世界数学发展史
- 格式:docx
- 大小:62.39 KB
- 文档页数:12
数学的历史介绍数学的历史发展和重要数学家数学作为一门古老而又深刻的学科,在人类文明的历史长河中扮演着重要的角色。
从古代至今,数学不断发展演变,培育出许多伟大的数学家,他们为数学的进步做出了巨大的贡献。
本文将为大家介绍数学的历史发展并重点介绍一些重要的数学家。
一、古希腊时期数学的发展古希腊是数学史上一个重要的里程碑,许多重要的数学思想和概念都在这个时期诞生。
最为人熟知的是毕达哥拉斯学派提出的一系列数学原理,包括著名的毕达哥拉斯定理。
另外,欧几里得的《几何原本》对后世数学发展起到了巨大的影响,成为许多数学家研究的基础。
二、中世纪数学的低谷与复兴中世纪数学的发展相对较慢,部分原因是欧洲的文化环境受到了战争和政治动荡的影响。
然而,阿拉伯数学家在这个时期对数学的发展做出了重要贡献。
他们将印度和希腊的数学知识引入阿拉伯世界,并进行了整理和发展,为欧洲数学的复兴打下了基础。
著名的《阿拉伯数学传统》成为了数学史上的重要文献之一。
三、文艺复兴时期的数学突破文艺复兴时期是欧洲数学复兴的重要时期,众多数学家在这个时期涌现出来。
其中,意大利数学家斯忒芬诺为代数学的发展做出了杰出贡献,他提出了方程三次及以上的根的求解方法。
另外,日耳曼数学家勒让德也是这个时期的重要人物,他以发展微积分理论而闻名。
四、近代数学的革命近代数学的革命主要发生在17至19世纪,这一时期见证了许多基础性数学理论的诞生。
哥德巴赫猜想、费马大定理等一系列重要的数学难题在这一时期得到了提出。
著名的数学家牛顿和莱布尼茨几乎同时独立发现了微积分学,为后来的物理学和工程学等学科提供了基础。
五、现代数学的拓展与应用20世纪以来,数学已经发展成为一门庞大而复杂的学科体系。
代数学、几何学、概率论、数论等各个分支都有了独立而深入的发展。
许多著名的数学家如高斯、黎曼、庞加莱等在这个时期做出了具有重要影响的贡献。
数学的应用也广泛渗透到自然科学、工程学与经济学等领域,为人类社会的进步做出了重要贡献。
数学开展简史数学是人类最古老的科学知识之一。
就人类对数的认识和运用来看,一般讲从公元前3000年左右的埃及象形文字就已开场,迄今已有5000年的历史。
那么到底什么是数学呢?实际上数学是一门历史性很强的科学或者说累积性很强,它的内涵随着时代的变化而变化,给数学下一个一劳永逸的定义是不可能的。
从公元前4世纪的希腊哲学家亚里士多德到17世纪的笛卡儿、19世纪的恩格斯、20世纪的罗素等很多数学家都曾给数学下过定义。
用的较多也较容易理解的是恩格斯的定义。
他说,数学,是研究数量关系与空间形式的一门科学。
20世纪80年代的一批美国学者将数学定义为:数学这个领域已被称作模式的科学,其目的是要提醒人们从自然界和数学本身的抽象世界中所观察到的构造和对称性。
这一定义以其高度的概括性,已日益引起关注并获得大多数数学家的认同与承受。
第一阶段:数学的萌芽阶段〔公元前3000年—公元前600年〕这一阶段,我们称之为数学的萌芽阶段,或者说准学科阶段。
在这一阶段里,数学还没有开展成为一门有明确构造的独立的理性的学科,还不具备抽象,还没有方法论,还没有论证和推理。
数学文化在这一阶段的出色代表是古巴比伦数学、中国数学、埃及数学、印度数学等。
这一阶段的世界数学文化呈一种多元开展态势。
第二阶段:数学的形成阶段〔公元前5世纪—公元16世纪〕这一阶段,通常称之为数学科学的形成时期,它的开场是以希腊人的出场为典型标志,完毕于公元16世纪,也就是在变量数学产生之前,人们常称此阶段为常量数学阶段,也就是数学学科完成了以常量为主要内容的框架体系。
这一时期,希腊数学家取得辉煌成绩,他们引入了证明,提出了抽象,发现了自然数,发现了无理数〔注:这是数学史上第一次危机。
?原本?第五卷中将比例理论由可公度量推广到不可公度量,使它能适用与更广泛的几何命题证明,从而巧妙的回避了无理量引起的麻烦。
但问题的根本解决要到19世纪借助极限过程对无理数做出严格定义之后〕。
数的产生和发展史简单资料1. 数字的起源1.1 远古的计数方式听说在古代,人们可真是个有创意的家伙!他们没有我们的计算器,甚至连笔和纸都没有。
最初的“数”其实是用手指、石头和小木棍来算的,嘿,想想就觉得好玩。
比如,他们可能用十根手指来代表十个东西,或是用几块小石子来帮自己记住。
简单直接,谁说古人不聪明呢?这就是“数”的萌芽,像是小树苗,慢慢在大地上扎根。
1.2 原始符号的使用后来,人们开始在地上画线,或者在石头上刻符号。
说到这里,不得不提的是,古埃及人和美索不达米亚人,他们发明了更复杂的符号系统。
像是用象形文字表示数字,这种方法真是神奇。
想象一下,他们用小动物或是自然现象来表达数字,简直就像在画漫画,让数字变得生动有趣。
数的世界从此变得丰富多彩!2. 数字的发展2.1 古代文明的数字体系到了古希腊和古罗马,那时候的数字系统简直让人眼花缭乱!希腊人用字母来代表数字,罗马人则是那种大写字母的风格,像I、V、X,感觉像在做游戏。
可想而知,算个数可能得花不少时间。
虽然它们看起来挺酷,但实在有点麻烦。
不过,他们的贡献让后来的数学发展打下了基础,真是前人栽树后人乘凉呀!2.2 阿拉伯数字的传播说到数字的演变,怎么能不提阿拉伯数字呢?这可是真正的游戏规则改变者!阿拉伯数字的出现,让计算变得轻松多了。
大家想象一下,从此再也不用数着罗马数字的复杂组合,而是简单明了的0到9。
更神奇的是,这套系统后来被传到欧洲,彻底改变了大家的生活方式,像是给大家的脑袋上装了个高科技的计算器。
太厉害了,简直是数字界的“超级英雄”!3. 数字的现代化3.1 现代科技与数字的结合随着科技的进步,数字的应用也越来越广泛。
从最早的简单计数,到今天的电脑和手机,数字早已无处不在。
比如,想想你手机里的应用程序,都是依靠着数字在运作。
就连我们生活中常用的支付方式,像扫码支付和网上购物,都是数字的“功劳”。
生活离不开数字,简直就是它们的天下,咱们也只能心服口服!3.2 数字在日常生活中的重要性现在,数字不仅是计算的工具,它们还承载着我们的情感和文化。
数学史的主要研究对象是历史上的数学发现,以及调查它们的起源,或更广义地说,数学史就是对过去的数学方法与数学符号的探究。
数学起源于人类早期的生产活动,为古中国六艺之一,亦被古希腊学者视为哲学之起点。
数学最早用于人们计数、天文、度量甚至是贸易的需要。
这些需要可以简单地被概括为数学对结构、空间以及时间的研究;对结构的研究是从数字开始的,首先是从我们称之为初等代数的——自然数和整数以及它们的算术关系式开始的。
更深层次的研究是数论;对空间的研究则是从几何学开始的,首先是欧几里得几何和类似于三维空间(也适用于多或少维)的三角学。
后来产生了非欧几里得几何,在相对论中扮演着重要角色。
欧几里得所著《几何原本》中的一个证明 ——被广泛认为是历史上最具影响力的教科书在进入知识可以向全世界传播的现代社会以前,有记录的新数学发现仅仅在很少几个地区重见天日。
目前最古老的数学文本是《普林顿 322》(古巴比伦,约公元前1900年),《莱因德数学纸草书》(古埃及,约公元前2000年-1800年),以及《莫斯科数学纸草书》(古埃及,约公元前1890年)。
以上这些文本都涉及到了如今被称为毕达哥拉斯定理的概念,后者可能是继简单算术和几何后,最古老和最广泛传播的数学发现。
在公元前6世纪后,毕达哥拉斯将数学作为一门实证的学科进行研究,他创造了古希腊语单词μθημα(mathema),意为“(被人们学习的)知识学问”。
希腊数学家在相当大的程度上改进了这些数学方法(特别引入了演绎推理和严谨的数学证明),并扩大了数学的主题。
中国数学做了早期贡献,包括引入了位值制系统。
如今大行于世的印度-阿拉伯数字系统和运算方法,很可能是在公元后1000年的印度逐渐演化,并被伊斯兰数学家通过花拉子米的著作将其传到了西方。
伊斯兰数学则将以上这些文明的数学做了进一步的发展贡献。
许多古希腊和伊斯兰数学著作随后被翻译成了拉丁文,引领了中世纪欧洲更深入的数学发展。
从16世纪文艺复兴时期的意大利开始,算术、初等代数及三角学等初等数学已大体完备。
简述数学的发展史
数学的发展史悠久且丰富,从古代文明的实际需要中孕育而生。
早期文明,如古埃及和美索不达米亚,发展了基础的算术和几何学以解决农业、建筑和天文学的问题。
希腊文明对数学的贡献尤为显著,其中毕达哥拉斯、欧几里得和阿基米德等人的工作奠定了数学理论的基础。
中世纪,阿拉伯数学家如花拉子米进一步发展了代数学,并将印度的数字系统及零的概念传入欧洲。
文艺复兴时期,数学与科学的革命性进展紧密相连,牛顿和莱布尼兹独立发明的微积分技术,为物理学和工程学等领域的飞速发展提供了工具。
19世纪和20世纪见证了数学的形式化和抽象化,集合论、数论、代数结构和拓扑学等领域的发展极大地扩展了数学的范围。
近代数学更是突破性地将计算机科学融入发展,数学逻辑和算法理论为计算机编程语言的发展提供了基础。
数学不断发展,不仅推动了科学技术的进步,也深刻影响了我们对世界的理解。
从实用的计算工具到探索宇宙奥秘的语言,数学的历史是人类智慧和好奇心的历史。
数学史数学是一门古老的学科,它伴随着人类文明的产生而产生,至少有四、五千年的历史.但它不是某一个民族或某一个地区的产物,而是世界许多民族、诸多地区世世代代的产物,是人们在生产斗争和科学实践中逐渐形成和发展而成的。
数学的最初的概念和原理在远古时代就萌芽了,经过四千多年世界许多民族的共同努力,才发展到今天这样内容丰富、分支众多、应用广泛的庞大系统。
第一节发展历史一般认为,从远古到现在,数学经历了五个历史阶段.一、数学萌芽时期(公元6世纪以前)在人类历史上,这是原始社会和奴隶社会的初期。
这个时期数学的成就以巴比伦、埃及和中国的数学为代表。
古巴比伦是位于幼发拉底河和底格里斯河两河流域的一个文明古国。
巴比伦王国形成于约公元前19世纪,从出土的古巴比伦的泥板上的楔形文字中发现,古巴比伦人具有算术和代数方面的知识,建立了60进位制的记数系统,掌握了自然数的四则运算,广泛使用了分数,能进行平方、立方和简单的开平方、开立方运算.他们迈出了代数的第一步,能用一些特别的术语和符号代表未知数,能解特殊的几种一元一次、二元一次方程和一元二次方程,甚至某些三次、四次(可化为二次的)和个别指数方程,并且能够把它们应用于天文学和商业等实际问题中去。
几何方面掌握了简单平面图形的面积和简单立体体积的计算方法。
中国是最早使用十进位值制记数法的国家。
早在三千多年前的商代中期,在甲骨文中产生了一套十进制数字和记数法,最大的数字为三万.与此同时,殷人用十个天干和十二个地支组成六十甲子,用以记日、记月、记年。
用阴(——)、阳(一)符号构成八卦表示8种事物,后来发展为64卦。
春秋战国之际,筹算已普遍应用,其记数法是十进位值制。
数的概念从整数扩充到分数、负数,建立了数的四则运算的算术系统。
几何方面,4500年前就有测量工具规、矩、准、绳,有圆方平直的概念。
公元前1100年左右的商高知道“勾三股四弦五”的勾股定理.春秋末战国初的墨子在《墨经》中给出了一些数学定义,包含有许多算术、几何方面的知识和无穷、极限的概念。
世界数学发展史数学,这个看似平凡的词汇,实则包含了宇宙的秘密和秩序。
它是科学的基础,也是工程的关键,更在我们的日常生活中无处不在。
回望历史,数学的发展历程充满了神奇的色彩和深厚的智慧。
一、古代数学:文明的基石古埃及、古希腊、古罗马等古代文明,都为数学的发展做出了巨大的贡献。
早在公元前3000年,古埃及人就已经开始使用数学来管理他们的农业和商业事务。
他们的数学知识主要基于实际应用,如测量土地、计算税收等。
古希腊人对数学的理解达到了全新的高度。
他们对数学的研究并非出于实际需求,而是为了探索和理解自然世界。
柏拉图、亚里士多德等哲学家都为数学的发展提供了新的思想和理论。
尤其是欧几里得,他的《几何原本》奠定了数学的基本原理和公理体系。
同时,古印度人和阿拉伯人也对数学的发展做出了重要的贡献。
他们发展了算术和代数,为数学的科学化奠定了基础。
二、中世纪数学:照亮黑暗的明珠中世纪时期,欧洲的数学发展受到了基督教教义的影响,但在科学家和学者的努力下,仍然取得了显著的进步。
这个时期的代表性人物是阿基米德和牛顿。
阿基米德发明了许多重要的数学工具,如微积分和杠杆原理,为物理学的发展提供了重要的支持。
三、现代数学:探索未知的宇宙进入现代社会,数学的发展更加迅速和深入。
微积分、概率论、线性代数等新的数学理论和工具不断涌现,为人类探索未知世界提供了更加强大的武器。
同时,计算机科学的兴起也为数学的应用提供了更广阔的平台。
从天气预测到基因编辑,从物理研究到金融建模,现代数学已经渗透到我们生活的每一个角落。
现代数学还在其他领域取得了显著的突破。
例如,数论和代数学的发展为我们理解整数和质数的性质提供了更深层次的认识。
几何学的发展让我们可以更深入地理解空间和形状的本质。
统计学则帮助我们理解和解释大量数据背后的规律和趋势。
四、未来的数学:无限可能随着科技的不断进步和创新,数学的发展也将永不停步、大数据、量子计算等新兴领域的发展将为数学带来新的挑战和机遇。
数学发展和人类文明数学是与人类文明密不可分的一个学科,从古至今,数学的发展一直伴随着人类社会历史的进步。
本篇文章将从数学的发展史、数学应用于人类文明的方方面面、数学的未来发展等三个方面浅谈数学发展与人类文明的关系。
一、数学的发展史数学作为一个独立的学科起源于古代,人类为了方便计数而发展了基本的算术,而后又发展了几何学和代数学。
在欧洲,“数学母亲”希腊的出现使之从宗教的束缚中逐渐走向独立发展,欧洲数学学派也由此成型,牛顿、莱布尼兹、欧拉、高斯等一系列伟大的数学家和数学思想的诞生,标志着数学成为一个独立的科学学科。
20世纪,随着计算技术的发展,计算数学、统计学等新的分支不断涌现,数学的领域也得到了进一步扩展,丰富了数学的内涵,使数学的应用面更加广泛。
二、数学在人类文明中的应用数学的应用范围非常广泛,并与人类社会的各个领域密不可分。
在工程领域中,数学在电子技术、通讯技术、计算机技术等领域的应用促进了工业技术的发展,提高了生产效率,改善了人类生活。
在经济领域,数学在金融衍生品的设计、交易策略与监控等方面大有用武之地,日积月累地推进了现代金融体系的完善,同时也为政府实现经济调控提供了强大的数学工具。
在自然科学领域,汇率许多自然现象的分析和模拟也离不开数学的支持,地球模型、天体运动,气象等方面的预报都需要整合查询大量数据,使用合理的数学模型来进行计算,进行科学揭示。
总之,数学的应用远不只于此,不同领域数学的应用各自展现了数学在这些领域内的独特价值。
三、数学的未来发展随着科学技术的不断突破,未来的数学一定不会停滞不前。
日益完善的计算机技术使得数学发展有了全新的方向。
未来,数学的任务之一就是研究人类生活中涉及庞大数据统计和分析的问题,研究应用于多领域的新算法,如区块链、机器学习等等。
此外,数学理论的不断发展,为科学技术的高速发展注入了源源不断的动力,也对人类文明的进步和发展贡献了很多。
结语:进入21世纪,人类社会面临着很新的空前的机遇与挑战。
世界数学发展史(一)引言概述:数学是人类思维的一大成果,它在人类文明的发展中扮演着重要的角色。
本文将从世界数学发展史的第一部分开始,介绍数学在不同时期、不同地区的发展历程。
本文将重点分析古代古希腊、古巴比伦、古印度、古中国和伊斯兰世界的数学发展,通过详细介绍每个时期的重要数学思想和成就,展示数学的演变及其对现代数学的影响。
正文:一、古希腊数学发展1. 基本概念的建立a. 希腊几何学的兴起b. 皮亚诺公理系统的建立2. 研究方法的改革a. 公理化方法的提出b. 解析几何的发展3. 研究内容的拓展a. 数论的兴起b. 牛努斯和数学游戏的发展4. 伟大的数学家与他们的成就a. 比阿斯和毕达哥拉斯学派b. 现代数学的奠基人:欧几里得5. 数学思想对现代数学的影响a. 几何学的公理化方法b. 数学的严密性和逻辑思维二、古巴比伦数学发展1. 记数系统的建立a. 六十进制记数系统的起源b. 如何表示和计算数字2. 代数学的发展a. 代数问题的解答方法b. 二次方程的求解3. 几何学的进展a. 圆和球体的测量b. 三角学的发展4. 古巴比伦数学学派a. 伊普苏尔城的数学学院b. 古巴比伦精确计算5. 古巴比伦对数学的影响a. 普遍使用的记数系统b. 代数与几何学的结合三、古印度数学发展1. 数字系统的发展a. 十进制数制的起源b. 零的引入和使用2. 代数方程的解法a. 二次方程的求解方法b. 算术级数的和的求解3. 三角学的发展a. 正弦和余弦的研究b. 三角函数的性质4. 数论和数学游戏a. 质数的研究b. 数学游戏的发展和应用5. 古印度数学的传承和影响a. 数学文化的传统b. 对几何学和代数学的贡献四、古中国数学发展1. 数字系统的建立a. 十进制记数系统的形成b. 算筹和竹算的使用2. 代数学的发展a. 方程的求解方法b. 代数符号的运用3. 几何学的进展a. 《九章算术》的几何学内容b. 圆周率和三角函数的计算4. 数学学派的形成a. 孔子学派与孟子学派b. 战国时期的数学思想5. 古中国数学的传统和影响a. 数学教育的重要性b. 对引进和发展数学的贡献五、伊斯兰世界数学发展1. 数字系统的传入和发展a. 阿拉伯数字的引入b. 十进制计数法的推广2. 代数学的发展a. 代数方程的解法b. 代数学参考书的编写3. 几何学的研究和进展a. 空间几何学的兴起b. 圆锥曲线的研究4. 数学学派的形成a. 伊斯兰数学家的重要成就b. 重要数学学院的成立5. 伊斯兰世界数学对欧洲的影响a. 数字与计算方法的传播b. 代数和几何学的推动总结:通过对古希腊、古巴比伦、古印度、古中国和伊斯兰世界的数学发展的介绍,我们可以看到数学在不同时期和地区都取得了重要的成就。
世界数学发展史范文世界数学发展史始于古代文明。
早在古代埃及和巴比伦时期,人们就开始使用数学来解决实际问题,如土地测量、商业交易等。
古希腊时期,数学开始成为一门独立的学科,著名的数学家皮塔哥拉斯提出了皮氏定理,这是古希腊数学的重要成就之一在古印度,数学家开发了现代数学中的一些重要概念,如零、十进制制、复数等。
其中,印度数学家阿耶尔巴塔在7世纪提出了二次方程的解法,这成为了后来欧洲数学的基础。
在古代阿拉伯世界,数学得到了极大的推动和发展。
阿拉伯数学家在数学中引入了阿拉伯数字和十进制制,并传播到欧洲。
他们还翻译了古希腊和古印度的数学著作,使这些知识得以保存和传承。
著名的数学家穆罕默德·本·穆萨在他的《算术的辉煌》一书中详细介绍了阿拉伯数学的发展。
在欧洲,中世纪的数学受到宗教和神学的影响,许多数学问题与宗教信仰有关。
然而,文艺复兴时期,数学逐渐从神学影响中脱离出来,成为一门独立的学科。
著名的数学家斯特雷尔科推动了代数学的发展,他提出了求解高次方程的方法,对数学思维的发展产生了重要影响。
17世纪,数学进入了一个新的时代。
伟大的数学家牛顿和莱布尼茨同时发明了微积分学,为数学的发展带来了革命性的变革。
微积分学对于研究物理学、工程学和经济学等领域的问题至关重要。
此外,数学家费马提出了著名的费马大定理,激发了整数论的研究。
18和19世纪是数学发展的黄金时期。
欧拉、拉格朗日、高斯等数学家的工作推动了数学领域的多个分支的发展。
在这个时期,代数、几何、数论等各个领域得到了极大的发展。
拉格朗日在数学中引入了拉格朗日乘数法,开创了变分法的研究。
高斯在数论领域作出了重要贡献,他引入了高斯整数和高斯消元法,解决了很多数论问题。
20世纪是数学发展的一个辉煌时期。
在这个时期,数学从应用领域蔓延到抽象领域。
希尔伯特在1900年提出了23个重要的数学问题,激发了整个数学界的研究热情。
其中最重要的问题之一是哥德巴赫猜想,其证明被称为数论的一个里程碑。
数的发展简史1. 数的起源与发展数的概念可以追溯到人类最早的文明时期。
在古代,人们使用自然物体如石头、棍子等来进行计数。
随着时间的推移,人们开始使用更复杂的符号来表示数字,比如埃及人使用的象形文字和罗马人使用的罗马数字。
然而,这些系统都有一定的局限性,不方便进行复杂的计算。
2. 阿拉伯数字的浮现阿拉伯数字的浮现是数的发展史上的重要里程碑。
阿拉伯数字是由印度人发明的,最早是以梵文书写的。
后来,这些数字传入阿拉伯世界,并被阿拉伯人广泛采用和发展。
阿拉伯数字的特点是简洁明了,易于书写和计算。
它由十个基本数字(0-9)组成,并通过组合这些数字来表示更大的数值。
3. 十进制系统的普及阿拉伯数字的普及也带来了十进制系统的使用。
十进制系统是一种基于10的计数系统,它使用十个数字来表示所有的数值。
这种系统的优点在于易于理解和应用,因为人们可以直观地理解每一个数字的大小和关系。
十进制系统的普及使得数的计算和交流变得更加便捷和准确。
4. 数的发展与科学进步数的发展与科学进步密不可分。
在科学领域,数被广泛应用于测量、计算和建模等方面。
数学的发展也推动了科学的进步,比如微积分的发展为物理学和工程学提供了重要的工具。
数学的应用还延伸到经济学、统计学、计算机科学等领域,为这些学科的研究和实践提供了基础。
5. 数的发展与技术进步随着科技的进步,数的应用范围进一步扩大。
计算机的浮现使得数的处理和分析变得更加高效和精确。
数的发展也推动了人工智能、大数据分析等领域的发展。
数的应用还涉及到密码学、通信技术等领域,为信息安全和通信的发展提供了基础。
6. 数的未来发展趋势随着科技的不断进步,数的应用将继续扩大。
人工智能的发展将需要更强大的数学工具来支持其算法和模型。
量子计算的浮现将对传统计算机的架构和算法提出新的挑战。
数的应用还将延伸到生物学、医学等领域,为解决复杂的生命科学问题提供支持。
总结:数的发展简史展示了人类对数的认识和应用的不断演进。
世界数学发展史集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-第一节数学发展的主要阶段2009-10-12 10:05:28 来源:中外数学网浏览:7次乔治·萨顿曾说过:“科学史是人类认识自然的经验的历史回顾。
”数学史是数学发展历史的回顾,它研究数学产生发展的历史过程,探求其发展的规律。
研究数学史,可以通过历史留下的丰富材料,了解数学何时兴旺发达,何时停滞衰退,从中总结经验教训,以利于数学更进一步的发展。
关于数学发展史的分期,一般来说,可以按照数学本身由低级到高级分阶段进行,也就是分成四个本质不同的发展时期,每一新时期的开始都以卓越的科学成就作标志,这些成就确定了数学向本质上崭新的状态过渡.这里我们主要介绍世界数学史的发展。
一、数学的萌芽时期这一时期大体上从远古到公元前六世纪.根据目前考古学的成果,可以追溯到几十万年以前.这一时期可以分为两段,一是史前时期,从几十万年前到公元前大约五千年;二是从公元前五千年到公元前六世纪.数学萌芽时期的特点,是人类在长期的生产实践中,逐步形成了数的概念,并初步掌握了数的运算方法,积累了一些数学知识.由于土地丈量和天文观测的需要,几何知识初步兴起,但是这些知识是片断和零碎的,缺乏逻辑因素,基本上看不到命题的证明.这个时期的数学还未形成演绎的科学.这一时期对数学的发展作出贡献的主要是中国、埃及、巴比伦和印度.从很久以前的年代起,我们中华民族勤劳的祖先就已经懂得数和形的概念了.在漫长的萌芽时期中,数学迈出了十分重要的一步,形成了最初的数学概念,如自然数、分数;最简单的几何图形,如正方形、矩形、三角形、圆形等.一些简单的数学计算知识也开始产生了,如数的符号、记数方法、计算方法等等.中小学数学中关于算术和几何的最简单的概念,就是在这个时期的日常生活实践基础上形成的.总之,这一时期是最初的数学知识积累时期,是数学发展过程中的渐变阶段.二、初等数学时期从公元前六世纪到公元十七世纪初,是数学发展的第二个时期,通常称为常量数学或初等数学时期.这一时期也可以分成两段,一是初等数学的开创时代,二是初等数学的交流和发展时代.1.初等数学的开创时代.这一时代主要是希腊数学.从泰勒斯(Thales,公元前636—前546)到公元641年亚历山大图书馆被焚,前后延续千余年之久,一般把它划分为以下几个阶段:(1)爱奥尼亚阶段(公元前600—前480年);(2)雅典阶段(公元前480—前330年);(3)希腊化阶段(公元前330—前200年);(4)罗马阶段(公元前200—公元600年).爱奥尼亚阶段的主要代表有米利都学派、毕达哥拉斯(Pythagoras,公元前572—前497)学派和巧辩学派.在这个阶段上数学取得了极为重要的成就,其中有:开始了命题的逻辑证明,发现了不可通约量,提出了几何作图的三大难题——三等分任意角、倍立方和化圆为方,并且试图用“穷竭法”去解决化圆为方的问题.所有这些成就,对数学后来的发展产生了深远的影响.雅典阶段的主要代表有柏拉图(Plato,公元前427—前347)学派、亚里斯多德(Aristotle,公元前384—前322)的吕园学派、埃利亚学派和原子学派.他们在数学上取得的成果,十分令人赞叹,如柏拉图强调几何对培养逻辑思维能力的重要作用;亚里斯多德建立了形式逻辑,并且把它作为证明的工具.所有这些成就把数学向前推进了一大步.上述两个阶段称为古典时期.这一时期的数学发展,在希腊化阶段上开花结果,取得了极其辉煌的成就,产生了三个名垂青史的大数学家欧几里得、阿基米德(Archimeds,公元前287—前212)和阿波罗尼(Apollonius,约公元前262—前190).欧几里得的《几何原本》第一次把几何学建立为演绎体系,从而成为数学史乃至思想史上一部划时代的着作.阿基米德善于将抽象的数学理论和具体的工程技术结合起来.他根据力学原理去探求几何图形的面积和体积,第一个播下了积分学的种子.阿波罗尼综合前人的成果,写出了有创见的《圆锥曲线》一书,它成为后来所有研究这一问题的基础和出发点.这三大数学家的丰功伟绩,把希腊数学推向光辉的顶点.随着罗马成为地中海一带的统治者,希腊数学也就转入到罗马阶段.在这个阶段也出现了许多有成就的数学家,其中特别值得一提的是托勒密(C·Ptolemy,公元90—168)结合天文学对三角学的研究、尼可马修斯(Nichomachus,公元100年左右)的《算术入门》和丢番图(Diophantus,约246—330)的《算术》.后两本着作把数学研究从形转向数,在希腊数学中独树一帜.尤其是《算术》一书,它对后来数学发展的影响,仅次于《几何原本》.总之,这一时代的特点是:数学已经开始发展成为一门独立科学,建立了真正意义上的数学理论;数学的两个分支——算术和几何,已经作为演绎系统建立起来;数学发生了非常明显的变化,即从经验形态上升为理论形态.特别要指出的是,关于数学研究的对象,当时已经比较明确地提了出来.古希腊数学家亚里斯多德在《形而上学》第十三篇第三章中说,数学的东西(例如点、线)是感性事物的抽象.他的这个思想直到现在仍然值得我们赞赏,因为它明确地、清楚地揭示出数学研究的特点,这就是把物体、现象、生活的一个方面抽象化.2.初等数学的交流和发展时代.从公元六世纪到十七世纪初,是初等数学在各个地区之间交流,并且取得了重大进展的时期.在亚洲地区,有中国数学、印度数学和日本数学.我国在数学上取得的成就将在后面专门叙述.印度数学的特点是受婆罗门教的影响很大,此外,它还受到中国、希腊和近东数学的影响,特别是中国的影响.印度数学的成就主要在算术和代数方面,最为人称道的是位值制记数法,现行的“阿拉伯数码”源于印度.七世纪以后,建立了以巴格达为中心的阿拉伯数学.它主要受希腊数学和印度数学的影响.这一时期产生了阿尔·花拉子模(AL-Khowarizmi,780—850)等一大批数学家,为世界数学宝库增添了光彩.代数是阿拉伯数学中最先进的部分,“代数”这个名词出自花拉子模的着作,它的研究对象被规定为方程论;几何从属于代数,不重视证明;三角学是他们的最大贡献,他们引入正切、余切、正割、余割等三角函数,制作精密的三角函数表,发现平面三角与球面三角若干重要的公式,使三角学脱离天文学独立出来.中世纪欧洲的数学家们基本上是引进,学习中国、印度、希腊和阿拉伯的数学,其中着名的数学家有意大利的斐波那契(L·Fibonacci,约1170—1250)、法国的奥雷斯姆(N·Oresme,约1323—1382)等.到了十五、十六世纪,意大利的数学家帕西奥里(L·Pacioli,1445—1509)、塔塔利亚(N·Tartaglia,1500—1557)等人在代数方程论方面作了一系列突破性的工作,并使用了虚数,欧洲人终于取得了超过前人的成就.法国的韦达(F·Vieta,1540—1603)改进了符号,使代数学大为改观.苏格兰的纳皮尔(J.Napi-er,1550—1617)发明了对数,使计算方法向前推进了一大步.这个时期的特点是初等数学的主体部分(算术、代数与几何)已全部形成,并且发展成熟了.例如在算术方面,除了继承原有的计算技术之外,还发明了对数,代数也有很大的发展,韦达建立了符号代数.在三角学方面,雷琼蒙塔努斯(J·Regiomontanus,1436—1476)着了《三角全书》,其中包括平面三角和球面三角.在几何方面,透视法满足了绘画的需要,投影法满足了绘制地图的需要,等等.3.中国在这一时期对数学的贡献.我们伟大的祖国是世界上公认的四大文明古国之一,有悠久的历史和灿烂的文化.上下五千年的中国文化丰富多采、为世界文明作出了不朽的贡献.中国数学的发展和成就,在世界数学史上占有非常重要的地位.在世界数学的宝库里,中国古代数学是影响深远、风格独特的体系.在初等数学时期,我国在数学领域取得了许多伟大成就,出现了许多闻名世界的数学家,如刘徽(公元三世纪)、祖冲之(429—500)、王孝通(公元六世纪—七世纪)、李冶(1192—1279)、秦九韶(1202—1261)、朱世杰(十三、四世纪)等人.出现了许多专门的数学着作,特别是《九章算术》的完成,标志着我国的初等数学已形成了体系.这部书不但在中国数学史上而且在世界数学史上都占有重要的地位,一直受到中外数学史家的重视.我国传统数学在线性方程组、同余式理论、有理数开方、开立方、高次方程数值解法、高阶等差级数以及圆周率计算等方面,都长期居世界领先地位.例如,1802年,一个意大利科学协会为了改进高次方程的解法,曾颁发一枚金质奖章,这枚奖章为意大利数学家鲁菲尼(P·Ruffini,1765—1822)所获得,1819年英国数学家霍纳(G·Horner,1786—1837)完全独立地发展了一个相同的方法.不过他们谁也不知道,早在十三世纪,秦九韶就已经发展了古代解数值高次方程的方法,他的方法与1819年霍纳重新发现的方法实质上是相同的.我国十一世纪杰出的数学家贾宪是最早得出关于二项式展开式的系数规律的(贾宪三角形),在欧洲称之为“巴斯卡”(B·Pascal,1623—1662)三角形,而巴斯卡是在十七世纪才得出这一结果的.由刘徽在公元三世纪根据《九章算术》推导的羡除公式,欧洲人却误认为是勒让德(A·M·Legendre,1752—1833)首创的.祖冲之把圆周率π计算到范围为3.1415926<π<3.1415927,以及密率,保持世界记录千年以上。
古代中国数学家的伟大成就,不仅是中国人民的财富,而且还是世界科学的瑰宝.三、近代数学时期从十七世纪初到十九世纪末,是数学发展的第三个时期,通常称为变量数学时期或近代数学时期.其中从十七世纪初到十八世纪末,是近代数学的创立与发展阶段;十九世纪是近代数学的成熟阶段.这个时期的起点是笛卡尔(R·Descartes,1596—1650)的着作,他引入了变量的概念,恩格斯对此给予很高的评价:“数学中的转折点是笛卡尔的变数.有了变数,运动进入了数学,有了变数,辩证法进入了数学,有了变数,微分和积分也就立刻成为必要的了,而它们也就立刻产生,并且是由牛顿和莱布尼兹大体上完成的,但不是由他们发明的.”十七世纪是数学发展史上一个开创性的世纪,创立了一系列影响很大的新领域:解析几何、微积分、概率论、射影几何和数论等.每一个领域都使古希腊人的成就相形见绌.这一世纪的数学还出现了代数化的趋势,代数比几何占有重要的位置,它进一步向符号代数转化,几何问题常常反过来用代数方法解决.随着数学新分支的创立,新的概念层出不穷,如无理数、虚数、导数、积分等等,它们都不是经验事实的直接反映而是数学认识进一步抽象的结果.十八世纪是数学蓬勃发展的时期.以微积分为基础发展出一门宽广的数学领域——数学分析(包括无穷级数论、微分方程、微分几何、变分法等学科),它后来成为数学发展的一个主流.数学方法也发生了完全的转变,主要是欧拉、拉格朗日(Lagrange,1736—1813)和拉普拉斯(Laplace,1749—1827)完成了从几何方法向解析方法的转变.这个世纪数学发展的动力,除了来自物质生产之外,一个直接的动力来自物理学,特别是来自力学、天文学的需要.十九世纪是数学发展史上一个伟大转折的世纪,它突出地表现在两个方面.一方面是近代数学的主体部分发展成熟了,经过一个多世纪数学家们的努力,它的三个组成部分取得了极为重要的成就:微积分发展成为数学分析,方程论发展成为高等代数,解析几何发展成为高等几何,这就为近代数学向现代数学转变准备了充分的条件.另一方面,近代数学的基本思想和基本概念,在这一时期中发生了根本的变化:在分析学中,傅立叶(J· Fourier,1768—1830)级数论的产生和建立,使得函数概念有了重大突破;在代数学中,伽罗瓦(E· Galois,1811—1832)群论的产生,使得代数运算的概念发生了重大的突破;在几何学中,非欧几何的诞生在空间概念方面发生了重大突破,这三项突破促使近代数学迅速向现代数学转变.十九世纪还有一个独特的贡献,就是数学基础的研究形成了三个理论:实数理论、集合论和数理逻辑.这三个理论的建立为即将到来的现代数学准备了更为深厚的基础.四、现代数学时期从十九世纪末至现在的时期,是现代数学时期,其中主要是二十世纪.这个时期是科学技术飞速发展的时期,不断出现震撼世界的重大创造与发明.本世纪前八十年的历史表明,数学已经发生了空前巨大的飞跃,其规模之宏伟,影响之深远,都远非前几个世纪可比,目前发展还有加速的趋势,最后二十年大概还要超过前八十年.二十世纪数学的主要特点,可简略概括如下:1.电子计算机进入数学领域,产生难以估量的影响.计算机1945年制造成功,到现在四十多年,已经改变或正在改变整个数学的面貌.围绕着计算机,很快就形成了计算科学这门庞大的学科.离散数学的飞速发展,动摇了分析数学十七世纪以来占有的统治地位,目前大有和分析数学分庭抗礼之势.自古以来,数学证明都是数学家在纸上完成的.随着计算机的发明,出现了机器证明这一新课题.1976年,两位美国数学家利用计算机终于证明了“四色定理”这个难题,轰动了数学界,它开辟了人机合作去解决理论问题的途径.2.数学渗透到几乎所有的科学领域里去,起着越来越大的作用.四十年代以后,涌现出大量新的应用数学科目,内容的丰富,名目的繁多,都是前所未有的.今天,在人类的一切智力活动中,没有受到数学(包括电子计算机)的影响的领域,已经廖廖无几了.即使过去很少使用数学的生物学,现在也和数学结合形成了生物数学、生物统计学、数理生物学等等学科.应用数学的新科目如雨后春笋般兴起,如对策论、规划论、排队论、最优化方法、运筹学等.六十年代模糊数学产生以后,数学的对象更加扩大,应用的范围也就更广了.3.数学发展的整体化趋势日益加强.从十九世纪起,数学分支越来越多,到本世纪初,可以数出上百个不同的分支.另一方面,这些学科又彼此融合,互相促进,错综复杂地交织在一起,产生出许多边缘性和综合性的学科.单科独进,孤立地发展的情况已不复存在.4.纯粹数学不断向纵深发展.集合论的观点渗透到各个领域里去,逐渐取得支配的地位.公理化方法日趋完善.数学一方面勇往直前,另一方面又重视基础的巩固.数理逻辑和数学基础已经成为数学大厦的基础,在它的上面矗立起泛函分析,抽象代数和拓扑学这三座宏伟的建筑.数学在获得广泛应用的同时,新理论、新观点、新方法也不断产生,如代数拓扑、积分论、测度论、赋范环论、紧李群等许多重大的基础学科,都是本世纪产生和成熟的.现代数学在这些基地上又向更新的高度攀登.本世纪的许多古典难题,包括希尔伯特的23个问题,有些已经获得了解决,有些取得了可喜的成果,还有不少振奋人心的突破。