《电路原理》课后习题答案
- 格式:doc
- 大小:3.66 MB
- 文档页数:48
第一章1-1 说明图(a ),(b )中,(1),u i 的参考方向是否关联?(2)ui 乘积表示什么功率?(3)如果在图(a )中0,0<>i u ;图(b )中0,0u i <> ,元件实际发出还是吸收功率?解:(1)当流过元件的电流的参考方向是从标示电压正极性的一端指向负极性的一端,即电流的参考方向与元件两端电压降落的方向一致,称电压和电流的参考方向关联。
所以(a )图中i u ,的参考方向是关联的;(b )图中i u ,的参考方向为非关联。
(2)当取元件的i u ,参考方向为关联参考方向时,定义ui p =为元件吸收的功率;当取元件的i u ,参考方向为非关联时,定义ui p =为元件发出的功率。
所以(a )图中的ui 乘积表示元件吸收的功率;(b )图中的ui 乘积表示元件发出的功率。
(3)在电压、电流参考方向关联的条件下,带入i u ,数值,经计算,若0>=ui p ,表示元件确实吸收了功率;若0<p ,表示元件吸收负功率,实际是发出功率。
(a )图中,若0,0<>i u ,则0<=ui p ,表示元件实际发出功率。
在i u ,参考方向非关联的条件下,带入i u ,数值,经计算,若0>=ui p ,为正值,表示元件确实发出功率;若0<p ,为负值,表示元件发出负功率,实际是吸收功率。
所以(b )图中当0,0>>i u ,有0>=ui p ,表示元件实际发出功率。
1-2 若某元件端子上的电压和电流取关联参考方向,而170cos(100)u t V π=,7sin(100)i t A π=,求:(1)该元件吸收功率的最大值;(2)该元件发出功率的最大值。
解:()()()170cos(100)7sin(100)595sin(200)p t u t i t t t t W πππ==⨯=(1)当0)200sin(>t π时,0)(>t p ,元件吸收功率;当1)200sin(=t π时,元件吸收最大功率:max 595p W =(2)当0)200sin(<t π时,0)(<t p ,元件实际发出功率;当1)200sin(-=t π时,元件发出最大功率:max 595p W =1-5 图(a )电容中电流i 的波形如图(b )所示现已知0)0(=C u ,试求s t 1=时,s t 2=和s t 4=时的电容电压。
第一章 电路的基本概念和基本定律1.1指出图(a )、(b )两电路各有几个节点?几条支路?几个回路?几个网孔?(a) (b) 习题1.1电路解:(a )节点数:2;支路数:4;回路数:4;网孔数:3。
(b )节点数:3;支路数:5;回路数:6;网孔数:3。
1.2标出图示电路中,电流、电动势和电压的实际方向,并判断A 、B 、C 三点电位的高低。
解:电流、电动势和电压的实际方向如图所示:A 、B 、C 三点电位的比较:C B A V V V >>1.3如图所示电路,根据以下各种情况,判断A 、C 两点电位的高低。
解:(1)C A V V > (2)C A V V > (3)无法判断1.4有人说,“电路中,没有电压的地方就没有电流,没有电流的地方也就没有电压”。
这句话对吗?为什么?解:不对。
因为电压为零时电路相当于短路状态,可以有短路电流;电流为零时电路相当于开路状态,可以有开路电压,1.5求图示电路中,A 点的电位。
(a ) (b ) 习题1.5电路解:(a )等效电路如下图所示:(b )等效电路如下图所示:1.6如图所示电路,求开关闭合前、后,AB U 和CD U 的大小。
1.7求图示电路中,开关闭合前、后A 点的电位。
解:开关闭合时,等效电路如图所示:开关打开时,等效电路如图所示:1.8如图所示电路,求开关闭合前及闭合后的AB U 、电流1I 、2I 和3I 的大小。
1.9如图所示电路,电流和电压参考方向如图所示。
求下列各种情况下的功率,并说明功率的流向。
(1)V 100A,2==u i ,(2)V 120A,5=-=u i , (3)V 80A,3-==u i ,(4)V 60A,10-=-=u i解:(1)A :)(200提供功率W ui p -=-=; B :)(200吸收功率W ui p == (2)A :)(600吸收功率W ui p =-=; B :)(600提供功率W ui p -== (3)A :)(240吸收功率W ui p =-=; B :)(240提供功率W ui p -== (4)A :)(600提供功率W ui p -=-=; B :)(600吸收功率W ui p ==1.10一盏220V/40W 的日光灯,每天点亮5小时,问每月(按30天计算)消耗多少度电?若每度电费为0.45元,问每月需付电费多少元? 解:(度)630510403=⨯⨯⨯=-W ;每月需要的费用:(元)7.245.06=⨯1.11求如图所示电路中,A 、B 、C 、D 元件的功率。
1-4. 电路如图所示,试求支路电流I.IΩ12解:在上结点列KCL 方程:A I II I I 6.301242543-==+-++解之得: 1-8.求图示电路中电压源发出的功率及电压xU 。
53U解:由KVL 方程:V U U U 5.2,53111=-=-得 由欧姆定律,A I I U 5.0,5111-=-=得所以是电源)(电压源的功率:,05.251123)52(151<-=-⨯-===⨯+=W I P VIU V X1-10.并说明是发出还是消耗源功率试求图示电路两独立电,。
10A解:列KVL 方程:A I I I I 5.0010)4(11101111==++⨯+⨯+-,得电路两独立电源功率:,发出)(,发出。
W I P W I P A V 38411051014110-=⨯⨯+-=-=⨯-= 2-6如图电路:R1=1Ω ,R2=2Ω,R3=4Ω,求输入电阻Rab=?解:含受控源输入电阻的求法,有外施电压法。
设端口电流I ,求端口电压U 。
Ω====+-=+=+=9945)(21131211211I UR IU II I R I I R I I I R I IR U ab 所以,得,2-7应用等效变换方法求电流I 。
解:其等效变化的过程为,根据KVL 方程,AI I I I 31,08242-==+++ 3—8.用节点分析法求电路中的xI 和xU .Ω6A3xU 1x I Ω4Ω2Ω2Ω2VΩ1UV 3234解:结点法:A I V U UI U U U U U U U U U U U U U UU U U X X X n n n n X n n n n n n n n n 5.16.72432242)212141(21411321)212111(214234121)4121(3121321321321==-⨯=--==+=+++--=-+++--=--+,解之得:,,补充方程:网孔法:网孔电流和绕行方向如图所示:323132132112224123221212242223m x x m x m m m m m m m m m IU I U I I I I U I I I U I I I I ++-==-⨯=-=+++⨯-⨯-=-+++-=,),(补充方程:)()(3—17.电路如图,试用网孔分析法求解电路中受控源发出的功率。
第一章电路模型和电路定律电路理论主要研究电路中发生的电磁现象,用电流、电压和功率等物理量来描述其中的过程。
因为电路是由电路元件构成的,因而整个电路的表现如何既要看元件的联接方式,又要看每个元件的特性,这就决定了电路中各支路电流、电压要受到两种基本规律的约束,即:(1)电路元件性质的约束。
也称电路元件的伏安关系(VCR),它仅与元件性质有关,与元件在电路中的联接方式无关。
(2)电路联接方式的约束(亦称拓扑约束)。
这种约束关系则与构成电路的元件性质无关。
基尔霍夫电流定律(KCL)和基尔霍夫电压定律(KVL)是概括这种约束关系的基本定律。
掌握电路的基本规律是分析电路的基础。
1-1说明图(a),(b)中,(1)的参考方向是否关联?(2)乘积表示什么功率?(3)如果在图(a)中;图(b)中,元件实际发出还是吸收功率?解:(1)当流过元件的电流的参考方向是从标示电压正极性的一端指向负极性的一端,即电流的参考方向与元件两端电压降落的方向一致,称电压和电流的参考方向关联。
所以(a)图中的参考方向是关联的;(b)图中的参考方向为非关联。
(2)当取元件的参考方向为关联参考方向时,定义为元件吸收的功率;当取元件的参考方向为非关联时,定义为元件发出的功率。
所以(a)图中的乘积表示元件吸收的功率;(b)图中的乘积表示元件发出的功率。
(3)在电压、电流参考方向关联的条件下,带入数值,经计算,若,表示元件确实吸收了功率;若,表示元件吸收负功率,实际是发出功率。
(a)图中,若,则,表示元件实际发出功率。
在参考方向非关联的条件下,带入数值,经计算,若,为正值,表示元件确实发出功率;若,为负值,表示元件发出负功率,实际是吸收功率。
所以(b)图中当,有,表示元件实际发出功率。
1-2 若某元件端子上的电压和电流取关联参考方向,而,,求:(1)该元件吸收功率的最大值;(2)该元件发出功率的最大值。
解:(1)当时,,元件吸收功率;当时,元件吸收最大功率:(2)当时,,元件实际发出功率;当时,元件发出最大功率:1-3 试校核图中电路所得解答是否满足功率平衡。
第一章“电路模型和电路定律”练习题1-1说明题1-1图(a)、(b)中:(1)u、i的参考方向是否关联(2)ui乘积表示什么功率(3)如果在图(a)中u>0、i<0;图(b)中u>0、i>0,元件实际发出还是吸收功率(a)(b)题1-1图解:(1)图(a)中电压电流的参考方向是关联的,图(b)中电压电流的参考方向是非关联的。
(2)图(a)中由于电压电流的参考方向是关联的,所以ui乘积表示元件吸收的功率。
图(b)中电压电流的参考方向是非关联的,所以ui乘积表示元件发出的功率。
(3)图(a)中u>0、i<0,所以ui<0。
而图(a)中电压电流参考方向是关联的,ui乘积表示元件吸收的功率,吸收的功率为负,所以元件实际是发出功率;图(b)中电压电流参考方向是非关联的,ui乘积表示元件发出的功率,发出的功率为正,所以元件实际是发出功率。
1-4 在指定的电压u和电流i的参考方向下,写出题1-4图所示各元件的u和i 的约束方程(即VCR)。
(a)(b)(c)(d)(e)(f)题1-4图解:(a)电阻元件,u、i为关联参考方向。
由欧姆定律u=Ri=104 i (b)电阻元件,u、i为非关联参考方向,由欧姆定律u = - R i = -10 i(c)理想电压源与外部电路无关,故u = 10V(d )理想电压源与外部电路无关,故 u = -5V(e )理想电流源与外部电路无关,故 i=10×10-3A=10-2A(f )理想电流源与外部电路无关,故 i=-10×10-3A=-10-2A1-5 试求题1-5图中各电路中电压源、电流源及电阻的功率(须说明是吸收还是发出)。
(a ) (b ) (c )题1-5图解:(a )由欧姆定律和基尔霍夫电压定律可知各元件的电压、电流如解1-5图(a )故 电阻功率10220W R P ui ==⨯=吸(吸收20W )电流源功率 I 5210W P ui ==⨯=吸(吸收10W ) 电压源功率U 15230W P ui ==⨯=发(发出30W )(b )由基尔霍夫电压定律和电流定律可得各元件的电压电流如解1-5图(b )故 电阻功率 12345W R P =⨯=吸(吸收45W )电流源功率 I 15230W P =⨯=发(发出30W ) 电压源功率U 15115W P =⨯=发(发出15W )(c )由基尔霍夫电压定律和电流定律可得各元件的电压电流如解1-5图(c )故 电阻功率15345W R P =⨯=吸(吸收45W ) 电流源功率 I 15230W P =⨯=吸(吸收30W ) 电压源功率U 15575W P =⨯=发(发出75W )1-16 电路如题1-16图所示,试求每个元件发出或吸收的功率。
1. 知识点:1(电压电流及参考方向)难易度:容易;认知度:识记当实际电路的尺寸与工作波长接近时选项A ) 该实际电路应该用分布参数电路来计算。
选项B ) 该实际电路应该用集总参数电路来计算。
答案:A2. 知识点:1(电压电流及参考方向)难易度:容易;认知度:识记一实际电路的尺寸是300m 长 , 该电路的工作频率是610Hz选项A )该实际电路应该用分布参数电路来计算。
选项B )该实际电路应该用集总参数电路来计算。
答案:A3. 知识点:1(电压电流及参考方向)难易度:容易;认知度:识记一实际电路的工作频率是6106⨯Hz ,该电路的工作波长为选项A )m 100=λ 选项B )m 50=λ 选项C )m 20=λ 选项D )m 10=λ 答案:B4. 知识点:1(电压电流及参考方向)难易度:容易;认知度:识记电路计算中电压、电流的参考方向的选取原则( )。
选项A) 必须与实际方向选得一致选项B) 任意选取选项C) 电压与电流的方向必须选得一致选项D) 电压与电流的方向必须选得相反难易程度:易答案:B5. 知识点:1(电压电流及参考方向)难易度:适中;认知度:应用电路如下图所示,已知网络N 的端口电压和电流为A I V U 1,220-==,说明该方框等效为( )。
选项A ) 电源选项B ) 负载选项C ) 不能确定答案:A6. 知识点:1(电压电流及参考方向)难易度:适中;认知度:应用图中所示电路中,已知电阻0>R ,ui P =,则下列正确的关系式是选项A ) P>0 选项B )P=0 选项C ) 0P ≤ 选项D ) 0P ≥ 答案:C7. 知识点:1(电压电流及其参考方向)难易度:容易;认知度:应用电 路 及 其 对 应 的 欧 姆 定 律 表 达 式 分 别 如 图 1、图 2 、图 3 所 示,其 中 表 达 式 正 确 的 是选项A ) 图 1选项B ) 图 2选项C ) 图 3答案:B8. 知识点:1(电压电流及其参考方向)难易度:容易;认知度:应用如图所示,R1=0.2Ω,R2=0.1Ω,R3=1.4Ω,R4=2.3Ω,则电流I(方向如图)为:选项A ) 1.5A 选项B )5.5A 选项C ) 3A 选项D )8A 答案:A9. 知识点:1(电压电流及其参考方向)难易度:容易;认知度:应用如图所示,R1=0.2Ω,R2=0.1Ω,R3=1.4Ω,R4=2.3Ω,求V ab =选项A)9.6V 选项B)4V 选项C)8.5V 选项D)11.5V答案:A10.知识点:1(电压电流及其参考方向)难易度:适中;认知度:应用电路如图所示,已知100V电压源产生的功率为100W,则电压U=选项A)40V 选项B)60V选项C)20V 选项D)-60V答案:C11.知识点:1(电压电流及其参考方向)难易度:适中;认知度:应用电路如图所示,2A电流源产生的功率P=选项A)16W 选项B)8W选项C)40W 选项D)-40W答案:A12.知识点:12(戴维南定理和诺顿定理)难易度:适中;认知度:应用如图所示,R1=0.2Ω,R2=0.1Ω,R3=1.4Ω,R4=2.3Ω,若R2以外的电路用戴维南定理等效,则等效电压源和等效电阻分别为:选项A)18V, 3.9Ω选项B)18V, 4Ω选项C)6V,3.9Ω选项D)6V, 4Ω答案:C13.知识点:1(电压电流及参考方向)难易度:容易;认知度:识记使用电压表或电流表时,要正确选择量程,应使被测值选项A )小于满标值的一半左右选项B )不超过满标值即可选项C )超过满标值的一半以上选项D )无关答案:C14. 知识点:2(基尔霍夫定理及应用)难易度:容易;认知度:理解根据图示参考方向列出的方程,正确的是 R EIU选项A )IR E U -=选项B )IR E U +=选项C )IR E U +-=选项D )IR E U --=答案:B15. 知识点:2(基尔霍夫定理及应用)难易度:适中;认知度:应用电路如图所示,电压u=选项A )5V 选项B )3V选项C )1V 选项D )-2V答案:C16. 知识点:2(基尔霍夫定理及应用)难易度:适中;认知度:应用图示电路中,电压U 和电流I 的关系式为选项A )U=25-I选项B )U=25+I选项C )U=-25-I选项D )U=-25+I答案:C17. 知识点:2(基尔霍夫定理及应用)难易度:适中;认知度:理解图示电路中,已知A I 151=,A I 33=,A I S 8=,则2I =( )。
第五版《电路本理》课后做业之阳早格格创做第一章“电路模型战电路定律”训练题11道明题11图(a)、(b)中:(1)u、i的参照目标是可联系?(2)ui乘积表示什么功率?(3)如果正在图(a)中u>0、i<0;图(b)中u>0、i>0,元件本质收出仍旧吸支功率?(a)(b)题11图解(1)u、i的参照目标是可联系?问:(a) 联系——共一元件上的电压、电流的参照目标普遍,称为联系参照目标;(b) 非联系——共一元件上的电压、电流的参照目标好异,称为非联系参照目标.(2)ui乘积表示什么功率?问:(a) 吸支功率——联系目标下,乘积p = ui> 0表示吸支功率;(b) 收出功率——非联系目标,变更电流i的参照目标之后,乘积p = ui < 0,表示元件收出功率.(3)如果正在图(a) 中u>0,i<0,元件本质收出仍旧吸支功率?问:(a) 收出功率——联系目标下,u > 0,i < 0,功率p 为背值下,元件本质收出功率;(b) 吸支功率——非联系目标下,变更电流i的参照目标之后,u > 0,i> 0,功率p为正值下,元件本质吸支功率;14正在指定的电压u战电流i的参照目标下,写出题14图所示各元件的u战i的拘束圆程(即VCR).(a)(b)(c)(d)(e)(f)题14图解(a)电阻元件,u、i为联系参照目标.由欧姆定律u=R i =104i(b)电阻元件,u、i为非联系参照目标由欧姆定律u=Ri=10i(c)理念电压源与中部电路无关,故u=10V(d)理念电压源与中部电路无关,故u=5V(e)理念电流源与中部电路无关,故i=10×103A=102A(f)理念电流源与中部电路无关,故i=10×103A=102A15试供题15图中各电路中电压源、电流源及电阻的功率(须道明是吸支仍旧收出).(a)(b)(c)题15图解15图解15图解 (a )由欧姆定律战基我霍妇电压定律可知各元件的电压、电流如解15图(a )故电阻功率10220WR P ui ==⨯=吸(吸支20W )电流源功率 I 5210WP ui ==⨯=吸(吸支10W ) 电压源功率U 15230WP ui ==⨯=发(收出30W )(b )由基我霍妇电压定律战电流定律可得各元件的电压电流如解15图(b )故电阻功率12345WR P =⨯=吸(吸支45W )电流源功率I 15230W P =⨯=发(收出30W ) 电压源功率U 15115WP =⨯=发(收出15W )(c )由基我霍妇电压定律战电流定律可得各元件的电压电流如解15图(c )故电阻功率15345WR P =⨯=吸(吸支45W )电流源功率 I 15230WP =⨯=吸(吸支30W ) 电压源功率U 15575WP =⨯=发(收出75W )116电路如题116图所示,试供每个元件收出或者吸支的功率.(a ) (b )题116图120试供题120图所示电路中统造量u1及电压u.题120图解:设电流i ,列KVL 圆程得:第二章“电阻电路的等效变更”训练题21电路如题21图所示,已知uS=100V ,R1=2k,R2=8k.试供以下3种情况下的电压u2战电流i2、i3:(1)R3=8k;(2)R3=(R3处启路);(3)R3=0(R3处短路).题21图解:(1)2R 战3R 并联,其等效电阻84,2R ==Ω则总电流分流有(2)当33,0R i =∞=有 (3)3220,0,0R i u ===有25用△—Y 等效变更法供题25图中a 、b 端的等效电阻:(1)将结面①、②、③之间的三个9电阻形成的△形变更为Y 形;(2)将结面①、③、④与动做里面大众结面的②之间的三个9电阻形成的Y 形变更为△形.9Ω9Ω9Ω9Ω9Ωab①②③④题25图解 (1)变更后的电路如解题25图(a )所示.解解25图2R 3R ③①②①③④31R 43R 14R果为变更前,△中Ω===9312312R R R 所以变更后,Ω=⨯===3931321R R R故123126(9)//(3)3126ab R R R R ⨯=+++=++7Ω=(2)变更后的电路如图25图(b )所示.果为变更前,Y 中1439R R R ===Ω 所以变更后,1443313927R R R ===⨯=Ω 故 144331//(//3//9)ab R R R R =+Ω=7211利用电源的等效变更,供题211图所示电路的电流i.题211图解由题意可将电路等效变 为解211图所示.于是可得A i 25.0105.21==,A i i 125.021==213题213图所示电路中431R R R ==,122R R =,CCVS 的电压11c 4i R u =,利用电源的等效变更供电压10u .u S+-R 2R 4R 1i 1u c+-R 3u 10+-1题213图解 由题意可等效电路图为解213图. 所以342111()//2//2R R R R R R R =+==解解211图解213图又由KVL 得到1112()c S u R i Ri R u R ++=所以114S u i R = 10114S S S u u u R i u =-=-=0.75S u214试供题214图(a )、(b )的输进电阻ab R .(a ) (b )题214图解 (1)由题意可设端心电流i 参照目标如图,于是可由KVL 得到,(2)由题已知可得第三章“电阻电路的普遍分解”训练题31正在以下二种情况下,绘出题31图所示电路的图,并道明其结面数战支路数:(1)每个元件动做一条支路处理;(2)电压源(独力或者受控)战电阻的串联拉拢,电流源战电阻的并联拉拢动做一条支路处理.(a ) (b )题31图解:(1)每个元件动做一条支路处理时,图(a)战(b)所示电路的图分别为题解31图(a1)战(b1).图(a1)中节面数6=n ,支路数11=b 图(b1)中节面数7=n ,支路数12=b(2)电压源战电阻的串联拉拢,电流源战电阻的并联拉拢动做一条支路处理时,图(a)战图(b)所示电路的图分别为题解图(a2)战(b2).图(a2)中节面数4=n ,支路数8=b 图(b2)中节面数15=n ,支路数9=b32指出题31中二种情况下,KCL 、KVL 独力圆程各为几?解:题3-1中的图(a)电路,正在二种情况下,独力的KCL 圆程数分别为(1)5161=-=-n (2)3141=-=-n 独力的KVL 圆程数分别为(1)616111=+-=+-n b (2)51481=+-=+-n b图(b)电路正在二种情况下,独力的KCL 圆程数为 (1)6171=-=-n (2)4151=-=-n 独力的KVL 圆程数分别为(1)617121=+-=+-n b (2)51591=+-=+-n b37题37图所示电路中Ω==1021R R ,Ω=43R ,Ω==854R R ,Ω=26R ,V 20S3=u ,V 40S6=u ,用支路电流法供解电流5i .题37图解 由题中知讲4n =,6b = , 独力回路数为16413l b n =-+=-+=由KCL 列圆程:对于结面①1260i i i ++= 对于结面②2340i i i -++= 对于结面③4660i i i -+-= 由KVL 列圆程:对于回路Ⅰ642281040i i i --=-u题3-7图对于回路Ⅱ1231010420-i i i ++=- 对于回路Ⅲ45-488203i i i ++= 联坐供得 0.956A 5i =-38用网孔电流法供解题37图中电流5i .解 可设三个网孔电流为11i 、2l i 、3l i ,目标如题37图所示.列出网孔圆程为止列式解圆程组为所以351348800.956A 5104i i ∆-====-∆311用回路电流法供解题311图所示电路中电流I.题311图解 由题已知,1I 1A l =其余二回路圆程为()()123123555303030203020305l l l l l l I I I I I I -+++-=⎧⎪⎨--++=-⎪⎩代人整治得 2322334030352A305015 1.5A l l l l l l I I I I I -==⎧⎧⇒⎨⎨-+==⎩⎩ 所以232 1.50.5A l l I I I =-=-=312用回路电流法供解题312图所示电路中电流a I 及电压o U .题312图315列出题315图(a )、(b )所示电路的结面电压圆程.(a ) (b ) 题315图解:图(a)以④为参照结面,则结面电压圆程为:图(b)以③为参照结面,电路可写成由于有受控源,所以统造量i 的存留使圆程数少于已知量数,需删补一个圆程,把统造量i 用结面电压去表示有: 321用结面电压法供解题321图所示电路中电压U.题321图解 指定结面④为参照结面,写出结面电压圆程删补圆程 220n u I =不妨解得 221500.5154205n n u u -⨯⨯=电压 232V n u u ==.第四章“电路定理”训练题42应用叠加定理供题42图所示电路中电压u.题42图解:绘出电源分别效率的分电路图 对于(a)图应用结面电压法有 解得:对于(b)图,应用电阻串并联化简要领,可得: 所以,由叠加定理得本电路的u 为45应用叠加定理,按下列步调供解题45图中a I .(1)将受控源介进叠加,绘出三个分电路,第三分电路中受控源电压为a 6I ,a I 并没有是分赞同,而为已知总赞同;(2)供出三个分电路的分赞同a I '、a I ''、a I ''',a I '''中包罗已知量a I ;(3)利用a a aa I I I I '''+''+'=解出a I . 题45图49供题49图所示电路的戴维宁或者诺顿等效电路.(a )(b ) 题49图解:(b)题电路为梯形电路,根据齐性定理,应用“倒退法”供启路电压oc u .设'10oc oc u u V ==,各支路电流如图示,估计得'55'22''244'''3345''1132'122''123''1110110(210)112122.4552.413.477 3.41235.835.85.967665.967 3.49.367999.36735.8120.1n n n n n n n s s n i i A u u Vu i i Ai i i i Au u i u Vu i i A i i i Au u i u =====+⨯=======+=+===⨯+=⨯+======+=+===⨯+=⨯+=V故当5s u V =时,启路电压ocu 为'5100.41612.1oc ocu Ku V ==⨯= 将电路中的电压源短路,应用电阻串并联等效,供得等效内阻eqR 为[(9//67)//52]//10 3.505eq R =++=Ω417题417图所示电路的背载电阻L R 可变,试问L R 等于何值时可吸支最大功率?供此功率.题417图解:最先供出L R 以左部分的等效电路.断启L R ,设 如题解4-17图(a )所示,并把受控电流源等效为受控电压源.由KVL可得111(22)8660.512i i i A ++===故启路电压111122812120.56oc u i i i i V =++==⨯=把端心短路,如题解图(b )所示应用网孔电流法供短路电流sci ,网孔圆程为⎩⎨⎧=+-++-=+-+0)82()42(2 682)22( 1111i i i i i i sc sc 解得6342sc i A ==故一端心电路的等效电阻 6432oc eq sc u R i ===Ω 绘出戴维宁等效电路,交上待供支路L R ,如题解图(c )所示,由最大功率传输定理知4L eq R R ==Ω时其上赢得最大功率.L R 赢得的最大功率为第五章“含有运算搁大器的电阻电路”训练题52题52图所示电路起减法效率,供输出电压o u 战输进电压1u 、2u 之间的关系.题52图解:根据“真断”,有: 得:故: 而:根据“真短” 有:代进(1)式后得: 56试道明题56图所示电路若谦脚3241R R R R =,则电流L i 仅决断于1u 而与背载电阻L R 无关.题56图道明:采与结面电压法分解.独力结面○1战○2的采用如图所示,列出结面电压圆程,并注意到准则1,可得==+-i i 2413i i ,i i ==()12120u u RRu -=01)111(1)11(4221112121=-++=-+o n L o n u R u R R R R u u R u R R 应用准则2,有21n n u u =,代进以上圆程中,整治得2434)111(n L o u R R R R u ++=112243241)1(R uu R R R R R R R n L =--故14314132322)(u R R R R R R R R R R R u L Ln --=又果为14314132322)(u R R R R R R R R R R R u i L L n L --==当3241R R R R =时,即电流L i 与背载电阻L R 无关,而知与电压1u 有关.57供题57图所示电路的o u 战输进电压S1u 、2S u 之间的关系.题57图解:采与结面电压法分解.独力结面○1战○2的采用如图所示,列出结面电压圆程,并注意到准则1,得(为分解便当,用电导表示电阻元件参数)234243112121)()(s o n s o n u G u G u G G u G u G u G G -=-+=-+应用准则2 ,有21n n u u =,代进上式,解得o u 为324122131431)()(G G G G u G G G u G G G u s s o -+++=或者为4132********)()(R R R R u R R R u R R R u s s o -+++=第六章“储能元件”训练题68供题68图所示电路中a 、b 端的等效电容与等效电感.(a ) (b )题68图69题69图中μF 21=C ,μF 82=C ;V 5)0()0(21CC -==u u .现已知μA 1205t e i -=,供:(1)等效电容C 及C u 表白式;(2)分别供1C u 与2C u ,并核查于KVL.题69图解(1)等效电容uC(0)= uC1(0)+uC2(0)=-10V (2) 610题610图中H 61=L ,A 2)0(1=i ;H 5.12=L ,A 2)0(2-=i ,V e 62tu -=,供:(1)等效电感L 及i 的表白式;(2)分别供1i 与2i ,并核查于KCL. 题610图解(1)等效电感解(2)i(0)= i1(0)+i2(0)=0V 第七章“一阶电路战二阶电路的时域分解”训练题 71题71图(a )、(b )所示电路中启关S 正在t=0时动做,试供电路正在t=0+时刻电压、电流的初初值.10V+-u CC 2F(t =0)2S 10VL +-u L(t =0)2S 5题71图(a ) (b )解 (a):Ⅰ:供uC(0):由于启关关合前(t<0),电路处于宁静状态,对于曲流电路,电容瞅做启路,故iC=0,由图可知:C1C10165605501()= (0)+()d C 1=5+12010e d 2101205e (712e )V 2(5)tt t t u t u i ξξξξξ---⨯⨯+⨯=-⨯-⎰⎰---=-C2C20265605501()= (0)+()d C 1=5+12010e d 8101205e (23e )V 8(5)tt t t u t u i ξξξξξ---⨯⨯+⨯=--⨯-⎰⎰---=-0202201()= (0)+()d 1=0+6e d 1.260e (2.5 2.5e )A 1.2(2)tt t t i t i u L ξξξξξ---+⨯=-⨯-⎰⎰=2202202201()= (0)+()d 1=2+6e d 1.562e 2e A 1.5(2)tt t ti t i u L ξξξξξ-----+⨯=-⨯-⎰⎰=uC(0)=10VⅡ:供uC(0+):根据换路时,电容电压没有会突变,所以有:uC(0+)= uC(0)=10VⅢ:供iC(0+)战uR(0+) :0+时的等效电路如图(a1)所示.换路后iC 战uR 爆收了跃变. 解 (b):Ⅰ:供iL(0):由于启关关合前(t<0),电路处于宁静状态,对于曲流电路,电感可瞅做短路,故uL=0,由图可知: Ⅱ:供iL(0+):根据换路时,电感电流没有会突变,所以有:iL(0+)= iL(0)=1AⅢ:供iR(0+)战uL(0+) :0+时的等效电路如图(b1)所10V(a1)()A i C 5.1105100-=+-=+()()Vi u C R 150100-=⨯=++()Ai L 155100=+=-()()()V i u u L L R 5150500=⨯=⨯=-=+-+()()Ai i L R 100==++示.换路后电感电压uL 爆收了跃变78题78图所示电路启关本合正在位子1,t=0时启关由位子1合背位子2,供t 0时电感电压)(L t u .题78图712题712图所示电路中启关关合前电容无初初储能,t=0时启关S 关合,供t 0时的电容电压)(C t u .题712图解:()()000==-+C C u u用加压供流法供等效电阻717题717图所示电路中启关挨启往日电路已达宁静,t=0时启关S 挨启.供t 0时的)(C t i ,并供t=2ms 时电容的能量.题717图解:t> 0时的电路如题图(a )所示.由图(a )知 则初初值 V 6)0()0(==-+C C u u5Ωu L (b1)1A+ _u R+ _t> 0后的电路如题解图(b )所示.当∞→t 时,电容瞅做断路,有时间常数 s 04.0102010)11(630=⨯⨯⨯+==-C R τ 利用三果素公式得 电容电流 mA 3d d )(25t CC e tu C t i -⨯== t=2 ms 时 电容的储能为720题720图所示电路,启关合正在位子1时已达宁静状态,t=0时启关由位子1合背位子2,供t 0时的电压L u .题720图解:()()A 42800-=-==-+L L i i ()21=+∞i i L用加压供流法供等效电阻()042411=--∞i i i L ()A 2.1=∞L i726题726图所示电路正在启关S 动做前已达稳态;t=0时S 由1交至2,供t 0时的L i .题726图解:由图可知,t>0时V 4)0(=-C u , 0)0(=-L i果此,+=0t 时,电路的初初条件为 t>0后,电路的圆程为设)(t u C 的解为 C C Cu u u '''==式中C u '为圆程的特解,谦脚V 6'=u根据个性圆程的根 2j 11)2(22±-=-±-=LCL R LR p 可知,电路处于衰减震荡历程,,果此,对于应齐次圆程的通解为 式中2,1==ωδ.由初初条件可得解得236.2)43.63sin(64sin 6443.6312arctan arctan -=︒-=-=︒===θδωθA 故电容电压 V )43.632sin(236.26''')(︒+-=+=-t e u u t u t C C C 电流 A 2sin sin d d )( 22t e t e CA tu Ct i t t CL =+==-ωωδ 729RC 电路中电容C 本已充电,所加)(t u 的波形如题729图所示,其中Ω=1000R ,μF 10=C .供电容电压C u ,并把C u :(1)用分段形式写出;(2)用一个表白式写出.(a ) (b )题729图解:(1)分段供解. 正在20≤≤t 区间,RC 电路的整状态赞同为s 2=t 时 V 10)1(10)(2100≈-=⨯-e t u C正在32<≤t 区间,RC 的齐赞同为s 3=t 时 V 203020)3()23(100-≈+-=-⨯-e u C正在∞<≤t 3区间,RC 的整输进赞同为(3)用阶跃函数表示激励,有 而RC 串联电路的单位阶跃赞同为根据电路的线性时没有变个性,有第八章“相量法”训练题87若已知二个共频正弦电压的相量分别为V 30501︒∠=U ,V 1501002︒-∠-=U ,其频次Hz 100=f .供:(1)1u 、2u 的时域形式;(2)1u 与2u 的相位好.解:(1)()()()1502cos 230502cos 62830u t ft t V π=+=+(2).15030U =∠,.210030U V =∠故相位好为0ϕ=,即二者共相位. 89已知题89图所示3个电压源的电压分别为V )10cos(2220a ︒+=t u ω、V)110cos(2220b ︒-=t u ω、V )130cos(2220c ︒+=t u ω,供:(1)三个电压的战;(2)ab u 、bcu ;(3)绘出它们的相量图.ca bc题89图解:,,a b c u u u 的相量为.22010a U =∠,.220110b U =∠-,.220130c U =∠(1) 应用相量法有即三个电压的战 ()()()0a b c u t u t u t ++= (2)..40ab a b U U U ⋅=-=V(3)相量图解睹题解83图816题816图所示电路中A 02S ︒∠=I .供电压U. 题816图解: L L R S jX U R U I I I +=+= 即V jI US4524520211∠=-∠∠=+=第九章“正弦稳态电路的分解”训练题91试供题91图所示各电路的输进阻抗Z 战导纳Y .(a ) (b ) (c ) (d )题91图解:(a )Z=1+()1212j j j j --⨯=1+j2=j 21-Ω Y=Z1=j211-=521j +=4.02.0j + S(b) (b)Z=)1()1(1j j j j ++-+⨯-+=j j -=-+2)1(1ΩY=S j jj Z2.04.052211+=+=-=(c)()()S j j j j j j Y 025.040140404040404040404040140401==-+++-=-++=(d)设端心电压相量为U,根据KVL ,得()I r L j I r I L j U-=-=ωω 所以输进阻抗为 Ω-==r L j IUZ ω导纳 ()S l r r L j r L j Z Y 2211ωωω+--=-==94已知题94图所示电路中V )30sin(216S ︒+=t u ω,电流表A 的读数为5A.L=4,供电流表A1、A2的读数. 题94图解:供解XC若XC=0.878Ω时,共理可解得I1=4.799A,I2=1.404A.917列出题917图所示电路的回路电流圆程战结面电压圆程.已知V )2cos(14.14S t u =,A )302cos(414.1S ︒+=t i .(a ) (b )(c )(d )题917图919题919图所示电路中R 可变动,V 0200S︒∠=U .试供R 为何值时,电源SU 收出的功率最大(有功功率)? 题919图解:本题为戴维宁定理与最大功率传播定理的应用925把三个背载并联交到220V 正弦电源上,各背载与用的功率战电流分别为:kW 4.41=P ,A 7.441=I (感性);kW 8.82=P ,A 502=I (感性);kW 6.63=P ,A 602=I (容性).供题925图中表A 、W 的读数战电路的功率果数.题925图解:根据题意绘电路如题解925图.设电源电压为V ︒∠0220 根据ϕcos UI P =,可得即 ︒︒︒-===60,87.36,42.63321ϕϕϕ 果此各支路电流相量为⎪⎭⎪⎬⎫-∠=-∠=︒︒A I A I 87.365042.637.4421(感性元件电流降后电压)总电流A j I I I I ︒︒︒︒-∠=-=∠+-∠+-∠=++=31.1179.911890606087.365042.637.44321 电路的功率果数为第十章“含有耦合电感的电路”训练题104题104图所示电路中(1)H 81=L ,H 22=L ,H 2=M ;(2)H 81=L ,H 22=L ,H 4=M ;(3)H 421===M L L .试供以上三种情况从端子11'-瞅进去的等效电感.(a ) (b ) (c ) (d ) 题104图解以上各题的去耦等效电路如下图,根据电感的串并联公式可估计等效电感.105供题105图所示电路的输进阻抗Z (=1 rad/s ).1H11H2H1Ω解:利用本边等效电路供解等效阻抗为 :(a )()()Ω+=++=+=6.02.02112221j j j Z M L j Z eq ωω11'1H4H1H0.2F解 :利用本边等效电路供解等效阻抗为: (b )11'2H3H2H 1F解:去耦等效供解等效阻抗为: (c )去耦后的等效电感为: 题105图故此电路处于并联谐振状态.此时1017如果使100电阻能赢得最大功率,试决定题1017图所示电路中理念变压器的变比n.题1017图解 最先做出本边等效电路如解1017图所示. 其中, 2210L R n R n '==⨯ 又根据最大功率传输定理有当且仅当21050n ⨯=时,10Ω电阻能赢得最大功率 此时, 505 2.23610n ===Ω ()Ω-=⎪⎭⎫ ⎝⎛-+-=j j j j j Z eq 12.01521∞=+⋅=111111j j j j Z in HL eq 1=s rad CL eq /11==ω此题也不妨做出副边等效电路如b), 当211050n⨯=时,即2.236n ===Ω 10Ω电阻能赢得最大功率1021已知题1021图所示电路中V )cos(210S t u ω=,Ω=101R ,mH 1.021==L L ,mH 02.0=M ,μF 01.021==C C ,rad/s 106=ω.供R2为何值时获最大功率?并供出最大功率.题1021图第十一章“电路的频次赞同”训练题116供题116图所示电路正在哪些频次时短路或者启路?(注意:四图中任选二个)(a ) (b ) (c ) (d )题116图解:(a ) (b)117RLC 串联电路中,μH 50=L ,pF 100=C ,71.70250==Q ,电源mV 1S =U .供电路的谐振频次0f 、谐振时的电容电压C U 战通戴BW.1110RLC 并联谐振时,kHz 10=f ,k Ω100)j ω(0=Z ,Hz 100=BW ,供R 、L 战C. 1114题1114图中pF 4002=C ,μH 1001=L .供下列条件下,电路的谐振频次0ω: (1)2121C L R R ≠=;(2)2121C L R R ==. 题1114图第十二章“三相电路”训练题121已知对于称三相电路的星形背载阻抗Ω+=)48j 165(Z ,端线阻抗Ω+=)1j 2(l Z ,中性线阻抗Ω+=)1j 1(N Z ,线电压V 380=l U .供背载端的电流战线电压,并做电路的相量图.题解121图解:按题意可绘出对于称三相电路如题解12-1图(a )所示.由于是对于称三相电路,不妨归纳为一相(A 相)电路的估计.如图(b)所示.令V U U A0220031∠=∠=,根据图(b )电路有 根据对于称性不妨写出 背载端的相电压为 故,背载端的线电压为 根据对于称性不妨写出电路的背量图如题解12-1图(c )所示.122已知对于称三相电路的线电压V 380=l U (电源端),三角形背载阻抗Ω+=)41j 5.4(Z ,端线阻抗Ω+=)2j 5.1(l Z .供线电流战背载的相电流,并做相量图. 解:本题为对于称三相电路,可归纳为一相电路估计.先将该电路变更为对于称Y -Y 电路,如题解12-2图(a )所示.图中将三角形背载阻抗Z 变更为星型背载阻抗为题解12-2图令V U U A︒∠=∠=0220031 ,根据一相( A 相)估计电路(睹题解12-1图(b )中),有线电流A I 为 根据对于称性不妨写出利用三角形连交的线电流与相电流之间的关系,可供得本三角形背载中的相电流,有 而 A 78.15537.172 -∠==''''B A C B I a I电路的相量图如题解12-2图(b )所示.125题125图所示对于称Y —Y 三相电路中,电压表的读数为1143.16V ,Ω+=)315j 15(Z ,Ω+=)2j 1(l Z .供:(1)图中电流表的读数及线电压AB U ;(2)三相背载吸支的功率;(3)如果A 相的背载阻抗等于整(其余没有变),再供(1)(2);(4)如果A 相背载启路,再供(1)(2).(5)如果加交整阻抗中性线0N =Z ,则(3)、(4)将爆收何如的变更?题125图解:图示电路为对于称Y -Y 三相电路,故有0='NN U ,不妨归纳为一相(A 相)电路的估计.根据题意知V U B A 16.1143='',则背载端处的相电压N A U ''为 而线电流为A 22306601===''Z U I N A (电流表读数) 故电源端线电压AB U 为(1)令V U AN0220∠=,则线电流A I 为 故图中电流表的读数为A 1.6. (2)三相背载吸支的功率为(3)如果A 相的背载阻抗等于整(即A 相短路),则B 相战C 相背载所施加的电压均为电源线电压,即N '面战A 面等电位,而此时三相背载端的各相电流为那时图中的电流表读数形成18.26A. 三相背载吸支的功率形成:(4)如果图示电路中A 相背载启路,则B 相战C 相背载阻抗串联交进电压BCU 中,而 此时三相背载中的各相电流为 那时图中的电流表读数为整.三相背载吸支的功率为126题126图所示对于称三相电路中,V 380B A =''U ,三相电效果吸支的功率为 1.4kW ,其功率果数866.0=λ(滞后),Ω-=55j l Z .供AB U 战电源端的功率果数λ'.题126图第十三章“非正弦周期电流电路战旗号的频谱”训练题 137已知一RLC 串联电路的端心电压战电流为试供:(1)R 、L 、C 的值;(2)3的值;(3)电路消耗的功率.解:RLC 串联电路如图所示,电路中的电压)(t u 战电流)(t i 均为已知,分别含有基波战三次谐波分量.(1)由于基波的电压战电流共相位,所以,RLC 电路正在基波频次下爆收串联谐振.故有 且111X X X c L == 即)314(11111s rad X CL ===ωωω 而三次谐波的阻抗为3Z 的模值为解得1X 为故F X C mH X L μωω34.318004.103141186.31314004.10.1111=⨯=====(2)三次谐波时,3Z 的阻抗角为 而 则(3) 电路消耗的功率 P 为139题139图所示电路中)(S t u 为非正弦周期电压,其中含有13ω战17ω的谐波分量.如果央供正在输出电压)(t u 中没有含那二个谐波分量,问L 、C 应为几?题139图解:根据图示结构知,欲使输出电压u(t) 中没有含13ω战17ω的谐波分量,便央供该电路正在那二个频次时,输出电压u(t) 中的3次谐波分量战7次谐波分量分别为整.若正在13ω处 1H 电感与电容 C 爆收串联谐振,输出电压的3次谐波03=U ,由谐振条件,得若正在17ω处 1F 电容与电感 L 爆收并联谐振,则电路中7次谐波的电流07=I ,电压07=U ,由谐振条件,得也可将上述二个频次处爆收谐振的序次变更一下,即正在13ω处,使L 与 C 1爆收并联谐振,而正在17ω处,使1L 与 C 爆收串联谐振,则得第十六章“二端心搜集”训练题161供题161图所示二端心的Y 参数、Z 参数战T 参数矩阵.(注意:二图中任选一个)(a ) (b )题161图解:对于 (a),利用瞅察法列出Y 参数圆程: 则Y 参数矩阵为:共理可列出Z 参数圆程:则Z 参数矩阵为: 列出T 参数圆程:将式2代进式1得:则T 参数矩阵为: 165供题165图所示二端心的混同(H )参数矩阵.(注意:二图中任选一个)(a ) (b )题165图解:对于图示(a )电路,指定端心电压1u ,2u 战电流1i ,2i 及其参照目标.由KCL ,KVL 战元件VCR ,可得 经整治,则有而 22222u u u i -=-=故可得出H 参数矩阵1615试供题1615图所示电路的输进阻抗i Z .已知F 121==C C ,S 121==G G ,S 2=g .题1615图解:图示电路中,当回转器输出端心交一导纳时⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎭⎫⎝⎛-=C j C j C j C L j Z ωωωωω1111⎥⎦⎤⎢⎣⎡-=112Cj L j LCT ωωω222)(sC G s Y +=(端心22'-启路),根据回转器的VCR ,可得出从回转器输进端心瞅进去的输进导纳为所以,该电路的输进阻抗)(s Z in 为。
第一章 电路的基本概念和基本定律 1.1指出图(a )、(b )两电路各有几个节点?几条支路?几个回路?几个网孔?(a) (b) 习题1.1电路 解:(a )节点数:2;支路数:4;回路数:4;网孔数:3。
(b )节点数:3;支路数:5;回路数:6;网孔数:3。
1.2标出图示电路中,电流、电动势和电压的实际方向,并判断A 、B 、C 三点电位的高低。
解:电流、电动势和电压的实际方向如图所示:A 、B 、C 三点电位的比较:C B A V V V >>1.3如图所示电路,根据以下各种情况,判断A 、C 两点电位的高低。
解:(1)C A V V > (2)C A V V > (3)无法判断1.4有人说,“电路中,没有电压的地方就没有电流,没有电流的地方也就没有电压”。
这句话对吗?为什么?解:不对。
因为电压为零时电路相当于短路状态,可以有短路电流;电流为零时电路相当于开路状态,可以有开路电压,1.5求图示电路中,A 点的电位。
(a ) (b ) 习题1.5电路 解:(a )等效电路如下图所示:(b )等效电路如下图所示:1.6如图所示电路,求开关闭合前、后,AB U 和CD U 的大小。
1.7求图示电路中,开关闭合前、后A 点的电位。
解:开关闭合时,等效电路如图所示:开关打开时,等效电路如图所示:1.8如图所示电路,求开关闭合前及闭合后的AB U 、电流1I 、2I 和3I 的大小。
1.9如图所示电路,电流和电压参考方向如图所示。
求下列各种情况下的功率,并说明功率的流向。
(1)V 100A,2==u i ,(2)V 120A,5=-=u i , (3)V 80A,3-==u i ,(4)V 60A,10-=-=u i解:(1)A :)(200提供功率W ui p -=-=; B :)(200吸收功率W ui p == (2)A :)(600吸收功率W ui p =-=; B :)(600提供功率W ui p -== (3)A :)(240吸收功率W ui p =-=; B :)(240提供功率W ui p -== (4)A :)(600提供功率W ui p -=-=; B :)(600吸收功率W ui p == 1.10一盏220V/40W 的日光灯,每天点亮5小时,问每月(按30天计算)消耗多少度电?若每度电费为0.45元,问每月需付电费多少元? 解:(度)630510403=⨯⨯⨯=-W ;每月需要的费用:(元)7.245.06=⨯1.11求如图所示电路中,A 、B 、C 、D 元件的功率。
第四章 电路定理电路定理是电路理论的重要组成部分,为我们求解电路问题提供了另一种分析方法,这些方法具有比较灵活,变换形式多样,目的性强的特点。
因此相对来说比第三章中的方程式法较难掌握一些,但应用正确,将使一些看似复杂的问题的求解过程变得非常简单。
应用定理分析电路问题必须做到理解其内容,注意使用的范围、条件,熟练掌握使用的方法和步骤。
需要指出,在很多问题中定理和方程法往往又是结合使用的。
4-1 应用叠加定理求图示电路中电压ab u 。
解:首先画出两个电源单独作用式的分电路入题解4-1图(a )和(b )所示。
对(a )图应用结点电压法可得1sin 5)121311(1t u n =+++ 解得 15sin 3sin 53n t u t V== (1)111113sin sin 2133n ab n u u u t t V=⨯==⨯=+对(b )图,应用电阻的分流公式有1132111135t t e i e A--+=⨯=++所以 (2)110.25t t ab u i e e V--=⨯==故由叠加定理得(1)(2)sin 0.2t ab ab ab u u u t e V -=+=+4-2 应用叠加定理求图示电路中电压u 。
解:画出电源分别作用的分电路如题解(a )和(b )所示。
对(a )图应用结点电压法有105028136)101401281(1++=+++n u解得(1)113.650.10.0250.1n u u +==++ 18.624882.6670.2253V===对(b )图,应用电阻串并联化简方法,可求得10402(8)32161040331040183(8)21040si u V ⨯⨯++=⨯=⨯=⨯+++ (2)16182323si u u V-==-⨯=-所以,由叠加定理得原电路的u 为(1)(2)24888033u u u V =+=-=4-3 应用叠加定理求图示电路中电压2u 。
电路原理课后答案
答案如下:
1. 电流是指在电路中流动的电荷的数量。
单位为安培(A)。
2. 电压是指电流在电路中的推动力或压力。
单位为伏特(V)。
3. 电阻是指电路中阻碍电流流动的物质或元件。
单位为欧姆(Ω)。
4. 安培定律指出,电流通过导体的大小与电压成正比。
即I =
V/R,其中I为电流,V为电压,R为电阻。
5. 欧姆定律指出,电压与电流成正比,与电阻成反比。
即V = I*R,其中V为电压,I为电流,R为电阻。
6. 功率是指单位时间内的能量转移或消耗。
单位为瓦特(W)。
7. 功率定律指出,功率与电压和电流的乘积成正比。
即P =
V*I,其中P为功率,V为电压,I为电流。
8. 串联电路是指电路中的元件依次连接,电流相同,电压分配按照元件的电阻比例。
9. 并联电路是指电路中的元件并列连接,电压相同,电流分配按照元件的电导率比例。
10. 电阻的颜色编码是指通过电阻上的色环来表示电阻的数值。
第二章电阻电路的等效变换
“等效变换”在电路理论中是很重要的概念,电路等效变换的方法是电路问题分析中经常使用的方法。
所谓两个电路是互为等效的,是指(1)两个结构参数不同的电路再端子上有相同的电压、电流关系,因而可以互相代换;(2)代换的效果是不改变外电路(或电路中未被代换的部分)中的电压、电流和功率。
由此得出电路等效变换的条件是相互代换的两部分电路具有相同的伏安特性。
等效的对象是外接电路(或电路未变化部分)中的电压、电流和功率。
等效变换的目的是简化电路,方便地求出需要求的结果。
深刻地理解“等效变换”的思想,熟练掌握“等效变换”的方法在电路分析中是重要的。
2-1 电路如图所示,已知
12100,2,8s u V R k R k 。
若:(1)38R k ;(2)处开路)33
(R R ;(3)处短路)33(0R R 。
试求以上3种情况下电压2u 和电流23,i i 。
解:(1)2R 和3R 为并联,其等效电阻8
42R k ,。