲线 C 1、C 2 分别是函数,的图象,边长为6的正)(02<-=x xy )(0,0>>=k x x k y △ABC 的顶点A 在y 轴正半轴上,顶点B 、C 在x 轴上(B 在C 的左侧),现将△ABC 绕原点O 顺时针旋转,当点B 在曲线C 1上时,点A 恰好在曲线C 2上,则k 的值为 .三、解答题:(本大题共10个小题,共86分.解答应写出文字说明、证明过程或演算步骤.)17.(本题满分6分)计算:1223160sin 41--+⎪⎭⎫ ⎝⎛+-︒18.(本题满分6分)已知:如图△ABC 三个顶点的坐标分别为A (﹣2,﹣2)、B (﹣3,﹣4)、C (﹣1,﹣4),正方形网格中,每个小正方形的边长是1个单位长度.(1)以点C 为位似中心,在轴的左侧画出△A 1B 1C ,y 使△A 1B 1C 与△ABC 的位似比为2:1,并直接写出点A 1的坐标 ;(2)△A 1B 1C 的面积为 .19.(本题满分6分)如图,∠CAB =∠CBD ,AB =4,AC =6,BD =7.5,BC =5.求CD 的长.20.(本题满分8分)如图,在△ABC 中,∠B =45°,CD 是AB 边上的中线,过点D 作DE ⊥BC ,垂足为点E ,若CD =5,sin ∠BCD =.53(1)求BC 的长;(2)求∠ACB 的正切值.21.(本题满分8分)如图,在平面直角坐标系中,O 为坐标原点,直线交y 轴于点A ,交x 轴于点2+=x y B ,与双曲线在一,三象限分别交于C ,D 两点,()0≠=k xky AB =BC ,连接CO ,DO .21(1)求的值;k(2)求△CDO的面积.22.(本题满分8分)某校在课后服务中,成立了以下社团:A.计算机,B.围棋,C.篮球,D.书法每人只能加入一个社团,为了解学生参加社团的情况,从参加社团的学生中随机抽取了部分学生进行调查,并将调查结果绘制成如下两幅不完整的统计图,其中图1中D所占扇形的圆心角为150°.请结合图中所给信息解答下列问题:(1)这次被调查的学生共有 人;(2)请你将条形统计图补充完整;(3)若该校共有1800学生加入了社团,请你估计这1800名学生中有多少人参加了篮球社团;(4)在书法社团活动中,甲、乙、丙、丁四人平时的表现优秀,其中甲、乙是男同学,丙、丁是女同学.现决定从这四人中任选两名参加全市书法大赛,求恰好选中一男一女的概率(用画树状图或列表法求解).23.(本题满分10分)图1是安装在倾斜屋顶上的热水器,图2是安装热水器的侧面示意图.已知屋面AE的倾斜角∠EAD为22°,长为3米的真空管AB与水平线AD的夹角为37°,安装热水器的铁架竖直管CE的长度为0.5米.(1)求真空管上端B到水平线AD的距离.(2)求安装热水器的铁架水平横管BC的长度.(结果精确到0.1米)参考数据:,,,,,5337sin ≈5437cos ≈ 4337tan ≈ 8322sin ≈ 161522cos ≈ .4.022tan ≈24.(本题满分10分)综合与实践视力表中蕴含着很多数学知识,如:每个“”形图都是正方形结构,同一行的“”是全等图形且对应着同一个视力值,不同的检测距离需要不同的视力表.素材1 国际通用的视力表以5米为检测距离,任选视力表中7个视力值n ,测得对应行的“”形图边长b (mm ),在平面直角坐标系中描点如图1.探究1 检测距离为5米时,归纳n 与b 的关系式,并求视力值1.2所对应行的“”形图边长.素材2 图2为视网膜成像示意图,在检测视力时,眼睛能看清最小“”形图所成的角叫做分辨视角.视力值与分辨视角(分)的对应关系近似满足.θn θ()105.01≤≤=θθn 探究2 当时,属于正常视力,根据函数增减性写出对应的分辨视角的范围.0.1≥n θ素材3 如图3,当确定时,在A处用边长为b1的Ⅰ号“”测得的视力与在B处用边长为b2的Ⅱ号“”测得的视力相同.探究3 若视力值为1.2,求检测距离为3米时,所对应行的“”形图边长.25.(本题满分12分)【问题背景】数学小组发现国旗上五角星的五个角都是顶角为36°的等腰三角形,对此三角形产生了极大兴趣并展开探究.【探究发现】如图1,在△ABC 中,∠A =36°,AB =AC .(1)操作发现:将△ABC 折叠,使边BC 落在边BA 上,点C 的对应点是点E ,折痕交AC 于点D ,连接DE ,DB ,则∠BDE = °,设AC =1,BC =x ,那么AE = (用含x 的式子表示);(2)进一步探究发现:,这个比值被称为黄金比.在(1)的条件下试证215-=AC BC 腰底明:;215-=AC BC 腰底【拓展应用】当等腰三角形的底与腰的比等于黄金比时,这个三角形叫黄金三角形.例如,图1中的△ABC 是黄金三角形.(3)如图2,在菱形ABCD 中,∠BAD =72°,AB =1.求这个菱形较长对角线的长.26.(本题满分12分)如图①,在Rt△ABC中,∠B=90°,AB=2,BC=6,点D,E分别是边BC,AC的中点,连接DE,将△EDC绕点C顺时针方向旋转,记旋转角为α.(1)问题发现AE当α=0°时,= .BD(2)拓展探究AE试判断:当0°≤α<360°时,的大小有无变化?请仅就图②的情况给出证明.BD(3)问题解决当△EDC旋转至A,D,E三点共线时,如图③,图④,直接写出线段AE的长.参考答案及评分标准一、选择题题号12345678910答案CBBCABBDDA二、填空题:(本大题共6个小题,每小题4分,共24分.)11.. 12.. 13.. 14.10. 15.1. 16.6.799523三、解答题:(本大题共10个小题,共86分.解答应写出文字说明、证明过程或演算步骤.)17.(本题6分)解:原式 (432232)34-++⨯=分322332-++= (6)5=分18.(本题6分)解:(1)如图,△A 1B 1C 即为所求.·········································································2分(1)(﹣3,0)····································································································4分(2)8················································································································6分19.(本题6分)解:(1)·········································································545,5.7,6,4==∴====BC AB BD AC BC BD AC AB 2分································································································CBD CAB ∠=∠∴3分·························································································BCD ABC ∆∆∴∽.....4分. (55)4=∴CD BC 分····················································································642554545=⨯==∴BC CD 分20.(本题8分)解:(1),53sin ,=∠⊥BCD BC DE ,53=∴CD DE ,·······························································································3553=⨯=∴DE 1分,·········································································································4=∴CE 2分,,··············································································· 45=∠B 3==∴BE DE ··················3分,·························································································7=+=∴CE BE BC 4分(2),F BC AF A 于点作过点⊥的中位线是的中点是∥ABF DE DE ∆∴∴AB D AF,········································································662,62====∴BE BF DE AF 分,························································································71=-=∴BF BC CF 分,·····················································································86tan ==∠∴CFAF ACB 分21.(本题8分)(1)解:(1)在y =x +2中,令x =0得y =2,令y =0得x =﹣2,∴A (0,2),B (﹣2,0),····································································· ·········2分∵AB =BC ,21∴A 为BC 中点,∴C (2,4),··································································································3分把C (2,4)代入得:,x k y =24k =解得k =8,······································································································4分(2)由得:或,⎪⎩⎪⎨⎧=+=x y x y 82⎩⎨⎧==42y x ⎩⎨⎧-=-=24y x ··························································5分∴D (﹣4,﹣2),·······················································································6分∴S △DOC =S △DOB +S △COB=×2×2+×2×4=2+4=6,·····································8分22.(本题8分)解:(1)360,·······································································································2分(2)补充条形统计图如下图:··················································································3分(3)(人),300360601800=⨯答:这1800名学生中有300人参加了篮球社团,·····················································5分(4)设甲乙为男同学,丙丁为女同学,画树状图如下:····································································7分∵一共有12种可能的情况,恰好选择一男一女有8种,∴. (83)2128)(==一男一女P 分23.(本题10分)解:如图,(1)过B 作BF ⊥AD 于F ,················································································1分在Rt △ABF 中,,·······································································2分AB BF BAF =∠sin 则 =≈=1.8(米),BAF AB BF ∠=sin 37sin 3⨯533⨯············································3分答:真空管上端B 到AD 的距离约为1.8米;,·························································4分(2)在Rt △ABF 中,cos ∠BAF =,则=≈2.4(米),BAF AB AF ∠=cos 37cos 3⨯·······················································5分∵BF ⊥AD ,CD ⊥AD ,BC ∥FD ,∴四边形BFDC 是矩形,∴BF =CD ,BC =FD ,··························································································6分∵EC =0.5米,∴DE =CD ﹣CE =1.3米,······················································································7分在Rt △EAD 中,,AD DE EAD =∠tan则≈=3.25(米),EAD DE AD ∠=tan ···································································9分∴BC =DF =AD ﹣AF =3.25﹣2.4≈0.9(米),·····························································10分答:安装热水器的铁架水平横管BC 的长度约为0.9米.24.(本题10分)解:探究1:由图象中的点的坐标规律得到n 与b 成反比例关系,设,·································································································1)0(≠=k bk n分将其中一点(9,0.8)代入得:,98.0k =解得:k =7.2,∴,········································································································b n 2.7=··3分将 n =1.2 代入得:b n 2.7=b =6;···········································································4分答:检测距离为5米时,视力值1.2所对应行的“E ”形图边长为6mm ,视力值1.2所对应行的“E ”形图边长为6mm ;探究2:∵,θ1=n ∴在自变量θ的取值范围内,n 随着θ的增大而减小,···················································5分∴当n ≥1.0时,0<θ≤1.0,∵0.5≤θ≤10,∴0.5≤θ≤1.0;···································································································6分探究3:由素材可知,当某人的视力确定时,其分辨视角也是确定的,由相似三角形性质可得,2211检测距离检测距离b b =··········································································8分由探究1知b 1=6, ∴,3b 562=解得,5182=b ···································································································9分答:检测距离为3m 时,视力值1.2所对应行的“E ”形图边长为························10mm 518分25.(本题12分)解:(1)72,1﹣x ,·································································································4分(2)证明:由(1)知:∠CBD =∠EBD =36°,∴∠A =∠CBD ,·································································································5分∵∠C =∠C ,∴△ABC ∽△BDC ································································································6分∴······································································································CDBC BC AC =7分即,解得x x x -=11215-=x ∴; (2)15-=AC BC 腰底·8分(3)如图,在AC 上截取AE =AD ,连接DE ,∵四边形ABCD 是菱形,∴∠ACD =,∠DAC =∠BAC =, 3621=∠BCD 3621=∠DAB AD =AB =1,CD ∥AB ,·····················································································。
【九年级】中考数学第一次模拟考试题(附答案)卷ⅰ(,共24分)一、(本大题共12个小题;每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案涂在答题卡上)1.的绝对值就是()a.4b.c.d.2.以下运算中恰当的就是()a.b.c.d.3.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.若∠1=20°,那么∠3的度数是()a.25°b.30°c.60°d.65°4.不等式3x+1≥2x的解集在数轴上表示为()5.未知四边形中,,如果嵌入一个条件,即可面世该四边形就是正方形,那么这个条件可以就是()a.b.c.d.6.例如图,未知⊙o的直径ab⊥弦cd于点e.以下结论一定恰当的就是()a.ae=oeb.ce=dec.oe=12ced.∠aoc=60°7.某人沿着存有一定坡度的坡面跑了10米,此时他与水平地面的垂直距离为6米,则他水平行进的距离为()米.a.5 b.6 c.8 d.108.种饮料比种饮料单价太少1元,小峰买了2瓶种饮料和3瓶种饮料,一共花掉了13元,如果设种饮料单价为元/瓶,那么下面所列方程恰当的就是()a.b.c.d.9.如图,是一种古代计时器――“漏壶”的示意图,在壶内盛一定量的水,水从壶下的小孔漏出,壶壁内画出刻度,人们根据壶中水面的位置计算时间.若用表示时间,表示壶底到水面的高度,下面的图象适合表示一小段时间内与的函数关系的是(不考虑水量变化对压力的影响)()abcd10.如图所示,半圆ab平移到半圆cd的位置时所扫过的面积为()a.3b.3+c.6d.6+11.未知抛物线的开口向上,顶点座标为(2,-3),那么该抛物线有()a.最小值-3b.最大值-3c.最小值2d.最大值212.在平面直角坐标系中,对于平面内任一点(,n),规定以下两种变换:①,如;②,如.按照以上变换有:,那么等于()a.(3,2)b.(3,-2)c.(-3,2)d.(-3,-2)卷ii(非选择题,共96分)请把答案写在答题纸上二、题(本大题共6个小题;每小题3分后,共18分后)13.计算:=;14.例如图,若a就是实数a在数轴上对应的点,则关于a,-a,1的大小关系是.15.学校精心安排三辆车,非政府九年级学生团员回去敬老院看望老人,其中小王与小菲都可以从这三辆车中自由选择一辆乘坐,则小王与小菲同车的概率为__________.16.如果,那么代数式的值是。
九年级第一次数学模拟考试(考试总分:150 分)一、单选题(本题共计10小题,总分40分)1.(4分)1.抛物线y=x2﹣1的顶点坐标是()A.(0,1)B.(0,﹣1)C.(1,0)D.(﹣1,0)2.(4分)2.若,则等于()A.B.C.D.3.(4分)3.下列各组线段(单位:cm)中,是成比例线段的是()A.3,5,7,9B.2,5,6,8C.1,3,4,7D.3,6,9,18 4.(4分)4.线段AB=8,P是AB的黄金分割点,且AP<BP,则BP的长度为()A.4﹣4B.8+8C.8﹣8D.4+45.(4分)5.如图,AB∥CD∥EF,AD=4,BC=DF=3,则BE的长为()A.B.C.4D.66.(4分)6.二次函数y=ax2+bx+c的图象如图所示,下列说法错误的是()A.a<0,b>0B.b2﹣4ac>0C.方程ax2+bx+c=0的解是x1=5,x2=﹣1D.不等式ax2+bx+c>0的解集是0<x<57.(4分)7.如图,在Rt△ABC中,∠ACB=90°,D是AB边的中点,AF⊥CD于点E,交BC边于点F,连接DF,则图中与△ACE相似的三角形共有()A.2个B.3个C.4个D.5个8.(4分)8.如图,点A在反比例函数y=−4x(x<0)的图象上,点B在反比例函数的图象上,且AB∥y轴,BC⊥AB于点B,交y轴于点C.若△ABC的面积为3,则k的值为()A.﹣3B.﹣2C.2D.3第8题图第9题图第10题图9.9.(4分)已知反比例函数y=的图象如图所示,则二次函数y=bx2﹣2x和一次函数y=bx+a在同一平面直角坐标系中的图象可能是()A.B.C.D.10.(4分)10.如图,在正方形ABCD中,点O是对角线AC、BD的交点,过点O作射线OM、ON分别交BC、CD于点E、F,且∠EOF=90°,OC、EF交于点G.给出下列结论:①△COE≌△DOF;②△OGE∽△FGC;③四边形CEOF的面积为正方形ABCD面积的;④DF2+BE2=OG•OC.其中正确的有()A.1个B.2个C.3个D.4个二、填空题(本题共计4小题,总分25分)11.(8分)11.线段a=2cm,线段b=8cm,则线段a、b的比例中项是cm.12.(8分)12.如图,已知∠A=∠D,要使△ABC∽△DEF,还需添加一个条件,你添加的条件是.(只需写一个条件,不添加辅助线和字母)第12题图13.(5分)13.如图,练习本中的横格线都平行,且相邻两条横格线间的距离都相等,同一条直线上的三个点A、B、C都在横格线上.若线段AB=4cm,则线段BC=cm.14.(4分)14.如图,在△ABC中,∠A=90°,∠BCD=∠BCA,BD⊥DC于点D,DC交AB于点E,请完成下列探究.(1)若∠BCD=n°,那么∠EBD=°;(结果用含n的代数式表示)(2)若=m,那么=.(结果用含m的代数式表示)三、解答题(本题共计9小题,总分90分)15.(8分)15.已知==,且x+2y+3z=﹣46,求x,y,z的值.16.(8分)16.如图,已知DE∥BC,FE∥CD,AF=3,AD=5,AE=4.(1)求CE的长;(2)求AB的长.17.(8分)17.在△ABC中,点D、E分别在边AB、AC上,且AD:DB=3:2,AE:EC=1:2,直线ED和CB的延长线交于点F,求:FB:FC.18.(8分)18.如图,已知一次函数y=ax+b与反比例函数的图象相交于点A(1,3)和B(m,1).(1)求反比例函数与一次函数的解析式;(2)当反比例函数的值小于一次函数的值时,请直接写出实数x的取值范围;(3)求△OAB 的面积.19.(10分)19.如图,在等边△ABC 中,P 为BC 上一点,D 为AC 上一点,且∠APD =60°,2BP =3CD ,BP =1. (1)求证△ABP ∽△PCD ; (2)求△ABC 的边长.20.(10分)20.如图,在四边形ABCD 中,AC ,BD 相交于点E ,点F 在BD 上,且∠BAF =∠DBC ,.(1)求证:△ABC ∽△AFD ; (2)若AD =2,BC =5,求AE BE的值.21.(12分)21.如图,AC 为平行四边形ABCD 的对角线,∠ABE =∠ACB ,BE 交边AD 于点E ,交AC 于点F . (1)求证:AE 2=EF •BE ;(2)若EF =1,E 是边AD 的中点,求边BC 的长.22.(12分)22.攀枝花得天独厚,气候宜人,农产品资源极为丰富,其中晚熟芒果远销北上广等大城市.某水果店购进一批优质晚熟芒果,进价为10元/千克,售价不低于15元/千克,且不超过40元/每千克,根据销售情况,发现该芒果在一天内的销售量y(千克)与该天的售价x(元/千克)之间的数量满足如表所示的一次函数关系.销售量y(千克)…32.53535.538…售价x(元/千克)…27.52524.522…(1)求芒果一天的销售量y与该天售价x之间的一次函数关系式,写出x的取值范围.(2)设某天销售这种芒果获利m元,写出m与售价x之间的函数关系式,并求出最大利润.23.(14分)23.如图,在RT△ABC中,∠C=90°,BC=8,AC=6,动点Q从B点开始在线段BA上以每秒2个单位长度的速度向点A移动,同时点P从A点开始在线段AC上以每秒1个单位长度的速度向点C移动.当一点停止运动,另一点也随之停止运动.设点Q,P移动的时间为t秒.(1)设△APQ的面积为S,求S与t的函数关系式;(2)当t为何值时,△APQ与△ABC相似?(3)在P、Q的运动过程中,△APQ能否构成等腰三角形?如能,直接写出t的值,如不能,说明理由.答案一、 单选题 (本题共计10小题,总分40分)1.(4分)B2.(4分)A3.(4分)D4.(4分)A5.(4分)A6.(4分)D7.(4分)B8.(4分)C 9.(4分)C10.(4分)C二、 填空题 (本题共计4小题,总分25分)11.(8分)11. 4,12.(8分)12. 答案不唯一, 略,13.(5分)13. 12,14.(4分) 14.(1)n,(2)2m 三、 解答题 (本题共计9小题,总分90分) 15.(8分)15.X=-4,Y=-6,Z=-10 16.(8分)16.325,38==AB CE 17.(8分)17. 过B 作BM ‖AC ,交DF 于M 因为BM ‖AC 所以BM/AE =BD/AD 因为AD/DB =3/2 所以BM/AE =2/3 因为AE/EC =1/2 所以BD/EC =1/3 所以FB/FC =BM/EC =1/3即FB:FC=1:318.18.(8(2)1<x<3,或x<0(4)419.(10分)19(1)∵△ABC是等边三角形,∴∠DCP=∠PBA=60°.∵∠APC=∠APD+∠DPC=∠BAP+∠ABP,∠APD=60°,∴∠BAP=∠CPD.∴△ABP∽△PCD.(2)设△ABC的边长为x,易得:△ABP∽△PCD;故可得:=;即=,解得△ABC的边长为3.解答:解:设△ABC的边长为x,由(1)得,△ABP∽△PCD.∴=,∴=.∴x=3.即△ABC的边长为3.20.(10分)20(1)∵∠BAF=∠DBC∴∠BAE=∠DBF,△ABC∽△AFD(2)AEBE =5221.(12分)21.(1)可证△ABE ∽△F AE ,AE 2=EF •BE (2)23=BC22. 22.(12分)(1)y=-x+60(15≤x ≤40).(2)m=y(x-10)=(-x+60)(x-10)=-2x +70x-600. 当x=35时,m 取最大值625. 23. 23.(14分)(1)28.0-4t t s = (2)13501130或=t (3)8251760310或或=t。
人教版2023-2024学年九年级上册期中数学模拟检测试题一、选择题:(本大题共12小题,每小题4分,共48分,给出的四个选项中,只有一项是符合题目要求的)1.九年级567班化学科代表在老师的培训后学会了某个化学实验操作,回到班上后第一节课教会了若干名同学,第二节课会做该实验的同学又教会了同样多的同学,这样全班共有25人会做这个实验;若设1人每次都能教会x 名同学,则可列方程为().A.2125x x ++= B.2(1)25x x ++=C.(1)25x x x ++= D.1(1)25x x x +++=2.如图,将ABC △绕点A 逆时针旋转100︒,得到ADE △.若点D 在线段BC 的延长线上,则B ∠的大小为()A.30︒B.40︒C.50︒D.60︒3.下列图形中既是中心对称图形又是轴对称图形的是()A. B.C. D.4.如果在二次函数的表达式2y ax bx c =++中,0a >,0b <,0c <,那么这个二次函数的图象可能是()A. B. C. D.5.已知点(),2022A m 与点()2023,B n -关于原点对称,的值为()A.-1B.0C.1D.40456.方程2430x x ++=的两个根为()A.11x =-,23x =- B.11x =-,23x =C.11x =,23x =- D.11x =,23x =7.若关于x 的方程29304kx x --=有实数根,则实数k 的取值范围是()A.0k ≠B.1k ≥-且0k ≠C.1k ≥- D.1k >-且0k ≠8.如图,抛物线2()(0)y x a h a =-+>与y 轴交于点B ,直线13y x =经过抛物线顶点D ,过点B 作//BA x 轴,与抛物线交于点C ,与直线13y x =交于点A ,若点C 恰为线段AB 中点,则线段OA 长度为()C.3D.39.从地面竖直向上抛出一小球,小球的高度h (单位:m )与小球运动时间t (单位:s )之间的函数关系如图所示.下列结论:①小球在空中经过的路程是40m ;②小球抛出3秒后,速度越来越快;③小球抛出3秒时速度为0;④小球的高度30m h =时, 1.5s t =.其中正确的是()A.①④B.①②C.②③④D.②③10.新定义,若关于x 的一元二次方程:21()0a x m n -+=与22()0a x m n -+=,称为“同族二次方程”.如22(3)40x -+=与23(3)40x -+=是“同族二次方程”.现有关于x 的一元二次方程:22(1)10x -+=与()()22480a x b x ++-+=是“同族二次方程”.那么代数式22022ax bx ++能取的最小值是()A.2015B.2017C.2022D.202711.已知点()11,A x y ,()22,B x y ()12x x <是二次函数(3)()3y x m x m =+--+(m 为常数)图象上的两点,下列说法正确的是()A.若123x x +>,则12y y > B.若123x x +<,则12y y >C.若123x x +>-,则12y y > D.若123x x +<-,则12y y <12.己知二次函数2y ax bx c =++的部分图象如图所示,对称轴为直线1x =-,有以下结论:①0a b c >;②0a c -+<;③若t 为任意实数,则有2a bt at b -≤+;④当图象经过点()1,3时,方程230ax bx c ++-=的两根为1x ,()212x x x <,则12327x x +=,其中,正确结论的个数是()A.1B.2C.3D.4二、填空题(每小题3分,共15分)13.如图,在Rt ACB △中,90C ∠=︒,30cm AC =,25cm BC =,动点P 从点C 出发,沿CA 方向运动,速度是2cm/s ;同时,动点Q 从点B 出发,沿BC 方向运动,速度是1cm/s ,则经过__________s 后,P ,Q 两点之间相距25cm .14.图1是一个坡度为1:2的斜坡的横截面,斜坡顶端B 与地面的距离BC 为2.5米,为了对这个斜坡上的绿地进行喷灌,在斜坡底端安装了一个喷头A ,喷头A 喷出的水珠在空中走过的曲线可以看作抛物线的一部分,设喷出水珠的竖直高度为y (单位:米)(水珠的竖直高度是指水珠与地面的距离),水珠与喷头A 的水平距离为x (单位:米),图2记录了y 与x 的相关数据,则y 与x 的函数关系式为_____.15.已知点A 是抛物线2443(0)y ax ax a a =-++>上的一点.过点A 作AC x ⊥轴于点C ,以AC 为斜边作Rt ABC △和Rt DAC △,使得//BC AD ,连接BD ,则BD 的最小值为_________.16.如图,已知矩形ABCD ,6AB =,8AD =,将矩形ABCD 绕点A 顺时针旋转3(060)θθ︒<<︒得到矩形AEFG ,连接CG ,BG .当θ=__________时,GC GB =.17.如图,已知抛物线2y ax bx c =++与x 轴交于A 、B 两点,顶点C 的纵坐标为-2,现将抛物线向右平移2个单位,得到抛物线2111y a x b x c =++,则下列结论:①0b >;②0a b c -+<;③阴影部分的面积为4;④若1c =,则24b a =.其中正确的是________.(写出所有正确结论的序号)三、解答题(本大题共6小题,共计57分,解答题应写出演算步骤或证明过程)18.(6分)如图,ABC △三个顶点的坐标分别为()1,1A ,()4,2B ,()3,4C .(1)请画出将ABC △绕点A 顺时针旋转90︒后得到的图形11AB C △;(2)请画出将ABC △关于原点O 成中心对称的图形222A B C △;(3)当ABC △绕点A 顺时针旋转90︒后得到11AB C △时,点B 对应旋转到点1B ,请直接写出1B 点的坐标.19.(8分)用适当的方法解方程:(1)2562x x -=-;(2)22(31)(1)x x -=-.20.(8分)习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气.”某校为响应我市全民阅读活动,利用节假日面向社会开放学校图书馆.据统计,第一个月进馆128人次,进馆人次逐月增加,到第三个月末累计进馆608人次,若进馆人次的月平均增长率相同.(1)求进馆人次的月平均增长率;(2)因条件限制,学校图书馆每月接纳能力不超过500人次,在进馆人次的月平均增长率不变的条件下,校图书馆能否接纳第四个月的进馆人次?并说明理由.21.(10分)若两个二次函数图象的顶点、开口方向都相同,则称这两个二次函数为“同簇二次函数”.(1)请写出两个为“同簇二次函数”的函数.(2)已知关于x 的二次函数2212421y x mx m =-++和225y ax bx =++,其中1y 的图象经过点(1,1)A .若12y y +与1y 为“同簇二次函数”,求函数2y 的表达式,并求出当03x ≤≤时,2y 的最大值.22.(12分)网络销售已经成为一种热门的销售方式,某果园在网络平台上直播销售荔枝.已知该荔枝的成本为6元/kg,销售价格不高于18元/kg,且每售卖1kg 需向网络平台支付2元的相关费用,经过一段时间的直播销售发现,每日销售量y (kg )与销售价格x (元/kg )之间满足如图所示的一次函数关系.(1)求y 与的函数解析式.(2)当每千克荔枝的销售价格定为多少元时,销售这种荔枝日获利最大,最大利润为多少元?23.(13分)如图,抛物线2:4L y axbx =++与x 轴交于点()1,0A -,()3,0B ,与y 轴交于点C .将抛物线L 向右平移一个单位得到抛物线L '.(1)求抛物线L 与L '的函数解析式;(2)连接AC ,探究抛物线L '的对称轴上是否存在点P ,使得以点A ,C ,P 为顶点的三角形是等腰三角形?若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.答案以及解析1.答案:D解析:设1人每次都能教会x 名同学,根据题意得:()1125x x x +++=.故选:D.2.答案:B解析:根据旋转的性质,可得:AB AD =,100BAD ∠=︒,()1180100402B ADB ∴∠=-︒∠=⨯︒=︒.故选:B.3.答案:C解析:A 、不是中心对称图形,是轴对称图形,故此选项错误;B 、不是中心对称图形,是轴对称图形,故此选项错误;C 、是中心对称图形,是轴对称图形,故此选项正确;D 、是中心对称图形,不是轴对称图形,故此选项错误;故选:C.4.答案:B解析:由0a >,0b <,0c <,推出02ba->,可知抛物线的图象开口向上,对称轴在y 轴的右边,交y 轴于负半轴,由此即可判断。
镇海区2024年初三模拟考试试卷数学 学科考生须知:1.全卷共三个大题,24个小题.满分为120分,考试时间为120分钟.2.请将学校、姓名、班级填写在答题卡的规定位置上.3.请在答题卡的规定区域作答,在试卷上作答或超出答题卡的规定区域作答无效.试题卷Ⅰ一、选择题(每小题3分,共30分,在每小题给出的四个选项中,只有一项符合题目要求)1. 在实数,中,最小的数是( )A. B. C. D. 【答案】D【解析】【分析】本题考查了实数的大小比较,根据负数小于0,0小于正数,即可求解.【详解】解:∴最小,故选:D .2. 据统计,2024年春节期间,国内旅游出行474000000人次,其中数474000000用科学记数法表示为( )A. B. C. D. 【答案】C【解析】【分析】此题考查科学记数法表示较大的数的方法.科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.【详解】解:数474000000用科学记数法表示为.故选:C .3. 下列计算正确的是( )102-102-201-<<<2-74.7410⨯747.410⨯84.7410⨯90.47410⨯10n a ⨯1||10a ≤<n n a n 84.7410⨯A. B. C. D. 【答案】C【解析】【分析】本题考查整式的运算.利用合并同类项法则,同底数幂乘法法则,幂的乘方法则,平方差公式逐项判断即可.【详解】解:与不是同类项,无法合并,则选项A 不符合题意;,则选项B 不符合题意;,则选项C 符合题意;,则选项D 不符合题意;故选:C .4. 一城市准备选购一千株高度大约为2m 的某种风景树来进行街道绿化, 有四个苗圃生产基地投标(单株树的价格都一样). 采购小组从四个苗圃中都任意抽查了20株树苗的高度,得到的数据如下:树苗平均高度(单位:m )标准差甲苗圃1.8 0.2乙苗圃1.8 0.6丙苗圃2.0 0.6丁苗圃2.0 0.2请你帮采购小组出谋划策,应选购( )A. 甲苗圃的树苗B. 乙苗圃的树苗;C. 丙苗圃的树苗D. 丁苗圃的树苗【答案】D【解析】【分析】根据标准差和方差可以反映数据的波动大小,选出合适苗圃的树苗;再比较它们的高度,进而确32a a a-=326a a a ⋅=()236a a =()()2212121a a a +-=-3a 2a 3256a a a a ⋅=≠()236a a =()()2221214121a a a a +-=-≠-定选购哪家的树苗.【详解】由于标准差和方差可以反映数据的波动大小,所以甲苗圃与丁苗圃比较合适;又因为丁苗圃树苗平均高度大于甲苗圃,所以应选丁苗圃的树苗.故选D .【点睛】考查了标准差,标准差也均称方差,方差是反映一组数据波动大小的特征数,方差越大,数据的波动性越大;方差越小,稳定性越好.5. 若点是第二象限的点,则a 的取值范围是( )A. B. C. D. 或【答案】A【解析】【分析】本题考查了象限内点的坐标特征,解不等式方程组,掌握第二象限内点的坐标特征是解题关键.根据第二象限内的点横坐标小于0,纵坐标大于0,列不等式组求解即可.【详解】解:点是第二象限的点,,解得:,故选:A .6. 如图是一架人字梯,已知米,AC 与地面BC 的夹角为,则两梯脚之间的距离BC 为( )A. 米B. 米C. 米D. 米【答案】A【解析】(),2G a a -a<02a <02a <<a<02a > (),2G a a -020a a <⎧∴⎨->⎩a<02AB AC ==α4cos α4sin α4tan α4cos α【分析】根据等腰三角形的性质得到,根据余弦的定义即可,得到答案.【详解】过点A 作,如图所示:∵,,∴,∵,∴,∴,故选:A .【点睛】本题考查的是解直角三角形的应用,明确等腰三角形的性质是解题的关键.7. 一次数学课上,老师让大家在一张长12cm ,宽5cm 的矩形纸片内,折出一个菱形;甲同学按照取两组对边中点的方法折出菱形见方案一,乙同学沿矩形的对角线AC 折出,的方法得到菱形见方案二,请你通过计算,比较这两种折法中,菱形面积较大的是( ).A. 甲B. 乙C. 甲乙相等D. 无法判断【答案】B【解析】【分析】方案一中,通过图可知四个小直角三角形全等,用矩形面积减去4个小直角三角形的面积,即可得菱形面积;方案二中,两个小直角三角形全等,设菱形边长为x ,在直角三角形中利用勾股定理可求x ,再利用底高可求菱形面积然后比较两者面积大小.12BD DC BC ==AD BC ⊥AB AC =AD BC ⊥BD DC =DC co ACα=cos 2cos DC AC αα=⋅=24cos BC DC α==(EFGH )CAE DAC ∠=∠ACF ACB ∠=∠(AECF )⨯.【详解】解:方案一中,、F 、G 、H 都是矩形ABCD 的中点,≌≌≌,,,,;方案二中,设,则,,,,≌,在中,,,,由勾股定理得,解得,,,,,,故甲乙.E HAE ∴ HDG △△FCG FBE 11111111551222222222HAE S AE AH AB AD =⋅=⨯⨯=⨯⨯⨯⨯= 4HAE ABCD EFGH S S S =- 矩形菱形1512542=⨯-⨯30=BE x =12CE AE x ==-AF EC = AB CD =AE CF =ABE ∴ CDF Rt ABE 5AB =BE x =12AE x =-222(12)5x x -=+11924x =111195955222448ABE S BE AB =⋅=⨯⨯= 2ABE ABCD EFGH S S S =- 矩形菱形595125248=⨯-⨯6025≈-3530=><故选B .【点睛】本题考查菱形的性质、勾股定理以及矩形的性质.注意掌握数形结合思想与方程思想的应用.8. 甲乙两人练习跑步,如果乙先跑10米,甲跑5秒就可追上乙;如果乙先跑2秒,甲跑4秒就可追上乙.设甲速度为x 米/秒,乙的速度为y 米/秒,则可列出的方程组为( )A. B. C. D. 【答案】B【解析】【分析】根据题意,确定等量关系即甲行驶路程等于乙的两次行驶路程的和,列出方程即可,本题考查了二元一次方程组的应用,熟练掌握方程组的应用是解题的关键.【详解】根据题意,得,故选B .9. 二次函数的图象如图所示.下列结论:①;②;③;④若图象上有两点,且,则.其中正确结论的个数为( )A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【分析】本题主要考查了二次函数的图象与性质.依据题意,由抛物线开口向下,从而,又抛物线为,故,再结合抛物线与轴交于负半轴,可得,进而可以判断①;又,从而可以判断②;又当时,,又,故,进而可以判断的551046x y y x =+⎧⎨=⎩551046x y x y=+⎧⎨=⎩510546x y x y+=⎧⎨=⎩551046y x y x=+⎧⎨=⎩551046x y x y =+⎧⎨=⎩2(0)y ax bx c a =++≠0abc >40b a +=0b c +>()11,x y ()22,x y 1204x x <<<12y y <a<022b x a=-=40b a =->y 0c <4b a =-1x =0y a b c =++>a<00b c a +>->③;由抛物线的对称轴是直线,从而当时与当时函数值相等,进而可得当,则,故可以判断④.【详解】解:由题意,抛物线开口向下,.又抛物线为..抛物线与轴交于负半轴,.,故①正确.又,,故②正确.由题意,当时,.又,,故③正确.抛物线的对称轴是直线,当时与当时函数值相等.当,则,故④错误.综上,正确的有:①②③.故选:C .10. 如图,点E 、F 分别是正方形的边、上的点,将正方形沿折叠,使得点B 的对应点恰好落在边上,则的周长等于( )A B. C. D. 【答案】A【解析】.2x =0x =4x =1204x x <<<12y y > <0a ∴22b x a=-=40b a ∴=-> y 0c ∴<0abc ∴>4b a =-40b a ∴+=1x =0y a b c =++>a<00b c a ∴+>-> 2x =∴0x =4x =∴1204x x <<<12y y >ABCD AD BC ABCD EF B 'CD DGB '△2AB ABBF+【分析】本题考查正方形的性质,全等三角形的判定与性质,如图,作,连接,,可证,,根据全等三角形的性质可得,,等量代换即可求解.【详解】解:如图,作,连接,,∵四边形是正方形,∴,由折叠可得,∴,∵ ∴,∴,∴,在和中,∴∴,,在和中,BH A B ''⊥BG BB 'BB C BB H ''≌ BHG BAG ≌ HB CB ''=GH AG =BH A B ''⊥BG BB 'ABCD 90ABC C A ∠=∠=∠=︒BF B F '=90FB A ABC ''∠=∠=︒23∠∠=BHG ∠=90FB A ''∠=︒BH FB ∥24∠∠=3=4∠∠BCB 'V BHB ' 9034BHB C BB BB ∠=∠=︒⎧⎪∠==''∠⎨'⎪⎩()AAS BB C BB H ''≌ BC BH =HB CB ''=Rt BAG Rt BHG BG BG BH AB=⎧⎨=⎩∴,∴,∴,故选:A .试题卷Ⅱ二、填空题(每小题4分,共24分)11. 若分式的值为0,则x 的值是______.【答案】2【解析】【分析】根据分式的值为0,即分母不为0,分子为0得到x-2=0,且x+3≠0,求出x 即可.【详解】解:∵分式的值为0,∴x-2=0,且x+3≠0,∴x=2.故答案为:2.【点睛】本题考查了分式的值为0的条件:分式的值为0,要满足分母不为0,分子为0.也考查了解方程和不等式.12. 分解因式:_____.【答案】【解析】【分析】此题主要考查了提取公因式法以及公式法分解因式,首先提取公因式,进而利用平方差公式分解因式即可,正确应用平方差公式是解题关键.【详解】解:,,故答案为:.13. 在平行四边形中,,的平分线交边于点E ,则的长为______.()HL BHG BAG ≌ GH AG =2DGB C DG GH B H B D AD CD AD '''=+++=+= 23x x -+23x x -+24mx m -=()()22m x x +-m ()2244mx m m x -=-()()22m x x =+-()()22m x x +-ABCD 58AB BC ==,B ∠BE AD DE【答案】3【解析】【分析】本题考查平行四边形的性质、等腰三角形的判定和性质.根据平行四边形的性质可得,则,再由角平分线的定义可得,从而求得,则,从而求得结果.【详解】解:∵四边形是平行四边形,∴,∴,∵的平分线交于点E ,∴,∴,∴,∵,∴,故答案为:3.14. 一个圆锥的高为4,母线长为6,则这个圆锥的侧面积是______.【答案】【解析】【分析】本题考查了圆锥的计算.先利用勾股定理计算出这个圆锥的底面圆的半径,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算即可.【详解】解:这个圆锥的底面圆的半径,所以这个圆锥的侧面积.故答案为:.15. 有三面镜子如图放置,其中镜子和相交所成的角,已知入射光线经反射后,反射光线与入射光线平行,若,则镜子和相交所成的角AD BC ∥AEB CBE ∠=∠ABE CBE ∠=∠AEB ABE ∠=∠AE AB =ABCD AD BC ∥AEB CBE ∠=∠B ∠BE AD ABE CBE ∠=∠AEB ABE ∠=∠AE AB =58AB BC ==,853DE AD AE BC AB =-=-=-===1262π=⨯⨯=AB BC 110ABC ∠=︒EF ,,AB BC CD EF AEF α∠=BC CD______.(结果用含的代数式表示)【答案】【解析】【分析】本题考查了入射角和反射角、平行线以及三角形内角和等知识,解题的关键在于正确画出辅助线【详解】根据入射光线画出反射光线,交于点,同理根据入射光线画出反射光线,交于点,根据入射光线画出反射光线,过点作的平行线,使得.入射角等于反射角入射角等于反射角根据入射角等于反射角,可知:的BCD ∠=α90α︒+FE EG BC G EG GH CD H GH HK G EF GP EF HK BEG AEF α∴∠=∠=1802GEF α∴∠=︒-110ABC ∠=︒18011070BGE αα∴∠=︒-︒-=︒- 70HGC BGE α∴∠=∠=︒-()180270402EGH αα∴∠=︒-⨯︒-=︒+GP EF HK180,180GEF EGP PGH GHK ∴∠+∠=︒∠+∠=︒402EGP PGH EGH α∠+∠=∠=︒+ 360GEF EGH GHK ∴∠+∠+∠=︒()()3601802402140GHK αα∴∠=︒-︒--︒+=︒()1180140202GHC KHD ∠=∠=︒-︒=︒18090BCD CGH GHC α∴∠=︒-∠-∠=︒+故答案为:.16. 如图,已知矩形,过点A 作交的延长线于点E ,若,则______.【解析】【分析】利用矩形的性质,证明,,,变形计算,结合勾股定理,解方程,正切函数解答即可.【详解】∵矩形,∴,∴,,∵,∴,∴,,∴,∴,∴,∴,90α︒+ABCD AE AC ⊥CB AED ACB ∠=∠2tan BAE ∠=1-ADF CEF △∽△ADE FEC ∽BAE BCA △△∽ABCD ,,90,AD BC AB CD ABC BCD AD BC ==∠=∠=︒ ADF CEF △∽△ADE CEF ∠=∠AED ACB ∠=∠ADE FEC ∽AD DF EC EF=EF EC AD ED =AD ED EF EC EF-=ED EC EF AD EC =+ ()·ED EC EC AD AD EC ED=+22ED AD AD EC =+根据勾股定理,得,∴,∴,∴,∴,∵,∴,∵,∴,∴,∴,∴,解得,解得(舍去),∵∴,.【点睛】本题考查了矩形的性质,三角形相似的判定和性质,勾股定理,正切函数,直角三角形的性质,解方程,熟练掌握三角形相似的判定和性质,正切函数,勾股定理,解方程是解题的关键.三、解答题(第17-19题每小题6分,第20、21题每小题8分,第22、23题每小题10分,第24题12分,共66分)17. 计算:(1)222ED CD EC =+222CD EC AD AD EC +=+ ()()222·AB EB BC BC BC EB BC ++=++222222AB EB EB BC BC BC EB BC BC +++=++ 2220AB EB EB BC BC ++-= AE AC ⊥90BAE AEB BCA ∠︒-∠=∠=90ABE CBA ∠∠=︒=BAE BCA △△∽AB BE BC AB=2AB BE BC = 2220EB EB BC BC +-= (1EB BC ==-±1,1EB EB BC BC=-=tan BE BAE AB ∠=2222tan 1BE BE BE BAE AB BE BC BC ∠====- 102212024(3)33-+-⨯--(2)先化简,再求值:,其中【答案】(1) (2),2【解析】【分析】本题主要考查了实数的运算,整式的化简求值,对于(1),根据,,,,再根据有理数运算法则计算;对于(2),先根据整式的乘法法则及公式化简,再代入求值即可.【小问1详解】;【小问2详解】原式.当时,原式.18. 某校为了解本校九年级男生“引体向上”项目的训练情况,随机抽取该年级部分男生进行了一次测试(满分10分,成绩均记为整数分),并按测试成绩m (单位:分)分成四类:类,类,类,类,绘制出如图两幅不完整的统计图,请根据图中信息,解答下列问题:(1)本次抽样调查的人数为______,并补全条形统计图:(1)(1)(2)x x x x +-++12x =5312x +020241=2(93)-=2139-=1133-=02212024(3)33-+-⨯--111993=+⨯-213=+53=2212x x x=-++12x =+12x =11222=+⨯=A (10)m =B (79)m ≤≤C (46)m ≤≤D (3)m ≤(2)扇形统计图中A 类所对的圆心角是______°,测试成绩的中位数落在______类;(3)若该校九年级男生有500名,请估计该校九年级男生“引体向上”项目成绩为A 类或B 类的共有多少名?【答案】(1)50人,图见解析(2)72,B (3)估计该校九年级男生“引体向上”项目成绩为类或类的约有320名.【解析】【分析】本题考查条形统计图,扇形统计图,用样本估计总体,中位数;通过统计图之间的联系求出样本容量是解题的关键.(1)由统计图之间的联系求出样本容量,进一步求出组人数,补齐图形;(2)由组的占比求出对应圆心角;根据中位数定义,可知第25,26个数在组,故中位数在组;(3)由样本占比估计总本的人数.【小问1详解】解:本次抽样调查的人数为(人),组人数为(人),补全的条形统计图如图;故答案为:50人;【小问2详解】解:类所对的圆心角是;样本量为50,可知数据从大到小排列,第25,26个数在组,故中位数在类;故答案为:72,;小问3详解】解:类或类的共有(名),答:估计该校九年级男生“引体向上”项目成绩为类或类的共有320名.19. 如图,直线与双曲线相交于点.【A B C A B B 1020%50÷=C 501022315---=A 36020%72︒⨯=︒B B B A B 500(20%44%)320⨯+=A B y kx b =+(0)m y x x=>()()2,6,1A n B(1)求直线及双曲线对应的函数表达式;(2)直接写出关于x 的不等式的解集;(3)求的面积.【答案】(1)直线:,双曲线: (2)(3)8【解析】【分析】本题主要考查了一次函数,反比例函数的交点坐标,将点的坐标代入函数关系式是确定函数关系式的常用方法,理解交点坐标与不等式解集之间的关系是解本题的关键.(1)将代入到反比例函数解析式可得其解析式;先根据反比例函数解析式求得点的坐标,再由,坐标可得直线解析式;(2)根据图象得出不等式的解集即可;(3)设一次函数的图象与坐标轴交于,两点,分别过,两点作轴于,作轴于,根据题意可得,,从而求出,和,进而求出的值.【小问1详解】把代入,得:,∴反比例函数的解析式为;把代入,得:,∴,(0)m kx b x x +>>ABO 142y x =-+6(0)y x x =>26x <<()6,1B ()2,3A A B (0)m kx b x x+>>C D A B AE y ⊥E BF x ⊥F 2,1AE BF ==48OC OD ==,AOC S BOD S COD S △AOB S ()6,1B m y x=6m =6y x=()2,A n 6y x =3n =()2,3A把、代入,得:,解得:,∴一次函数的解析式为;故答案为:;.【小问2详解】由图象可知当时,,∴不等式的解集是,【小问3详解】设一次函数的图象与坐标轴交于,两点,分别过,两点作轴于,作轴于,∵、,∴,∵一次函数的解析式为,当时,,当当时,,解得,,∴点C 的坐标是,点D 的坐标是∴.∴,,()2,3A ()6,1B y kx b =+2361k b k b +=⎧⎨+=⎩124k b ⎧=-⎪⎨⎪=⎩142y x =-+5y x =-+4y x =26x <<(0)m kx b x x+>>(0)m kx b x x+>>26x <<C D A B AE y ⊥E BF x ⊥F ()2,3A ()6,1B 2,1AE BF ==142y x =-+0x =4y =0y =1042x =-+8x =()0,4()8,048OC OD ==,114,422AOC BOD S OC AE S OD BF =⋅==⋅= 1162COD S OC OD =⋅=△∴.20. 如图,已知和均是等边三角形,F 点在上,延长交于点D ,连接.(1)求证:四边形是平行四边形;(2)当点D 在线段上什么位置时,四边形是矩形?请说明理由.【答案】(1)见解析(2)当点D 在中点时,四边形是矩形,见解析【解析】【分析】本题考查了等边三角形的性质,平行四边形的判定与性质,矩形的判定等知识.熟练掌握等边三角形的性质,平行四边形的判定与性质,矩形的判定是解题的关键.(1)由和均是等边三角形,可得,则,进而可证四边形是平行四边形;(2)由,点D 在中点,可得,则,可证四边形是平行四边形,由,可证四边形是矩形.【小问1详解】证明:∵和均是等边三角形,∴,∴,∴四边形是平行四边形;【小问2详解】解:当点D 在中点时,四边形是矩形,理由如下;∵,点D 在中点,∴,∵四边形是平行四边形,∴,∴,∵,16448AOB COD AOC BOD S S S S =--=--= ABC AEF △AC EF BC AD CE ,ABDE BC ADCE BC ADCE ABC AEF △6060BAC AFE ACB FAE ∠=∠=︒∠=∠=︒,AB DE AE BD ∥,∥ABDE AB AC =BC AD BC BD CD ⊥=,AE CD =ADCE AD BC ⊥ADCE ABC AEF △6060BAC AFE ACB FAE ∠=∠=︒∠=∠=︒,AB DE AE BD ∥,∥ABDE BC ADCE AB AC =BC AD BC BD CD ⊥=,ABDE AE BD =AE CD =AE CD ∥∴四边形是平行四边形,∵,∴四边形是矩形.21. 如图的正方形网格中,每个小正方形的边长均为,的各个顶点都在格点上.(1)在边上作一点,使得的面积是,并求出的值;(2)作出边上的高,并求出高的长.(说明:只能使用没有刻度尺的直尺进行作图,并保留画图痕迹)【答案】(1)画图见解析,; (2)见解析,.【解析】【分析】()根据网格特征作即可;()根据网格特征作即可,本题考查了无刻度尺的直尺作图—作垂线,熟练掌握无刻度尺的直尺作图的方法是解题的关键.【小问1详解】如图,由网格的特征可知:,∴,∴,∴面积为,∴即为所求;ADCE AD BC ⊥ADCE 1ABC BC M ABM 83BM CMAC BD BD 12BM CM =165BD =112BM CM =2BD AC ⊥BG CH ∥CHM BGM ∽12BG BM CH CM ==ABM 1118443323ABC S =⨯⨯⨯= ABM【小问2详解】如图,根据网格作垂线的方法即可,∴即为所求,由网格的特征可知:,∴,∴.22. 星期日上午,小明从家里出发步行前往离家的镇海书城参加读书会活动,他以的速度步行了后发现忘带入场券,于是他停下来.打电话给家里的爸爸寻求帮助,爸爸骑着自行车从家里出发,沿着同一路线以的速度行进,同一时刻小明继续按原速步行赶往目的地.爸爸追上小明后载上他以相同的车速前往书城(停车载人时间忽略不计),到达书城后爸爸原速返回家.爸爸和小明离家的路程与小明所用时间的函数关系如图所示.(1)求爸爸在到达镇海书城前,他离开家的路程s 关于t 的函数表达式及a 的值.(2)爸爸出发后多长时间追上小明?此时距离镇海书城还有多远?【答案】(1),(2)爸爸出发3分钟后追上小明,此时距离镇海书城1275米【解析】【分析】本题考查一次函数的应用以及路程、速度、时间之间关系的应用,关键是用待定系数法求出函数解析式.(1)根据爸爸行驶的路程和爸爸的速度,求出爸爸到达书城所用时间,再根据待定系数法求函数解析式,再求出的值;BD 5AC ==1144522ABC S BD =⨯⨯=⨯⨯ 165BD =9:00 2.4km 75m/min 12min 9:15375m/min ()m s ()min t 3755625s t =-27.8a =a(2)设爸爸出发后分钟追上小明,根据两人路程相等列出方程,解方程求出,并求出距离书城的距离.【小问1详解】解:爸爸到达达镇海书城所用时间为,设爸爸在到达镇海书城前,他离开家的路程关于的函数表达式为,把,代入,得:,解得,爸爸在到达镇海书城前,他离开家的路程关于的函数表达式为;爸爸的速度不变,他返回家的时间和到达书城的时间均为,;【小问2详解】设爸爸出发后分钟追上小明,则,解得,此时,,答:爸爸出发后3分钟追上小明,此时距离镇海书城还有1275米.23. 根据以下素材,探索完成任务.设计跳长绳方案素材1:某校组织跳长绳比赛,要求如下:(1)每班需报名跳绳同学9人,摇绳同学2人;(2)跳绳同学需站成一路纵队,原地起跳,如图1.素材2:某班进行赛前训练,发现:(1)当绳子摇至最高处或最低处时,可近似看作两条对称分布的抛物线.已知摇绳同学之间水平距离为,绳子最高点为,摇绳同学的出手高度均为,如图x x 2400 6.4(min)375=s t s kt b =+(15,0)(21.4,2400)s kt b =+15021.42400k b k b +=⎧⎨+=⎩3755625k b =⎧⎨=-⎩∴s t 3755625s t =- ∴ 6.4min 152 6.427.8a ∴=+⨯=x 37575(12)x x =+3x =240037531275(m)-⨯=6m 2m 1m2;(2)9名跳绳同学身高如右表.【答案】任务1:;任务2:当绳子在最高点时,长绳不会触碰到位于最边侧的同学;任务3:方案可行【解析】【分析】本题考查了二次函数的应用,任务1:建立平面直角坐标系,待定系数法求解析式,即可求解;任务2,得出最右侧同学横坐标为代入解析式,结合按照排列方式可知最右(左)侧同学屈膝后身高即可求解;任务3,求得平移后的抛物线解析式,进而将代入,结合题意,即可求解.【详解】解:任务1:以两个摇绳人的中点所在直线与地面的交点为原点,地面所在直线为轴,建立直角坐标系,如图:由已知可得,在抛物线上,且抛物线顶点的坐标为,设抛物线解析式为,∴,解得:,∴抛物线的函数解析式为:任务2:∵抛物线的对称轴为直线,名同学,以轴为对称轴,分布在对称轴两侧,将同学按“中间高,两边低”的方式对称排列,同时保持的间距,则最右边侧的同学的坐标为即,当时,的21129y x =-+()1.8,1.7 1.8x =x ()()3,1,3,1-()0,222y ax =+192a =+19a =-21129y x =-+3x =9y 0.45m ()0.454,1.70⨯()1.8,1.71.8x =211.82 1.649y =-⨯+=按照排列方式可知最右(左)侧同学屈膝后身高:∴当绳子在最高点时,长绳不会触碰到位于最边侧的同学;任务3:∵当绳子摇至最高处或最低处时,可近似看作两条对称分布的抛物线.设开口向上的抛物线解析式为,对称轴为直线,则的顶点坐标为,∵,的开口大小不变,开口方向相反,∴当绳子摇至最低处时,抛物线的解析式为:∵将出手高度降低至.∴抛物线向下平移∴改变方案后的抛物线解析式为将,代入因此,方案可行24. 如图1,已知四边形内接于,且为直径.作交于点E ,交于点F .(1)证明:;(2)若,,求半径r ;(3)如图2,连接并延长交于点G ,交于点H .若,.①求;②连接,设,用含x 的式子表示的长.(直接写出答案)【答案】(1)见解析 (2) (3)①;②191.70 1.615 1.6420⨯=<2y1y =2y ()0,01y 2y 2219y x =-0.85m 10.850.15-=2310.159y x =--1.8x =223110.15 1.80.150.210.2599y x =-=⨯-=<ABCD O BD AF BC ∥CD O AF CD ⊥4cos 5DAF ∠=4AC =BE DF O AF CD =AEB BDC ∠=∠tan BDC ∠OE OE x =GH 52r =1tan 2BDC ∠=GH x =【解析】【分析】(1)根据圆周角定理得出,根据平行线的得出,即可证明结论;(2)证明,得出,根据,得出,根据,求出结果即可;(3)①过点O 作于点P ,于点Q ,证明矩形是正方形,设,,得出,,证明,得出,求出,得出;②连接,证明,得出,即,求出,证明,得出,根据,得出,证明,得出,证明,得出【小问1详解】证明:∵为直径,∴,∵,∴,即.【小问2详解】解:∵,∴,又∵,∴,90BCD ∠=︒90AED BCD ∠=∠=︒AEC DAB ∽ AC AE BD AD =4cos 5AE DAF AD ∠==45AC BD =4AC =OP DC ⊥OQ AF ⊥OPEQ OP a PE ==CE b =2BC a =()22CD PC a b ==+BEC DBC ∽ 2BC CE CD =⋅1b a =1tan 2OP a BDC DP a b ∠===+HF ODP MDE ∽OP DP ME DE ==ME x =AMN CBN ∽ 37AN AC x ==ODP MDE ∽CEB CBD ∠∠=DEG DAN ∽ AN AD EG DE ==EG AN ==ABE HFE ∽ EH AE ==BD 90BCD ∠=︒AF BC ∥90AED BCD ∠=∠=︒AF CD ⊥AF BC ∥EAC ACB ∠=∠ACB ADB Ð=ÐEAC ADB ∠=∠∵,∴,∴,∴,∴,∵,∴,即.【小问3详解】①如图2,过点O 作于点P ,于点Q ,如图所示:∵,∴四边形是矩形,∵,∴,∴矩形是正方形设,,∵,∴,∵,90AEC BAD ∠=∠=︒AEC DAB ∽ AC AE BD AD=4cos 5AE DAF AD ∠==45AC BD =4AC =5BD =52r =OP DC ⊥OQ AF ⊥90OPE PEQ OQE ∠=∠=∠=︒OPEQ AF CD =OP OQ =OPEQ OP a PE ==CE b =OP CD ⊥DP CP =DO OB =∴,,∵,∴,∵,∴,∵,∴,∴,∴,即:,解得:,∴;②如图,连接,由(3)①得,四边形为正方形,2BC a =()22CD PC a b ==+AF BC ∥AEB EBC ∠=∠AEB BDC ∠=∠EBC BDC ∠=∠BCE BCD ∠=∠BEC DBC ∽ BC EC DC BC=2BC CE CD =⋅()()222a b a b =⋅+1b a=1tan 2OP a BDC DP a b ∠===+HF OPEQ∵,∴,由,得,∴,∴,,∵,,∴为等腰直角三角形,∴,,∴,∵,,∴,∴,,解得:,∴,∵,∴,∴,∴,OE x =OP PE QE x ===1tan 2BDC ∠=DP =CP DP ==CE CP EP x =-=CD =AF CD =AF CD ⊥ADE V x AE DE ==EF CE x ==AC ==90OPD DEM ∠=∠=︒ODP MDE ∠=∠ODP MDE ∽OP DP ME DE==ME x =AM AE ME x x x =-==AF BC ∥AMN CBN ∽ 34AN AM NC BC ===37AN AC x ==∵,∴,∵,∴,∵,∴,∵,∴,∵,∴,∵,∴,∴,∴,∴∴,∵,∴,∵,∴,∴∴,∴.【点睛】本题主要考查了相似三角形的判定和性质,勾股定理,圆周角定理,等腰三角形的判定和性质,ODP MDE ∽CEB CBD∠∠= CDCD =CBD CAD ∠=∠CEB DEG ∠=∠DAN DEG ∠=∠ CFCF =EDG CAE ∠=∠AF BC ∥CAE ACB ∠=∠ AB AB =ADN ACB ∠=∠ADN EDG ∠=∠DEG DAN ∽ AN AD EG DE==EG AN x == BFBF =EAB EHF ∠=∠AEB HEF ∠=∠ABE HFE ∽ EH EF AE BE ==EH AE ==GH EH EG x =-=解题的关键是熟练掌握相关的判定和性质,数形结合,作出辅助线.。
重庆市第一中学2024-2025学年九年级上学期数学开学自测模拟试卷一.选择题(共10小题,满分40分,每小题4分)1.(4分)在四个实数,0,﹣1,中,最小的数是()A.B.0C.﹣1D.2.(4分)我国传统文化中的“福禄寿喜”图(如图)由四个图案构成,这四个图案中是中心对称图形的是()A.B.C.D.3.(4分)为了解江北区2024年初中毕业年级体育考试成绩情况,从全区20000名初三参考学生中随机抽取1500名学生的体育考试成绩进行分析,下列说法正确的是()A.该调查方式是普查B.该调查中的总体是全区初三学生C.该调查中个体是江北区每位初三学生的体考成绩D.该调查中的样本是抽取的1500名学生4.(4分)估计的值应在()A.2和3之间B.3和4之间C.﹣3和﹣4之间D.﹣3和﹣2之间5.(4分)如图,△ABC与△DEF是位似图形,点O为位似中心,已知BO:OE=2:1,则△ABC与△DEF的面积比是()A.2:1B.3:1C.4:1D.5:16.(4分)关于x的一元二次方程x2+mx﹣8=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根7.(4分)已知如图,在▱ABCD中,点E为AD上一点,DE:AE=1:2,CE交对角线BD于点F,若△CDF的面积为3,则△BCF的面积为()A.18B.12C.9D.68.(4分)用字母“C“,“H”按如图所示的规律拼图案,则第⑧个图案中字母“H”的个数为()A.16B.17C.18D.199.(4分)如图,正方形ABCD中,E为BC边上一点,连接DE,将DE绕点E逆时针旋转90°得到EF,连接DF、BF,若∠ADF=α,则∠EFB一定等于()A.αB.45°﹣αC.90°﹣3αD.10.(4分)将x﹣y÷z×m+n(所有字母均不为0)中的任意两个字母对调位置,称为“对调操作”.例如:“x、y 对调操作”的结果为y﹣x÷z×m+n,且“x、y对调操作”和“y、x对调操作”是同一种“对调操作”.下列说法:①只有“x、n对调操作”的结果与原式相等;②若“x、y对调操作”与“n、y对调操作”的结果相等,则x=n或m+z=0;③若y=m=z,则所有的“对调操作”共有5种不同运算结果.其中正确的个数是()A.0B.1C.2D.3二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:||+30=.12.(4分)在同一平面内,等边△ABC和正五边形BCDEF如图所示,则∠ABF的度数为.13.(4分)已知三角形的两边长为3和5,第三边的长为方程x2﹣5x+4=0的根,则该三角形的周长为.14.(4分)有四张背面完全相同,正面分别是“诚”、“勤”、“立”、“达”的卡牌,洗匀后背面朝上,小明随机抽取一张卡牌后记录卡牌上的汉字并放回,洗匀后再随机抽取一张卡牌,小明第二次抽取的卡牌上的汉字和第一次相同的概率是.15.(4分)如图,△ABC中,AD是∠BAC的角平分线,BD⊥AD,垂足为D,过D作DE∥AC交AB于点E,过D作DF⊥DE交AC于点F,连接EF,已知AB=4,BD=3,则EF=.16.(4分)如图,在正方形ABCD中,AE平分∠BAC,F为CD上一点,连接BF,交AC于点G,连接DG,若DF=CE,则∠DGF=.17.(4分)若关于x的不等式组有解且至多有2个偶数解且关于y的分式方程=3 的解为非负整数,则所有满足条件的整数a的值之和为.18.(4分)一个四位自然数N,各个数位上的数字均不等于0且互不相等,当N的十位数字减去个位数字的差等于N的千位数字减去百位数字的差的2倍时,我们称自然数N为“倍差数”;当N的十位数字与个位数字的和等于N的千位数字与百位数字的和的2倍时,我们称自然数N为“倍和数”;则最小的“倍差数”与最大的“倍和数”的和是;将“倍差数”N的千位数字与百位数字交换位置,十位数字与个位数字交换位置后得到的新“倍差数”为N′,且规定F(N)=,G(N)=,自然数M既是“倍差数”又是“倍和数”,且F(M)和G(M)均为正整数,则满足条件的数M为.三.解答题(共8小题,满分78分)19.(8分)计算:(1)﹣b(2a﹣b)+(a+b)2;(2).20.(10分)学习了菱形后,小莉进行了拓展性研究:过菱形的一个顶点分别向两条对边作垂线,则这两条垂线与对角线产生两个交点,那么这两交点到此顶点的距离关系如何?她的解决思路是通过证明对应线段所在的两个三角形全等得出结论.请根据她的思路完成以下作图与填空:用直尺和圆规,过点A作CD的垂线,垂足为点M,交BD于点N.(只保留作图痕迹)已知:如图,四边形ABCD是菱形,过A作AE⊥BC于点E,并交对角线BD于点F,作AM⊥CD于点M,交对角线BD于点N.求证:AF=AN.证明:∵四边形ABCD是菱形∴AB=∠ABC=∠ADC∵AE⊥BC,AM⊥CD∴∠AEB=∠AMD=90°∵∠AEB+∠ABC+∠BAE=180°∠AMD+∠ADC+∠DAM=180°∴∴△ABF≌∴AF=AN请你依照题意完成下面命题:过菱形的一个顶点向两条对边作垂线,与对角线产生两个交点,则.21.(10分)近年来,诈骗分子较为猖狂,诈骗手段不断更新,据有关部门统计,2022年全年全国电信诈骗共计达到2万亿元.为有效提高学生防诈反诈能力,学校开展了“防诈反诈”讲座后进行了“防诈反诈”知识竞赛,并从七、八年级各随机选取了20名同学的竞赛成绩进行了整理、描述和分析(成绩得分用x表示,其中A:0≤x <85,B:85≤x<90,C:90≤x<95,D:95≤x≤100,得分在90分及以上为优秀).下面给出了部分信息:七年级C组同学的分数分别为:94,92,93,91;八年级C组同学的分数分别为:91,92,93,93,94,94,94,94,94.七、八年级选取的学生竞赛成绩统计表:(1)填空:a=,b=,m=;(2)根据以上数据,你认为该校七、八年级学生在“防诈反诈”知识竞赛中,哪个年级学生对“防诈反诈”的了解情况更好?请说明理由;(写出一条理由即可)(3)该校现有学生七年级780名,八年级800名,请估计这两个年级竞赛成绩为优秀的学生总人数.22.(10分)如图,平行四边形ABCD中,AD=6,CD=4,∠ADC=30°,动点P从点A出发沿折线A→B→C运动,到达点C停止运动.在运动过程中,过点P作PH⊥CD于点H,设点P的运动路程为x,BP+PH记为y1.(1)请直接写出y1关于x的函数表达式,并注明自变量x的取值范围;(2)在给定的平面直角坐标系中画出这个函数图象,并写出该函数的一条性质;(3)结合函数图象,直接写出y1的图象与的图象有1个公共点时m的取值范围.23.(10分)4月,正是春暖花开,踏青徒步的好时节,某校初三年级开展了“踏青觅春,走进自然”的春游活动.甲、乙两班都从学校出发沿相同路线去距学校7.5千米的徒步终点,已知甲班的步行速度是乙班的1.5倍.(步行过程为匀速运动)(1)若乙班比甲班先走750米,甲班才开始从学校出发,半小时后两班相遇,则两班的速度分别为多少千米/小时?(2)若乙班在出发后第一小时内按原计划的速度匀速前进,一小时后将速度提高到与甲班一致,并比原计划提前10分钟到达徒步终点,求乙班到达终点用了多少小时?24.(10分)如图,车站A在车站B的正西方向,它们之间的距离为100千米,修理厂C在车站B的正东方向.现有一辆客车从车站B出发,沿北偏东45°方向行驶到达D处,已知D在A的北偏东60°方向,D在C的北偏西30°方向.(1)求车站B到目的地D的距离(结果保留根号);(2)客车在D处准备返回时发生了故障,司机在D处拨打了救援电话并在原地等待,一辆救援车从修理厂C 出发以35千米每小时的速度沿CD方向前往救援,同时一辆应急车从车站A以60千米每小时的速度沿AD方向前往接送滞留乘客,请通过计算说明救援车能否在应急车到达之前赶到D处.(参考数据:≈1.41,≈1.73,≈2.45)25.(10分)如图,在平面直角坐标系中,直线y=kx+2与y轴交于点A,与x轴负半轴交于点B,OB=2,直线y =2x与直线AB交于点C.(1)求直线AB的表达式;(2)如图1,点P为直线OC上一动点,连接P A,PB,求P A+PB的最小值及此时点P的坐标;(3)将直线OC沿射线BA方向平移个单位长度得到新直线y',在新直线y'上是否存在点M,使得AM与新直线y的夹角为45°,若存在,请写出点M的横坐标,选一种情况写出求解过程,若不存在,说明理由.26.(10分)已知△ABC是等腰直角三角形,AB=AC,D为平面内一点.(1)如图1,当D点在AB的中点时,连接CD,将CD绕点D逆时针旋转90°,得到ED,若AB=4,求△ADE 的周长;(2)如图2,当D点在△ABC外部时,E、F分别是AB、BC的中点,连接EF、DE、DF,将DE绕E点逆时针旋转90°得到EG,连接CG、DG、FG,若∠FDG=∠FGE,请探究FD、FG、CG之间的数量关系并给出证明;(3)如图3,当D在△ABC内部时,连接AD,将AD绕点D逆时针旋转90°,得到ED,若ED经过BC中点F,连接AE、CE,G为CE的中点,连接GF并延长交AB于点H,当AG最大时,请直接写出的值.重庆市第一中学2024-2025学年九年级上学期数学开学自测模拟试卷(答案)参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.(4分)在四个实数,0,﹣1,中,最小的数是()A.B.0C.﹣1D.【答案】C2.(4分)我国传统文化中的“福禄寿喜”图(如图)由四个图案构成,这四个图案中是中心对称图形的是()A.B.C.D.【答案】B3.(4分)为了解江北区2024年初中毕业年级体育考试成绩情况,从全区20000名初三参考学生中随机抽取1500名学生的体育考试成绩进行分析,下列说法正确的是()A.该调查方式是普查B.该调查中的总体是全区初三学生C.该调查中个体是江北区每位初三学生的体考成绩D.该调查中的样本是抽取的1500名学生【答案】C4.(4分)估计的值应在()A.2和3之间B.3和4之间C.﹣3和﹣4之间D.﹣3和﹣2之间【答案】D5.(4分)如图,△ABC与△DEF是位似图形,点O为位似中心,已知BO:OE=2:1,则△ABC与△DEF的面积比是()A.2:1B.3:1C.4:1D.5:16.(4分)关于x的一元二次方程x2+mx﹣8=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【答案】A7.(4分)已知如图,在▱ABCD中,点E为AD上一点,DE:AE=1:2,CE交对角线BD于点F,若△CDF的面积为3,则△BCF的面积为()A.18B.12C.9D.6【答案】C8.(4分)用字母“C“,“H”按如图所示的规律拼图案,则第⑧个图案中字母“H”的个数为()A.16B.17C.18D.19【答案】C9.(4分)如图,正方形ABCD中,E为BC边上一点,连接DE,将DE绕点E逆时针旋转90°得到EF,连接DF、BF,若∠ADF=α,则∠EFB一定等于()A.αB.45°﹣αC.90°﹣3αD.10.(4分)将x﹣y÷z×m+n(所有字母均不为0)中的任意两个字母对调位置,称为“对调操作”.例如:“x、y 对调操作”的结果为y﹣x÷z×m+n,且“x、y对调操作”和“y、x对调操作”是同一种“对调操作”.下列说法:①只有“x、n对调操作”的结果与原式相等;②若“x、y对调操作”与“n、y对调操作”的结果相等,则x=n或m+z=0;③若y=m=z,则所有的“对调操作”共有5种不同运算结果.其中正确的个数是()A.0B.1C.2D.3【答案】C二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:||+30=.【答案】.12.(4分)在同一平面内,等边△ABC和正五边形BCDEF如图所示,则∠ABF的度数为48° .【答案】48°.13.(4分)已知三角形的两边长为3和5,第三边的长为方程x2﹣5x+4=0的根,则该三角形的周长为12.【答案】12.14.(4分)有四张背面完全相同,正面分别是“诚”、“勤”、“立”、“达”的卡牌,洗匀后背面朝上,小明随机抽取一张卡牌后记录卡牌上的汉字并放回,洗匀后再随机抽取一张卡牌,小明第二次抽取的卡牌上的汉字和第一次相同的概率是.【答案】.15.(4分)如图,△ABC中,AD是∠BAC的角平分线,BD⊥AD,垂足为D,过D作DE∥AC交AB于点E,过D作DF⊥DE交AC于点F,连接EF,已知AB=4,BD=3,则EF=.【答案】.16.(4分)如图,在正方形ABCD中,AE平分∠BAC,F为CD上一点,连接BF,交AC于点G,连接DG,若DF=CE,则∠DGF=45° .【答案】45°.17.(4分)若关于x的不等式组有解且至多有2个偶数解且关于y的分式方程=3 的解为非负整数,则所有满足条件的整数a的值之和为7.【答案】7.18.(4分)一个四位自然数N,各个数位上的数字均不等于0且互不相等,当N的十位数字减去个位数字的差等于N的千位数字减去百位数字的差的2倍时,我们称自然数N为“倍差数”;当N的十位数字与个位数字的和等于N的千位数字与百位数字的和的2倍时,我们称自然数N为“倍和数”;则最小的“倍差数”与最大的“倍和数”的和是7532;将“倍差数”N的千位数字与百位数字交换位置,十位数字与个位数字交换位置后得到的新“倍差数”为N′,且规定F(N)=,G(N)=,自然数M既是“倍差数”又是“倍和数”,且F(M)和G(M)均为正整数,则满足条件的数M为3162.【答案】7532;3162.三.解答题(共8小题,满分78分)19.(8分)计算:(1)﹣b(2a﹣b)+(a+b)2;(2).【答案】(1)a2+2b2;(2).20.(10分)学习了菱形后,小莉进行了拓展性研究:过菱形的一个顶点分别向两条对边作垂线,则这两条垂线与对角线产生两个交点,那么这两交点到此顶点的距离关系如何?她的解决思路是通过证明对应线段所在的两个三角形全等得出结论.请根据她的思路完成以下作图与填空:用直尺和圆规,过点A作CD的垂线,垂足为点M,交BD于点N.(只保留作图痕迹)已知:如图,四边形ABCD是菱形,过A作AE⊥BC于点E,并交对角线BD于点F,作AM⊥CD于点M,交对角线BD于点N.求证:AF=AN.证明:∵四边形ABCD是菱形∴AB=AD∠ABC=∠ADC∵AE⊥BC,AM⊥CD∴∠AEB=∠AMD=90°∵∠AEB+∠ABC+∠BAE=180°∠AMD+∠ADC+∠DAM=180°∴∠BAE=∠DAN∴△ABF≌△ADN∴AF=AN请你依照题意完成下面命题:过菱形的一个顶点向两条对边作垂线,与对角线产生两个交点,则两交点到顶点的距离相等.【答案】作图见解析,①AD;②∠BAE=∠DAN;③△ADN;④两交点到顶点的距离相等.21.(10分)近年来,诈骗分子较为猖狂,诈骗手段不断更新,据有关部门统计,2022年全年全国电信诈骗共计达到2万亿元.为有效提高学生防诈反诈能力,学校开展了“防诈反诈”讲座后进行了“防诈反诈”知识竞赛,并从七、八年级各随机选取了20名同学的竞赛成绩进行了整理、描述和分析(成绩得分用x表示,其中A:0≤x<85,B:85≤x<90,C:90≤x<95,D:95≤x≤100,得分在90分及以上为优秀).下面给出了部分信息:七年级C组同学的分数分别为:94,92,93,91;八年级C组同学的分数分别为:91,92,93,93,94,94,94,94,94.七、八年级选取的学生竞赛成绩统计表:年级平均数中位数众数优秀率七91a95m八9193b65%(1)填空:a=92.5,b=94,m=60%;(2)根据以上数据,你认为该校七、八年级学生在“防诈反诈”知识竞赛中,哪个年级学生对“防诈反诈”的了解情况更好?请说明理由;(3)该校现有学生七年级780名,八年级800名,请估计这两个年级竞赛成绩为优秀的学生总人数.【答案】(1)92.5,94,60%;(2)八年级学生对“防诈反诈”的了解情况更好;(3)这两个年级竞赛成绩为优秀的学生总人数为988人.22.(10分)如图,平行四边形ABCD中,AD=6,CD=4,∠ADC=30°,动点P从点A出发沿折线A→B→C运动,到达点C停止运动.在运动过程中,过点P作PH⊥CD于点H,设点P的运动路程为x,BP+PH记为y1.(1)请直接写出y1关于x的函数表达式,并注明自变量x的取值范围;(2)在给定的平面直角坐标系中画出这个函数图象,并写出该函数的一条性质;(3)结合函数图象,直接写出y1的图象与的图象有1个公共点时m的取值范围.【答案】(1)y1=;(2)函数图象见解答,函数的最小值为3(答案不唯一);(3)7≤m≤11.23.(10分)4月,正是春暖花开,踏青徒步的好时节,某校初三年级开展了“踏青觅春,走进自然”的春游活动.甲、乙两班都从学校出发沿相同路线去距学校7.5千米的徒步终点,已知甲班的步行速度是乙班的1.5倍.(步行过程为匀速运动)(1)若乙班比甲班先走750米,甲班才开始从学校出发,半小时后两班相遇,则两班的速度分别为多少千米/小时?(2)若乙班在出发后第一小时内按原计划的速度匀速前进,一小时后将速度提高到与甲班一致,并比原计划提前10分钟到达徒步终点,求乙班到达终点用了多少小时?【答案】(1)甲班的步行速度为4.5km/h,乙班的步行速度为3km/h;(2)乙班到达终点用了小时.24.(10分)如图,车站A在车站B的正西方向,它们之间的距离为100千米,修理厂C在车站B的正东方向.现有一辆客车从车站B出发,沿北偏东45°方向行驶到达D处,已知D在A的北偏东60°方向,D在C的北偏西30°方向.(1)求车站B到目的地D的距离(结果保留根号);(2)客车在D处准备返回时发生了故障,司机在D处拨打了救援电话并在原地等待,一辆救援车从修理厂C 出发以35千米每小时的速度沿CD方向前往救援,同时一辆应急车从车站A以60千米每小时的速度沿AD方向前往接送滞留乘客,请通过计算说明救援车能否在应急车到达之前赶到D处.(参考数据:≈1.41,≈1.73,≈2.45)【答案】(1)车站B到目的地D的距离为(50+50)千米;(2)救援车能在应急车到达之前赶到D处.25.(10分)如图,在平面直角坐标系中,直线y=kx+2与y轴交于点A,与x轴负半轴交于点B,OB=2,直线y =2x与直线AB交于点C.(1)求直线AB的表达式;(2)如图1,点P为直线OC上一动点,连接P A,PB,求P A+PB的最小值及此时点P的坐标;(3)将直线OC沿射线BA方向平移个单位长度得到新直线y',在新直线y'上是否存在点M,使得AM与新直线y的夹角为45°,若存在,请写出点M的横坐标,选一种情况写出求解过程,若不存在,说明理由.【答案】(1)y=x+2;(2)P(,)、P A+PB的最小值为:;(3)存在,点M的坐标为:(,)或(,﹣).26.(10分)已知△ABC是等腰直角三角形,AB=AC,D为平面内一点.(1)如图1,当D点在AB的中点时,连接CD,将CD绕点D逆时针旋转90°,得到ED,若AB=4,求△ADE 的周长;(2)如图2,当D点在△ABC外部时,E、F分别是AB、BC的中点,连接EF、DE、DF,将DE绕E点逆时针旋转90°得到EG,连接CG、DG、FG,若∠FDG=∠FGE,请探究FD、FG、CG之间的数量关系并给出证明;(3)如图3,当D在△ABC内部时,连接AD,将AD绕点D逆时针旋转90°,得到ED,若ED经过BC中点F,连接AE、CE,G为CE的中点,连接GF并延长交AB于点H,当AG最大时,请直接写出的值.【答案】。
北京市西城区九年级模拟测试试卷 数学2024.5 第1页(共8页)北 京 市 西 城 区 九 年 级 模 拟 测 试 试 卷数 学 2024.5考生须知1.本试卷共8页,共两部分,28道题。
满分100分。
考试时间120分钟。
2.在试卷和草稿纸上准确填写姓名、准考证号、考场号和座位号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。
5.考试结束,将本试卷、答题卡和草稿纸一并交回。
第一部分 选择题一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个. 1.右图是某几何体的三视图,该几何体是 (A )圆柱 (B )圆锥 (C )三棱柱(D )长方体2.新能源革命受到全球瞩目的同时,也成为中国实现“碳达峰碳中和”目标的关键所在.2023年全球可再生能源新增装机510 000 000千瓦,其中中国的贡献超过了50%. 将510 000 000用科学记数法表示应为 (A )90.5110 (B )85.110 (C )95.110 (D )75110 3.正十二边形的每一个外角的度数为(A )30°(B )36°(C )144°(D )150°4.如图,直线AB ⊥CD 于点C ,射线CE 在∠BCD 内部,射线CF平分∠ACE .若∠BCE =40°,则下列结论正确的是 (A )∠ECF =60° (B )∠DCF =30° (C )∠ACF 与∠BCE 互余 (D )∠ECF 与∠BCF 互补5.不透明的袋子里装有3个完全相同的小球,上面分别标有数字4,5,6.随机从中摸出一个小球不放回,再随机摸出另一个小球.第一次摸出小球上的数字大于第二次摸出小球上的数字的概率是 (A)12 (B )13(C )23(D )49北京市西城区九年级模拟测试试卷 数学2024.5 第2页(共8页)6.如图,点C 为线段AB 的中点,∠BAM =∠ABN ,点D ,E 分别在射线AM ,BN 上,∠ACD 与∠BCE 均为锐角.若添加一个条件一定 可以证明△ACD ≌△BCE ,则这个条件不能是 (A )∠ACD =∠BCE (B )CD=CE (C )∠ADC =∠BEC(D )AD =BE7.某农业合作社在春耕期间采购了A ,B 两种型号无人驾驶农耕机器.已知每台A 型机器的进价比每台B 型机器进价的2倍少0.7万元;采购相同数量的A ,B 两种型号机器,分别花费了21万元和12.6万元.若设每台B 型机器的进价为x 万元,根据题意可列出关于x 的方程为(A )12.621(20.7)x x (B )2112.620.7x x (C )2112.620.7x x(D )2112.620.7x x8.下面问题中,y 与x 满足的函数关系是二次函数的是①面积为102cm 的矩形中,矩形的长y (cm )与宽x (cm )的关系;②底面圆的半径为5cm 的圆柱中,侧面积y 2(cm )与圆柱的高x (cm )的关系;③某商品每件进价为80元,在某段时间内以每件x 元出售,可卖出(100)x 件. 利润y (元)与每件售价x (元)的关系. (A )① (B )②(C )③ (D )①③第二部分 非选择题二、填空题(共16分,每题2分)9. 若分式34x 有意义,则x 的取值范围是______. 10.分解因式:2218x y y =______.11.方程组25,24x y x y的解为______. 12.在平面直角坐标系xOy 中,点(3,1)A 关于原点O 的对称点的坐标为______.13.如图,BD 是△ABC 的角平分线,DE ⊥BC 于点E .若BE =3,△BDE 的面积为1.5,则点D 到边AB 的距离为______. 14.如图,AB 与⊙O 相切于点C .点D ,E 分别在OA ,OB上,四边形ODCE 为正方形.若OA =2,则DE =______.北京市西城区九年级模拟测试试卷 数学2024.5 第3页(共8页)15.如图,(2,)A m ,(3,2)B 两点在反比例函数ky x(x >0)的图象上.若将横、纵坐标都是整数的点称为整点,则线段OA ,OB 及反比例函数图象上A ,B 两点之间的部分围成的区域(不含边界)中,整点的坐标为______.16.在某次比赛中,5位选手进入决赛环节,决赛赛制为单循环形式(每两位选手之间都赛一场).每位选手胜一场得3分,负一场得0分,平局得1分.已知这次比赛最终结果没有并列第一名,获得第一名的选手的成绩记为m (分),则m 的最小值为______;当获得第一名的选手的成绩恰好为最小值时,决赛环节的平局总数至少为______场. 三、解答题(共68分,第17-21题,每题5分,第22-23题,每题6分,第24题5分,第25-26题,每题6分,第27-28题,每题7分) 解答应写出文字说明、演算步骤或证明过程. 17.计算:04cos 45(π3) .18.解不等式组3 2 < 4,2,53x x x x≥并写出它的所有整数解. 19.已知230x x ,求代数式233(1144x x x的值. 20.已知:如图,在△ABC 中,∠ABC =90°,BA=BC .求作:点D ,使得点D 在△ABC 内,且12ADB BDC .下面是小华的解答过程,请补充完整:(1)使用直尺和圆规,依作法补全图形(保留作图痕迹):①作线段BC 的垂直平分线PQ 交BC 于点E ;②以点A 为圆心,AB 长为半径作弧,与直线PQ 在△ABC 内交于点D . 点D 就是所求作的点.(2)完成下面的证明.证明:连接DA ,DB ,DC .∵ 点D 在线段BC 的垂直平分线上, ∴ DB = DC ( )(填推理的依据), DE ⊥BC .∴ 12BDE CDE BDC .∵ ∠ABC =90°,∠DEC =90°, ∴ ∠ABC =∠DEC .北京市西城区九年级模拟测试试卷 数学2024.5 第4页(共8页)∴ AB ∥DE . ∴ ∠ABD =∠BDE . ∵ , ∴ ∠ADB =∠ .∴ 12ADB BDE BDC .21.已知关于x 的一元二次方程2320x x k 有两个不相等的实数根.(1)求实数k 的取值范围;(2)若k 为满足条件的最大整数,求此时方程的根.22.如图,四边形ABCD 是平行四边形,AE ⊥BD 于点E ,CG ⊥BD 于点F ,FG =CF ,连接AG .(1)求证:四边形AEFG 是矩形;(2)若∠ABD =30°,AG =2AE =6,求BD 的长.23.如图,AB 是⊙O 的直径,BC 交⊙O 于点D ,点E 是 BD的中点,连接AE 交BC 于 点F ,∠ACB =2∠EAB . (1)求证:AC 是⊙O 的切线; (2)若BF =6,3cos 5C,求AB 的长.24.我国快递市场繁荣活跃,某快递公司为提高服务质量,对公司的业务量、公众满意度等数据进行统计分析.公司随机抽取了某日发往相邻城市的快递中的1000件,称重并记录每件快递的重量(单位:kg,精确到0.1).下面给出了部分信息.a.每件快递重量的频数分布直方图(数据分成11组:0≤x<1,1≤x<2,2≤x<3,3≤x<4,4≤x<5,5≤x<6,6≤x<7,7≤x<8,8≤x<9,9≤x<10,10≤x<11);b.在3≤x<4这一组的数据如下:3.0 3.1 3.1 3.2 3.2 3.2 3.4 3.4 3.4 3.43.5 3.5 3.5 3.5 3.6 3.6 3.7 3.7 3.8 3.9c.这1000件快递重量的平均数、中位数、众数如下:平均数 中位数 众数快递重量3.6 m n(单位:kg)根据以上信息,回答下列问题:(1)补全频数分布直方图;(2)写出m的值;(3)下面四个结论中,① n的值一定在2≤x<3这一组;②n的值可能在4≤x<5这一组;③n的值不可能在5≤x<6这一组;④n的值不可能在8≤x<9这一组.所有正确结论的序号是 ;(4)该日此快递公司在全市揽收的快递包裹中有3800件发往相邻城市,估计这批快递的重量.北京市西城区九年级模拟测试试卷数学2024.5 第5页(共8页)北京市西城区九年级模拟测试试卷 数学2024.5 第6页(共8页)25.已知角x (0°≤x ≤90°),探究sin x 与角x 的关系.两个数学兴趣小组的同学在查阅资料后,分别设计了如下两个探究方案:方案一:如图,点P 在以点O 为圆心,1为半径的 MN上,∠MON =90°,设∠POM 的度数为x . 作PC ⊥OM 于点C ,则线段 ① 的长度c 即为sin x 的值.方案二:用函数35π1π1π()()()1806180120180x x x F x的值近似代替sin x 的值.计算函数 ()F x 的值,并在平面直角坐标系xOy 中描出坐标为(,())x F x 的点.两个小组同学汇总、记录的部分探究数据如下表所示(精确到0.001). 若()c F x ≤0.001记为√,否则记为×. x 0 102030 40455060708090 c 0 0.174 0.342 ②0.643 0.707 0.766 0.866 0.940 0.985 1 ()F x0.174 0.342 0.500 0.643 0.707 0.766 0.866 0.941 0.987 1.005√或× √√√√√√√√×根据以上信息,解决下列问题: (1)①为 ,②为 ; (2)补全表中的√或×;(3)画出()F x 关于x 的函数图象,并写出sin55°的近似值(精确到0.01).26.在平面直角坐标系xOy 中,11(,)M x y ,22(,)N x y 是抛物线2y ax bx c上任意两点.设抛物线的对称轴是x=t .(1)若对于12x ,21x ,有12y y ,求t 的值;(2)若对于1x ≥2,都有1y c 成立,并且对于21x ,存在2y c ,求t 的取值范围.27.如图,在Rt△ABC中,∠ACB=90°,∠BAC=α(0°<α<30°).将射线AB绕点A顺时针旋转2α得到射线l,射线l与直线BC的交点为点M.在直线BC上截取MD=AB (点D在点M右侧),将直线DM绕点D顺时针旋转2α所得直线交直线AM于点E.(1)如图1,当点D与点B重合时,补全图形并求此时∠AED的度数;(2)当点D不与点B重合时,依题意补全图2,用等式表示线段ME与BC的数量关系,并证明.图1图2北京市西城区九年级模拟测试试卷数学2024.5 第7页(共8页)北京市西城区九年级模拟测试试卷 数学2024.5 第8页(共8页)28.如图1,对于⊙O 外的线段PQ (线段PQ 上的各点均在⊙O 外)和直线PQ 上的点R ,给出如下定义:若线段PQ 绕点R 旋转某一角度得到的线段P ′Q ′恰好是⊙O 的弦,则称点R 为线段PQ 关于⊙O 的“割圆点”.图1图2在平面直角坐标系xOy 中,⊙O 的半径为1.(1)如图2,已知点(1,4)S ,(1,2)T ,(1,2)U ,(0,3)W . 在线段ST ,TU ,UW 中,存在关于⊙O 的“割圆点”的线段是_______,该“割圆点”的坐标是_______; (2)直线y x b 经过点(0,3)W ,与x 轴的交点为点V .点P ,点Q 都在线段VW 上,且PQ PQ 关于⊙O 的“割圆点”为点R ,写出点R 的横坐标R x 的取值范围;(3)直线l 经过点H ,不重合的四个点A ,B ,C ,D 都在直线l 上,且点H 既是线段AB 关于⊙O 的“割圆点”,又是线段CD 关于⊙O 的“割圆点”.线段AB ,CD 的中点分别为点M ,N ,记线段MN 的长为d ,写出d 的取值范围.北京市西城区九年级模拟测试试卷 数学答案及评分参考 2024.5 第1页(共6页)北 京 市 西 城 区 九 年 级 模 拟 测 试 试 卷数学答案及评分参考 2024.5一、选择题(共16分,每题2分)题号 1 2 3 4 5 6 7 8 答案BBADABCC二、填空题(共16分,每题2分)9.4x 10.2(3)(3)y x x11.2,1x y 12.(3,1) 13.1 1415.(1,1),(2,2) 16.6;4 三、解答题(共68分,第17-21题,每题5分,第22-23题,每题6分,第24题5分,第25-26题,每题6分,第27-28题,每题7分) 17.解: 04cos 45(π3) 2412…………………………………………………………… 4分 1 . ……………………………………………………………………………… 5分18.解:原不等式组为3 2 < 4,2.53x x x x≥ 解不等式①,得3x .……………………………………………………………1分 解不等式②,得1x ≥.………………………………………………………… 2分∴ 原不等式组的解集为1 ≤3x .…………………………………………… 3分 ∴ 原不等式组的所有整数解为1 ,0,1,2.……………………………… 5分19.解: 233(1)144x x x2231(2)x x x3(1)(2)x x232x x. ……………………………………………………………………… 3分∵ 230x x , ∴ 23x x .∴ 原式3 .…………………………………………………………………………5分① ②北京市西城区九年级模拟测试试卷 数学答案及评分参考 2024.5 第2页(共6页)20.解:(1)作图见图1.……………………………………………………………………2分(2)线段垂直平分线上的点与这条线段两个端点的距离相等;……………… 3分 AB=AD ;……………………………………………………………………… 4分ABD .………………………………………………………………………… 5分21.解:(1)依题意,得234(2)174k k .…………………………………… 1分∵ 原方程有两个不相等的实数根,∴ 1740k .………………………………………………………………2分 解得 174k.…………………………………………………………………3分 (2)∵ k 为满足条件的最大整数,∴ 4k .此时方程为2320x x .此时方程的根为11x ,22x .…………………………………………5分22.(1)证明:如图∵ 四边形ABCD 是平行四边形,∴ AB//CD ,AB=CD .…………………………………………………… 1分 ∴ ∠ABE=∠CDF .∵ AE ⊥BD 于点E ,CG ⊥BD 于点F , ∴ ∠AEB=∠CFD=∠AEF=∠EFC=90°. ∴ △ABE ≌△CDF .图1北京市西城区九年级模拟测试试卷 数学答案及评分参考 2024.5 第3页(共6页)∴ AE=CF .∵ FG =CF ,∴ AE= FG .∵ ∠AEF=∠EFC ,∴ AE//FG .∴ 四边形AEFG 是平行四边形.∵ ∠AEF=90°,∴ 四边形AEFG 是矩形. ……………………………………………… 3分(2)解:∵ △ABE ≌△CDF ,∴ BE= DF .∵ AG=2AE =6,∴ AE =3.在Rt △ABE 中,∠AEB =90°,∠ABE =30°,AE =3,∴3tan tan 30AE BE ABE4分 ∵ 四边形AEFG 是矩形,AG =6,∴ EF=AG=6.……………………………………………………………… 5分∴26BD BE EF DF BE EF . ………………………… 6分23.(1)证明:如图3,连接AD .∵ AB 是⊙O 的直径,BC 交⊙O 于点D ,∴ ∠BDA=90°.∴ 90B DAB .∵ 点E 是 BD的中点, ∴ BEED . ∴ 1EAB .∴ 12DAB EAB EAB .∵ ∠ACB =2∠EAB ,∴ ∠DAB =∠ACB .∴ 90B ACB .∴ ∠BAC=90°.………………………………………………………… 2分∴ AC ⊥AB .∵ AB 是⊙O 的直径,∴ AC 是⊙O 的切线.…………………………………………………… 3分 图3北京市西城区九年级模拟测试试卷 数学答案及评分参考 2024.5 第4页(共6页)(2)解:在Rt △ABC 中,∠BAC=90°,3cos 5C . 设AC =3k ,则BC =5k ,AB =4k .∵ 90B DAB ,90CAD DAB ,∴ B CAD .∵ 2B EAB ,1CAF CAD ,1EAB ,∴ 2CAF .∴ CF=AC=3k .∴ 2BF BC CF k .∵ BF =6,∴ k =3.∴ 412AB k .…………………………………………………………… 6分24.解:(1)补全频数分布直方图见图4;……………………………………………… 1分(2)2分(3)②④;………………………………………………………………………… 4分(4)3.6380013680 (kg ).……………………………………………………5分25.解:(1)PC ,0.5; …………………………………………………………………… 2分(2)√,×;……………………………………………………………………… 4分(3)画图见图5;5分0.82.………………………………………………………………………… 6分 图5北京市西城区九年级模拟测试试卷 数学答案及评分参考 2024.5 第5页(共6页)26.解:(1)∵ 对于12x ,21x ,有12y y ,∴ 42a b c a b c .∴ b a .∴ 122b t a .………………………………………………………………2分 (2)由题意可知,抛物线2y ax bxc 与y 轴的交点为(0,)c .①当a > 0时,抛物线开口向上.∴ 当1x ≥2时,1y 有最小值,没有最大值.∴ 与“对于1x ≥2时,都有1y c ”不符,所以不合题意.∴ a > 0不成立.②当a < 0时,抛物线开口向下,且经过点(0,)c ,(2,)t c .若抛物线经过点(1,)c ,则12t ; 若抛物线经过点(2,)c ,则1t .(i )当12t ≤时, 01t ≤或021t t ≤.∴ 对于21x ,都有2y c .与“对于21x ,存在2y c ”不符,所以不合题意.(ii )当112t 时,122t t . ∴ 对于21x ,存在2y c ,对于1x ≥2,都有1y c .∴112t 成立. (iii )当1t ≥时,022t ≤. ∴ 当12x 时,1y c .与“对于1x ≥2,都有1y c 成立”不符,所以不合题意. 综上所述,112t .27.解:(1)补全图形见图6.∵ 点D 与点B 重合,MD=AB ,∠BAM ∴ ∠AMD =∠BAM =2α.在Rt △ABC 中,∠ACB =90°,∴ 90AMD MAC .∵ ∠BAC =α,∴ 5α=90AMD BAM BAC .北京市西城区九年级模拟测试试卷 数学答案及评分参考 2024.5 第6页(共6页)解得α=18 .∵ ∠MDE =2α,∴ 2α+2α4α=72AED AMD MDE .………………………… 2分(2)补全图形见图7.…………………………………………………………… 3分ME =2BC .…………………………………………………………………… 4分证明:如图7,在BC 的延长线上截取CF=BC ,连接AF .以点B 为圆心,BF 为半径作弧,交AF 于点N ,连接BN .∵ CF=BC ,∠ACB =90°,∴ AB=AF .∴ ∠BAN =2∠BAC =2α.∵ ∠MDE =2α,∴ ∠MDE =∠BAN .∴ 在等腰△ABF 中,18090α2BAF F . ∵ BN=BF ,∴ 390αF .在Rt △AMC 中,190903αMAC .∴ 21(903α)+2α90αMDE .∴ 23 .∵ 41802 ,1803BNA ,∴ 4BNA .∵ DM =AB ,∴ △DME ≌△ABN .∴ ME=BN .∵ BN=BF ,∴ ME=BF=2BC .……………………………………………………7分28.解:(1)UW ,(2,1) ;…………………………………………………………………2分(2)2R x ≤或1R x ≥;………………………………………………………… 4分(3)02d或4d ≤.……………………………………………… 7分。
九年级数学模拟题(一)(考试时间120分钟,试卷满分150分)一、选择题(本大题共10个小题,每小题3分,共30分)1、-2的倒数是()A.2 B.-21C.21D.-22、左下图为主视方向的几何体,它的俯视图是()3、下列图形中,既是轴对称图形,又是中心对称图形的是()A B C D4、下列运算正确的是()A、x2x3 =x6B、(-2x)2 =4x2C、x2+x2=2x4D、(-2x)2 (-3x )3=6x55、下列事件中,为必然事件的是A.购买一张彩票,中奖.B.打开电视,正在播放广告.C.抛掷一枚硬币,正面向上.D.一个袋中只装有5个黑球,从中摸出一个球是黑球.6、下列方程中是关于x的一元二次方程的是()A.(x-1)(x+2)=1 B.ax2+bx+c=0C.x2+21x=0 D.3x3-2xy-5y2=07、如图,四边形P AOB是扇形OMN的内接矩形,顶点P在上,且不与M,N重合,当P点在上移动时,矩形P AOB的形状、大小随之变化,则P A2+PB2的值A.逐渐变大B.逐渐变小C.不变D.不能确定8、如图,A是反比例函数y=xk图象上一点,过点A作AB⊥y轴于点B,点P在x轴上,△ABP的面积为2,则K的值为()(第8题)ABP xyOA .1B .2C .3D .49、某学校用420元钱到商场去购买“84”消毒液,经过还价,每瓶便宜0.5元,结果比用原价多买了20瓶,求原价每瓶多少元?若设原价每瓶x 元,则可列出方程为 ( )A .205.0420420=--x x B .204205.0420=--x x C .5.020420420=--x x D .5.042020420=--xx10、已知二次函数2y ax bx c =++ ()0a ≠ 的图像,如图所示,有下列5个结论: ⑴0abc >; ⑵b a c <+;⑶420a b c ++>;⑷23c b <;⑸()a b m am b +>+,()1m ≠的实数.其中,正确结论的个数为( )A .4B .3C .2D .1二、填空题(本大题共8个小题,每小题3分,共24分) 11、要使式子aa 2+有意义,则a 的取值范围为_________. 12、根据新网上海6月1日电:世博会开园一个月来,客流平稳,累计到当晚19时,参观者已超过8000000人次,试用科学记数法表示8000000= .13、若m 2-5m +2=0,则2m 2-10m +2012= .14、如图,四边形ABCD 内接于⊙O ,若∠BOD =138°,则它的一个外角∠DCE 等于 .15、如图,一块含有30°角的直角三角板ABC ,在水平桌面上绕点C 按顺时针方向旋转到C B A ''的位置.若BC 的长为15cm ,那么顶点A •从开始到结束所经过的路径长为 ㎝.16、如图,等边三角形ABC 中,D 、E 分别为AB 、BC 边上的两动点,且总使AD =BE ,AE 与CD 交于点F ,AG ⊥CD 于点G ,则FGAF = __________.17、如图,把一个半径为12cm 的圆形硬纸片等分成三个扇形,用其中一个扇形制作成一个圆锥形纸筒的侧面(衔接处无缝隙且不重叠),则圆锥底面半径等于 cm .18、在直角坐标系中,直线y =x +1与y 轴交于点A 1, 按 如图方式作正方形A 1B 1C 1O 、A 2B 2C 2C 1、A 3B 3C 3C 2…, 点A 1、A 2、A 3…在直线y =x +1上,点C 1、C 2、C 3…在 x 轴上,图中阴影部分三角形的面积从左到右依次记 为S 1、S 2、S 3、…S n ,则S n 的值为____________ (用含n 的代数式表示,n 为正整数).三、解答题(本大题共2个题,第19题10分,第20题12分,共22分)19、先化简,再求值:4441x 1122++-÷x x x )--(,其中1311+⎪⎭⎫ ⎝⎛=-x20、如图,在平面直角坐标系中,已知点(42)B ,,BA x ⊥轴于A .(1)画出将△OAB 绕原点旋转180°后所得的△OA 1B 1,并写出 点A 1、B 1的坐标;(2)将△OAB 平移得到△O 2A 2B 2,点A 的对应点是A 2,点B 的对应点B 2的坐标为(22)-,在坐标系中作出△O 2A 2B 2,并写出点O 2、A 2的坐标;(3)△OA 1B 1与△O 2A 2B 2成中心对称吗?若是,找出对称中心,并写出对称中心的坐标.四、解答题(本大题共2个题,每题10分,共20分)21、有A 、B 两个黑布袋,A 布袋中有两个完全相同的小球,分别标有数字1和2,B 布袋中有三个完全相同的小球,分别标有数字-l ,-2和-3.小强从A 布袋中随机取出一个小球,记录其标有的数字为a ,再从B 布袋中随机取出一个小球,记录其标有的数字为b ,这样就确定点Q 的一个坐标为OxAB11 y(a,b).⑴用列表或画树状图的方法写出点Q的所有可能坐标;⑵求点Q落在直线y=x-3上的概率、22、数学兴趣小组想利用所学的知识了解某广告牌的高度,已知CD=2m,经测量,得到其它数据如图所示.其中∠CAH=30°,∠DBH=60°,AB=10m.请你根据以上数据计算GH的长.(3≈1.73要求结果精确到0.1m)五、解答题(本大题共12分)23、如图,以Rt△ABC的直角边AB为直径作⊙O,交斜边AC于点D,点E为OB的中点,连接CE并延长交⊙O于点F,点F恰好落在的中点,连接AF并延长与CB的延长线相交于点G,连接OF.(1)求证:OF=BG;(2)若AB=4,求DC的长.六、解答题(本大题14分)24、某书店正在销售一种课外读本,进价12元/本,售价20元/本,为了促销,书店决定凡是一次购买10本以上的客户,每多买一本,售价就降低0.10元,但最低价为16元/本.(1)客户一次至少买多少本,才能以最低价购买?(2)写出当一次购买x本时(x>10),书店利润y(元)与购买量x(本)之间的函数关系式;(3)在销售过程中,书店发现卖出50本比卖出46本赚的钱少,为了使每次的销售均能达到多卖出就多获利,在其他促销条件不变的情况下,最低价应确定为多少元/本?请说明理由.七、解答题(本大题14分)ll l25、已知,在△ABC中,AB=AC.过A 点的直线a从与边AC重合的位置开始绕点A按顺时针方向旋转角θ,直线a交BC边于点P(点P不与点B、点C重合),△BMN的边MN始终在直线a上(点M在点N的上方),且BM=BN,连接CN.(1)当∠BAC=∠MBN=90°时,①如图a,当θ=45°时,∠ANC的度数为;②如图b,当θ≠45°时,①中的结论是否发生变化?说明理由;(2)如图c,当∠BAC=∠MBN≠90°时,请直接写出∠ANC与∠BAC之间的数量关系,不必证明.八、解答题(本大题14分)26、如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(﹣3,0)、(0,4),抛物线y=x2+bx+c经过点B,且顶点在直线x=上.(1)求抛物线对应的函数关系式;(2)若把△ABO沿x轴向右平移得到△DCE,点A、B、O的对应点分别是D、C、E,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;(3)若M点是CD所在直线下方该抛物线上的一个动点,过点M作MN平行与y轴交CD于点N.设点M的横坐标为t,MN的长度为,求与t之间的函数关系式,并求取最大值时,点M的坐标。
数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共6页.满分150分,考试用时120分钟.考试结束后,将试题卷和答题卡一并交回.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号填写在试题卷和答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号.答案不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题,共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,用2B铅笔把答题卡上对应题目的答案标号涂黑.每小题涂对得3分,满分36分.1.下列各对数中,数值相等的数是( )A. 与B. 与C. 与D. 与2.以下给出的几何体中,主视图是矩形,俯视图是圆的是( )A. B. C. D.3.据报道,2022年某市户籍人口中,60岁以上的老人有1230000人,预计未来五年该市人口“老龄化”还将提速.将1230000用科学记数法表示为( )A. B. C. D.4.民族图案是数学文化中的一块瑰宝.下列图案中,是轴对称图形但不是中心对称图形的是( )A. B.C. D.5.实数a、b在数轴上的对应点的位置如图所示,下列关系式不成立的是( )A. B. C. D.6.下列计算错误的是( )A. B.C. D.7.如果代数式有意义,那么,直角坐标系中点的位置在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限8.多项式,,,;分解因式后,结果含有相同因式的是( )A. B. C. D.9.若不等式组无解,则m的取值范围为( )A. B. C. D.10.如图,中,,,,则阴影部分的面积是( )A. B. C. D.第10题图第11题图第12题图11.如图,在边长为4的正方形ABCD中,点M为对角线BD上一动点,于E,于F,则EF的最小值为( )A. B. C. 2 D. 112.如图,在反比例函数的图象上有一动点A,连接AO并延长交图象的另一支于点B,在第二象限内有一点C,满足,当点A运动时,点C始终在函数的图象上运动,若,则k的值为( )A. B. C. D.第Ⅱ卷(非选择题,共114分)二、填空题:本大题共8个小题,每小题5分,满分40分.13.已知,则______.14.如图,点P是等边三角形ABC内一点,且,,,若将绕着点B逆时针旋转后得到,则的度数______.第14题图第15题图15.如图,矩形ABCD中,,,E为AD中点,F为AB上一点,将沿EF折叠后,点A恰好落到CF上的点G处,则折痕EF的长是______.16.如图,小强和小华共同站在路灯下,小强的身高,小华的身高,他们的影子恰巧等于自己的身高,即,,且两人相距,则路灯AD的高度是______ .第16题图第17题图第2题图17.如图,在中,,,DE为的中位线,延长BC至F,使,连接FE并延长交AB于点若,则的周长为______.18.一般地,我们把研究对象统称为元素,把一些元素组成的总体称为集合.一个给定集合中的元素是互不相同的,也就是说,集合中的元素是不重复出现的.如一组数1,1,2,3,4就可以构成一个集合,记为2,3,类比实数有加法运算,集合也可以“相加”定义:集合A与集合B中的所有元素组成的集合称为集合A与集合B的和,记为若0,1,5,,0,1,3,,则______ .19.数轴上O,A两点的距离为4,一动点P从点A出发,按以下规律跳动:第1次跳动到AO的中点处,第2次从点跳动到的中点处,第3次从点跳动到的中点处,按照这样的规律继续跳动到点,,,,n是整数处,那么线段的长度为______n是整数.20.如图,抛物线过点,且对称轴为直线,有下列结论:;;抛物线经过点与点,则;无论a,b,c取何值,抛物线都经过同一个点;,其中所有正确的结论是______.三、解答题:本大题共6个小题,满分74分.解答时请写出必要的演推过程.21.(本小题满分10分)先化简,再求值:,其中m=tan60°-.22.(本小题满分12分)随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种你最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次活动共调查了______人;在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为______;(2)将条形统计图补充完整.观察此图,支付方式的“众数”是“______”;(3)在一次购物中,小明和小亮都想从“微信”、“支付宝”、“银行卡”三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.23.(本小题满分12分)为支援灾区,某校爱心活动小组准备用筹集的资金购买A、B两种型号的学习用品共1000件.已知B型学习用品的单价比A型学习用品的单价多10元,用180元购买B型学习用品的件数与用120元购买A型学习用品的件数相同.(1)求A、B两种学习用品的单价各是多少元?(2)若购买这批学习用品的费用不超过28000元,则最多购买B型学习用品多少件?24. (本小题满分13分)如图,△ABC中,∠BCA=90°,CD是边AB上的中线,分别过点C,D作BA和BC的平行线,两线交于点E,且DE交AC于点O,连接AE.(1)求证:四边形ADCE是菱形;(2)若∠B=60°,BC=6,求四边形ADCE的面积.第24题图25.(本小题满分13分)如图,已知AB是⊙O的直径,C是⊙O上一点,∠BAC的平分线交⊙O于点D,交⊙O的切线BE于点E,过点D作DF⊥AC,交AC的延长线于点F.(1)求证:DF是⊙O的切线;(2)若DF=3,DE=2.①求值;②求∠FAB的度数.第25题图26.(本小题满分14分)如图,在平面直角坐标系中,抛物线经过点、,点P是直线AB上的动点,过点P作x轴的垂线交抛物线于点M,设点P的横坐标为t.分别求出直线AB和这条抛物线的解析式.若点P在第四象限,连接AM、BM,当线段PM最长时,求的面积.是否存在这样的点P,使得以点P、M、B、O为顶点的四边形为平行四边形?若存在,请直接写出点P的横坐标;若不存在,请说明理由.参考答案及评分标准一、选择题:本大题共12个小题,每小题3分,满分36分.题号1 2 3 4 5 6 7 8 9 10 11 12 答案 D D D B C D C A A B B B二、填空题:本大题共8个小题,每小题5分,满分40分.13.-21; 14.150。
2022-2023学年第一学期九年级数学期末模拟测试题(附答案)一.选择部分(共30分)1.下列函数中y是x的二次函数的是()A.y=﹣2x2B.y=C.y=ax2+bx+c D.y=(x﹣2)2﹣x22.下列图形中,既是轴对称图形又是中心对称图形的有()A.B.C.D.3.若关于x的一元二次方程(k﹣1)x2+x+1=0有两个实数根,则k的取值范围是()A.k≤B.k>C.k<且k≠1D.k≤且k≠1 4.已知a>1,点A(a﹣1,y1),B(a,y2),C(a+1,y3)都在二次函数y=﹣2x2的图象上,则()A.y1<y2<y3B.y1<y3<y2C.y3<y2<y1D.y2<y1<y35.参加足球联赛的每两支球队之间都要进行两场比赛,共要比赛110场,设参加比赛的球队有x支,根据题意,下面列出的方程正确的是()A.x(x+1)=110B.x(x﹣1)=110C.x(x+1)=110D.x(x﹣1)=1106.某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到绿灯的概率是()A.B.C.D.7.如图,⊙O的直径CD=20,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OC=3:5,则AB的长为()A.8B.12C.16D.28.如图,在Rt△ABC中,∠BAC=90°,∠B=50°,AD⊥BC,垂足为D,△ADB与△ADB'关于直线AD对称,点B的对称点是点B',则∠CAB'的度数为()A.10°B.20°C.30°D.40°9.已知抛物线y=ax2+bx+3在坐标系中的位置如图所示,它与x,y轴的交点分别为A,B,P是其对称轴x=1上的动点,根据图中提供的信息,以下结论中不正确的是()A.2a+b=0B.a>﹣C.△P AB周长的最小值是D.x=3是ax2+bx+3=0的一个根10.二次函数y=ax2+bx+c的图象如图所示,其对称轴是直线x=1.下列结论:①abc<0;②a+c>b;③4a+c>0;④a+b≤m(am+b)(m为实数).其中结论正确的个数为()A.4个B.3个C.2个D.1个二.填空题(共33分)11.一个三角形的两边长分别为3和6,第三边长是方程x2﹣10x+21=0的根,则三角形的周长为.12.若x1,x2方程x2﹣4x﹣2021=0的两个实数根,则代数式x12﹣2x1+2x2的值等于.13.把二次函数y=2x2﹣1的图象向左平移1个单位长度,再向下平移2个单位长度,平移后抛物线的解析式为.14.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△DEC,连接AD,若∠BAC =25°,则∠BAD=.15.如图,将△ABC绕点A逆时针旋转得到△ADE,点C和点E是对应点,若∠CAE=90°,AB=1,则BD=.16.抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,其与x轴的一个交点坐标为(﹣3,0),对称轴为x=﹣1,则当y<0时,x的取值范围是.17.已知点P(x,y)在二次函数y=2(x+1)2﹣3的图象上,当﹣2<x≤1时,y的取值范围是.18.如图,⊙O的半径为2,弦AB=,E为弧AB的中点,OE交AB于点F,则OF 的长为.19.如图,直线a⊥b,垂足为H,点P在直线b上,PH=4cm,O为直线b上一动点,若以1cm为半径的⊙O与直线a相切,则OP的长为.20.若一个圆锥的底面半径为1cm,它的侧面展开图的圆心角为90°,则这个圆锥的母线长为cm.21.如图,二次函数y=ax2+bx+c的图象与x轴的两个交点分别为(﹣1,0),(3,0)对于下列命题:①b﹣2a=0;②abc<0;③a﹣2b+4c<0④8a+c<0,其中正确的有.三.解答题(共57分)22.如图,已知△ABC是锐角三角形(AC<AB).(1)请在图1中用无刻度的直尺和圆规作图:作直线l,使l上的各点到B、C两点的距离相等;设直线l与AB、BC分别交于点M、N,作一个圆,使得圆心O在线段MN上,且与边AB、BC相切;(不写作法,保留作图痕迹)(2)在(1)的条件下,若BM=,BC=2,则⊙O的半径为.23.如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABO的三个顶点坐标分别为A(﹣1,3),B(﹣4,3),O(0,0).(1)画出△ABO关于x轴对称的△A1B1O,并写出点A1的坐标;(2)画出△ABO绕点O顺时针旋转90°后得到的△A2B2O,并写出点A2的坐标;(3)在(2)的条件下,求点A旋转到点A2所经过的路径长(结果保留π).24.已知关于x的一元二次方程x2+(2m﹣1)x+m2﹣1=0(1)若该方程有两个实数根,求m的取值范围.(2)若方程的两个实数根为x1,x2,且(x1﹣x2)2﹣10m=2,求m的值.25.已知:如图,在正方形ABCD中,G是CD上一点,延长BC到E,使CE=CG,连接BG并延长交DE于F.(1)求证:△BCG≌△DCE;(2)将△DCE绕点D顺时针旋转90°得到△DAE′,判断四边形E′BGD是什么特殊四边形,并说明理由.26.已知:如图,A是⊙O上一点,半径OC的延长线与过点A的直线交于B点,OC=BC,AC=OB.(1)求证:AB是⊙O的切线;(2)若∠ACD=45°,OC=2,求弦CD的长.27.山西转型综合改革示范区的一工厂里,生产的某种产品按供需要求分为十个档次.若生产第一档次(最低档次)的产品,一天可生产76件,每件的利润为10元,每提高一个档次,每件的利润增加2元,每天的产量将减少4件.设产品的档次(每天只生产一个档次的产品)为x,请解答下列问题.(1)用含x的代数式表示:一天生产的产品件数为件,每件产品的利润为元;(2)若该产品一天的总利润为1080元,求这天生产产品的档次x的值.28.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点左侧,B点的坐标为(4,0),与y轴交于C(0,﹣4)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式;(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.参考答案一.选择部分(共30分)1.解:A、是二次函数,故此选项符合题意;B、不是二次函数,故此选项不合题意;C、a=0时,不是二次函数,故此选项不合题意;D、不是二次函数,故此选项不合题意;故选:A.2.解:A.该图形是轴对称图形,不是中心对称图形,故此选项不合题意;B.该图形是轴对称图形,不是中心对称图形,故此选项不合题意;C.该图形既是轴对称图形,又是中心对称图形,故此选项符合题意;D.该图形是中心对称图形,不是轴对称图形,故此选项不合题意.故选:C.3.解:∵关于x的一元二次方程(k﹣1)x2+x+1=0有两个实数根,∴,解得:k≤且k≠1.故选:D.4.解:∵a>1,∴0<a﹣1<a<a+1,∵y=﹣2x2,﹣2<0,∴当x>0时,y随x值的增大而减少,∴y3<y2<y1.故选:C.5.解:设有x个队参赛,则x(x﹣1)=110.故选:D.6.解:∵每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,∴当小明到达该路口时,遇到绿灯的概率P==,故选:D.7.解:连接OA,∵⊙O的直径CD=20,OM:OC=3:5,∴OC=10,OM=6,∵AB⊥CD,∴AM===8,∴AB=2AM=16.故选:C.8.解:∵∠BAC=90°,∠B=50°,∴∠C=40°,∵△ADB与△ADB'关于直线AD对称,点B的对称点是点B',∴∠AB'B=∠B=50°,∴∠CAB'=∠AB'B﹣∠C=10°,故选:A.9.解:A、根据图象知,对称轴是直线x=﹣=1,则b=﹣2a,即2a+b=0.故A正确;B、根据图象知,点A的坐标是(﹣1,0),对称轴是直线x=1,则根据抛物线关于对称轴对称的性质知,抛物线与x轴的另一个交点的坐标是(3,0),∴x=3时,y=9a+3b+3=0,∴9a﹣6a+3=0,∴3a+3=0,∵抛物线开口向下,则a<0,∴2a+3=﹣a>0,∴a>﹣,故B正确;C,点A关于x=1对称的点是A′为(3,0),即抛物线与x轴的另一个交点.连接BA′与直线x=1的交点即为点P,则△P AB周长的最小值是(BA′+AB)的长度.∵A(﹣1,0),B(0,3),A′(3,0),∴AB=,BA′=3.即△P AB周长的最小值是+3,故C错误;D、根据图象知,点A的坐标是(﹣1,0),对称轴是直线x=1,则根据抛物线关于对称轴对称的性质知,抛物线与x轴的另一个交点的坐标是(3,0),所以x=3是ax2+bx+3=0的一个根,故D正确;故选:C.10.解:∵函数开口方向向上,a>0,∵对称轴为x=1,则﹣=1,∴b=﹣2a<0,∵与y轴交点在y轴负半轴,∴c<0,∴abc>0,故①错;当x=﹣1时,y=a﹣b+c>0,即a+c>b,故②正确;对称轴为x=1,则﹣=1,即b=﹣2a,由上知,a﹣b+c>0,则a+2a+c>0,即3a+c>0,∴4a+c>a>0,故③正确;由图象可得,当x=1时,函数取得最小值,∴对任意m为实数,有am2+bm+c≥a+b+c,∴am2+bm≥a+b,即a+b≤m(am+b),故④正确.综上,正确的个数有三个.故选:B.二.填空题(共33分)11.解:解方程x2﹣10x+21=0得x1=3、x2=7,∵3<第三边的边长<9,∴第三边的边长为7.∴这个三角形的周长是3+6+7=16.故答案为:16.12.解:∵x1,x2是方程x2﹣4x﹣2021=0的两个实数根,∴x1+x2=4,x12﹣4x1﹣2021=0,即x12﹣4x1=2021,则原式=x12﹣4x1+2x1+2x2=x12﹣4x1+2(x1+x2)=2021+2×4=2021+8=2029.故答案为:2029.13.解:由“左加右减”的原则可知,将二次函数y=2x2﹣1的图象向左平移1个单位长度所得抛物线的解析式为:y=2(x+1)2﹣1;由“上加下减”的原则可知,将抛物线y=2(x+1)2﹣1向下平移2个单位长度所得抛物线的解析式为:y=2(x+1)2﹣1﹣2=2(x+1)2﹣3,故答案为:y=2(x+1)2﹣3.14.解:∵Rt△ABC绕其直角顶点C按顺时针方向旋转90°后得到Rt△DEC,∴AC=CD,∴△ACD是等腰直角三角形,∴∠CAD=45°,则∠BAD=∠BAC+∠CAD=25°+45°=70°,故答案为:70°.15.解:∵将△ABC绕点A逆时针旋转的到△ADE,点C和点E是对应点,∴AB=AD=1,∠BAD=∠CAE=90°,∴BD===.故答案为.16.解:∵抛物线y=ax2+bx+c(a≠0)与x轴的一个交点坐标为(﹣3,0),对称轴为直线x=﹣1,∴抛物线与x轴的另一个交点为(1,0),由图象可知,当y<0时,x的取值范围是﹣3<x<1.故答案为:﹣3<x<1.17.解:∵二次函数y=2(x+1)2﹣3,∴该函数对称轴是直线x=﹣1,当x=﹣1时,取得最小值,此时y=﹣3,∵点P(x,y)在二次函数y=2(x+1)2﹣3的图象上,∴当﹣2<x≤1时,y的取值范围是:﹣3≤y≤5,故答案为:﹣3≤y≤5.18.解:∵E为弧AB的中点,∴OE⊥AB于F,∵AB=2,∴AF=BF=,在Rt△OAF中,OA=2,,故答案为:1.19.解:∵直线a⊥b,O为直线b上一动点,∴⊙O与直线a相切时,切点为H,∴OH=1cm,当点O在点H的左侧,⊙O与直线a相切时,如图1所示:OP=PH﹣OH=4﹣1=3(cm);当点O在点H的右侧,⊙O与直线a相切时,如图2所示:OP=PH+OH=4+1=5(cm);∴⊙O与直线a相切,OP的长为3cm或5cm,故答案为:3cm或5cm.20.解:设母线长为lcm,则=2π×1解得:l=4.故答案为:4.21.解:根据图象可得:a>0,c<0,对称轴:x=﹣>0,①∵它与x轴的两个交点分别为(﹣1,0),(3,0),∴对称轴是直线x=1,∴﹣=1,∴b+2a=0,故①错误;②∵a>0,∴b<0,∵c<0,∴abc>0,故②错误;③∵a﹣b+c=0,∴c=b﹣a,∴a﹣2b+4c=a﹣2b+4(b﹣a)=2b﹣3a,又由①得b=﹣2a,∴a﹣2b+4c=﹣7a<0,故此选项正确;④根据图示知,当x=4时,y>0,∴16a+4b+c>0,由①知,b=﹣2a,∴8a+c>0;故④错误;故正确为:③1个.故答案为:③.三.解答题(共57分)22.解:(1)如图直线l,⊙O即为所求.(2)过点O作OE⊥AB于E.设OE=ON=r,∵BM=,BC=2,MN垂直平分线段BC,∴BN=CN=1,∴MN===,∵s△BNM=S△BNO+S△BOM,∴×1×=×1×r+××r,解得,r=.故答案为:.23.解:(1)如图,△A1B1O即为所求,点A1的坐标(﹣1,﹣3);(2)如图,△A2B2O即为所求,点A2的坐标(3,1);(3)点A旋转到点A2所经过的路径长==π24.解:(1)由题意可知:Δ=(2m﹣1)2﹣4(m2﹣1)≥0,∴﹣4m+5≥0,∴m≤;(2)由题意可知:x1+x2=1﹣2m,x1x2=m2﹣1,∵(x1﹣x2)2﹣10m=2,∴(x1+x2)2﹣4x1x2﹣10m=2,∴(1﹣2m)2﹣4(m2﹣1)﹣10m=2,解得:m=;25.(1)证明:∵四边形ABCD是正方形,∴BC=CD,∠BCD=90°.∵∠BCD+∠DCE=180°,∴∠BCD=∠DCE=90°.又∵CG=CE,∴△BCG≌△DCE.(2)解:四边形E′BGD是平行四边形.理由如下:∵△DCE绕D顺时针旋转90°得到△DAE′,∴CE=AE′.∵CE=CG,∴CG=AE′.∵四边形ABCD是正方形,∴BE′∥DG,AB=CD.∴AB﹣AE′=CD﹣CG.即BE′=DG.∴四边形E′BGD是平行四边形.26.(1)证明:如图,连接OA;∵OC=BC,AC=OB,∴OC=BC=AC=OA.∴△ACO是等边三角形.∴∠O=∠OCA=60°,∵AC=BC,∴∠CAB=∠B,又∠OCA为△ACB的外角,∴∠OCA=∠CAB+∠B=2∠B,∴∠B=30°,又∠OAC=60°,∴∠OAB=90°,∴AB是⊙O的切线;(2)解:作AE⊥CD于点E,∵∠O=60°,∴∠D=30°.∵∠ACD=45°,AC=OC=2,∴在Rt△ACE中,CE=AE=;∵∠D=30°,∴AD=2,∴DE=AE=,∴CD=DE+CE=+.27.解(1)一天生产的产品件数为[76﹣4(x﹣1)]=(80﹣4x)件,每件产品的利润为[10+2(x﹣1)]=(8+2x)元,故答案为(80﹣4x),(8+2x);(2)当利润是1080元时,即:[10+2(x﹣1)][76﹣4(x﹣1)]=1080,整理得:﹣8x2+128x+640=1080,解得x1=5,x2=11,因为x=11>10,不符合题意,舍去.因此取x=5,当生产产品的质量档次是在第5档次时,一天的总利润为1080元.28.解:(1)将B、C两点的坐标代入y=x2+bx+c得:,解得:,所以二次函数的表达式为:y=x2﹣3x﹣4;(2)存在点P,使四边形POP′C为菱形;设P点坐标为(x,x2﹣3x﹣4),PP′交CO于E若四边形POP′C是菱形,则有PC=PO;如图,连接PP′,则PE⊥CO于E,∵C(0,﹣4),∴CO=4,又∵OE=EC,∴OE=EC=2∴y=﹣2;∴x2﹣3x﹣4=﹣2,解得:x1=,x2=(不合题意,舍去),∴P点的坐标为(,﹣2).。
福建省福州市第一中学2023-2024学年九年级上学期期中模拟数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题....A .13x -<<B .3x >C .1x <-D .3x >或1x <-6.如图,在ABC 中,65ABC ∠=︒,BC AC >,将ABC 绕点A 逆时针旋转得到ADE V ,点B 的对应点D 恰好落在BC 边上,C 的对应点为E .则下列结论一定正确的是()A .AB AD =B .AC DE =C .65CAE ∠=︒D .ABC AED∠=∠7.抛物线y =ax 2﹣2ax+4(a >0),下列判断正确的是()A .当x >2时,y 随x 的增大而增大B .当x <2时,y 随x 的增大而增大C .当x >1时,y 随x 的增大而增大D .当x <1时,y 随x 的增大而增大8.如图,ABC 中,50A ∠=︒,以BC 为直径作O ,分别交AB 、AC 于D 、E 两点,分别过D 、E 两点作O 的切线,两条切线交于P 点,则P ∠=()A .70︒B .80︒C .90︒D .100︒9.某商品的进价为每件60元,现在的售价为每件80元,每星期可卖出200件.市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件.则每星期售出商品的利润y (单位:元)与每件涨价x (单位:元)之间的函数关系式是()A .20010y x=-B .()()200108060y x x =---C .()()200108060y x x =+--D .()()200108060y x x =--+10.已知抛物线223y x ax a -=-与x 轴有两个交点,其中一个交点的横坐标大于1,另二、填空题15.若m ,n 为一元二次方程16.如图,等边ABC 线段BM 点B 逆时针旋转的最小值是三、解答题17.解方程:23720x x -+=.18.已知关于x 的方程22(21)10x m x m +++-=有两个实数根.(1)求m 的取值范围;(2)若0x =是方程的一个根,求方程的另一个根.19.受各方面因素的影响,最近两年来某地平均房价由10000元/平方米,下降到8100元/平方米,如果在这两年里,年平均下降率相同.(1)求年平均下降率;(2)按照这个年平均下降率,预计下一年房价每平方米多少元?四、证明题20.如图,AB 是O 的直径,C 是O 上的一点,直线MN 经过点C ,过点A 作直线MN 的垂线,垂足为点D ,且AC 平分BAD ∠.(1)求证:直线MN 是O 的切线;(2)若4=AD ,5AC =,求O 的半径.五、作图题21.如图,在88⨯的正方形网格中(每个小正方形的边长均为1)有一个ABC ,其顶点均在小正方形顶点上,请按要求画出图形.(1)将ABC 绕点C 顺时针旋转90︒得到CDE (点A 、B 的对应点分别为D 、E ),画出CDE ;(2)在正方形网格的格点上找一点F ,连接BF FE BE 、、,使得FBE 的面积等于BCE 的面积.(画出一种情况即可)六、解答题22.某抛物线形拱桥的截面图如图所示.某数学小组对这座拱桥很感兴趣,他们利用测量工具测出水面的宽AB 为8米.AB 上的点E 到点A 的距离1AE =米,点E 到拱桥顶(1)求该抛物线所对应的函数表达式.(2)求拱桥顶面离水面AB 的最大高度.(1)判断ABC 的形状,并证明你的结论.(2)若57PB PC ==,,求PA 的长24.在《阿基米德全集》中的《引理集》中记录了古希腊数学家阿基米德提出的有关圆的一个引理,如图,已知 AB ,作图过程.(1)尺规作图(保留作图痕迹,不写作法)①作线段AC 的垂直平分线DE ②以点D 为圆心,DA 长为半径作弧,交参考答案:()2y a x h k =-+中,对称轴为x h =,顶点坐标为(),h k .4.D【分析】此题考查切线的性质,直角三角形30︒角的性质,解题中遇切线,有交点要连半径得垂直,无交点要作垂直证半径,直角三角形30︒所对的直角边等于斜边的一半,正确理解性质定理并应用是解题的关键.【详解】解:连接OC ,∵PC 是O 的切线,∴90OCP ∠=︒,∵OA OC =,∴30OAC OCA ∠=∠=︒,∴60COP OAC OCA ∠=∠+∠=︒,∴30P ∠=︒,∴210OP OC ==∴1055BP OP OB =-=-=,故选:D .5.A【详解】由图象可以看出:二次函数与x 轴的两个交点()()1,0,3,0.-0y <时,图象在x 轴的下方,此时13x -<<.故选:A.6.A【分析】由旋转可知ABC ADE △≌△,由全等的性质可知AB AD =,故选项A 正确;由全等可知BC DE =,结合BC AC >,可得DE AC >,故选项B 不正确;根据等边对等角可知65ABC ADB ∠=∠=︒,所以18050BAD ABC ADB ∠=︒-∠-∠=︒,由全等可知BAC DAE ∠=∠,∴当x>1时,y随x的增大而增大,当x<1时,y随x的增大而减小;故选:C.【点睛】此题考查二次函数的性质,解题的关键是明确题意,利用二次函数的性质解答.8.D【分析】本题考查了切线的性质:圆的切线垂直于过切点的半径和三角形的内角和定理以及四边形的内角为360︒,解题的关键是连接圆心和切点得到90︒的角和挖掘出隐藏条件圆的半径处处相等.连接OD,OE,根据切线的性质:圆的切线垂直于过切点的半径和三角形的内角和定理以∠的度数.及四边形的内角和即可求出P【详解】解:连接OD,OE,,PD是圆的切线,PE⊥,∴⊥,OE PEOD PD∠=∠=︒,PDO PEO90P∴∠=︒-︒-︒-∠=︒-∠,360909051805,=OD OB∴∠=∠,12∠∠,同理:3=4∠=︒,A50∴∠+∠=︒-∠=︒,A24180130()∴∠=︒-∠-∠=︒-︒-∠+∠=︒,5180180[360224]80DOB EOC∴∠=︒-︒=︒.P18080100故选:D.9.DOA OC = ,OAC OCA ∴∠=∠,∵AC 平分BAD ∠,CAB DAC ∴∠=∠,DAC OCA ∴∠=∠,∥OC AD ∴,∵OCN ADC ∠∠=,(1)(2)【分析】本题考查了作图:旋转变换,三角形的面积问题.()1根据旋转的性质可知,对应角都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形;()2三角形面积相等时,本题要充分利用等底等高的三角形面积相等这一性质即可构造.【详解】(1)利用网格特点和旋转的性质,画出点A、B的对应点D、E即可,如下图:(2)平移BE使它过点C,则可得到格点F,顺次连接B、E、F可得FBE.如下图:∴AMP ANB ∠=∠,∵APB APC PA PA ∠=∠=,,∴()AAS PAN PAM ≌,∴AM AN PN PM ==,,∵AB AC =,∴()Rt Rt HL ABN ACM ≌△△,∴CM BN =,∴5PM PB BN PB CM =+=+=∵7PM PC CM CM =-=-,。
2024-2025学年九年级数学上学期第一次月考模拟卷(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:第1章~第3章(北师版)。
5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一.单项选择题(本题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.下列方程中,是一元二次方程的是()A.xx2−3xx−5=−5B.2xx2−yy−1=0C.xx2−xx(xx+2.5)=0D.aaxx2+bbxx+cc=02.下列命题为真命题的是()A.有两边相等的平行四边形是菱形B.有一个角是直角的平行四边形是菱形C.对角线互相垂直的平行四边形是矩形D.有三个角是直角的四边形是矩形3.若关于xx的方程xx2+mmxx−6=2.则mm为()A.−2B.1 C.4 D.−34.a是方程xx2+2xx−1=0的一个根,则代数式aa2+2aa+2020的值是()A.2018 B.2019 C.2020 D.20215.如图,在正方形AAAAAAAA中,EE为AAAA上一点,连接AAEE,AAEE交对角线AAAA于点FF,连接AAFF,若∠AAAAEE=35°,则∠AAFFAA的度数为()A.80°B.70°C.75°D.45°6.有一块长40m,宽32m的矩形种植地,修如图等宽的小路,使种植面积为1140m2,求小路的宽.设小路的宽为x,则可列方程为()A.(40﹣2x)(32﹣x)=1140 B.(40﹣x)(32﹣x)=1140C.(40﹣x)(32﹣2x)=1140 D.(40﹣2x)(32﹣2x)=11407.在一个不透明的袋子中放有若干个球,其中有6个白球,其余是红球,这些球除颜色外完全相同.每次把球充分搅匀后,任意摸出一个球记下颜色再放回袋子.通过大量重复试验后,发现摸到白球的频率稳定在0.25左右,则红球的个数约是()A.2 B.12 C.18 D.248.如图,在菱形AAAAAAAA中,对角线AAAA,AAAA相交于点OO,EE是AAAA的中点,若菱形的周长为20,则OOEE的长为()A.10 B.5 C.2.5D.19.在一次新年聚会中,小朋友们互相赠送礼物,全部小朋友共互赠了110件礼物,若假设参加聚会小朋友的人数为xx人,则根据题意可列方程为()A.xx(xx−1)=110B.xx(xx+1)=110C.(xx+1)2=110D.(xx−1)2=11010.关于xx的一元二次方程kkxx2−2xx−1=0有两个不相等的实数根,则kk的取值范围是()A.kk>−1B.kk>−1且kk≠0C.kk<1D.kk<1且kk≠011.如图,在菱形纸片ABCD中,AB=2,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F,G分别在边AB,AD上,则EF的长为()A.74B.95C.1910D.76�312.如图,在正方形AAAAAAAA中,AAAA=4,E为对角线AAAA上与点A,C不重合的一个动点,过点E作EEFF⊥AAAA于点F,EEEE⊥AAAA与点G,连接AAEE,FFEE,有下列结论:①AAEE=FFEE.②AAEE⊥FFEE.③∠AAFFEE=∠AAAAEE.④FFEE的最小值为3,其中正确结论的序号为()A.①②B.②③C.①②③D.①③④第Ⅱ卷二.填空题(本题共6小题,每小题3分,共18分.)13.一元二次方程5xx2+2xx−1=0的一次项系数二次项系数常数项.14.xx1,xx2为一元二次方程xx2−2xx−10=0的两根,则1xx1+1xx2=.15.如图,矩形ABCD中,对角线AC、BD相交于点O,若OB=2,∠ACB=30°,则AB的长度为.16.如图所示,菱形AAAAAAAA的对角线AAAA、AAAA相交于点OO.若AAAA=6,AAAA=8,AAEE⊥AAAA,垂足为EE,则AAEE的长为.17.如图,将一张长方形纸片AAAAAAAA沿AAAA折起,重叠部分为ΔΔAAAAEE,若AAAA=6,AAAA=4,则重叠部分ΔΔAAAAEE的面积为.18.如图,在正方形AAAAAAAA中,AAAA=6,点E,F分别在边AAAA,AAAA上,AAEE=AAFF=2,点M在对角线AAAA上运动,连接EEEE和EEFF,则EEEE+EEFF的最小值等于.三、解答题(本题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)解下列方程:(1)3xx2−4xx−1=0;(2)2�xx−3�2=xx2−920.(8分)已知方程xx2+�kk+1−6=0是关于xx的一元二次方程.(1)求证:对于任意实数kk方程中有两个不相等的实数根.(2)若xx1,xx2是方程的两根,kk=6,求1xx1+1xx2的值.21.(8分)如图,在菱形AAAAAAAA中,对角线AAAA,AAAA交于点OO,AAEE⊥AAAA交AAAA延长线于EE,AAFF∥AAEE交AAAA延长线于点FF.(1)求证:四边形AAEEAAFF是矩形;(2)若AAEE=4,AAAA=5,求AAAA的长.22.(10分)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗,某食品公司为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如图两幅统计图.请根据以上信息回答:(1)参加本次调查的有______人,若该居民区有8000人,估计整个居民区爱吃D粽的有______人.(2)请将条形统计图补充完整;(3)食品公司推出一种端午礼盒,内有外形完全相同的A、B、C、D粽各一个,小王购买了一个礼盒,并从中任意取出两个食用,请用列表或画树状图的方法,求他恰好能吃到C粽的概率.23.(8分)阅读材料,回答问题.材料1:为了解方程�xx2�2−13xx2+36=0,如果我们把xx2看作一个整体,然后设yy=xx2,则原方程可化为yy2−13yy+36=0,经过运算,原方程的解为xx1,2=±2,xx3,4=±3,我们把以上这种解决问题的方法通常叫做换元法.材料2:已知实数mm,nn满足mm2−mm−1=0,nn2−nn−1=0,且mm≠nn,显然mm,nn是方程xx2−xx−1=0的两个不相等的实数根,由韦达定理可知mm+nn=1,mmnn=−1.根据上述材料,解决以下问题:(1)为解方程xx4−xx2−6=0,可设yy=____,原方程可化为____.经过运算,原方程的解是____.(2)应用:若实数aa,bb满足:2aa4−7aa2+1=0,2bb4−7bb2+1=0且aa≠bb,求aa4+bb4的值;24.(10分)中秋期间,某商场以每盒140元的价格购进一批月饼,当每盒月饼售价为180元时,每天可售出60盒.为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每盒月饼降价2元,那么商场每天就可以多售出5盒.(1)设售价每盒下降xx元,则每天能售出______盒(用含xx的代数式表示);(2)当月饼每盒售价为多少元时,每天的销售利润恰好能达到2550元;(3)该商场每天所获得的利润是否能达到2700元?请说明理由.25.(12分)在数学实验课上,老师让学生以“折叠筝形”为主题开展数学实践探究活动.定义:两组邻边分别相等的四边形叫做“筝形”.(1)概念理解:如图1,将一张纸对折压平,以折痕为边折出一个三角形,然后把纸展平,折痕为四边形AAAAAAAA.判断四边形AAAAAAAA的形状:筝形(填“是”或“不是”);(2)性质探究:如图2,已知四边形AAAAAAAA纸片是筝形,请用测量、折叠等方法猜想筝形的角、对角线有什么几何特征,然后写出一条性质并进行证明;(3)拓展应用:如图3,AAAA是锐角△AAAAAA的高,将△AAAAAA沿边AAAA翻折后得到△AAAAEE,将△AAAAAA沿边AAAA翻折后得到△AAAAFF,延长EEAA,FFAA交于点G.①若∠AAAAAA=50°,当△AAAAEE是等腰三角形时,请直接写出∠AAAAAA的度数;②若∠AAAAAA=45°,AAAA=2,AAAA=5,AAEE=EEEE=FFEE,求AAAA的长.26.(12分)探究式学习是新课程倡导的重要学习方式,某兴趣小组学习正方形以后做了以下探究:在正方形AAAAAAAA中,E,F为平面内两点.【初步感知】(1)如图1,当点E在边AAAA上时,AAEE⊥AAFF,且B,C,F三点共线.请写出AAEE与FFAA的数量关系______;【深入探究】(2)如图2,当点E在正方形AAAAAAAA外部时,AAEE⊥AAFF,AAEE⊥EEFF,E,C,F三点共线.若AAEE=2,AAEE=4,求AAEE的长;【拓展运用】(3)如图3,当点E在正方形AAAAAAAA外部时,AAEE⊥EEAA,AAEE⊥AAFF,AAEE⊥AAEE,且D,F,E三点共线,猜想并证明AAEE,AAEE,AAFF之间的数量关系.2024-2025学年九年级数学上学期第一次月考模拟卷(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
2024-2025学年度第一学期第一次月考模拟试卷一、单选题1. 下列是一元二次方程的是( )A. 20ax bx c ++=B. 22x x −=C. ()222x x x −=−D. 11x x+= 2. 一元二次方程2310x x −−=的根的情况为( )A. 无实数根B. 有一个实数根C. 有两个相等的实数根D. 有两个不相等的实数根3. 一元二次方程2430x x −+=配方后变形为( )A. ()241x −=B. ()221x −=C. ()241x +=D. ()221x += 4. 若关于x 一元二次方程2690kx x −+=有两个不相等的实数根,则k 的取值范围是( )A. 1k >B. 0k ≠C. 1k <D. 1k <且0k ≠ 5. 将抛物线2y x =先向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线对应的函数解析式为( )A. ()223y x =−+B. ()232y x =−+ C. ()223y x =++ D. ()232y x =−− 6. 若()()()1232,,1,,2,A y B y C y −是抛物线()221y x a =−+上的三点,则123,,y y y 为的大小关系为( )A 123y y y >> B. 132y y y >> C. 321y y y >> D. 312y y y >> 7. 若抛物线242y kx x =−−与x 轴有两个交点,则k 的取值范围为( )A. 2k >−B. 2k ≥−C. 2k >−且0k ≠D. 2k ≥−且0k ≠ 8. 二次函数2y ax bx c =++图象上部分点的对应值如下表则使0y <的x 的取值范围为( ) x 3− 2− 1− 01 2 3 4 y 60 4− 6− 6− 4− 0 6A. 0x <B. 12x >C. 23x −<<D. 2x <−或3x >的.二、填空题9. 已知m 是方程2520x x −−=的一个根,则22101m m −−=______. 10. 一元二次方程()2110x k x +++=有两个相等的实数根,那么k 的值为_____. 11. 若关于x 的一元二次方程()22240m x mx m −++−=有一个根是0,则m 的值为________ 12. 用一根长22cm 的铁丝围成面积是230cm 的矩形.假设矩形的一边长是cm x ,则可列出方程_____________________13. 如图,已知抛物线2y ax bx c ++与直线y kx m =+交于()3,1A −−、()0,3B 两点,则关于x 的不等式2ax bx c kx m ++≥+的解集是________.14. 抛物线()232y x =−−−的顶点坐标是________ .15. 已知二次函数()214y x =+−,当02x ≤≤时,函数值y 取值范围为__________16. 飞机着陆后滑行的距离(米)关于滑行时间(秒)的函数解析式为260 1.5s t t =−,则飞机着陆后滑行_________秒才停下来.17. 如图所示,,A B 分别为22(2)1y x =−−图象上的两点,且直线AB 垂直于y 轴,若2AB =,则点B 的纵坐标为________.18. 如图,横截面为抛物线的山洞,山洞底部宽为8米,最高处高163米,现要水平放置横截面为正方形的箱子,其中两个顶点在抛物线上的大箱子,在大箱子的两侧各放置一个横截面为正方形的小箱子,则小箱子的正方形的最大边长为______米.三、解答题19. 商场销售某种拖把,已知这种拖把的进价为80元/套,售价为120元/套,商场每天可销售20套、国庆假期临近,该商场决定采取适当的降价措施,经调查:这种拖把的售价每降价1元,平均每天可多售出2套,设这种拖把每套降价x 元.(1)降价后每套拖把盈利______元,平均每天可销售______套(用含x 的代数式表示);(2)为扩大销售量,尽快减少库存,当每套拖把降价多少元时,该商场销售这种拖把平均每天能盈利1242元?(3)该商场销售这种拖把平均每天的盈利能否达到1400元?若能,求出x 的值;若不能,请说明理由. 20. 解方程:(1)2(2x 1)9+=;(2)2x 2﹣4x =1(配方法);(3)22x 5x 10−+=;(4) ()2(x 3)4x 3x 0−−−= 21. 随着科技的发展,某省正加快布局以5G 等为代表的新兴产业.据统计,目前该省5G 基站数量约为1.5万座,计划到今年底,全省5G 基站数是目前的4倍;到后年底,全省5G 基站数量将达到17.34万座.(1)计划在今年底,全省5G 基站数量是多少万座?(2)按照计划,从今年底到后年底,全省5G 基站数量的年平均增长率为多少?22. 如图,老李想用长为70m 的栅栏,再借助房屋的外墙(外墙足够长)围成一个矩形羊圈ABCD ,并在边BC 上留一个2m 宽的门(建在EF 处,另用其他材料).(1)当羊圈的边AB 的长为多少米时,能围成一个面积为2640m 的羊圈?(2)羊圈的面积能达到2650m 吗?如果能,请你给出设计方案;如果不能,请说明理由.23. 已知函数()214y x =−−+.(1)当x =____________时,抛物线有最大值,____________.(2)当x ____________时,y 随x 的增大而增大.(3)该函数可以由函数2y x =−的图象经过怎样的平移得到?(4)该抛物线与x 轴交于点____________,与y 轴交于点____________.(写坐标)(5)在下面的坐标系中画出该抛物线的图象.24. 已知图象的顶点坐标是()2,1,且与x 轴的一个交点坐标是()3,0,求此二次函数的解析式. 25. 已知:二次函数()221y x m x m =−++−. (1)求证:该抛物线与x(2)设抛物线与x 轴的两个交点是A B 、(A 在原点左边,B 在原点右边),且3AB =,求此时抛物线的解析式.26. 若直线5y x =−与y 轴交于点A ,与x 轴交于点B ,二次函数2y ax bx c =++的图象经过点A ,点B ,且与x 轴交于点()1,0C −.(1)求二次函数解析式;(2)若点P 为直线AB 下方抛物线上一点,连接PA ,PB ,求ABP 面积的最大值及此时点P 的坐标;是的2024-2025学年度第一学期第一次月考模拟试卷一、单选题1. 下列是一元二次方程的是( )A. 20ax bx c ++=B. 22x x −=C. ()222x x x −=−D. 11x x += 【答案】B【解析】【分析】本题主要考查了一元二次方程的识别.本题根据一元二次方程的定义解答.【详解】解:A 、当0a ≠时,20ax bx c ++=是一元二次方程,故本选项不符合题意; B 、22x x −=是一元二次方程,故本选项符合题意;C 、变形为22x =不是一元二次方程,故本选项不符合题意;D 、11x x+=含有分式,不是一元二次方程,故本选项不符合题意; 故选:B2. 一元二次方程2310x x −−=的根的情况为( )A. 无实数根B. 有一个实数根C. 有两个相等的实数根D. 有两个不相等的实数根【答案】D【解析】【分析】本题考查一元二次方程根的情况,涉及一元二次方程根的判别式,由题中一元二次方程得到判别式,即可判断答案,熟记一元二次方程根的情况与判别式符号关系是解决问题的关键.【详解】解:一元二次方程2310x x −−=, 3,1,1a b c ==−=−,()()21431∴∆−−××−112=+130=>,∴一元二次方程2310x x −−=的根的情况为有两个不相等的实数根,故选:D .3. 一元二次方程2430x x −+=配方后变形为( )A. ()241x −=B. ()221x −=C. ()241x +=D. ()221x +=【答案】B【解析】【分析】本题考查了解一元二次方程—配方法,掌握配方法是解题的关键.先把常数项移到方程右边,再把方程两边加上4,然后把方程左边写成完全平方形式即可.【详解】解:2430x x −+=,∴243x x −=−,∴24434x x −+=−+,即()221x −=.故选:B4. 若关于x 的一元二次方程2690kx x −+=有两个不相等的实数根,则k 的取值范围是( )A. 1k >B. 0k ≠C. 1k <D. 1k <且0k ≠ 【答案】D【解析】【分析】本题考查了一元二次方程的定义和一元二次方程根的判别式.根据一元二次方程根的判别式,即可求解.【详解】解:∵关于x 的一元二次方程2690kx x −+=有两个不相等的实数根,∴()26490k ∆=−−×>,且0k ≠,解得:1k <且0k ≠,即k 的取值范围是1k <且0k ≠.故选:D5. 将抛物线2y x =先向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线对应的函数解析式为( )A. ()223y x =−+B. ()232y x =−+ C. ()223y x =++ D. ()232y x =−− 【答案】B【解析】【分析】本题考查函数图象的平移,解题的关键是要熟练掌握函数的平移规律:“左加右减,上加下减”,根据函数图象平移规律即可得到答案.【详解】解:将抛物线2y x =先向上平移2个单位长度,得到22y x =+,再向右平移3个单位长度,得到()232y x =−+, 故选:B .6. 若()()()1232,,1,,2,A y B y C y −是抛物线()221y x a =−+上三点,则123,,y y y 为的大小关系为( )A. 123y y y >>B. 132y y y >>C. 321y y y >>D. 312y y y >>【答案】B【解析】【分析】本题主要考查了二次函数的性质,掌握当抛物线开口方向向上时,离对称轴越远,函数值越大成为解题的关键.先确定抛物线的对称轴,再确定抛物线开口向上,此时离对称轴越远,函数值越大,据此即可解答.【详解】解:∵()221y x a =−+,∴抛物线的对称轴为直线1x =,开口向上,∴离对称轴越远,函数值越大,∵点()12,A y −离对称轴最远,点()21,B y 在对称轴上,∴132y y y >>.故选:B .7. 若抛物线242y kx x =−−与x 轴有两个交点,则k 的取值范围为( )A. 2k >−B. 2k ≥−C. 2k >−且0k ≠D. 2k ≥−且0k ≠ 【答案】C【解析】【分析】本题主要考查了二次函数与一元二次方程之间的关系,二次函数的定义,二次函数与x 轴有两个交点,则与之对应的一元二次方程有两个不相等的实数根,据此利用判别式求出k 的取值范围,再结合二次项系数不为0即可得到答案.【详解】解:∵抛物线242y kx x =−−与x 轴有两个交点, 的∴()()2Δ44200k k =−−×−⋅> ≠ , ∴2k >−且0k ≠,故选:C .8. 二次函数2y ax bx c =++图象上部分点的对应值如下表则使0y <的x 的取值范围为( ) x 3− 2− 1− 01 2 3 4 y 60 4− 6− 6− 4− 0 6A. 0x <B. 12x >C. 23x −<<D. 2x <−或3x >【答案】C【解析】 【分析】本题主要考查了二次函数的性质,先求出二次函数的表达式,再根据与x 轴的交点即可求出0y <的x 的取值范围,解题的关键是求出二次函数2y ax bx c ++的表达式.【详解】解:由表格可知2y ax bx c ++经过()2,0−,()3,0,()0,6−,设解析式为()()23y a x x =+−∴()()02036a +−=−, 解得:1a =,∴抛物线解析式为()()2236y x x x x =+−=−−,∴抛物线图象开口向上,与x 轴的交点为()2,0−,()3,0,∴0y <时x 的取值范围是23x −<<,故选:C .二、填空题9. 已知m 是方程2520x x −−=的一个根,则22101m m −−=______. 【答案】3【解析】【分析】本题考查一元二次方程的根的定义、代数式求值,根据一元二次方程的根的定义,将m 代入2520x x −−=,求出252m m −=,即可求出22101m m −−的值.【详解】解:∵m 是方程2520x x −−=的一个根,∴252m m −=,∴()2221012512213,m m m m −−=−−=×−=故答案为:3. 10. 一元二次方程()2110x k x +++=有两个相等的实数根,那么k 的值为_____. 【答案】1或3−【解析】【分析】本题考查了根的判别式:一元二次方程()200ax bx c a ++=≠的根与24b ac ∆=−有如下关系:当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程无实数根.根据判别式的意义得到()2Δ1410k =+−×=,然后解关于k 的方程即可. 【详解】解:由题意得:()2Δ1410k =+−×=,即:()214k +=,解得:1k =或3−,故答案为:1或3−. 11. 若关于x 的一元二次方程()22240m x mx m −++−=有一个根是0,则m 的值为________ 【答案】2−【解析】【分析】此题考查了一元二次方程的定义及方程的解的定义,将0x =代入方程求出2m =±,再根据一元二次方程的定义求出2m ≠,由此得到答案,正确理解一元二次方程的定义及方程的解的定义是解题的关键.【详解】解:将0x =代入()22240m x mx m −++−=,得240m −=, 解得2m =±,∵20m −≠,∴2m ≠,∴2m =−,故答案为2−.12. 用一根长22cm 的铁丝围成面积是230cm 的矩形.假设矩形的一边长是cm x ,则可列出方程_____________________ 【答案】22=302x x −【解析】【分析】本题考查了一元二次方程的运用,要掌握运用长方形的面积计算公式S ab =来解题的方法.本题可根据长方形的周长可以用x 表示另一边长的值,然后根据面积公式即可列出方程.【详解】解:一边长为 c m x ,则另一边长为22cm 2x −, 得22=302x x −. 故答案为:22=302x x −. 13. 如图,已知抛物线2y ax bx c ++与直线y kx m =+交于()3,1A −−、()0,3B 两点,则关于x 的不等式2ax bx c kx m ++≥+的解集是________.【答案】30x −≤≤【解析】【分析】本题考查了二次函数与不等式的关系,主要利用了数形结合的思想,解题关键在于对图象的理解,题目中的不等式的含义为:二次函数的图象在一次函数图象上方时,自变量x 的取值范围.根据图象,写出抛物线在直线上方部分的x 的取值范围即可.【详解】∵抛物线2y ax bx c ++与直线y kx m =+交于()3,1A −−、()0,3B 两点, ∴由函数图象可得,不等式2ax bx c kx m ++≥+的解集是30x ≤≤﹣,故答案为:30x −≤≤.14. 抛物线()232y x =−−−的顶点坐标是________ . 【答案】()3,2− 【解析】【分析】本题考查了二次函数2()y a x h k =−+(a ,h ,k 为常数,0a ≠)性质,2()y a x h k =−+是抛物线的顶点式,a 决定抛物线的形状和开口方向,其顶点是(,)h k ,对称轴是直线x h =. 【详解】解:物线()232y x =−−−的顶点坐标是()3,2−.故答案为:()3,2−.15. 已知二次函数()214y x =+−,当02x ≤≤时,函数值y 的取值范围为__________ 【答案】35y −≤≤##53x ≥≥− 【解析】【分析】本题考查二次函数的图象与性质,根据题意得当1x >−时,y 随x 的增大而增大,求得当0x =时,=3y −;2x =时,5y =,即可求解.【详解】解:由题意得,10a =>,对称轴1x =−, ∴当1x >−时,y 随x 增大而增大, ∵当0x =时,=3y −;2x =时,5y =,∴当02x ≤≤时,函数值y 的取值范围为35y −≤≤, 故答案为:35y −≤≤.16. 飞机着陆后滑行的距离(米)关于滑行时间(秒)的函数解析式为260 1.5s t t =−,则飞机着陆后滑行_________秒才停下来. 【答案】20 【解析】【分析】本题主要考查二次函数的应用,飞机停下时,也就是滑行距离最远时,即在本题中需求出s 最大时对应的t 值,根据顶点坐标的实际意义可得答案. 【详解】∵()2260 1.5 1.520600s t t t =−=−−+, ∴当20t =时,s 取得最大值600, ∴飞机着陆后滑行20秒才停下来.的的故答案:20.17. 如图所示,,A B 分别为22(2)1y x =−−图象上的两点,且直线AB 垂直于y 轴,若2AB =,则点B 的纵坐标为________.【答案】1 【解析】【分析】本题主要考查二次函数图象的对称性,能够熟练运用对称轴求点的横坐标是解题关键.求出对称轴后根据对称性求点B 横坐标,再代入解析式即可解答. 【详解】解:∵()2221y x =−−, ∴抛物线对称轴为直线2x =, ∵2AB =,∴点B 横坐标为213+=,将3x =代入()2221y x =−−得1y =, ∴点B 的纵坐标为1. 故答案为:118. 如图,横截面为抛物线的山洞,山洞底部宽为8米,最高处高163米,现要水平放置横截面为正方形的箱子,其中两个顶点在抛物线上的大箱子,在大箱子的两侧各放置一个横截面为正方形的小箱子,则小箱子正方形的最大边长为______米.【解析】为【分析】本题主要考查了二次函数的实际应用,先建立解析中坐标系,则()4,0A ,设大小正方形的边长分别为2m ,n ,则点B 、C 的坐标分别为:()(),2,m m m n n +,,利用待定系数法求出抛物线解析式为211633y x =−+,再把B 、C 坐标代入求解即可.【详解】解:建立如下平面直角坐标系,则点()4,0A ,设大小正方形的边长分别为2m ,n ,则点B 、C 的坐标分别为:()(),2,m m m n n +,、设抛物线的表达式为:()21603y ax a =+≠, 将点A 的坐标代入上式得:160163a =+,解得13a =−,∴抛物线的表达式为:213y x =− 将点B 、C 的坐标代入上式得:()2211623311633m m n m n =−+ =−++①②,由①得1228m m ==−,(舍去),解得:2m n = = 或2m n = =(舍去),米.. 三、解答题19. 商场销售某种拖把,已知这种拖把的进价为80元/套,售价为120元/套,商场每天可销售20套、国庆假期临近,该商场决定采取适当的降价措施,经调查:这种拖把的售价每降价1元,平均每天可多售出2套,设这种拖把每套降价x 元.(1)降价后每套拖把盈利______元,平均每天可销售______套(用含x 的代数式表示);(2)为扩大销售量,尽快减少库存,当每套拖把降价多少元时,该商场销售这种拖把平均每天能盈利1242元?(3)该商场销售这种拖把平均每天的盈利能否达到1400元?若能,求出x 的值;若不能,请说明理由. 【答案】(1)()40x −,2x(2)每套拖把降价17元时,能让利于顾客并且商家平均每天能赢利1242元; (3)不能,理由见解析 【解析】【分析】此题考查了一元二次方程的实际应用,解题的关键是正确分析题目中的等量关系. (1)设每套拖把降价x 元,根据题意列出代数式即可;(2)设每套拖把降价x 元,则每套的销售利润为()40x −元,平均每天的销售量为()202x +套,根据题意列出一元二次方程求解即可;(3)设每套拖把降价y 元,则每套的销售利润为()12080y −−元,平均每天的销售量为()202y +套,根据题意列出一元二次方程,然后依据判别式求解即可. 【小问1详解】解:设每套拖把降价x 元,则每天销售量增加2x 套,即每天销售()202x +套, 每套拖把盈利()1208040x x −−=−元.故答案为:()40x −,()202x +; 【小问2详解】解:设每套拖把降价x 元,则每套的销售利润为()40x −元,平均每天的销售量为()202x +套,依题意得:()()402021242x x −+=, 整理得:2302210x x −+=,解得:121317x x ==,. 又∵需要尽快减少库存,∴17x =.答:每套拖把降价17元时,能让利于顾客并且商家平均每天能赢利1242元; 【小问3详解】解:商家不能达到平均每天盈利1400元,理由如下:设每套拖把降价y 元,则每套的销售利润为()12080y −−元,平均每天的销售量为()202y +套,依题意得:()()120802021400y y −−+=, 整理得:2303000y y −+=. ∵()22Δ43041300300<0b ac =−=−−××=−, ∴此方程无实数解, 即不可能每天盈利1400元. 20. 解方程:(1)2(2x 1)9+=; (2)2x 2﹣4x =1(配方法); (3)22x 5x 10−+=;(4) ()2(x 3)4x 3x 0−−−=【答案】(1)121,2x x ==−;(2)1211x x ;(3)12x x ;(4)1233,5x x == 【解析】【分析】(1)直接开平方法解方程即可;(2)先方程两边除以2,将二次项系数化为1,再在方程两边同时加上1,配方开平方即可解答; (3)确定a 、b 、c ,求出△值,当判断方程有解时,带入公式求解即可; (4)整理方程,利用因式分解法解方程即可. 【详解】(1)2(2x 1)9+= 开平方,得:2x 13+=±, 解得:121,2x x ==−; (2)22x 41x −=,二次项系数化为1,得:21x 22x −=, 配方,得:21x 2112x −+=+, 即23(x 1)2−=,开方,得:1x −=解得:1211x x (3)22x 5x 10−+= ∵a=2,b=﹣5,c=1,∴△=224(5)42117b ac −=−−××=﹥0,∴x =,解得:12x x =(4)()2(x 3)4x 3x 0−−−= ()2(x 3)4x 30x +−−=(3)(53)0x x −−=∴30x −=或530x −=,解得:1233,5x x ==. 【点睛】本题考查解一元二次方程的方法,熟练掌握一元二次方程的各种解法的步骤和注意点,灵活选用解法是解答的关键.21. 随着科技的发展,某省正加快布局以5G 等为代表的新兴产业.据统计,目前该省5G 基站数量约为1.5万座,计划到今年底,全省5G 基站数是目前的4倍;到后年底,全省5G 基站数量将达到17.34万座.(1)计划在今年底,全省5G 基站数量是多少万座?(2)按照计划,从今年底到后年底,全省5G 基站数量的年平均增长率为多少? 【答案】(1)6万座 (2)70% 【解析】【分析】本题考查有理数乘法的应用,一元二次方程的实际应用:(1)根据计划到今年底,全省5G 基站数是目前的4倍,列出算式计算即可;(2)设全省5G 基站数量的年平均增长率为x ,根据题意,列出一元二次方程,进行求解即可 【小问1详解】解:由题意得:1.546×=(万座); 答:计划在今年底,全省5G 基站数量是6万座. 【小问2详解】解:设全省5G 基站数量的年平均增长率为x ,由题意得:()26117.34x +=,解得:120.7, 2.7x x ==−(不符合题意,舍去); 答:全省5G 基站数量的年平均增长率为70%.22. 如图,老李想用长为70m 的栅栏,再借助房屋的外墙(外墙足够长)围成一个矩形羊圈ABCD ,并在边BC 上留一个2m 宽的门(建在EF 处,另用其他材料).(1)当羊圈的边AB 的长为多少米时,能围成一个面积为2640m 的羊圈?(2)羊圈的面积能达到2650m 吗?如果能,请你给出设计方案;如果不能,请说明理由. 【答案】(1)当羊圈的边AB 的长为16m 或20m 时,能围成一个面积为2640m 的羊圈 (2)羊圈的面积不能达到2650m ,理由见解析 【解析】【分析】本题考查了一元二次方程的应用,根据题意列出一元二次方程,解一元二次方程是解题的关键. (1)设羊圈的边AB 的长为m x ,则边BC 的长为()722m x -根据题意列出一元二次方程,解方程即可求解;(2)同(1)的方法建立方程,根据方程无实根即可求解. 【小问1详解】解:设羊圈的边AB 的长为m x ,则边BC 的长为()722m x -,根据题意,得()722640x x −=,化简,得2363200x x −+=,解方程,得116x =,220x =,当116x =时,72240x −=, 当220x =时,72232x −=.答:当羊圈的边AB 的长为16m 或20m 时,能围成一个面积为2640m 的羊圈. 【小问2详解】不能,理由如下:根据题意,得()722650x x −=, 化简,得2363250x x −+=,()22436432540b ac −=−×=−−< , ∴该方程没有实数根. ∴羊圈的面积不能达到2650m 23. 已知函数()214y x =−−+.(1)当x =____________时,抛物线有最大值,是____________. (2)当x ____________时,y 随x 的增大而增大.(3)该函数可以由函数2y x =−的图象经过怎样的平移得到?(4)该抛物线与x 轴交于点,与y 轴交于点____________.(写坐标) (5)在下面的坐标系中画出该抛物线的图象.【答案】(1)1;4 (2)1<(3)见解析 (4)(1,0)−和(3,0);(0,3) (5)见解析 【解析】【分析】本题考查了二次函数的性质、抛物线与x 轴的交点坐标、二次函数图象与几何变换以及二次函数的最值,熟练掌握二次函数的性质是解题的关键.(1)根据二次函数的顶点式找出抛物线的顶点坐标,再根据二次项系数为1−得出抛物线开口向下,由此即可得出结论;(2)根据抛物线开口方向结合抛物线的对称轴,即可找出单增区间;(3)找出函数2y x =−的顶点坐标,结合函数2(1)4y x =−−+的顶点坐标,即可找出平移的方法; (4)令0y =可得出关于x 的一元二次方程,解方程求出x 值,由此得出抛物线与x 轴的交点坐标;令0x =求出y 值,由此即可得出抛物线与y 轴的交点坐标;(5)列表,描点,连线即可画出该抛物线的图象. 【小问1详解】解: 函数解析式为2(1)4y x =−−+,∴抛物线的开口向下,顶点坐标为(1,4). ∴当1x =时,抛物线有最大值,是4.故答案为:1;4; 【小问2详解】解: 抛物线的开口向下,对称轴为1x =,∴当1x <时,y 随x 的增大而增大.故答案为:1<; 【小问3详解】解: 函数2y x =−的顶点坐标为(0,0),∴将函数2y x =−的图象先向右平移1个单位长度,再向上平移4个单位长度即可得出函数2(1)4y x =−−+的图象.【小问4详解】解:令0y =,则有2(1)40x −−+=, 解得:11x =−,23x =,∴该抛物线与x 轴的交点坐标为(1,0)−和(3,0).当0x =时,2(01)43y =−−+=, ∴该抛物线与y 轴的交点坐标为(0,3).故答案为:(1,0)−和(3,0);(0,3). 【小问5详解】 解:列表:x 1−0 1 2 3 y343描点,连线,该抛物线的图象如图:.24. 已知图象的顶点坐标是()2,1,且与x 轴的一个交点坐标是()3,0,求此二次函数的解析式. 【答案】()221y x =−−+ 【解析】【分析】本题主要考查了求二次函数解析式,先把解析式设顶点式,再利用待定系数法求解即可. 【详解】解:设此二次函数解析式为()()2210y a x a =−+≠,把()3,0代入()()2210y a x a =−+≠中得:()20321a =−+,解得1a =−,∴此二次函数解析式为()221y x =−−+. 25. 已知:二次函数()221y x m x m =−++−.(1)求证:该抛物线与x 轴一定有两个交点;(2)设抛物线与x 轴的两个交点是A B 、(A 在原点左边,B 在原点右边),且3AB =,求此时抛物线的解析式.【答案】(1)见解析 (2)2y x x 2−− 【解析】【分析】(1)根据()()22Δ2418m m m =+−−=+的符号,即可求解,为(2)由根与系数关系,列出()()2224A B A B A B AB x x x x x x =−=+−⋅,即可求解,本题考查了根的判别式,根据系数关系,解题的关键是:熟练掌握根的判别式,根据系数关系.【小问1详解】证明:()()22Δ2418m m m =+−−=+,20m ≥ ,2Δ880m ∴=+≥>,故抛物线与x 轴一定有两个交点,【小问2详解】解:令0y =,得()2210x m x m −++−=, 由(1)知Δ0>,2A B x x m ∴+=+,1A B x x m ⋅=−,()()()()22224241A B A B A B AB x x x x x x m m =−=+−⋅=+−−, ()()22419m m ∴+−−=,解得1m =±,A 在原点左边,B 在原点右边,10A B x x m ∴⋅=−<,1m ∴<,1m ∴=−,故抛物线的表达式为:2y x x 2−−.26. 若直线5y x =−与y 轴交于点A ,与x 轴交于点B ,二次函数2y ax bx c =++的图象经过点A ,点B ,且与x 轴交于点()1,0C −.(1)求二次函数的解析式;(2)若点P 为直线AB 下方抛物线上一点,连接PA ,PB ,求ABP 面积的最大值及此时点P 的坐标;【答案】(1)245y x x =−−(2)当52x =时,ABP S 最大,最大为1258,这时点P 的坐标为535,24 − 【解析】【分析】本题考查二次函数的综合应用,熟练掌握的图像和性质是解题的关键. (1)利用待定系数法求函数解析式即可;(2)过点P 作PQ x ⊥轴交AAAA 于点Q ,设点P 的坐标为()2,45x x x −−,则点Q 的坐标为(),5x x −,则25PQ x x =−+,然后根据ABPS PQ OB =⋅ 计算即可. 【小问1详解】解:当xx =0时,5y =−,∴点A 的坐标为()0,5−, 当0y =时,50x −=,解得5x =,∴点B 的坐标为()5,0,设抛物线的解析式为()()51y a x x =−+,代入()0,5−得:55a −=−,解得:1a =,∴二次函数的解析式为()()25145y x x x x =−+=−−; 【小问2详解】解:过点P 作PQ x ⊥轴交AAAA 于点Q ,设点P 的坐标为()2,45x x x −−,则点Q 的坐标为(),5x x −, ∴225(45)5PQ x x x x x =−−−−=−+, ∴()2211551255522228ABP S PQ OB x x x =⋅=×−+×==−−+ , 当52x =时,ABP S 最大,最大为1258,这时点P 的坐标为535,24 − .。
温州市2023学年第一学期学业水平检测九年级数学模拟试卷学校:___________姓名:___________班级:___________考号:___________ 一、选择题(每题3分,共30分)的半径为2.已知OA.P点5.如图,已知圆心角A.156°A .B .C .D .7.已知抛物线21y x x −−,与x 轴的一个交点为()0m ,,则代数式22023m m −+的值为( ) A .2021 B .2022 C .2023 D .20248.如图,将ABD △绕顶点B 顺时针旋转36°得到CBE △,且点C 刚好落在线段AD 上,若30CBD ∠=°,则E∠的度数是( )A .42°B .44°C .46°D .48°9.如图,Rt ABC △中,90BAC ∠=°,AD BC ⊥,垂足为D ,点E ,F 分别是AB ,AC 边上的动点,DE DF ⊥,若5BC =, 3.2CD =,那么DE 与DF 的比值是( )A .0.6B .0.75C .0.8D .不确定的值10.已知抛物线()20y ax bx c a ++≠与x 轴的交点为()0A 1,和()30B ,,点()111P x y ,,()222P x y ,是抛物线上不同于A B ,的两个点,记1P AB △的面积为1S ,2P AB △的面积为2S ,则下列结论正确的是( )二、填空题(每题分,共分)11.如图,ABC 中,40A ∠=°,60C ∠=°,O 与边AB ,AC 的另一个交点分别为D , E .则AED ∠的大小为 °.12.下表记录了某种苹果树苗在一定条件下移植成活的情况:移植的棵数 100 200 500 1000 2000 成活的棵数 81 156 395 800 1600 成活的频率 0.81 0.78 0.79 0.8 0.8 由此估计这种苹果树苗的移植成活的概率为 . 13.已知二次函数235y x =−,当14x −≤≤时,y 的最小值为 .14.如图(1)是一座石拱桥,它是一个横断面为抛物线形状的拱桥,当水面在图示位置时,拱顶(拱桥洞的最高点)离水面3m ,水面宽6m .如图(2)建立平面直角坐标系,则抛物线的关系式是 .15.如图,已知D 、E 、F 分别是ABC 的边AB AC BC 、、上的点,DE BC EF AB ∥,∥,ADE EFC △、△的面积分别为1、4,四边形BFED 的面积为 .16.如图,△ABC 是⊙O 的内接三角形,∠A =30°,3BC =,则⊙O 的半径为 .17.如图1,筒车是我国古代发明的一种水利灌溉工具,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理.筒车盛水桶的运行轨道是以轴心O 为圆心的圆,如图2,已知圆心O 在水面上方,且O 被水面截得的弦AB 长为4m ,O 的半径长为3m ,若点C 为运行轨道的最低点,则点C 到弦AB 所在直线的距离是 m .18.如图,在Rt ABC △中,90ACB ∠=°,点D 在AB 上,点E 为BC 上的动点,将BDE △沿DE 翻折得到FDE ,EF 与AC 相交于点G ,若3AB AD =,3AC =,6BC =,0.8CG =,则CE 的值为 .三、解答题(46分)19.(6分)如图,点D 是△ABC 的边AB 上一点,∠ABC =∠ACD .(1)求证:△ABC ∽△ACD ;(2)当AD =2,AB =3时,求AC 的长.20.(6分)已知二次函数2y x bx c ++=-经过点30A (,)与03B (,). (1)求b ,c 的值.(2)求该二次函数图象的顶点坐标.21.如图所示,已知AB 为O 的直径,CD 是弦,且AB CD ⊥于点E .连接AC 、OC BC 、.(1)求证:ACO BCD ∠=∠;(2)若96AE BE CD ==,,求O 的直径.(1)请用画树状图或列表的方法,求抽出的两张卡片上的图案都是片分别记为1A 、2A ,图案为“黑脸”的卡片记为(2)若第一次抽出后不放回,请直接写出求抽出的两张卡片上的图案都是y24.(8分)如图,ABC 内接于⊙O ,过点O 作OH BC ⊥于点H ,延长OH 交⊙O 于点D ,连接AD 、BD ,AD 与BC 交于点E ,9AD =(1)求证:BAD CAD ∠=∠. (2)若OH DH =.①求BAC ∠的度数.②若⊙O 的半径为6,求DE 的长.(3)设BD x =,AB CE y ⋅=,求y 关于x 的函数表达式.参考答案:。
湖北省武汉市2023—2024学年九年级上册数学期末模拟试卷一、选择题(本部分共10小题,每小题3分,共30分)1.下列图形中,是中心对称图形的是( )A .B .C .D .2 .在一个不透明的袋子里装有红球、黄球共20个,这些球除颜色外都相同.小明通过多次实验发现, 摸出红球的频率稳定在0.3左右,则袋子中红球的个数最有可能是( )A. 14B. 12C. 6D. 43 .如图,已知A ,B ,C 是O 上的三点,100BOC ∠=°,则BAC ∠的度数为( )A .30°B .40°C .45°D .50°4. 若关于x 的一元二次方程2310kx x −+=有实数根,则k 的取值范围为( )A .k ≥94B .k 94≤且k ≠0 C .k <94且k ≠0 D .k 94≤ 5 .抛物线()2213y x =−−+上有三个点()()()123104y y y −,,,,,,那么123、、y y y 的大小关系是( )A .123y y y <<B .132y y y =<C .123y y y =<D .213y y y >> 6. 抛物线()222y x =−+与y 轴的交点坐标是( )A .()22,B .()06,C .()02,D .()04,7 . 如图,△ABC 中,∠BAC=30°,△ABC 绕点A 逆时针旋转至△AED ,连接对应点CD ,AE 垂直平分CD 于点F ,则旋转角度是( )A .30°B .45°C .50°D .60°8 . 如图所示,ABC 的三个顶点的坐标分别为()1,3A −、()2,2B −−、()4,2C −,则ABC 外接圆半径的长为( )A .B .CD 9 . 如图,在ABC 中,8cm AB =,16cm BC =,动点P 从点A 开始沿AB 边运动,速度为2cm/s ;动点Q 从点B 开始沿BC 边运动,速度为4cm/s ;如果P 、Q 两动点同时运动,那么经过( )秒时QBP △与ABC 相似.A .2秒B .4秒C .2或0.8秒D .2或4秒10 .对称轴为直线1x =的抛物线2y ax bx c ++(a b c ,,为常数,且0a ≠)如图所示,小明同学得出了以下结论:①<0abc ,②24b ac >,③420a b c ++>,④30a c +>,⑤()a b m am b +≤+(m 为任意实数),⑥当1x <−时,y 随x 的增大而增大.其中结论正确的个数为( )A .3B .4C .5D .6二、填空题:(本大题共6小题,每小题3分,共18分)11 .已知75x y =.则x y x+= . 12 .把一枚均匀的硬币连续抛掷两次,两次正面朝上的概率是 .13. 点(2,3)绕原点逆时针旋转90°对应点的坐标是 _______.14 ..如图,A ,B ,C 是O 上的三个点,25ABC ∠=°,则OAC ∠的度数是 .15. 如图,已知双曲线(0)k y k x=>经过直角三角形OAB 斜边OB 的中点D , 与直角边AB 相交于点C ,若OBC △的面积为6,则k = .16 .如图,已知正方形ABCD 的边长为12,BE =EC ,将正方形边CD 沿DE 折叠到DF ,延长EF 交AB 于G ,连接DG ,现在有如下4个结论:①△ADG ≌△FDG ;②GB =2AG ;③△GDE ∽△BEF ;④S △BEF =725. 在以上4个结论中,其中一定成立的 (把所有正确结论的序号都填在横线上)三、解答题(本大题共8小题,共72分)17. 已知关于x 的一元二次方程21=0x mx m −+−.(1)求证:方程总有两个实数根;(2)若方程有一个根为负数,求m 的取值范围.18 .如图,在△ABC中,AB=BC,∠ABC=120°,点D在边AC上,且线段BD绕着点B按逆时针方向旋转120°能与BE重合,点F是ED与AB的交点.(1)求证:AE=CD;(2)若∠DBC=45°,求∠BFE的度数.19. 某学校在推进新课改的过程中,开设的体育社团活动课有:A:篮球,B:足球,C:排球,D:羽毛球,E:乒乓球,学生可根据自己的爱好选修一门,学校李老师对某班全班同学的选课情况进行调查统计,制成了如图所示的两幅不完整的统计图.(1)则该班的总人数为______人,其中学生选D“羽毛球”所在扇形的圆心角的度数是______度;(2)补全条形统计图;(3)该班班委4人中,2人选修篮球,1人选修足球,1人选修排球,李老师要从这4人中选2人了解他们对体育社团活动课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.20. 如图,在△ABC 中,∠C =90°,点O 在边AB 上,点D 在边BC 上,以OA 为半径的⊙O 经过点D ,交AB 于点E ,连接AD ,且AD 平分∠BA C .(1)求证:BC 是⊙O 的切线;(2)若∠BAC =60°,⊙O 的半径为2,求阴影部分的面积.21 .已知一次函数y =kx +b 和反比例函数y =m x 图象相交于A (-4,2),B (n ,-4)两点. (1)求一次函数和反比例函数的解析式;(2)求△AOB 的面积;(3)观察图象,直接写出不等式kx +b -m x<0的解集.22. 某商店经销一种健身球,已知这种健身球的成本价为每个20元,市场调查发现,该种健身球每天的销售量y (个)与销售单价x (元)有如下关系:()2802040y x x =−+≤≤, 设这种健身球每天的销售利润为w 元.(1)如果销售单价定为25元,那么健身球每天的销售量是 个;(2)求w 与x 之间的函数关系式;(3)该种健身球销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?23. 【发现问题】(1)如图1,已知CAB △和CDE 均为等边三角形,D 在AC 上,E 在CB 上,易得线段AD 和BE 的数量关系是______.(2)将图1中的CDE 绕点C 旋转到图2的位置,直线AD 和直线BE 交于点F .①判断线段AD 和BE 的数量关系,并证明你的结论;②图2中AFB ∠的度数是______.(3)【探究拓展】如图3,若CAB △和CDE 均为等腰直角三角形,90ABC DEC ∠=∠=°,AB BC =,DE EC =,直线AD 和直线BE 交于点F ,分别写出AFB ∠的度数,线段AD 、BE 间的数量关系,并说明理由.24. 综合与探究如图,已知点B (3,0),C (0,-3),经过B .C 两点的抛物线y =x 2-bx +c 与x 轴的另一个交点为A .(1)求抛物线的解析式;(2)点D 在抛物线的对称轴上,当△ACD 的周长最小时,求点D 的坐标;(3)已知点E 在第四象限的抛物线上,过点E 作EF //y 轴交线段BC 于点F ,连结EC ,若点E (2,-3),请直接写出△FEC 的面积;(4)在(3)的条件下,在坐标平面内是否存在点P ,使以点A ,B ,E ,P 为顶点的四边形是平行四边形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.湖北省武汉市2023—2024学年九年级上册数学期末模拟试卷一、选择题(本部分共10小题,每小题3分,共30分)1.下列图形中,是中心对称图形的是( )A .B .C .D .【答案】C【分析】根据中心对称图形的概念判断.把一个图形绕某一点旋转180度,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.【详解】解:选项A 、B 、D 的图形不都能找到一个点,使图形绕某一点旋转180度后与原来的图形重合,所以不是中心对称图形.选项C 的图形能找到一个点,使图形绕某一点旋转180度后与原来的图形重合,所以是中心对称图形. 故选:C .2 .在一个不透明的袋子里装有红球、黄球共20个,这些球除颜色外都相同.小明通过多次实验发现, 摸出红球的频率稳定在0.3左右,则袋子中红球的个数最有可能是( )A. 14B. 12C. 6D. 4【答案】C【解析】【分析】根据红球出现的频率和球的总数,可以计算出红球的个数.【详解】解:由题意可得,20×0.3=6(个),即袋子中红球的个数最有可能是6个,故选:C . 3 .如图,已知A ,B ,C 是O 上的三点,100BOC ∠=°,则BAC ∠的度数为( )A .30°B .40°C .45°D .50°【答案】D【分析】根据圆周角定理即可得到结论.【详解】解:A ,B ,C 是O 上的三点,100BOC ∠=°, 111005022BAC BOC ∴∠=∠=×°=°, 故选:D .4. 若关于x 的一元二次方程2310kx x −+=有实数根,则k 的取值范围为( )A .k ≥94B .k 94≤且k ≠0C .k <94且k ≠0D .k 94≤ 【答案】B【分析】根据二次项系数非零及根的判别式△≥0,即可得出关于k 的一元一次不等式组,解之即可得出k 的取值范围.【详解】解:∵关于x 的一元二次方程2310kx x −+=有实数根,∴()20Δ3410k k ≠ =−−××≥, 解得:k ≤94且k ≠0. 故选B .5 .抛物线()2213y x =−−+上有三个点()()()123104y y y −,,,,,,那么123、、y y y 的大小关系是( ) A .123y y y <<B .132y y y =<C .123y y y =<D .213y y y >>【答案】D 【分析】本题考查了二次函数的图象与性质,根据二次函数的解析式可得二次函数的开口方向以及对称轴,从而得出抛物线上的点离对称轴的距离越远函数值越小,由此即可出答案,熟练掌握二次函数的图象与性质是解此题的关键.【详解】解:()2213y x =−−+ , ∴20a =−<,抛物线开口向下,对称轴为直线1x =,∴抛物线上的点离对称轴的距离越远函数值越小,()411110−>−−>− ,213y y y ∴>>,故选:D .6. 抛物线()222y x =−+与y 轴的交点坐标是( )A .()22,B .()06,C .()02,D .()04,【答案】B【分析】本题主要考查了抛物线与坐标轴交点的知识.根据题意得出0x =,然后求出y 的值,即可以得到与y 轴的交点坐标.【详解】解:令0x =,得()()22220226y x =−+=−+=, 故与y 轴的交点坐标是:()06,. 故选:B .7 .如图,△ABC 中,∠BAC=30°,△ABC 绕点A 逆时针旋转至△AED ,连接对应点CD ,AE 垂直平分CD 于点F ,则旋转角度是( )A .30°B .45°C .50°D .60°【答案】D 【分析】根据旋转的性质得出,∠DAE=∠BAC=30°,求出∠DAE=∠CAE=30°,再求出∠DAC 的度数即可.【详解】∵△ABC 绕点A 逆时针旋转至△AED ,∠BAC=30°,∴AD=AC ,∠DAE=∠BAC=30°,∵AE 垂直平分CD 于点F ,∴∠DAE=∠CAE=30°,∴∠DAC=30°+30°=60°,即旋转角度数是60°,故选D .7. 如图所示,ABC 的三个顶点的坐标分别为()1,3A −、()2,2B −−、()4,2C −,则ABC 外接圆半径的长为( )A .B .CD 【答案】D 【分析】三角形的外心是三边垂直平分线的交点,设ABC 的外心为M ,由B ,C 的坐标可知M 必在直线1x =上,由图可知线段AC 的垂直平分线经过点()1,0,由此可得()1,0M ,过点M 作MD BC ⊥于点D ,连接MB ,由勾股定理求出MB 的长即可.【详解】解:设ABC 的外心为M ,()2,2B −−、()4,2C −,∴M 必在直线2412x −+=上, 由图可知,线段AC 的垂直平分线经过点()1,0,∴()1,0M ,如图,过点M 作MD BC ⊥于点D ,连接MB ,Rt MBD △中,2MD =,3BD =,由勾股定理得:MB =,即ABC故选D .9 . 如图,在ABC 中,8cm AB =,16cm BC =,动点P 从点A 开始沿AB 边运动,速度为2cm/s ;动点Q 从点B 开始沿BC 边运动,速度为4cm/s ;如果P 、Q 两动点同时运动,那么经过( )秒时QBP △与ABC 相似.A .2秒B .4秒C .2或0.8秒D .2或4秒【答案】C 【分析】设经过t 秒时, QBP △与ABC 相似,则2cm,82)cm,4(cm AP t BP t BQ t ==−=, 利用两组对应边的比相等且夹角对应相等的两个三角形相似进行分类讨论:当BP BQ BA BC =时,BPQ BAC ∽ ,即 824;816t t −= 当 BP BQ BC BA =时,BPQ BCA △∽△,即 824,168t t −=然后解方程即可求出答案. 【详解】解:设经过t 秒时, QBP △与ABC 相似,则2cm,82)cm,4(cm AP t BP t BQ t ==−= PBQ ABC ∠=∠ ,∴当BP BQ BA BC =时,BPQ BAC ∽ , 即 824,816t t −= 解得:2t =当BP BQ BC BA =时,BPQ BCA △∽△ , 即 824,168t t −= 解得:0.8t =综上所述:经过0.8s 或2s 秒时,QBP △与ABC 相似故选:C10 .对称轴为直线1x =的抛物线2y ax bx c ++(a b c ,,为常数,且0a ≠)如图所示,小明同学得出了以下结论:①<0abc ,②24b ac >,③420a b c ++>,④30a c +>,⑤()a b m am b +≤+(m 为任意实数),⑥当1x <−时,y 随x 的增大而增大.其中结论正确的个数为( )A .3B .4C .5D .6【答案】A 【分析】由抛物线的开口方向判断a 的符号,由抛物线与y 轴的交点判断c 的符号,结合对称轴判断①,然后根据对称轴及抛物线与x 轴交点情况判断②,根据对称性求得2x =时的函数值小于0,判断③;根据=1x −时的函数值,结合2b a =−,代入即可判断④,根据顶点坐标即可判断⑤,根据函数图象即可判断⑥.【详解】解:①由图象可知:00a c ><,, ∵对称轴为直线:12b x a=−=, ∴20b a =−<, ∴0abc >,故①错误;②∵抛物线与x 轴有两个交点,∴240b ac −>,∴24b ac >,故②正确;③∵对称轴为直线1x =,则0x =与2x =的函数值相等,∴当2x =时,420y a b c ++<④当=1x −时,()20y a b c a a c =−+=−−+>,∴30a c +>,故④正确;⑤当1x =时,y 取到最小值,此时,y a b c =++,而当x m =时,2y am bm c ++,所以2a b c am bm c ++≤++,故2a b am bm +≤+,即()a b m am b +≤+,故⑤正确,⑥当1x <−时,y 随x 的增大而减小,故⑥错误,综上,正确的是②④⑤共3个,故选:A .二、填空题:(本大题共6小题,每小题3分,共18分)11 .已知75x y =.则x y x += . 【答案】125【分析】根据比例的性质求解即可,设7,5xk y k =,代入代数式进行计算即可. 【详解】解:∵75x y = 设7,5xk y k =, ∴x y x +751275k k k += 故答案为:12512 .把一枚均匀的硬币连续抛掷两次,两次正面朝上的概率是 . 【答案】14【分析】举出所有情况,看正面都朝上的情况数占总情况数的多少即可.【详解】解:共4种情况,正面都朝上的情况数有1种,所以概率是14. 故答案为:14. 13. 点(2,3)绕原点逆时针旋转90°对应点的坐标是 _______.【答案】(3,2)−【解析】【分析】先画出平面直角坐标系,再根据旋转的性质即可得出答案.【详解】解:由题意,画出图形如下,其中点A 的坐标为(2,3):过点A 作AB x ⊥轴于点B ,则2,3OB AB ==, 因为点,A B ′′分别是点,A B 绕原点逆时针旋转90°的对应点,所以2,3,OB OB A B AB A B y ′′′′′====⊥轴,又因为点A ′位于第二象限,所以点A ′的坐标为(3,2)−,故答案为:(3,2)−14 ..如图,A ,B ,C 是O 上的三个点,25ABC ∠=°,则OAC ∠的度数是 .【答案】65°【分析】根据圆周角定理先求出AOC ∠,再利用三角形内角和为180°和等腰三角形的性质求解即可.【详解】解:∵25ABC ∠=°, ∴50AOC ∠=°, ∵OA OC =, ∴18050652OAC °−°∠==°, 故答案为:65°.15. 如图,已知双曲线(0)k y k x=>经过直角三角形OAB 斜边OB 的中点D , 与直角边AB 相交于点C ,若OBC △的面积为6,则k = .【答案】4【分析】过D 点作x 轴的垂线交x 轴于E 点,可得到四边形DBAE ,和三角形OBC 的面积相等,通过面积转化,可求出k 的值.【详解】解:过D 点作x 轴的垂线交x 轴于E 点,ODE △的面积和OAC 的面积相等.OBC ∴ 的面积和四边形DEAB 的面积相等且为6.设D 点的横坐标为x ,纵坐标就为k x, D 为OB 的中点.EA x ∴=,2k AB x=, ∴四边形DEAB 的面积可表示为:12()62kk x x x += 4k =.故答案为:4.16 .如图,已知正方形ABCD 的边长为12,BE =EC ,将正方形边CD 沿DE 折叠到DF ,延长EF 交AB 于G ,连接DG ,现在有如下4个结论:①△ADG ≌△FDG ;②GB =2AG ;③△GDE ∽△BEF ;④S △BEF =725. 在以上4个结论中,其中一定成立的 (把所有正确结论的序号都填在横线上)【答案】①②④.【详解】解:由折叠可知,DF =DC =DA ,∠DFE =∠C =90°,∴∠DFG =∠A =90°,∴△ADG ≌△FDG ,①正确;∵正方形边长是12,∴BE =EC =EF =6,设AG =FG =x ,则EG =x +6,BG =12-x ,由勾股定理得:EG 2=BE 2+BG 2,即:(x +6)2=62+(12-x )2,解得:x =4∴AG =GF =4,BG =8,BG =2AG ,②正确;BE =EF =6,△BEF 是等腰三角形,,DG DE ≠ 则△GED 不是等腰三角形,∴△GDE 与△BEF 不相似, ③错误;S △GBE =12×6×8=24,S △BEF =EF EG S △GBE =610×24=725,④正确. 故答案为:①②④ 三、解答题(本大题共8小题,共72分)17. 已知关于x 的一元二次方程21=0x mx m −+−.(1)求证:方程总有两个实数根;(2)若方程有一个根为负数,求m 的取值范围.【答案】(1)见解析;(2)1m <【分析】(1)计算方程根的判别式,判断其符号即可;(2)求方程两根,结合条件则可求得m 的取值范围.【详解】(1)2224()41(1)(2)b ac m m m ∆=−=−−××−=−,∵2(2)0m −≥,∴方程总有实数根;(2)∵x =, ∴1212m m x m +−==−,2212m m x −+==, ∵方程有一个根为负数,∴10m −<,∴1m <.18 .如图,在△ABC 中,AB =BC ,∠ABC =120°,点D 在边AC 上,且线段BD 绕着点B 按逆时针方向旋转120°能与BE 重合,点F 是ED 与AB 的交点.(1)求证:AE =CD ;(2)若∠DBC =45°,求∠BFE 的度数.【答案】(1)证明见解析;(2)∠BFE=105°.【解析】【分析】(1)根据旋转的性质证明△ABE≌△CBD(SAS),进而得证;(2)由(1)得出∠DBC=∠ABE=45°,BD=BE,∠EBD=120°,最后根据三角形内角和定理进行求解即可.【详解】(1)证明:∵线段BD绕着点B按逆时针方向旋转120°能与BE重合,∴BD=BE,∠EBD=120°,∵AB=BC,∠ABC=120°,∴∠ABD+∠DBC=∠ABD+∠ABE=120°,∴∠DBC=∠ABE,∴△ABE≌△CBD(SAS),∴AE=CD;(2)解:由(1)知∠DBC=∠ABE=45°,BD=BE,∠EBD=120°,(180°﹣120°)=30°,∴∠BED=∠BDE=12∴∠BFE=180°﹣∠BED﹣∠ABE=180°﹣30°﹣45°=105°.19. 某学校在推进新课改的过程中,开设的体育社团活动课有:A:篮球,B:足球,C:排球,D:羽毛球,E:乒乓球,学生可根据自己的爱好选修一门,学校李老师对某班全班同学的选课情况进行调查统计,制成了如图所示的两幅不完整的统计图.(1)则该班的总人数为______人,其中学生选D“羽毛球”所在扇形的圆心角的度数是______度;(2)补全条形统计图;(3)该班班委4人中,2人选修篮球,1人选修足球,1人选修排球,李老师要从这4人中选2人了解他们对体育社团活动课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.【答案】(1)50,72(2)见解析(3)1 3【分析】(1)利用“选A:篮球”的学生人数除以其所占的百分比即可求得该班学生的总人数,再利用学生选D“羽毛球”的人数除以总人数,再乘以360°,即可求得结果;(2)利用选足球的学生的百分比乘以总人数求得选足球的人数,(3)再利用总人数减去其他课程的人数求得选兵乓球的学生人数,即可补全条形统计图;(3)画出树状图可得共有12种等可能的情况,其中选出的2人恰好1人选修篮球,1人选修足球的情况有4种,再利用概率公式进行计算即可.【详解】(1)解:由题意可得:该班的总人数为:1530%50÷=(人),学生选D“羽毛球”所在扇形的圆心角的度数为:103607250×°=°,故答案为:50;72;(2)解:由题意可得:选“B:足球”的学生人数为:12%50=6×(人),选“E:兵乓球”的学生人数为:50159610=10−−−−(人)补全条形统计图如下;(3)解:画树状图如下:共有12种等可能的情况,其中选出的2人恰好1人选修篮球,1人选修足球的情况有4种;∴选出的2人恰好1人选修篮球,1人选修足球的概率为41123P ==. 20. 如图,在△ABC 中,∠C =90°,点O 在边AB 上,点D 在边BC 上,以OA 为半径的⊙O 经过点D ,交AB 于点E ,连接AD ,且AD 平分∠BA C .(1)求证:BC 是⊙O 的切线;(2)若∠BAC =60°,⊙O 的半径为2,求阴影部分的面积.【答案】(1)证明见解析;(2)S 阴影=23−π. 【分析】(1)连接OD ,推出OD BC ,根据切线的判定推出即可;(2)阴影部分的面积=三角形ODB 的面积-扇形EOD 的面积即可.【详解】解:(1)证明:连接OD ,∵AD 平分∠BAC ,∴∠BAD=∠DAC ,∵AO=DO ,∴∠BAD=∠ADO ,∴∠CAD=∠ADO ,∴AC ∥OD ,∵∠ACD=90°,∴OD ⊥BC ,∴BC 与⊙O 相切;(2)∵∠C=90°,∠BAC=60°,∴∠B=30°,∠DOE=60°,又∵OD=2,∴∴阴影部分的面积=S △OBD -S 扇形ODE16042360BD OD π×=×⋅− 12223π=×− 23π.21 .已知一次函数y =kx +b 和反比例函数y =m x 图象相交于A (-4,2),B (n ,-4)两点. (1)求一次函数和反比例函数的解析式;(2)求△AOB 的面积;(3)观察图象,直接写出不等式kx +b -m x<0的解集.【答案】(1) y =-8x, y =-x -2;(2)6;(3) x >2或-4<x <0. 【解析】 【分析】(1)先把点A 的坐标代入反比例函数解析式,即可得到m=-8,再把点B 的坐标代入反比例函数解析式,即可求出n=2,然后利用待定系数法确定一次函数的解析式;(2)先求出直线y=-x-2与x 轴交点C 的坐标,然后利用S △AOB =S △AOC +S △BOC 进行计算;(3)观察函数图象得到当x >2或-4<x <0时,一次函数的图象在反比例函数图象上方,据此可得不等式的解集.【详解】(1)把A(-4,2)的坐标代入y =m x,得m =2×(-4)=-8, ∴反比例函数的解析式为y =-8x. 把B(n ,-4)的坐标代入y =-8x ,得-4n =-8, 解得n =2.∴B(2,-4).把A(-4,2)和B(2,-4)的坐标代入y =kx +b ,得4224k b k b −+= +=−解得12k b =− =− ∴一次函数的解析式为y =-x -2.(2)y =-x -2中,令y =0,则x =-2,即直线y =-x -2与x 轴交于点C(-2,0).∴S △AOB =S △AOC +S △BOC =×2×2+×2×4=6.(4)由图可得,不等式kx +b 0的解集为x >2或-4<x <0. (5) 22. 某商店经销一种健身球,已知这种健身球的成本价为每个20元,市场调查发现,该种健身球每天的销售量y (个)与销售单价x (元)有如下关系:()2802040y x x =−+≤≤, 设这种健身球每天的销售利润为w 元.(1)如果销售单价定为25元,那么健身球每天的销售量是 个;(2)求w 与x 之间的函数关系式;(3)该种健身球销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?【答案】(1)30(2)221201600w x x =−+−(3)该种健身球销售单价定为30元时,每天的销售利润最大,最大利润是200元【分析】(1)在2080y x =−+中,令25x =,进行计算即可得; (2)根据总利润=每个建生球的利润×销售量即可列出w 与x 之间的函数关系式;(3)结合(2)的函数关系式,根据二次函数性质即可得.【详解】(1)解:在280y x =−+中,令25x =得,2258030y =−×+=, 故答案为:30;(2)解:根据题意得,2(20)(280)21201600w x x x x =−−+=−+−, 即w 与x 之间的函数关系式为:221201600w x x =−+−;(3)解:22212016002(30)200w x x x =−+−=−−+, ∵20−<,∴当30x =时,w 取最大值,最大值为200,即该种健身球销售单价定为30元时,每天的销售利润最大,最大利润是200元.23. 【发现问题】(1)如图1,已知CAB △和CDE 均为等边三角形,D 在AC 上,E 在CB 上,易得线段AD 和BE 的数量关系是______.(2)将图1中的CDE 绕点C 旋转到图2的位置,直线AD 和直线BE 交于点F . ①判断线段AD 和BE 的数量关系,并证明你的结论;②图2中AFB ∠的度数是______.(3)【探究拓展】如图3,若CAB △和CDE 均为等腰直角三角形,90ABC DEC ∠=∠=°,AB BC =,DE EC =,直线AD 和直线BE 交于点F ,分别写出AFB ∠的度数,线段AD 、BE 间的数量关系,并说明理由.【答案】(1)AD BE =(2)①AD BE =,证明见解析;②60°;(3)45AFB ∠=度,AD =,理由见解析 【解析】【分析】(1)由等腰三角形的性质可求解;(2)①由“SAS ”可证≌ACD BCE ,可得AD BE =;②由全等三角形的性质可得ACD CBF ∠=∠,即可解决问题.(3)结论:45AFB ∠=°,AD =.证明ACD BCE ∽△△,可得AD AC BE BC ==CBF CAF ∠=∠,由此即可解决问题.【小问1详解】解:∵CAB △和CDE 均为等边三角形,∴CA CB =,CD CE =,∴AD BE =,故答案为:AD BE =;【小问2详解】如图2中,①∵ABC 和CDE∴CA CB =,CD CE =,60ACB DCE °∠=∠=,∴ACD BCE ∠=∠,∴≌ACD BCE (SAS ),∴AD BE =;②∵≌ACD BCE ,∴ACD CBF ∠=∠,设BC 交AF 于点O .∵AOC BOF ∠=∠,∴60BFO ACO ∠=∠=°,∴60AFB ∠=°,故答案为:60°;【小问3详解】结论:45AFB ∠=°,AD =.理由:如图3中, ∵90ABC DEC ∠=∠=°,AB BC =,DE EC =,∴45ACD BCD BCE ∠=°+∠=∠,AC DC BC EC ==,∴ACD BCE ∽△△,∴AD AC BE BC ==CBF CAF ∠=∠,∴AD =,∵AFB CBF ACB CAF ∠+∠=∠+∠,∴45AFB ACB ∠=∠=°.24. 综合与探究如图,已知点B (3,0),C (0,-3),经过B .C 两点的抛物线y =x 2-bx +c 与x 轴的另一个交点为A .(1)求抛物线的解析式;(2)点D 在抛物线的对称轴上,当△ACD 的周长最小时,求点D 的坐标;(3)已知点E 在第四象限的抛物线上,过点E 作EF //y 轴交线段BC 于点F ,连结EC ,若点E (2,-3),请直接写出△FEC 的面积;(4)在(3)的条件下,在坐标平面内是否存在点P ,使以点A ,B ,E ,P 为顶点的四边形是平行四边形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.【答案】(1)y =x 2-2x -3;(2)点D 的坐标为(1,-2);(3)△FEC 的面积为2;(4)存在,P 1(0,3),P 2(-2,-3),P 3(6,-3).【分析】(1)将点B (3,0),C (0,-3)代入抛物线y =x 2-bx +c ,求得b,c 即可求解;(2)求出D 点的横坐标为1,当点B 、D 、C 在同一直线上时,ACD C =AC +AD +CD =AC +BD +CD =AC +BC 最小,再求出直线BC 的解析式,即可求D 点坐标;(3)根据点和平行线的性质,先得出线段CE 和EF 的长以及∠CEF=90°即可求得△FEC 的面积;(4)【详解】解:(1) 将点B (3,0),C (0,-3)代入抛物线y =x 2-bx +c ,得,930-3b c c -+== ,解得2-3b c ==, ∴抛物线的解析式为y =x 2-2x -3;(2)如图:由y =x 2-2x -3得对称轴为x =-2b a =-2-21× =1 ∵点A ,.B 关于x =1对称,∴连结BC 与对称轴为x =1的交点就是符合条件的点D ,设直线BC 的解析式为y =mx +n ,将B (3,0),C (0,-3)代入解析式得303m n n +==- ,解得13m n ==-, ∴y =x -3当x =1时,y =-2,∴点D 的坐标为(1,-2);(3)如图:∵E(2,-3),C(0,-3)∴CE∥x轴,且CE=2∵EF//y轴交线段BC于点F且BCl:y=x-3 当x=2时,y=-1,∴F(2,-1)∴EF=2,又∵∠CEF=90°∴12CEFS CE EF=⋅= 12×2×2=2;(4) 存在,如图:①当AB为边长,BE为边长,如图四边形ABE P1为平行四边形∵对称轴为x=1, B(3,0)∴1×2-3=-1∴A(-1,0)AB=3-(-1)=4∴P1E=AB=4∵E(2,-3)∴C P1= P1E-CE=4-2=2∴P1 (-2,-3)②当AB为边长,AE为边长,∵E P2=AB=4∴C P2= P2E+CE=4+2=6∴P2 (6,-3)③当AB为对角线,四边形ABE P1为平行四边形∵四边形ABE P1为平行四边形易得P3恰好交y轴∴P3(0,3)综上所述,P1 (-2,-3),P2 (6,-3),P3(0,3).。
2022-2023学年第一学期九年级数学期末模拟测试题(附答案)一、选择题(共计24分)1.已知sinα=,若α是锐角,则α的度数为()A.30°B.45°C.60°D.90°2.如图所示几何体的主视图是()A.B.C.D.3.圆形物体在阳光下的投影可能是()A.三角形B.圆形C.矩形D.梯形4.如图,l1∥l2∥l3,直线AC和DE分别交l1、l2、l3于点A、B、C和点D、B、E,AB=4,BC=8,DB=3,则DE的长为()A.4B.5C.6D.95.反比例函数y=﹣图象上的两点为(x1,y1),(x2,y2),且x1<x2<0,则y1与y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.不能确定6.如图,图形甲与图形乙是位似图形,点O是位似中心,点A、B的对应点分别为点A′、B′,若OA'=2OA,则图形乙的面积是图形甲的面积的()A.2倍B.3倍C.4倍D.5倍7.如图,四边形ABCD为菱形,若CE为边AB的垂直平分线,则∠ADB的度数为()A.20°B.25°C.30°D.40°8.已知反比例函数的图象在每个象限内y随x的增大而增大,则关于x的一元二次方程的根的情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.无法确定二、填空题(共计15分)9.若关于x的方程ax2﹣2ax+1=0的一个根是﹣1,则a的值是.10.如图,在正方形网格中,△AOC的顶点均在格点上,则tan∠CAO的值为.11.在一个不透明的盒子中装有黑球和白球共200个,这些球除颜色外其余均相同,将球搅匀后任意摸出一个球,记下颜色后放回,通过大量重复摸球试验后,发现摸到白球的频率稳定在0.2,则盒子中白球有个.12.如图,点A为反比例函数的图象上一点,连接AO并延长交反比例函数的图象于另一点B,过点A、B分别作x轴、y轴的平行线,两平行线交于点C,则△ABC的面积为.13.如图,将矩形ABCD放置在平面直角坐标系的第一象限内,使顶点A,B分别在x轴、y轴上滑动,矩形的形状保持不变,若AB=2,BC=1,则顶点C到坐标原点O的最大距离为.三、解答题(计81分)14.解方程:(2x﹣9)2=5(2x﹣9).15.如图,AD是△ABC的高,cos B=,sin C=,AC=10,求AD及AB的长.16.如图,在四边形ABCD中,AD∥BC,点E在BC上,∠C=∠DEA.(1)求证:△DEC∽△ADE;(2)若CE=2,DE=4,求△DEC与△ADE的周长之比.17.已知反比例函数y=(k为常数).(1)若函数图象在第二、四象限,求k的取值范围;(2)若x>0时,y随x的增大而减小,求k的取值范围.18.如图,在正方形ABCD中,E,F分别为AB,AD上的点,且AE=AF,点M是EF的中,点,连接CM、CF、CE.求证:CM⊥EF.19.《城镇污水处理厂污染物排放标准》中硫化物的排放标准为1.0mg/L.某污水处理厂在自查中发现,所排污水中硫化物浓度超标,因此立即整改,并开始实时监测.据监测,整改开始第60小时时,所排污水中硫化物的浓度为5mg/L;从第60小时开始,所排污水中硫化物的浓度y(mg/L)是监测时间x(小时)的反比例函数,其图象如图所示.(1)求y与x之间的函数关系式;(2)按规定所排污水中硫化物的浓度不超过0.8mg/L时,才能解除实时监测,此次整改实时监测的时间至少要多少小时?20.如图,▱ABCD的对角线AC、BD交于点O,点E在边CB的延长线上,连接AE,且∠EAC=90°,AE2=EB•EC.求证:四边形ABCD是矩形.21.2021年是中国共产党建党100周年,全国各地积极开展以“弘扬红色文化,重走长征路”为主题的教育学习活动,郑州市“二七纪念堂“成为重要的活动基地.据了解,今年3月份该基地接待参观人数10万,5月份接待参观人数增加到12.1万.求这两个月参观人数的月平均增长率.22.一个阳光明媚的午后,王婷和李力两个人去公园游玩,看见公园里有一棵古老的大树,于是,他们想运用所学知识测量这棵树的高度,如图,李力站在大树AB的影子BC的末端C处,同一时刻,王婷在李力的影子CE的末端E处做上标记,随后两人找来米尺测得BC=10米,CE=2米.已知李力的身高CD=1.6米,B、C、E在一条直线上,DC⊥BE,AB⊥BE,请你运用所学知识,帮助王婷和李力求出这棵树的高度AB.23.随着信息技术的迅猛发展,移动支付已成为一种常见的支付方式.在一次购物中,陈老师和陆老师都随机从“微信”、“支付宝”、“银行卡”三种支付方式中选一种方式进行支付.(1)陆老师选择用“微信”支付的概率是;(2)请用画树状图或列表的方法表示所有结果,并求出两位老师恰好一人用“微信”支付,一人用“银行卡”支付的概率.24.晓琳想用所学知识测量塔CD的高度.她找到一栋与塔CD在同一水平面上的楼房,在楼房的A处测得塔CD底部D的俯角为26.6°,测得塔CD顶部C的仰角为45°,AB ⊥BD,CD⊥BD,BD=30m,求塔CD的高度.(参考数据:sin26.6°≈0.45,c0s26.6°≈0.89,tan26.6°≈0.50)25.如图,一次函数y=k1x+b的图象与反比例函数y=的图象相交于A、B两点,其中点A的坐标为(﹣1,4),点B的坐标为(4,n).(1)求这两个函数的表达式;(2)一次函数y=k1x+b的图象交y轴于点C,若点P在反比例函数y=的图象上,使得S△COP=9,求点P的坐标.26.如图,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF 的顶点E与△ABC的斜边BC的中点重合,将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)当点Q在线段CA上时,如图1,求证:△BPE∽△CEQ;(2)当点Q在线段CA的延长线上时,如图2,△BPE和△CEQ是否相似?说明理由;(3)在(2)的条件下,若BP=1,CQ=,求PQ的长.参考答案一、选择题(共计24分)1.解:∵sinα=,α是锐角,∴α的度数为:45°.故选:B.2.解:由题意知,几何体的主视图为,故选:D.3.解:∵同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变.∴圆形物体在阳光下的投影可能是圆形、线段和椭圆形,故选:B.4.解:∵l1∥l2∥l3,∴,∵AB=4,BC=8,DB=3,∴,∴BE=6,∴DE=DB+BE=3+6=9,故选:D.5.解:∵反比例函数y=﹣中,k=﹣6<0,∴此函数的图象在二、四象限,在每一象限内y随x的增大而增大,∵x1<x2<0,∴(x1,y1)、(x2,y2)两点均位于第二象限,∴y1<y2.故选:B.6.解:由题意可得,甲乙两图形相似,且相似比为,根据相似图形的面积比是相似比的平方可得,图形乙的面积是图形甲的面积的4倍,故选:C.7.解:如图,连接AC,∵四边形ABCD为菱形,∴AB=BC=AD,∵CE为边AB的垂直平分线,∴AC=BC,∴AB=AC=BC,∴△ABC是等边三角形,∴∠ABC=60°,∴∠ABD=30°,∵AB=AD,∴∠ADB=∠ABD=30°,故选:C.8.解:∵在每一个象限内y随着x增大而增大,∴k<0,∴一元二次方程的判别式Δ=b2﹣4ac=(2k−1)2−4(k2+14)=﹣4k>0,∴方程有两个不相等的实数根,故选:C.二、填空题(共计15分)9.解:∵关于x的方程ax2﹣2ax+1=0的一个根是﹣1,∴a+2a+1=0,∴3a+1=0,解得a=﹣,故答案为:﹣.10.解:∵正方形网格中,△AOC的顶点均在格点上,∴∠ACO=90°,∴,故答案为:.11.解:因为通过大量重复摸球试验后,发现摸到白球的频率稳定在0.2,所以摸到白球的概率约为0.2,所以白球有200×0.2=40,故答案为:40.12.解:设点A的坐标为(﹣a,),根据中心对称的性质知点B的坐标为(a,﹣),∴点C的坐标为(a,),∴AC=2a,BC=,则△ABC的面积为:×2a×=12.故答案为:12.13.解:如图,取AB的中点E,连接CE,OE,∵∠AOB=90°,在Rt△AOB中,OE=AB=1,∵∠ABC=90°,AE=BE=CB=1,∴在Rt△CBE中,CE==,∵OC≤CE+OE=1+,∴OC的最大值为1+,即点C到原点O距离的最大值是1+,故答案为:1+.三、解答题(共计81分)14.解:方程移项得:(2x﹣9)2﹣5(2x﹣9)=0,分解因式得:(2x﹣9)(2x﹣9﹣5)=0,所以2x﹣9=0或2x﹣14=0,解得:x1=4.5,x2=7.15.解:在Rt△ACD中,,∵,∴,∴AD=6.在Rt△ABD中,,∴∠B=60°,∴∠BAD=90°﹣∠B=30°.∴,∴,∴.16.证明:(1)∵AD∥BC,∴∠DEC=∠ADE.又∵∠C=∠DEA,∴△DEC∽△ADE.解:(2)∵△DEC∽△ADE,∴△DEC与△ADE的周长之比===.17.解:(1)∵函数图象在第二、四象限,∴k﹣5<0,解得:k<5,∴k的取值范围是k<5;(2)∵若x>0时,y随x的增大而减小,∴k﹣5>0,解得:k>5,∴k的取值范围是k>5.18.证明:∵四边形ABCD是正方形∴AB=AD=BC=CD,∠B=∠D=90°∵AE=AF,∴BE=DF.在△BCE和△DCF中,,∴△BCE≌△DCF(SAS),∴CE=CF,∵点M是EF的中点,∴CM⊥EF.19.解:(1)设y与x之间的函数关系式为,根据题意,得:k=xy=60×5=300,∴y与x之间的函数关系式为.(2)当y=0.8时,.20.证明:∵AE2=EB•EC,∴,又∵∠AEB=∠CEA,∴△AEB∽△CEA,∴∠EBA=∠EAC而∠EAC=90°,∴∠EBA=∠EAC=90°,又∵∠EBA+∠CBA=180°,∴∠CBA=90°,而四边形ABCD是平行四边形,∴四边形ABCD是矩形.21.解:设这两个月参观人数的月平均增长率为x,根据题意,得:10(1+x)2=12.1,解得:x1=0.1=10%,x2=﹣2.1(舍去),答:这两个月参观人数的月平均增长率为10%.22.解:根据题意可得,AC∥DE,∴∠DEC=∠ACB.又∵DC⊥BE,AB⊥BE,即∠DCE=∠ABC=90°,∴△ABC∽△DCE,∴.∵BC=10米,CE=2米,CD=1.6米.∴,∴AB=8米,即这棵树的高度AB为8米.23.解:(1)陆老师选择用“微信”支付的概率是,故答案为:;(2)将“微信”、“支付宝”、“银行卡”三种支付方式分别记为:A、B、C,画树状图如下:共有9种等可能的结果,其中两位老师恰好一人用“微信”支付,一人用“银行卡”支付的结果有2种,∴两位老师恰好一人用“微信”支付,一人用“银行卡”支付的概率为.24.解:过A点作AE⊥CD于E点,由题意得,四边形ABDE为矩形,∵∠DAE=26.6°,BD=30m,∴,∴DE=tan26.6°⋅AE≈0.50×30=15m,∵∠CAE=45°,∴∠ACE=45°,∴AE=EC=30m,∴CD=CE+ED=30+15=45(m),∴塔CD的高度是45m.25.解:(1)把点A(﹣1,4)代入反比例函数得,,∴k2=﹣4,∴反比例函数的表达式为,将点B(4,n)代入得,,∴B(4,﹣1),将A、B的坐标代入y=k1x+b得,解得∴一次函数的表达式为y=﹣x+3.(2)在y=﹣x+3中,令x=0,则y=3,∴直线AB与y轴的交点C为(0,3),设P(x,y),由题意得,∴|x|=6,∴x=6或x=﹣6,当x=6时,,此时点P的坐标为;当x=﹣6时,,此时点P的坐标为.∴点P的坐标或.26.(1)证明:如图1中,∵△ABC和△DEF是两个全等的等腰直角三角形,∴∠B=∠C=∠DEF=45°,∵∠BEQ=∠BEP+∠DEF=∠EQC+∠C,∴∠BEP+45°=∠EQC+45°,∴∠BEP=∠EQC,∵∠B=∠C,∴△BPE∽△CEQ;(2)解:结论:△BPE∽△CEQ.理由:如图2中,∵∠BEQ=∠EQC+∠C,即∠BEP+∠DEF=∠EQC+∠C,∴∠BEP+45°=∠EQC+45°,∴∠BEP=∠EQC,又∵∠B=∠C,∴△BPE∽△CEQ;(3)解:∵△BPE∽△CEQ,∴,∵BE=CE,∴,解得:BE=CE=,∴BC=,∴AB=AC=,∴AQ=CQ﹣AC=,AP=AB﹣BP=3﹣1=2,在Rt△APQ中,PQ=.。
九年级第一次模拟考试数 学 试 题本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页,满分150分.考试时间120分钟.注意事项:1.答题前,请考生仔细阅读答题卡上的注意事项,并务必按照相关要求作答.2.考试结束后,监考人员将本试卷和答题卡一并收回.第Ⅰ卷 (选择题 共48分)一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得4分,选错、不选或选出的答案超过一个,均记零分)1. 计算:10212019-⎪⎭⎫ ⎝⎛+的结果是 A. 2021 B. 2019 C. 3 D. 22.下列运算正确的是A. ()523x x =-B. ()42263x x =-C. ()221xx =-- D. 248x x x =÷ 3.如图所示的几何体的俯视图是4.如图,把一块含有45°的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是A.15°B.20°C.25°D.30°第4题图 第5题图第3题图D .C .B .A.5.为了解一路段车辆行驶速度的情况,交警统计了该路段上午7:00至9:00来往车辆的车速(单位:千米/时),并绘制成如图所示的条形统计图.这些车速的众数、中但购买30支铅笔和5本笔记本只需85元,设每支铅笔x 元,每本笔记本y 元,则可列方程组A .B .C .D . 7. 二次函数)0(2≠++=a c bx ax y 的图象如图,则反比例函数x a y -=与一次函数c bx y -=在同一坐标系内的图象大致是A .B .C .D .8. 关于x 的不等式组⎩⎨⎧-≥->-)2(3320x x m x 恰有四个整数解,那么m 的取值范围为 A.1-≥m B.0<m C.01<≤-m D.01≤<-m9. 如图,AB 是⊙O 的直径,PA 切⊙O 于点A ,PO 交⊙O 于点C ,连接AC ,BC 。
人教版九年级数学中考模拟试卷一、选择题:本大题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案的代号填涂在答题卡上.1.5的绝对值是()A.5 B.﹣5 C.±5 D.2.在下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C. D.3.在我市2016年春季房地产展示交易会上,全市房地产开发企业提供房源的参展面积达到5400000平方米,将数据5400000用科学记数法表示为()A.0.54×107B.54×105C.5.4×106D.5.4×1074.函数y=中自变量x的取值范围是()A.x>3 B.x<3 C.x≤3 D.x≥﹣35.下列计算中,正确的是()A.2a+3b=5ab B.(3a3)2=6a6C.a6+a2=a3D.﹣3a+2a=﹣a6.如图,AB∥CD,CP交AB于O,AO=PO,若∠C=50°,则∠A的度数为()A.25° B.35° C.15° D.50°7.如图,四边形ABCD内接于⊙O,若∠B=130°,则∠AOC的大小是()A.130°B.120°C.110°D.100°8.下列调查中,最适合采用抽样调查的是()A.乘坐高铁对旅客的行李的检查B.了解全校师生对重庆一中85周年校庆文艺表演节目的满意程度C.调查初2016级15班全体同学的身高情况D.对新研发的新型战斗机的零部件进行检查9.如图是一组有规律的图案,第1个图案由1个▲组成,第2个图案由4个▲组成,第3个图案由7个▲组成,第4个图案由10个▲组成,…,则第7个图案▲的个数为()A.16 B.17 C.18 D.1910.当a,b互为相反数时,代数式a2+ab﹣4的值为()A.4 B.0 C.﹣3 D.﹣411.如图1,某超市从一楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的坡度为1:2.4,AB的长度是13米,MN是二楼楼顶,MN∥PQ,C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,在自动扶梯底端A处测得C点的仰角为42°,则二楼的层高BC约为(精确到0.1米,sin42°≈0.67,tan42°≈0.90)()A.10.8米B.8.9米C.8.0米D.5.8米12.使得关于x的不等式组有解,且使分式方程﹣=2有非负整数解的所有的m的和是()A.﹣2 B.﹣3 C.﹣7 D.0二、填空题(本大题6小题,每小题题4分,共24分)请将每小题的答案直接填写在答题卡中对应的横线上.13.已知△ABC与△DEF的相似比为2:3,则△ABC与△DEF的面积比为.14.计算(﹣)﹣1+(2﹣1)0﹣|tan45°﹣2|= .15.从﹣1,0,1,3,4五个数字中,随机抽取一个数,记为a.那么,使一次函数y=﹣3x+a 不经过三象限的概率是.16.如图,在△ABC中,AB=AC,∠A=120°,BC=2,⊙A与BC相切于点D,且交AB,AC 于M,N两点,则图中阴影部分的面积是(保留π).17.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步600米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,则b= .18.如图,在矩形ABCD中,AB=4,点E,F分别在BC,CD上,将△ABE沿AE折叠,使点B 落在AC上的点B′处,又将△CEF沿EF折叠,使点C落在直线EB′与AD的交点C′处,DF= .三、解答题(本大题2小题,每小题8分,共16分19.(8分)如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AE=DF,∠A=∠D.求证:AB=CD.20.(8分)某教师为了对学生零花钱的使用进行教育指导,对全班50名学生每人一周内的零花钱数额进行统计调查,并绘制了统计表及统计图,如图所示.(1)这50名学生每人一周内的零花钱数额的平均数是元/人;(2)如果把全班50名学生每人一周内的零花钱按照不同数额人数绘制成扇形统计图,则一周内的零花钱数额为20元的人数所占的圆心角度数是.(3)据统计该校的1500人中,每人每周的零花钱有75%在学校超市消费,试估计该校学生每周在学校超市消费的零花钱总金额为多少元?四、解答题(本大题4小题,每小题10分,共40分)解答题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.21.(10分)化简下列各式(1)(a﹣b)2+(2a﹣b)(a﹣2b)(2).22.(10分)如图,Rt△ABO的顶点A是双曲线y=与直线y=﹣x﹣(k+1)在第二象限的交点.AB⊥x轴于B,且S△ABO=.(1)求这两个函数的解析式;(2)求直线与双曲线的两个交点A、C的坐标和△AOC的面积.23.(10分)小程经营的是一家服装店,店里有一款毛衣和一款牛仔裤销售非常可观,至2016年1月开店以来,平均每天可卖出毛衣10件,牛仔裤20件,已知买1件毛衣和3件牛仔裤与买2件毛衣和1件牛仔裤需要的钱一样多,都为500元.(1)求买一件毛衣和一件牛仔裤各需要多少钱?(2)双十一将至,小程经营的网店提前对该毛衣和牛仔裤开启了促销活动,活动当天,毛衣每件售价降低了a%,销售量在原来的基础上上涨2a%,牛仔裤每件售价也降低了a%,但销售量和原来一样,当天,这两件商品总的销售额为3960元,求a的值.24.(10分)当一个多位数位数为偶数时,在其中间位插入一位数k,(0≤k≤9,且k为整数)得到一个新数,我们把这个新数称为原数的关联数.如:435729中间插入数字6可得435729的一个关联数4356729,其中435729=729+435×1000,4356729=729+6×1000+435×10000.请阅读以上材料,解决下列问题.(1)若一个三位关联数是原来两位数的9倍,请找出满足这样的三位关联数;(2)对于任何一个位数为偶数的多位数,中间插入数字m,得其关联数(0≤m≤9,且m为3的倍数),试证明:所得的关联数与原数10倍的差一定能被3整除.五.解答题.(本大题共2小题,25题10分,共22分)解答题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.25.(10分)△ABC是等腰直角三角形,AC=BC,∠ACB=90°,(1)如图1,点M是BA延长线上一点,连结CM,K是AC上一点,BK延长线交CM于N,∠MBN=∠MCA=15°,BK=8求CM的长度.(2)如图2,直线l经过点C,AF⊥l于点F,AE⊥l于点E,点D是AB的中点,连接ED.求证:AF=BE+DE.26.(12分)如图,抛物线y=﹣x2+x+3 与 x 轴交于点 A,点 B,与 y 轴交于点C,点D 与点C关于 x 轴对称,点 P 是 x 轴上的一个动点,设点P 的坐标为(m,0),过点P 作 x 轴的垂线 l 交抛物线于点 Q.(1)求直线BD的解析式;(2)当点P在线段OB上运动时,直线 l 交 BD 于点M,当△DQB面积最大时,在x轴上找一点E,使QE+EB的值最小,求E的坐标和最小值.(3)在点P的运动过程中,是否存在点Q,使△BDQ是以BD为直角边的直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题:本大题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案的代号填涂在答题卡上.1.5的绝对值是()A.5 B.﹣5 C.±5 D.【考点】15:绝对值.【分析】根据绝对值的定义,可直接得出5的绝对值.【解答】解:|5|=5,故选:A.【点评】本题考查了绝对值的定义,是中考的常见题型,比较简单,熟记绝对值的定义是解决本题的关键.2.在下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C. D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、不是轴对称图形,也不是中心对称图形.故错误;C、是轴对称图形,也是中心对称图形.故正确;D、不是轴对称图形,是中心对称图形.故错误.故选C.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.在我市2016年春季房地产展示交易会上,全市房地产开发企业提供房源的参展面积达到5400000平方米,将数据5400000用科学记数法表示为()A.0.54×107B.54×105C.5.4×106D.5.4×107【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:5400000用科学记数法表示为5.4×106,故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.函数y=中自变量x的取值范围是()A.x>3 B.x<3 C.x≤3 D.x≥﹣3【考点】E4:函数自变量的取值范围.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,3﹣x>0,解得x<3.故选B.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.5.下列计算中,正确的是()A.2a+3b=5ab B.(3a3)2=6a6C.a6+a2=a3D.﹣3a+2a=﹣a【考点】47:幂的乘方与积的乘方;35:合并同类项.【分析】合并同类项法则,积的乘方分别求出每个式子的值,再判断即可.【解答】解:A、2a和3b不能合并,故本选项错误;B、结果是9a6,故本选项错误;C、a6和a2不能合并,故本选项错误;D、结果是﹣a,故本选项正确;故选D.【点评】本题考查了同类项,合并同类项,积的乘方的应用,能正确运用法则进行计算是解此题的关键,难度不是很大.6.如图,AB∥CD,CP交AB于O,AO=PO,若∠C=50°,则∠A的度数为()A.25° B.35° C.15° D.50°【考点】JA:平行线的性质;KH:等腰三角形的性质.【分析】根据AB∥CD,CP交AB于O,可得∠POB=∠C,再利用AO=PO,可得∠A=∠P,然后即可求得∠A的度数.【解答】解:∵AB∥CD,CP交AB于O,∴∠POB=∠C,∵∠C=50°,∴∠POB=50°,∵AO=PO,∴∠A=∠P,∴∠A=25°.故选:A.【点评】此题主要考查学生对平行线的性质,三角形外角的性质,等腰三角形的性质等知识点的理解和掌握,难易程度适中,是一道很典型的题目.要求学生应熟练掌握.7.如图,四边形ABCD内接于⊙O,若∠B=130°,则∠AOC的大小是()A.130°B.120°C.110°D.100°【考点】M6:圆内接四边形的性质;M5:圆周角定理.【分析】先根据圆内接四边形的性质得到∠D=180°﹣∠B=50°,然后根据圆周角定理求∠AOC.【解答】解:∵∠B+∠D=180°,∴∠D=180°﹣130°=50°,∴∠AOC=2∠D=100°.故选D.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了圆内接四边形的性质.8.下列调查中,最适合采用抽样调查的是()A.乘坐高铁对旅客的行李的检查B.了解全校师生对重庆一中85周年校庆文艺表演节目的满意程度C.调查初2016级15班全体同学的身高情况D.对新研发的新型战斗机的零部件进行检查【考点】V2:全面调查与抽样调查.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【解答】解:乘坐高铁对旅客的行李的检查适合采用全面调查,A错误;了解全校师生对重庆一中85周年校庆文艺表演节目的满意程度适合采用全抽样调查,B正确;调查初2016级15班全体同学的身高情况适合采用全面调查,C错误;对新研发的新型战斗机的零部件进行检查适合采用全面调查,D错误,故选:B.【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.9.如图是一组有规律的图案,第1个图案由1个▲组成,第2个图案由4个▲组成,第3个图案由7个▲组成,第4个图案由10个▲组成,…,则第7个图案▲的个数为()A.16 B.17 C.18 D.19【考点】38:规律型:图形的变化类.【分析】仔细观察图形可知:第一个图形有1个三角形;第二个图形有3×2﹣3+1=4个三角形;第三个图形有3×3﹣3+1=7个三角形;第四个图形有3×4﹣3+1=10个三角形;…第n 个图形有3n﹣3+1=3n﹣2个三角形;进一步代入求得答案即可.【解答】解:观察发现:第一个图形有1个三角形;第二个图形有3×2﹣3+1=4个三角形;第三个图形有3×3﹣3+1=7个三角形;第四个图形有3×4﹣3+1=10个三角形;…第n个图形有3n﹣3+1=3n﹣2个三角形;则第7个图案中▲的个数为3×7﹣2=19.故选D.【点评】此题考查图形的变化规律,从简单情形入手,找到一般规律,利用规律,解决问题.10.当a,b互为相反数时,代数式a2+ab﹣4的值为()A.4 B.0 C.﹣3 D.﹣4【考点】53:因式分解﹣提公因式法.【分析】首先利用相反数的定义得出a+b=0,再利用提取公因式法将原式变形求出答案.【解答】解:∵a,b互为相反数,∴a+b=0,∴a2+ab﹣4=a(a+b)﹣4=0﹣4=﹣4.故选:D.【点评】此题主要考查了提取公因式的应用以及相反数的定义,正确将原式变形是解题关键.11.如图1,某超市从一楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的坡度为1:2.4,AB的长度是13米,MN是二楼楼顶,MN∥PQ,C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,在自动扶梯底端A处测得C点的仰角为42°,则二楼的层高BC约为(精确到0.1米,sin42°≈0.67,tan42°≈0.90)()A.10.8米B.8.9米C.8.0米D.5.8米【考点】TA:解直角三角形的应用﹣仰角俯角问题;T9:解直角三角形的应用﹣坡度坡角问题.【分析】延长CB交PQ于点D,根据坡度的定义即可求得BD的长,然后在直角△CDA中利用三角函数即可求得CD的长,则BC即可得到.【解答】解:延长CB交PQ于点D.∵MN∥PQ,BC⊥MN,∴BC⊥PQ.∵自动扶梯AB的坡度为1:2.4,∴==.设BD=5k(米),AD=12k(米),则AB=13k(米).∵AB=13(米),∴k=1,∴BD=5(米),AD=12(米).在Rt△CDA中,∠CDA=90゜,∠CAD=42°,∴CD=AD•tan∠CAD≈12×0.90≈10.8(米),∴BC=10.8﹣5≈5.8(米).故选:D.【点评】本题考查仰角和坡度的定义,要求学生能借助仰角构造直角三角形并解直角三角形.12.使得关于x的不等式组有解,且使分式方程﹣=2有非负整数解的所有的m的和是()A.﹣2 B.﹣3 C.﹣7 D.0【考点】B2:分式方程的解;CB:解一元一次不等式组.【分析】根据不等式组有解,可得m的范围,根据分式方程有非负整数解,可得5+m是3的倍数,根据有理数的加法,可得答案.【解答】解:不等式组整理得:,由不等式组有解,得到m﹣9<﹣2m+6,解得:m<5,分式方程整理得: +=2,去分母得:1+m﹣x=2x﹣4,解得:x=,由分式方程﹣=2有非负整数解,得5+m=0,m1=﹣5,5+m=3,m2=﹣2,5+m=6,m3=1(舍),5+m=9,m4=4,使得关于x的不等式组有解,且使分式方程﹣=2有非负整数解的所有的m的和﹣5+(﹣2)+4=﹣3,故选:B.【点评】此题考查了分式方程的解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.二、填空题(本大题6小题,每小题题4分,共24分)请将每小题的答案直接填写在答题卡中对应的横线上.13.已知△ABC与△DEF的相似比为2:3,则△ABC与△DEF的面积比为4:9 .【考点】S7:相似三角形的性质.【分析】直接根据相似三角形的性质即可得出结论.【解答】解:∵△ABC∽△DEF,且△ABC与△DEF的相似比为2:3,∴S△ABC:S△DEF=()2=4:9.故答案为:4:9.【点评】本题考查的是相似三角形的性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键.14.计算(﹣)﹣1+(2﹣1)0﹣|tan45°﹣2|= ﹣2.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义化简即可得到结果.【解答】解:原式=﹣2+1﹣2+1=﹣2,故答案为:﹣2【点评】此题考查了实数的运算,零指数幂、负整数指数幂,熟练掌握运算法则是解本题的关键.15.从﹣1,0,1,3,4五个数字中,随机抽取一个数,记为a.那么,使一次函数y=﹣3x+a 不经过三象限的概率是.【考点】X4:概率公式;F7:一次函数图象与系数的关系.【分析】根据一次函数y=﹣3x+a不经过三象限得出a的符号,进而可得出结论.【解答】解:∵一次函数y=﹣3x+a不经过三象限,∴a≥0,∴五个数字中符合条件的数有:0,1,3,4共4个,∴一次函数y=﹣3x+a不经过三象限的概率=.故答案为:.【点评】本题考查的是概率公式,熟知概率=所求情况数与总情况数之比是解答此题的关键.16.如图,在△ABC中,AB=AC,∠A=120°,BC=2,⊙A与BC相切于点D,且交AB,AC 于M,N两点,则图中阴影部分的面积是(保留π).【考点】MO:扇形面积的计算;KQ:勾股定理;MC:切线的性质.【分析】我们只要根据勾股定理求出AD的长度,再用三角形的面积减去扇形的面积即可.【解答】解:连接AD,∵⊙A与BC相切于点D,AB=AC,∠A=120°,∴∠ABD=∠ACD=30°,AD⊥BC,∴AB=2AD,由勾股定理知BD2+AD2=AB2,即+AD2=(2AD)2解得AD=1,△ABC的面积=2×1÷2=,扇形MAN得面积=π×12×=,所以阴影部分的面积=.【点评】解此题的关键是求出圆的半径,即三角形的高,再相减即可.17.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步600米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,则b= 192 .【考点】FH:一次函数的应用.【分析】由图象可以看出甲2秒跑了8米可以求出甲的速度为4米/秒,由乙跑的距离﹣甲跑的距离就可以得出结论.【解答】解:由图象,得甲的速度为:8÷2=4米/秒,乙走完全程时甲乙相距的路程为:b=600﹣4(100+2)=192,故答案为:192.【点评】此题考查了一次函数的应用,追击问题的运用,解答时求出甲的速度是解答本题的关键.18.如图,在矩形ABCD中,AB=4,点E,F分别在BC,CD上,将△ABE沿AE折叠,使点B 落在AC上的点B′处,又将△CEF沿EF折叠,使点C落在直线EB′与AD的交点C′处,DF= .【考点】PB:翻折变换(折叠问题);LB:矩形的性质.【分析】首先连接CC′,可以得到CC′是∠EC′D的平分线,所以CB′=CD,又AB′=AB,所以B′是对角线中点,AC=2AB,所以∠ACB=30°,即可得出答案.【解答】解:连接CC′,∵将△ABE沿AE折叠,使点B落在AC上的点B′处,又将△CEF沿EF折叠,使点C落在EB′与AD的交点C′处.∴EC=EC′,∴∠1=∠2,∵∠3=∠2,∴∠1=∠3,在△CC′B′与△CC′D中,,∴△CC′B′≌△CC′D,∴CB′=CD,又∵AB′=AB,∴AB′=CB′,所以B′是对角线AC中点,即AC=2AB=8,所以∠ACB=30°,∴∠BAC=60°,∠ACC′=∠DCC′=30°,∴∠DC′C=∠1=60°,∴∠DC′F=∠FC′C=30°,∴C′F=CF=2DF,∵DF+CF=CD=AB=4,∴DF=.故答案为:.【点评】此题主要考查了翻折变换的性质和角平分线的判定与性质,解答此题要抓住折叠前后的图形全等的性质,得出CC′是∠EC′D的平分线是解题关键.三、解答题(本大题2小题,每小题8分,共16分19.如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AE=DF,∠A=∠D.求证:AB=CD.【考点】KD:全等三角形的判定与性质.【分析】根据平行线的性质得出∠B=∠C,再根据AAS证出△ABE≌△DCF,从而得出AB=CD.【解答】解:∵AB∥CD,∴∠B=∠C,在△ABE和△DCF中,,∴△ABE≌△DCF,∴AB=CD.【点评】本题考查了全等三角形的判定与性质,用到的知识点是平行线的性质,全等三角形的判定和性质,关键是根据平行线的性质证出∠B=∠C.20.某教师为了对学生零花钱的使用进行教育指导,对全班50名学生每人一周内的零花钱数额进行统计调查,并绘制了统计表及统计图,如图所示.(1)这50名学生每人一周内的零花钱数额的平均数是12 元/人;(2)如果把全班50名学生每人一周内的零花钱按照不同数额人数绘制成扇形统计图,则一周内的零花钱数额为20元的人数所占的圆心角度数是36°.(3)据统计该校的1500人中,每人每周的零花钱有75%在学校超市消费,试估计该校学生每周在学校超市消费的零花钱总金额为多少元?【考点】VB:扇形统计图;V5:用样本估计总体;W2:加权平均数.【分析】(1)根据加权平均数的计算公式计算可得;(2)用样本中零花钱数额为20元的人数所占的比例乘以360°即可得;(3)用平均数乘以总人数,再乘以75%即可得.【解答】解:(1)平均数是×(5×10+10×15+15×20+20×5)=12元,故答案为:12;(2)一周内的零花钱数额为20元的人数所占的圆心角度数是360°×=36°,故答案为:36°;(3)1500×12×75%=13500元,答:估计该校学生每周在学校超市消费的零花钱总金额为13500元.【点评】此题考查了条形统计图、扇形统计图以及用样本估计总体,弄清题中的数据是解本题的关键.四、解答题(本大题4小题,每小题10分,共40分)解答题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.21.(10分)(2017•开县一模)化简下列各式(1)(a﹣b)2+(2a﹣b)(a﹣2b)(2).【考点】6C:分式的混合运算;4I:整式的混合运算.【分析】(1)利用乘法公式展开,然后合并同类项即可;(2)先把括号内通分后进行同分母的减法运算,再把分子分母因式分解和除法运算化为乘法运算,然后约分即可.【解答】解:(1)原式=a2﹣2ab+b2+2a2﹣ab﹣4ab+2b2=3a2﹣7ab+3b2;(2)原式=、====.【点评】本题考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的.最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.也考查了整式的混合运算.22.(10分)(2004•黄冈)如图,Rt△ABO的顶点A是双曲线y=与直线y=﹣x﹣(k+1)在第二象限的交点.AB⊥x轴于B,且S△ABO=.(1)求这两个函数的解析式;(2)求直线与双曲线的两个交点A、C的坐标和△AOC的面积.【考点】GB:反比例函数综合题.【分析】(1)欲求这两个函数的解析式,关键求k值.根据反比例函数性质,k绝对值为3且为负数,由此即可求出k;(2)交点A、C的坐标是方程组的解,解之即得;从图形上可看出△AOC的面积为两小三角形面积之和,根据三角形的面积公式即可求出.【解答】解:(1)设A点坐标为(x,y),且x<0,y>0,则S△ABO=•|BO|•|BA|=•(﹣x)•y=,∴xy=﹣3,又∵y=,即xy=k,∴k=﹣3.∴所求的两个函数的解析式分别为y=﹣,y=﹣x+2;(2)由y=﹣x+2,令x=0,得y=2.∴直线y=﹣x+2与y轴的交点D的坐标为(0,2),A、C两点坐标满足∴交点A为(﹣1,3),C为(3,﹣1),∴S△AOC=S△ODA+S△ODC=OD•(|x1|+|x2|)=×2×(3+1)=4.【点评】此题首先利用待定系数法确定函数解析式,然后利用解方程组来确定图象的交点坐标,及利用坐标求出线段和图形的面积.23.(10分)(2017•开县一模)小程经营的是一家服装店,店里有一款毛衣和一款牛仔裤销售非常可观,至2016年1月开店以来,平均每天可卖出毛衣10件,牛仔裤20件,已知买1件毛衣和3件牛仔裤与买2件毛衣和1件牛仔裤需要的钱一样多,都为500元.(1)求买一件毛衣和一件牛仔裤各需要多少钱?(2)双十一将至,小程经营的网店提前对该毛衣和牛仔裤开启了促销活动,活动当天,毛衣每件售价降低了a%,销售量在原来的基础上上涨2a%,牛仔裤每件售价也降低了a%,但销售量和原来一样,当天,这两件商品总的销售额为3960元,求a的值.【考点】AD:一元二次方程的应用.【分析】(1)可设买一件毛衣需要x元钱,买一件牛仔裤需要y元钱,根据等量关系:①买1件毛衣的钱数+买3件牛仔裤的钱数=500元;②买2件毛衣的钱数+买1件牛仔裤的钱数=500元,列出方程组求解即可;(2)根据等量关系:两件商品总的销售额为3960元,列出方程求解即可.【解答】解:(1)设买一件毛衣需要x元钱,买一件牛仔裤需要y元钱,依题意有,解得.答:买一件毛衣需要200元钱,买一件牛仔裤需要100元钱.(2)依题意有:200(1﹣a%)×10(1+2a%)+100(1﹣a%)×20=3960,解得a1=﹣10(舍去),a2=10.故a的值为10.【点评】考查了二元一次方程组的应用,一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程(组),再求解.24.(10分)(2017•开县一模)当一个多位数位数为偶数时,在其中间位插入一位数k,(0≤k≤9,且k为整数)得到一个新数,我们把这个新数称为原数的关联数.如:435729中间插入数字6可得435729的一个关联数4356729,其中435729=729+435×1000,4356729=729+6×1000+435×10000.请阅读以上材料,解决下列问题.(1)若一个三位关联数是原来两位数的9倍,请找出满足这样的三位关联数;(2)对于任何一个位数为偶数的多位数,中间插入数字m,得其关联数(0≤m≤9,且m为3的倍数),试证明:所得的关联数与原数10倍的差一定能被3整除.【考点】#6:约数与倍数;1C:有理数的乘法.【分析】(1)设原数为ab=10a+b,其关联数为amb=100a+10m+b,根据关联数为原数的9倍即可得出b与a、m之间的关系,结合a、b、m的特点即可得出结论;(2)设原数为a1a2a3…a n﹣2a n﹣1a n(n为偶数),关联数为a1a2a3…m…a n﹣2a n﹣1a n,找出原数的10倍,将关联数与原数10倍相减得:m•﹣9×(…a n﹣1a n),再根据m 和9均为3的倍数,由此即可证出结论.【解答】(1)解:设原数为ab=10a+b,其关联数为amb=100a+10m+b,∵amb=9ab,∴100a+10m+b=9×(10a+b),∴5a+5m=4b,∴5(a+m)=4b,∵b、m为整数,a为正整数,且a、b、m均为一位数,∴b=5,a+m=4,∴a=1,m=3;a=2,m=2;a=3,m=1;a=4,b=0.∴满足条件的三位关联数为135、225、315和405.(2)证明:设原数为a1a2a3…a n﹣2a n﹣1a n(n为偶数),关联数为a1a2a3…m…a n﹣2a n﹣1a n,原数10倍为a1a2a3…a n﹣2a n﹣1a n0,将关联数与原数10倍相减得:m•﹣9×(…a n﹣1a n),∵m和9均为3的倍数,∴关联数与原数10倍的差一定能被3整除.【点评】本题考查了约数与倍数以及有理数的乘法,解题的关键是:(1)找出b与a、m(2)将关联数与原数的10做差得出m•﹣9×(…a n﹣1a n).本之间的关系;题属于中档题,难度不大,解决该题型题目时,设出合适的未知量是解题的关键.五.解答题.(本大题共2小题,25题10分,共22分)解答题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.25.(10分)(2017•开县一模)△ABC是等腰直角三角形,AC=BC,∠ACB=90°,(1)如图1,点M是BA延长线上一点,连结CM,K是AC上一点,BK延长线交CM于N,∠MBN=∠MCA=15°,BK=8求CM的长度.(2)如图2,直线l经过点C,AF⊥l于点F,AE⊥l于点E,点D是AB的中点,连接ED.求证:AF=BE+DE.【考点】KD:全等三角形的判定与性质;KW:等腰直角三角形.【分析】(1)如图1,过C作CD⊥AB于D,根据等腰直角三角形的性质得到∠ABC=∠BAC=45°,得到∠KBC=30°,根据直角三角形的性质得到BC=4,求得CD=BC=2,解直角三角形即可得到结论;(2)如图2,连接DF,CD,根据等腰直角三角形的性质得到CD=BD,∠CDB=90°,由全等三角形的性质得到BE=CF,CE=AF,推出△BDE≌△CDF,根据全等三角形的性质得到∠EDB=∠FDC,DE=DF,根据余角的性质得到∠EDF=90°,根据等腰直角三角形的性质得到EF=DE,于是得到结论.【解答】解:(1)如图1,过C作CD⊥AB于D,∵AC=BC,∠ACB=90°,∴∠ABC=∠BAC=45°,∵∠MBN=15°,∴∠KBC=30°,∵BK=8,∴BC=4,∴CD=BC=2,∵∠MCA=15°,∠BAC=45°,∴∠M=30°,∴CM=2CD=4;(2)如图2,连接DF,CD,∵BE⊥CE,∴∠BEC=∠ACB=90°,∴∠EBC+∠BCE=∠BCE+∠ACF=90°,∴∠EBC=∠CAF,∵AF⊥l于点F,∴∠AFC=90°,在△BCE与△ACF中,。
命题人单位:十里铺中学 姓名:李红梅 评价等级:优 良 达标 待达标一.选择题(本大题共8个小题,每题3分,共24分)1. 32-的绝对值是 ( )A .32-B .32C .23- D .232. 下列运算正确的是( )A. 532)(a a =B. 1)14.3(0=-πC. 532=+D. 632-=-3. 国家体育场“鸟巢”工程总占地面积21公顷,建筑面积258 0002m 。
将举行奥运会、残奥会开闭幕式、田径比赛及足球比赛决赛。
奥运会后将成为北京市具有地标性的体育建筑和奥运遗产。
其中,258 0002m 用科学计数法表示为( ). A .258×310 B .25.8×410 C .2.58×510 D .0.258×610 4.小亮观察下边的两个物体,得到的俯视图是( )5. .已知:如图,∠DAC 是△ABC 的一个外角,∠DAC=850, ∠B=450,则∠C 的度数为( )第4题图DCBAA .500 B. 450 C.400. D. 3506.在同一直角坐标系中,函数y=kx-k 与ky x=(k ≠0)的图象大致是( )中任意摸出一球,不是..白球的概率是( ) A.415B.13 C.25 D.358. 某市道路改造中,需要铺设一条长为1200米的管道,为了尽量减少施工对交通造成的影 响,实际施工时,工作效率比原计划提高了25%,结果提前了8天完成任务。
设原计划每天铺设管道x 米,根据题意,则下列方程正确的是( ) A . 12001200825%x x -= B . 1200120081.25x x-= C .1200120081.25x x-= D .120012008(125%)x x -=- 二.填空题(本大题共7小题每空3分,共21分) 9. 当x ≠________时,分式13x -有意义。
10. 若点P (m , 1)在第二象限,则点B (1+-m ,―1)必在第 象限;11. 不等式组⎩⎨⎧〉〈-1423x x 的解集是12. 已知在Rt ABC △中,∠C 为直角,AC = 4cm ,BC = 3cm ,sin∠A=13. 双曲线xky =经过点(2 ,―3),则k = ; 14. 如图,现有一圆心角为90°,半径为8cm 的扇形纸片,用它恰好围成一个圆锥的侧面(接缝 忽略不计),则该圆锥底面圆的半径为 .A B CD15. 用同样规格的黑白两种颜色的正方形瓷砖按下图方式铺地板,则第(3)个图形中有黑色瓷砖 块,第n 个图形中需要黑色瓷砖 块(用含n 的代数式表示).三. 解答题(本大题共9个小题,共75分) 16. (6分)计算:102(2008)π---+17. (6分)解方程:2512112x x+=--18.(8分)如图,E F ,是平行四边形ABCD 的对角线AC 上的点,CE AF =. 请你猜想:BE 与DF 有怎样的位置..关系和数量..关系?并对你的猜想加以证明. 猜想: 证明:19.(8分) 有四张背面相同的纸牌A ,B ,C ,D ,其正面分别画有四个不同的几何图形(如图).小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸出一张. ⑴ 用树状图(或列表法)表示 两次摸牌所有可能出现的结果(1) (2) (3) ……ABCDE F正五边形平行四边形圆正三角形DCBA第19题图(纸牌可用A ,B ,C ,D 表示); ⑵ 求摸出两张牌面图形都是 中心对称图形的纸牌的概率.20.(9分)九(3)班学生参加学校组织的“绿色奥运”知识竞赛,老师将学生的成绩按10分的组距分段,统计每个分数段出现的频数,填入频数分布表,并绘制频数分布直方图.九(3)班“绿色奥运”知识竞赛成绩频数分布表(1)频数分布表中a= ,b= ;(2)把频数分布直方图补充完整; (3)学校设定成绩在69.5分以上学生将获得一等奖或二等奖, 一奖 奖励作业本15本及奖金50元, 二 等奖奖励作业本10本及奖金30元, 已知这部分学生共获得作业本335 本,请你求出他们共获得的奖金.九(3)班“绿色奥运”知识竞赛成绩(分)21.(8分)如图,点A 、B 为地球仪的南、北极点,直线AB 与放置地球仪的平面交于点D ,所成的角度约为67°,半径OC 所在的直线与放置平面垂直,垂足为点E.DE=15cm,AD=14cm.求半径OA 的长. (精确到0.1cm)【参考数据:sin67°≈0.92,cos67°≈0.39,tan67°≈2.36】)22.(8分) 如图是某设计师在方格纸中设计图案的一部分,请你帮他完成余下的工作:(1)作出关于直线AB 的轴对称图形; (2)将你画出的部分连同原图形绕点O 逆时针旋转90°;(3)发挥你的想象,给得到的图案适当涂上阴影,让它变得更加美丽.670DEOCBA AO B23.(10分) “一方有难,八方支援”。
在抗击“5.12”汶川特大地震灾害中,某市组织20辆汽车装运食品、药品、生活用品三种救灾物资共100吨到灾民安置点.按计划20辆汽车都要装运,每辆汽车只能装运同一种救灾物资且必须装满.根据右表提供的信息,解答下列问题:(1)设装运食品的车辆数为x ,装运药品的车辆数为y .求y 与x 的函数关系式; (2)如果装运食品的车辆数不少于5辆,装运药品的车辆数不少于4辆, 那么车辆的安排有几种方案?并写出每种安排方案;若要总运费最少,应采用哪种安排方案?并求出最少总运费.24.(本题满分12分) 如图所示,已知抛物线21y x =-与x 轴交于A 、B 两点,与y 轴交于点C .(1)求A 、B 、C 三点的坐标.(2)过点A 作AP ∥CB 交抛物线于点P ,求四边形ACBP(3)在x 轴上方的抛物线上是否存在一点M ,过M 作MG ⊥x 轴于点G ,使以A 、M 、G 三点为顶点的三角形 与∆PCA 相似.若存在,请求出M九年级数学模拟试题答案一、选择题(本大题共8个小题,每小题只有一个正确选项,每小题3分,满分24分)二、填空题(本大题共7个小题,每小题3分,满分21分)9.3 10.四 11.X<1<2 12.3/5 13.-6 14. 2 15.10 、3n+1三、解答题(本大题共9个小题,满分75分) 16.(6分)解:原式= 117.(6分)解:经检验:x 1=0,x 2=2是原方程的根. 18.(8分)解:猜想:BE DF ∥,BE DF = 证明:证法一:如图19-1四边形ABCD 是平行四边形.BC AD ∴= 12∠=∠又CE AF =BCE DAF ∴△≌△BE DF ∴= 34∠=∠ BE DF ∴∥ 证法二:如图19-2连结BD ,交AC 于点O ,连结DE ,BF . 四边形ABCD 是平行四边形ABCDE FBO OD∴=,AO CO=又AF CE=AE CF∴=EO FO∴=∴四边形BEDF是平行四边形BE DF∴∥19.(8分)解:1)树状图如下:A B C DA (A,A)(A,B)(A,C)(A,D)B (B,A)(B,B)(B,C)(B,D)C (C,A)(C,B)(C,C)(C,D)D (D,A)(D,B)(D,C)(D,D)(2)摸出两张牌面图形都是中心对称图形的纸牌有4种情况,即:(B,B),(B,C),(C,B),(C,C).故所求概率是41 164=20.(9分) 解:(1)频数分布表中a= 2 ,b= 0.125 ;(2)(2)图略(3)由表得,有29名同学获得一等奖或二等奖.设有x名同学获得一等奖, 则有(29-x)名同学获得二等奖,根据题意得151029335x x+-=()解得 x=9∴ 50x+30(29-x)=1050九(3)班“绿色奥运”知识竞赛成绩54.5 64.5 74.5 84.5 94.5频数(人)成绩(分) 026810121491014所以他们得到的奖金是1050元 21.(8分)解:OA=24.4(cm) 22.(8分)解:(略)23.(10分)解:(1)根据题意,装运食品的车辆数为x ,装运药品的车辆数为y , 那么装运生活用品的车辆数为(20)x y --. ············· 1分 则有654(20)100x y x y ++--=, ·················· 2分整理得, 202y x =-. ···················· 3分 (2)由(1)知,装运食品,药品,生活用品三种物资的车辆数分别为202x x x -,,,由题意,得5202 4.x x ⎧⎨-⎩≥,≥ ····················· 5分解这个不等式组,得85≤≤x 因为x 为整数,所以x 的值为 5,6,7,8. 所以安排方案有4种方案一:食品5辆、药品10辆,生活用品5辆; 方案二:食品6辆、药品8辆,生活用品6辆;方案三:食品7辆、药品6辆,生活用品7辆; 方案四:食品8辆、药品4辆,生活用品8辆. 设总运费为W (元),则W =6x ×120+5(20-2x )×160+4x ×100=16000-480x . 因为k =-480<0,所以W 的值随x 的增大而减小.要使总运费最少,需W 最小,则x =8. 0列表如下:24.(本题满分12分)(1) A(1,0)- B(1,0) C(0,1)-···(2分)(2)∵OA=OB=OC=1∴∠BAC=∠ACO=∠BCO=45∵AP∥CB,∴∠PAB=45过点P作PE⊥x轴于E,则∆APE令OE=a,则PE=1a+∴P(,1)a a+∵点P在抛物线21y x=-上∴211a a+=-解得12a=,21a=-(不合题意,舍去)∴PE=3····························4分)∴四边形ACBP的面积S=12AB•OC+12AB•PE=112123422⨯⨯+⨯⨯=···········6分)(3)假设存在∵∠PAB=∠BAC =45∴PA⊥AC∵MG⊥x轴于点G,∴∠MGA=∠PAC =90在Rt△AOC中,OA=OC=1∴在Rt△PAE中,AE=PE=3∴AP= 8分)设M点的横坐标为m,则M 2(,1)m m-①点M在y轴左侧时,则1m<-(ⅰ) 当∆AMG ∽∆PCA时,有AGPA=MGCA∵AG=1m--,MG=21m-2=11m=-(舍去)22 3m=(舍去)解得。