第四章 矩阵分解
- 格式:pdf
- 大小:197.52 KB
- 文档页数:7
矩阵分析
第四章 矩阵分解
§4.1: 矩阵的满秩分解 §4.2: 矩阵的正交三角分解 §4.3: 矩阵的奇异值分解 §4.4: 矩阵的极分解 §4.5: 矩阵的谱分解
矩阵分解前言
矩阵分解定义: 将一个已知矩阵表示为另一些较为简单或 较为熟悉的矩阵的积(或和)的过程称为矩阵分解. 例:(1)对任意n阶正规矩阵A,存在酉阵U∈Un×n使 A=Udiag(λ1,…,λn)U*, 其中λ1,…,λn为A的所有特征值的任一排列. (2)对任意n阶正定矩阵A,存在可逆阵Q∈Cnn×n使A=Q*Q,或存 在唯一正定阵B使A=BB. 矩阵分解意义:有利于研究已知的矩阵. 例如,利用正定阵A的平方根B为正定阵可证: 对任意Hermite阵H,AH或HA都有实特征值.
1
( AH∼(A1/2)-1AHA1/2=A1/2HA1/2∈Hn×n )
2
初等变换与初等矩阵(p73)
三类初等变换: (行(列)变换←→左(右)乘) (1)将矩阵A的两行互换等价于用第一类初等矩阵P(i,j)左 乘A; (2)将矩阵A的第i行乘以k≠0等价于用第二类初等矩阵 P(i(k))=diag(1,…,1,k,1,…,1)左乘A. (3)将矩阵A的第j行乘以k≠0后再加到第i行等价于左乘第 三类初等矩阵P(i,j(k)).
P (i , j ) =
⎛1 ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 1 0 1 1 1 0 1 1
初等变换与初等矩阵举例
⎛1 ⎞⎛ 1 4 7 ⎞ ⎛ 1 4 7 ⎞ ⎜ 0 1 ⎟⎜ 2 5 8 ⎟ = ⎜ 3 6 9 ⎟ ; ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ 1 0 ⎟⎜ 3 6 9 ⎟ ⎜ 2 5 8 ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎛1 4 7⎞⎛1 ⎞ ⎛ 1 7 4⎞ ⎜ 2 5 8⎟⎜ 0 1⎟ = ⎜ 2 8 5⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ 3 6 9⎟⎜ 1 0⎟ ⎜ 3 9 6⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠
⎛1 ⎞⎛1 4 7⎞ ⎛ 1 4 7 ⎞ ⎜ ⎟⎜ ⎟ ⎜ ⎟ 0.2 ⎟ ⎜ 2 5 8 ⎟ = ⎜ 0.4 1 1.6 ⎟ ; ⎜ ⎜ 1⎟⎜ 3 6 9 ⎟ ⎜ 3 6 9 ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠
⎛1 4 7⎞⎛1 ⎞ ⎛ 1 4 7 / 9⎞ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ 2 5 8⎟⎜ 1 ⎟ = ⎜ 2 5 8/9⎟ ⎜ 3 6 9⎟⎜ 1/ 9 ⎟ ⎜ 3 6 1 ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠
---- i ---- j
⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ 1⎠
P (i , j ( k )) =
⎛1 ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝
1
k 1
⎞ ⎟ ⎟ ⎟ ---⎟ ⎟ ⎟ ---⎟ ⎟ ⎟ 1⎠
i j
3
⎛1 ⎞⎛ 1 2 3⎞ ⎛ 1 2 3 ⎞ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ −4 1 ⎟ ⎜ 4 5 6 ⎟ = ⎜ 0 −3 −6 ⎟ ; ⎜ 1⎟⎜ 7 8 9⎟ ⎜ 7 8 9 ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠
−3 ⎞ ⎛ 1 2 0 ⎞ ⎛ 1 2 3⎞⎛1 ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ 4 5 6⎟⎜ 1 ⎟ = ⎜ 4 5 −6 ⎟ ⎜7 8 9⎟⎜ 1 ⎟ ⎜ 7 8 −12 ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠
4
初等变换与初等矩阵的性质
3类初等矩阵都是可逆的(行列式不为0). 将A依次作初等矩阵P1,…,Pr对应的行(列)初等变换等价 于左(右)乘A以可逆矩阵Pr…P1(P1…Pr). 可适当选第一类初等矩阵的乘积P使PA(AP)的行(列)是A 的行(列)的任意排列; 可适当选第三类初等矩阵 P(i,j(k))中的k使P(i,j(k))A的(i,j)元变为0; 可适当选第二类初等矩阵P(i(k))中的k使P(i(k))A的非 零(i,i)元变为1. 存在初等矩阵的乘积P和Q,使PAQ= ,其中r=rankA.
初等变换与初等矩阵的性质续
命题:设A∈Crm×n前r列线性无关,则用初等行变换可把A变为
⎛ Er ⎜ ⎝ 0 ⎛1 ⎜ ⎜ D⎞ ⎜ = ⎜ ⎟ 0 ⎠ ⎜ ⎜ ⎜ ⎜ ⎝ 1 1 * * * * *⎞ ⎟ *⎟ *⎟ ⎟ *⎟ ⎟ ⎟ ⎟ ⎠
一般地,∀A∈Crm×n都存在m,n阶可逆阵P和Q使PAQ=
5
证:因前r列线性无关,故用第一类初等矩阵左乘可使A的 (1,1)元≠0. 再用第二类初等矩阵左乘可使a11=1; 最后用若干第三类初等矩阵左乘可使A的第一列=e1. 因前2列线性无关,故新的第2列与e1线性无关且≠0, 故用第一类行变换可使(2,2)元≠0,…可使A的第2列=e2. ….可使A的第r列=er.此时空白处必为0元.
安徽大学 章权兵
1
矩阵分析
§4.1: 矩阵的满秩分解
⎛ 1 ⎜ A = ⎜ −2 ⎜ 0 ⎝ 0 0 0 0⎞ ⎛1 ⎟ ⎜ 1 ⎟ , 没 有 P ∈ C 33 × 3 使 P A = ⎜ ⎟ ⎜ 0⎠ ⎝
0 0 0 0⎞⎛1 ⎟⎜ 1⎟⎜0 0⎟⎜0 ⎠⎝ 0 0 1 0⎞ ⎛ 1 ⎟ ⎜ 1 ⎟ = ⎜ −2 0⎟ ⎜ 0 ⎠ ⎝ 0 1 0 0⎞ ⎟ 0⎟ 0⎟ ⎠
1
⎞ ⎟ ⎟. 0⎟ ⎠
定义:对任意矩阵A∈Crm×n,A=BC 称为A的一个满秩分 解,如果B∈Crm×r,C∈Crr×n. 例:
⎛1 ⎜ ⎜1 ⎜0 ⎝ 1 2 1 2 3 1 3 ⎞ ⎛1 ⎟ ⎜ 2 ⎟ = ⎜1 − 1⎟ ⎜ 0 ⎠ ⎝ 1⎞ ⎟⎛ 1 2 ⎟⎜ ⎜0 1 ⎟⎝ ⎠ ⎛1 4 ⎞ ⎜ ⎟ = ⎜1 ⎟ 1 1 − 1⎠ ⎜ ⎝0 0 1 2⎞ ⎟⎛ 1 3 ⎟⎜ ⎜0 1 ⎟⎝ ⎠ −1 0 1 1 5 ⎞ ⎟ − 1⎟ ⎠
⎛ 1 ⎜ A P ( 2, 3) = ⎜ − 2 ⎜ 0 ⎝
⎛ 1 0 0 ⎞ ⎛ 1 0 0 ⎞ ⎛ 1 0.5 0 ⎞ ⎜ ⎟⎜ ⎟ ⎜ ⎟ PAQ = P (2,1(0.5)) AP (2, 3) = ⎜ 0.5 1 0 ⎟ ⎜ −2 1 0 ⎟ = ⎜ 0 1 0 ⎟ ⎜ 0 0 1⎟⎜ 0 0 0⎟ ⎜ 0 0 0⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠
m=3,n=4,r=2. 注:可能存在不仅是常数差别的两个实质不同的满 秩分解.
矩阵满秩分解的存在定理
定理4.1.1:任意矩阵A∈Crm×n,都有满秩分解: A=BC,B∈Crm×r,C∈Crr×n. 证:由初等矩阵性质知: 存在可逆阵P∈Cmm×m和Q∈Cnn×n,使 PAQ= 从而 A
⎛ Er ⎜ ⎜ 0 ⎝ 0 ⎞ ⎛ Er ⎟=⎜ 0⎟ ⎜ 0 ⎠ ⎝ ⎛ Er ⎞ -1 ⎜ ⎟ ( E r =P ⎝ 0 ⎠ ⎞ ⎟ ⎟ (E r ⎠ 0)
存在定理中矩阵B,C的决定
对于A的前r列线性无关的情形:
⎛E PA = ⎜ r ⎝ 0 D ⎞ ⎛ Er ⎞ = (Er 0 ⎟ ⎜ 0 ⎟ ⎠ ⎝ ⎠ D)
⎛E A = P −1 ⎜ r ⎝ 0
D⎞ Er ⎞ −1 ⎛ ⎟= P ⎜ ⎟ (Er 0 ⎠ ⎝ 0 ⎠
D ) = BC
其中
0)
⎛E ⎞ B = P −1 ⎜ r ⎟ ; C = ( Er ⎝0⎠
D)
Q-1
0)
= BC,
⎛ 其中B=P-1 ⎜
Er ⎞ ⎜ 0 ⎟ ,C= ⎟ ⎝ ⎠
(Er
Q-1满足所要求的条件.
C是PA的前r行(即所有非0行)组成的矩阵, B和C的秩显然都是r.
10
矩阵B的进一步决定
对于A的前r列线性无关的情形: 要求PA的前r列化为(Er,0)T,故有 B=P-1(Er,0)T ⇒ PB=(Er,0)T=PA1, 其中,A1为A前r列组成的子矩阵,由此推出B=A1. (参看P.183-184定理的证明及例4.1.1,例4.1.2) 对下例,A的第1,3两列也线性无关. 令A1为A第1,3两列组成的子矩阵,并将A的第1,3 两列化为(E2,0)T,C为所得矩阵的前2行. 则不难看出也有 A=BC和B=A1.
求矩阵满秩分解的初等变换方法
再以A= ⎜ 1 ⎜
⎛1 1 2 3 ⎞ ⎟ 2 3 2 ⎟ 为例作说明如下: ⎜ 0 1 1 −1⎟ ⎝ ⎠
①用初等行变换把A前两列变为(E2 0)T
⎛1 1 2 3 ⎞ ⎛1 1 2 3 ⎞ ⎛1 0 1 4 ⎞ ⎛1 1⎞ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎛1 0 1 4 ⎞ ⎜ 1 2 3 2 ⎟ → ⎜ 0 1 1 −1 ⎟ → ⎜ 0 1 1 −1⎟ = ⎜ 1 2 ⎟ ⎜ 0 1 1 −1⎟ ⎠ ⎜ 0 1 1 −1 ⎟ ⎜ 0 1 1 −1 ⎟ ⎜ 0 0 0 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ a1 a2 ②用初等行变换把A的1,3两列变为(E2 0)T ⎛1 1 2 3 ⎞ ⎛1 1 2 ⎜ ⎟ ⎜ ⎜1 2 3 2 ⎟ → ⎜0 1 1 ⎜ 0 1 1 −1 ⎟ ⎜ 0 1 1 ⎝ ⎠ ⎝ 3 ⎞ ⎛ 1 −1 0 5 ⎞ ⎛ 1 2 ⎞ ⎟ ⎜ ⎟ ⎜ ⎟ ⎛ 1 −1 0 5 ⎞ −1 ⎟ → ⎜ 0 1 1 − 1 ⎟ = ⎜ 1 3 ⎟ ⎜ ⎟ 0 1 1 −1 ⎠ −1 ⎟ ⎜ 0 0 0 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
a1 a3
安徽大学 章权兵
2