高分子材料
- 格式:docx
- 大小:27.23 KB
- 文档页数:7
高分子工程材料有哪些
高分子工程材料是一类以高分子化合物为基础的材料,它具有优异的力学性能、耐热性、耐化学性,广泛应用于各个领域。
常见的高分子工程材料包括:
1. 聚氯乙烯(PVC):具有较好的绝缘性能和耐候性,常用于电线电缆、建筑材料等。
2. 聚乙烯(PE):具有良好的机械性能和化学稳定性,常用于容器、管道、绝缘材料等。
3. 聚丙烯(PP):具有良好的耐热性和耐化学性,常用于汽车零件、电器外壳等。
4. 聚苯乙烯(PS):具有较好的透明性和耐冲击性,常用于塑料杯、餐具等。
5. 聚氨酯(PU):具有优异的强度和弹性,常用于汽车零件、家具等。
6. 聚酯(PET):具有良好的耐热性和耐化学性,常用于瓶子、纤维等。
7. 聚碳酸酯(PC):具有较好的透明性和耐冲击性,常用于手机壳、眼镜等。
8. 聚甲醛(POM):具有良好的耐磨性和机械性能,常用于齿轮、轴承等。
除了以上常见的高分子工程材料,还有更多种类的高分子材料,如聚醚醚酮(PEEK)、聚酰亚胺(PI)等,它们在特定领域有着特殊的性能和应用。
高分子是什么材料高分子是一类由大量重复单元组成的大分子化合物,由于其独特的结构和性质,在各个领域都有着广泛的应用。
高分子材料的种类繁多,包括塑料、橡胶、纤维和树脂等,它们在日常生活和工业生产中都起着重要的作用。
首先,我们来了解一下高分子材料的特点。
高分子材料通常具有较高的分子量和相对较长的链状结构,这使得它们具有良好的柔韧性和韧性。
同时,高分子材料还具有较强的耐磨损性和化学稳定性,能够在不同的环境条件下保持稳定的性能。
此外,高分子材料还具有较低的密度,使得它们成为轻量化材料的理想选择。
高分子材料的制备方法多种多样,其中最常见的是聚合反应。
聚合反应是通过将单体分子进行化学反应,使其重复结合形成长链状分子的过程。
在聚合反应中,可以通过控制反应条件和单体种类来调控高分子材料的结构和性能,以满足不同的需求。
高分子材料在塑料制品中有着广泛的应用。
塑料制品是高分子材料的一种常见形式,其在日常生活中随处可见。
塑料制品具有轻质、耐用、易加工等特点,被广泛应用于包装、建筑、家居用品等领域。
与传统材料相比,塑料制品具有成本低、生产效率高的优势,因此受到了广泛的青睐。
橡胶是另一种重要的高分子材料。
橡胶具有良好的弹性和耐磨损性,被广泛应用于轮胎、密封件、橡胶制品等领域。
随着汽车工业和工程机械的发展,对橡胶制品的需求不断增加,橡胶材料的研发和生产也得到了迅速发展。
此外,高分子材料还在纤维和树脂等领域发挥着重要作用。
纤维材料如涤纶、尼龙等具有良好的柔软性和耐磨损性,被广泛应用于纺织品、绳索、工业滤料等领域。
树脂材料如环氧树脂、聚酯树脂等具有良好的粘接性和耐腐蚀性,被广泛应用于建筑、航空航天、电子等领域。
总的来说,高分子材料作为一种重要的材料类别,在各个领域都有着广泛的应用前景。
随着科学技术的不断发展,高分子材料的研究和应用也将不断取得新的突破,为人类的生活和工业生产带来更多的便利和可能性。
功能高分子材料一般指具有传递、转换或贮存物质、能量和信息作用的高分子及其复合材料,或具体地指在原有力学性能的基础上,还具有化学反应活性、光敏性、导电性、催化性、生物相容性、药理性、选择分离性、能量转换性、磁性等功能的高分子及其复合材料。
功能高分子材料是上世纪60年代发展起来的新兴领域,是高分子材料渗透到电子、生物、能源等领域后开发涌现出的新材料。
近年来,功能高分子材料的年增长率一般都在10%以上,其中高分子分离膜和生物医用高分子的增长率高达50%。
按照功能来分类1化学功能离子交换树脂、螯合树脂、感光性树脂、氧化还原树脂、高分子试剂、高分子催化剂、高分子增感剂、分解性高分子等.2.物理功能导电性高分子(包括电子型导电高分子、高分子固态离子导体、高分子半导体)、高介电性高分子(包括高分子驻极体、高分子压电体)、高分子光电导体、高分子光生伏打材料、高分子显示材料、高分子光致变色材料等.3.复合功能高分子吸附剂、高分子絮凝剂、高分子表面活性剂、高分子染料、高分子稳定剂、高分子相溶剂、高分子功能膜和高分子功能电极等.4.生物、医用功能抗血栓、控制药物释放和生物活性等 .按照功能特性通常可分成以下几类(1)分离材料和化学功能材料(2)电磁功能高分子材料(3)光功能高分子材料(4)生物医用高分子材料编辑本段离子交换树脂它是最早工业化的功能高分子材料。
经过各种官能化的聚苯乙烯树脂,含有H 离子结构,能交换各种阳离子的称为阳离子交换树脂,含有OH一离子结构能交换各种阴离子的称为阴离子交换树脂。
它们主要用于水的处理。
离子交换膜还可以用于饮用水处理、海水炎化、废水处理、甘露醇、柠檬酸糖液的钝化、牛奶和酱油的脱盐、酸的回收以及作为电解隔膜和电池隔膜。
编辑本段高分子催化剂和高分子试剂催化生物体内多种化学反应的生物酶属于高分子催化剂。
它具有魔法般的催化性能,反应在常温、常压下进行,催化活性极高,几乎不产生副产物。
目前,人们试图用人工合成的方法模拟酶,将金属化合物结合在高分子配体上,开发高活性、高选择性的高效催化剂,这种高分子催化剂称为高分子金属催化剂。
浅析高分子化学材料在日常生活中的应用(巩义市第三中等专业学校河南巩义451200)高分子材料:以高分子化合物为基础的材料,高分子材料是由相对分子质量较高的化合物构成的材料,包括橡胶、塑料、纤维、涂料、胶粘剂和高分子基复合材料,由千百个原子彼此以共价键结合形成相对分子质量特别大、具有重复结构单元的有机化合物。
高分子的分子量从几千到几十万甚至几百万,所含原子数目一般在几万以上,而且这些原子是通过共价键连接起来的。
高分子化合物中的原子连接成很长的线状分子时,叫线型高分子(如聚乙烯的分子)。
如果高分子化合物中的原子连接成网状时,这种高分子由于一般都不是平面结构而是立体结构,所以也叫体型高分子。
生活中的高分子材料很多,如蚕丝、棉、麻、毛、玻璃、橡胶、纤维、塑料、高分子胶粘剂、高分子涂料和高分子基复合材料等。
下面就以塑料和纤维素举例说明。
一、生活中常见的高分子材料——塑料塑料是一种合成高分子材料,又可称为高分子或巨分子,也是一般所俗称的塑料或树脂,可以自由改变形体样式。
是利用单体原料以合成或缩合反应聚合而成的材料,由合成树脂及填料、增塑剂、稳定剂、润滑剂、色料等添加剂组成的,它的主要成分是合成树脂。
塑料主要有以下特性:①大多数塑料质轻,化学性稳定,不会锈蚀;②耐冲击性好;③具有较好的透明性和耐磨耗性;④绝缘性好,导热性低;⑤一般成型性、着色性好,加工成本低;⑥大部分塑料耐热性差,热膨胀率大,易燃烧;⑦尺寸稳定性差,容易变形;⑧多数塑料耐低温性差,低温下变脆;⑨容易老化;⑩某些塑料易溶于溶剂。
塑料的优点1、大部分塑料的抗腐蚀能力强,不与酸、碱反应。
2、塑料制造成本低。
3、耐用、防水、质轻。
4、容易被塑制成不同形状。
5、是良好的绝缘体。
6、塑料可以用于制备燃料油和燃料气,这样可以降低原油消耗。
塑料的缺点1、回收利用废弃塑料时,分类十分困难,而且经济上不合算。
2、塑料容易燃烧,燃烧时产生有毒气体。
3、塑料是由石油炼制的产品制成的,石油资源是有限的。
高分子复合材料的应用场景随着科技的不断进步,高分子复合材料在各个领域得到了广泛的应用。
它具有轻质、高强度、耐腐蚀等优点,使得它成为了替代传统材料的理想选择。
下面将以人类的视角,介绍高分子复合材料在不同领域的应用场景。
1. 轻量化汽车制造高分子复合材料在汽车制造领域得到了广泛应用。
与传统金属材料相比,高分子复合材料具有更轻的重量和更高的强度,能够减轻汽车的整体重量。
这不仅能够提升汽车的燃油效率,减少尾气排放,还能提高汽车的安全性能。
高分子复合材料在汽车车身、车门、座椅等部件上的应用,使得汽车更加节能环保,同时保证了车辆的舒适性和安全性。
2. 航空航天领域航空航天领域对材料的要求非常高,高分子复合材料凭借其良好的物理性能和化学性能,在航空航天领域得到了广泛的应用。
例如,高分子复合材料可以用于制造飞机机身、翼面、螺旋桨等部件,能够大幅度减轻飞机的重量,提高燃油效率,同时还能提高飞机的强度和耐久性。
此外,高分子复合材料还可以用于制造航天器的外壳和热防护材料,能够承受极端的温度和压力,保护航天器的安全。
3. 建筑领域高分子复合材料在建筑领域的应用也越来越广泛。
在地震频发的地区,高分子复合材料可以用于制造抗震支撑结构,提高建筑物的抗震能力。
此外,高分子复合材料还可以用于制造外墙保温材料,能够有效隔热保温,提高建筑物的能源利用效率。
高分子复合材料还可以用于制造建筑物的屋顶、地板等部件,具有轻质、强度高的特点,提高了建筑物的整体质量。
4. 医疗器械领域高分子复合材料在医疗器械领域的应用也非常广泛。
例如,高分子复合材料可以用于制造人工关节、骨修复材料等,具有良好的生物相容性和机械性能,能够有效替代传统的金属材料。
高分子复合材料还可以用于制造医用导管、缝线等,具有良好的柔韧性和耐腐蚀性,能够提高手术的安全性和舒适性。
高分子复合材料在汽车制造、航空航天、建筑和医疗器械等领域都有广泛的应用。
它的轻质、高强度、耐腐蚀等优点使得它成为了替代传统材料的理想选择。
高分子复合材料的研究和应用随着科技的不断进步,高分子复合材料在各个领域中应用越来越广泛。
高分子复合材料是由高分子基质和多种纤维增强材料、无机材料等加工制成的材料。
这种材料的优点是具有潜在的机械性能、耐腐蚀性能、热稳定性能、振动耐受性能等,因此在汽车、飞机、船舶、纺织、建筑、医疗、电子、环境保护、水净化等领域得到广泛应用。
本文将简要介绍高分子复合材料的种类、特点以及应用。
高分子复合材料种类高分子复合材料包括热固性塑料增强材料、热塑性塑料增强材料、橡胶增强材料、粘结增强材料、纤维增强材料等。
其中,纤维增强材料是最常见和应用最广泛的。
常见的纤维增强材料有碳纤维、玻璃纤维、芳纶等。
碳纤维的强度和模量比钢铁更高,因此在航空航天和赛车等领域中得到广泛应用。
采用碳纤维增强材料制造的飞机和赛车,能减轻重量,提高速度和性能。
玻璃纤维的使用范围更广泛。
它是一种低成本的增强材料,具有优异的生物相容性和化学稳定性。
采用玻璃纤维制成的船舶、管道和储罐等能够耐受海水、化学物质等环境的腐蚀和侵蚀。
芳纶是一种聚酰亚胺纤维,具有高强度和高温稳定性能。
采用芳纶增强材料制成的防弹衣、防火服、高温设备等能够保护人员和设备的安全。
高分子复合材料特点高分子复合材料的特点主要体现在以下几个方面:1.轻质:高分子复合材料具有较低的密度,比金属轻。
2.高强度:由于增强材料的加入,高分子复合材料的强度比单一高分子材料高数倍。
3.耐腐蚀性:高分子复合材料在酸碱、盐水等环境下有较强的耐腐蚀性。
4.耐磨性:高分子复合材料具有良好的耐磨性,适用于易磨损的物品。
5.耐高低温性:高分子复合材料在高温和低温环境下也能保持高强度和稳定性。
高分子复合材料应用高分子复合材料在各个领域中广泛应用。
以汽车工业为例,高分子复合材料可以用于车身和车架的制造,比常规钢铁结构减轻60%的重量,减少了燃料消耗和废气排放,同时提高了车身的刚性和安全性。
在医疗领域,高分子复合材料可以用于制造人工器官、骨骼修复材料等,这些材料具有生物相容性,可以更好的适应人体环境。
高分子合成材料范文高分子合成材料是一种由化学合成而成的大分子化合物,通常具有高分子量、高强度和高导电性等特点。
高分子合成材料广泛应用于各个领域,如塑料、橡胶、纤维、涂料、胶黏剂等。
在本篇文章中,将会探讨高分子合成材料的特点、分类以及应用领域。
1.高分子量:高分子合成材料的分子量通常在10^4-10^6之间,因此具有较高的物理强度和化学稳定性。
2.可塑性:高分子合成材料具有较好的塑性,可以通过热加工、注塑等方法加工成不同形状的制品。
3.耐磨性:高分子合成材料通常具有较好的耐磨性能,可以用于制造耐磨部件,如轮胎、刷子等。
4.耐化学性:高分子合成材料通常具有较好的耐化学性,不易受到化学药品的侵蚀。
1.聚合物:聚合物是一种由同种或不同种化学单体通过聚合反应合成的高分子化合物,可以进一步分为塑料和橡胶。
塑料是一种具有可塑性的高分子合成材料,可以根据聚合单体的不同特性,如聚乙烯、聚丙烯、聚氯乙烯等分类。
橡胶是一种具有高弹性的高分子合成材料,可以根据其硬度和化学结构的不同,如天然橡胶、丁苯橡胶等。
2.高分子复合材料:高分子复合材料由高分子基质和增强材料组成,可以提高材料的力学性能。
常见的高分子复合材料包括聚合物基复合材料、纳米复合材料和纤维增强复合材料等。
3.高分子溶液:高分子溶液是指高分子化合物在溶剂中形成的溶液。
通过调整高分子溶液的浓度、溶剂的种类和温度等条件,可以使其具有不同的性质和应用前景。
1.医疗领域:高分子合成材料被广泛用于医疗器械的制造,如医用塑料制品、人工骨骼和人工器官等。
此外,高分子合成材料还被用于制造药物缓释系统和生物医学材料。
2.电子领域:高分子合成材料被广泛应用于电子器件的制造,如电子电缆、绝缘材料和电子芯片等。
3.环保领域:高分子合成材料被广泛应用于环保材料的研发和生产,如可降解塑料和水处理材料等。
4.能源领域:高分子合成材料被应用于太阳能电池板、燃料电池和锂离子电池等能源领域。
总之,高分子合成材料具有高分子量、可塑性、耐磨性和耐化学性等特点,广泛应用于医疗、电子、环保和能源等领域。
高分子装修材料种类高分子装修材料是利用高分子材料制造的各种装修材料。
它们比传统材料更轻,更坚固,更耐用,更具有环保特性。
高分子装修材料因其独特的性质,广泛应用于各种建筑装修和室内设计中。
以下是几种常见的高分子装修材料:1. 聚氨酯泡沫聚氨酯泡沫是一种轻质、高强度的材料,主要用于室内装修中各种建筑构件的制造。
它具有优异的保温隔热性能、吸音效果和抗震性能。
它还可以用于制造墙板、屋顶板、门窗框以及室内地板等。
2. PVC地板PVC地板是一种由聚氯乙烯制成的地板材料。
它具有防水、防潮、防虫、防火等功能,同时还有很好的保温、防滑和吸音效果。
这种材料在室内装修中很常见,如办公室、宾馆、商场及家庭卫生间、厨房等。
3. 丙烯酸(PMMA)板材丙烯酸板材是一种透明、无色的高分子材料。
它具有较好的耐热性、硬度和韧性,同时具有较好的化学稳定性和加工性能。
因此,丙烯酸板材经常用于制造室内装修中的需要透明或半透明的物品,如台灯罩、墙面装饰、展示架、展示柜等。
4. 聚苯乙烯(XPS)板材聚苯乙烯板材属于一种发泡塑料材料,主要用于保温隔热和防潮处理。
它们具有较好的绝热和防潮性能,同时还有高强度和稳定的物理性能。
因此,聚苯乙烯板材经常用于室内装修中的各种防潮、隔热、保温等工程建设中。
5. 人造文理石人造文理石是一种以合成树脂为基础,通过模拟自然大理石的花纹、颜色纹理制造而成。
这种材料具有高强度、耐磨损、易于清洁和维护等优点,同时也有节能环保的特点。
它通常用于室内装修中的地面、门框、窗框、梯步、墙面等。
总的来说,高分子装修材料由于其轻便、强度高、安全、环保等特点,在室内装修中具有广泛的应用价值。
随着材料科技的不断创新进步,这些材料的应用范围也会不断扩大,为人们的生活和工作带来更多的便利和舒适。
高分子的凝聚态和聚集态引言高分子是由成千上万个重复单元组成的大分子化合物,其分子量往往非常大。
高分子材料在现代科技和工业中扮演着重要的角色。
在不同的条件下,高分子可以出现不同的凝聚态和聚集态。
本文将介绍高分子的凝聚态和聚集态的概念、特点以及相关的应用。
一、高分子的凝聚态高分子的凝聚态是指高分子在无外界作用力下,在固定温度下保持稳定的结构状态。
在凝聚态下,高分子分子间保持着一定的有序性和排列规律。
1.晶体态晶体态是高分子的一种凝聚态,其特点是高分子链在立体空间有规则地排列,形成高度有序的晶体结构。
高分子晶体具有高度结晶度、透明度和硬度等特点,广泛应用于塑料、纤维和电子材料领域。
2.玻璃态玻璃态是高分子的另一种凝聚态,其特点是高分子链呈无规则排列,形成非晶态结构。
高分子玻璃具有高强度、耐高温等优点,在包装、建筑和航空航天等领域有广泛的应用。
二、高分子的聚集态高分子的聚集态是指高分子在外界作用力下,分子间呈现出聚集、堆积的状态。
在聚集态下,高分子分子间相互作用较强。
1.胶体态胶体态是高分子的一种聚集态,其特点是分散相微粒的大小在1~1000纳米之间。
高分子胶体具有分散性好、介电常数大等特点,广泛应用于涂料、纸张和医药等领域。
2.凝胶态凝胶态是高分子的另一种聚集态,其特点是高分子在某种溶剂中形成三维网络结构,并具有可逆的溶胀性。
高分子凝胶具有大孔结构、储存能力强等特点,在制备人工器官和药物控释等方面具有重要应用价值。
三、高分子的应用高分子材料的凝聚态和聚集态在众多领域中都具有广泛的应用。
1.材料领域高分子晶体被广泛应用于塑料、纤维和电子材料领域。
高分子玻璃在包装、建筑和航空航天等领域具有重要应用。
高分子胶体被用于涂料、纸张和医药等领域。
高分子凝胶在制备人工器官和药物控释等方面具有重要作用。
2.生物医学领域高分子凝胶在生物医学领域中具有广泛的应用,如用于人工器官的制备、药物控释系统的设计以及组织工程领域的研究。
高分子生物材料引言高分子生物材料是一种结合了高分子材料和生物材料特性的材料,具有广泛的应用前景。
本文将介绍高分子生物材料的定义、特点及其在医学、食品、环境等领域的应用。
一、高分子生物材料的定义和特点高分子生物材料是指以高分子材料为基础,通过特殊的处理方法,使其具备生物材料的特性和功能。
与传统的高分子材料相比,高分子生物材料具有以下特点:1. 生物相容性:高分子生物材料具有良好的生物相容性,可以与生物体组织相互作用而不引起明显的免疫排斥反应。
2. 生物降解性:高分子生物材料可以在生物体内发生降解,降解产物可以通过正常的代谢途径排出体外,不会对生物体产生长期的不良影响。
3. 生物活性:高分子生物材料可以通过改变材料的表面性质或引入生物活性物质,具备特定的生物功能,如抗菌、促进组织再生等。
二、高分子生物材料在医学领域的应用1. 人工器官和组织工程:高分子生物材料可以用于制造人工器官,如人工心脏瓣膜、人工血管等。
同时,高分子生物材料也可以作为支架材料用于组织工程,促进组织再生和修复。
2. 药物传递系统:高分子生物材料可以作为药物载体,通过调控材料的释放性能,实现药物的缓慢释放和靶向传递,提高药物疗效并减少副作用。
3. 包装材料:高分子生物材料可以用于制造医疗器械的包装材料,保护器械免受外界环境的污染,并延长其使用寿命。
三、高分子生物材料在食品领域的应用1. 食品包装材料:高分子生物材料可以用于制造食品包装材料,具有良好的防潮、防氧化和抗菌性能,保持食品的新鲜度和品质。
2. 食品添加剂:高分子生物材料可以作为食品添加剂,用于增加食品的稳定性、口感和营养价值,并改善食品的质感。
3. 生物传感器:高分子生物材料可以用于制造食品质量检测的生物传感器,实现对食品中有害物质的快速检测和监测。
四、高分子生物材料在环境领域的应用1. 污水处理:高分子生物材料可以用于污水处理,通过吸附、分离和催化等作用,去除污水中的有害物质,提高水质。
高分子材料的特性
高分子材料是一类由大量分子组成的材料,具有许多独特的特性。
首先,高分子材料具有良好的机械性能。
由于其分子结构中存在大量的共价键和非共价键,使得高分子材料具有较高的强度和韧性。
例如,聚乙烯、聚丙烯等塑料材料具有较好的韧性和耐磨性,适用于制作各种日常用品和工业制品。
其次,高分子材料具有较好的耐化学性能。
由于高分子材料中的分子链结构较为稳定,使得其对酸、碱、溶剂等化学物质具有一定的抵抗能力。
例如,聚四氟乙烯具有出色的耐腐蚀性能,被广泛应用于化工设备、管道和阀门等领域。
此外,高分子材料还具有良好的绝缘性能。
由于高分子材料中分子链之间存在较大的空隙,使得其具有较好的绝缘性能。
例如,聚乙烯、聚氯乙烯等塑料材料被广泛应用于电线、电缆等领域,用于绝缘材料。
另外,高分子材料还具有较好的加工性能。
由于高分子材料可以通过热塑性和热固性两种方式进行加工,使得其可以通过挤出、注塑、压延等方式制备成各种形状的制品。
例如,聚丙烯、聚苯乙烯等塑料材料可以通过注塑成型制备成各种日常用品和工业制品。
总的来说,高分子材料具有良好的机械性能、耐化学性能、绝缘性能和加工性能,被广泛应用于日常生活和工业生产中。
随着科技的不断进步,高分子材料的特性将会得到更好的发挥和应用,为人类社会的发展做出更大的贡献。
高分子是什么材料高分子材料是由大分子化合物构成的一类材料。
它是由重复单元(称为聚合物)构成的大分子化合物,通过化学反应或物理方法制备而成。
由于高分子材料具有独特的结构和性质,被广泛应用于各个领域。
高分子材料的主要特点之一是其分子量较大,通常在数千到数百万之间。
这使得高分子材料具有较高的柔韧性和可变形性,可以通过改变其化学结构和聚合度来调节其物理和化学性能。
高分子材料的种类繁多,包括塑料、橡胶、纤维和涂料等。
塑料是最常见的高分子材料之一,具有广泛的应用领域。
根据其性质可以分为热塑性塑料和热固性塑料。
热塑性塑料在加热后可以软化并重新加工,而热固性塑料在加热后凝固成硬态,难以再次加工。
橡胶是高弹性和耐磨损的高分子材料,在汽车轮胎、密封件和振动吸收装置等领域中广泛应用。
纤维是高分子材料的另一种重要应用,包括天然纤维和合成纤维。
如棉、麻、丝等天然纤维,以及尼龙、涤纶等合成纤维,都是高分子材料的典型代表。
高分子材料具有许多优点。
首先,高分子材料具有较低的密度,具有轻质的特点,可用于制造轻便的产品。
其次,高分子材料具有较高的抗腐蚀性和耐磨性,可以在恶劣环境下长时间稳定使用。
此外,高分子材料还具有优异的绝缘性能、良好的柔性和可塑性,以及较高的可回收性。
高分子材料在各个领域都有着广泛的应用。
在建筑领域,高分子材料被用于制造绝缘材料、涂料和密封剂等。
在电子行业中,高分子材料被用于制造电缆、绝缘子和电子设备等。
在医疗领域,高分子材料用于制造人工器官、医用用品和药物载体等。
此外,高分子材料还被广泛应用于汽车制造、航空航天、纺织、包装和环保等领域。
总而言之,高分子材料作为一种特殊的大分子化合物,具有独特的结构和性质,广泛应用于各个领域。
它们不仅能够满足不同领域的需求,还可以通过改变其化学结构和聚合度来调节其性能,为人类社会的发展做出了重要贡献。
高分子材料的优点
高分子材料是一类由大量重复单元组成的高分子化合物,具有许多优点,使其在各种领域得到广泛应用。
首先,高分子材料具有优异的物理性能。
例如,高分子材料具有较低的密度,使其成为轻量化材料的理想选择。
此外,高分子材料还具有良好的机械性能,如强度高、韧性好等,能够满足不同领域对材料性能的要求。
其次,高分子材料具有良好的化学稳定性。
高分子材料在常温下具有较好的耐腐蚀性能,能够在恶劣的环境条件下保持稳定。
这使得高分子材料在化工、航空航天等领域得到广泛应用,成为各种设备和器件的重要构成材料。
另外,高分子材料还具有良好的加工性能。
高分子材料可以通过热压、注塑、挤出等多种加工工艺进行成型,使其在制造过程中具有较大的灵活性和可塑性。
这一特点使得高分子材料成为现代工业制造中不可或缺的材料之一。
此外,高分子材料还具有良好的绝缘性能和隔热性能。
这使得高分子材料在电子电器、建筑等领域得到广泛应用,能够有效地保护设备和建筑结构,提高其安全性和稳定性。
总的来说,高分子材料具有物理性能优异、化学稳定性好、加工性能良好、绝缘性能和隔热性能优秀等诸多优点,使其在各种领域得到广泛应用。
随着科学技术的不断进步,相信高分子材料将会在更多领域展现出其独特的优势,为人类社会的发展做出更大的贡献。
高分子材料在生活中的重要性1定义高分子材料:以高分子化合物为基础的材料。
高分子材料是由相对分子质量较高的化合物构成的材料,包括橡胶、塑料、纤维、涂料、胶粘剂和高分子基复合材料,高分子是生命存在的形式。
所有的生命体都可以看作是高分子的集合。
2来源高分子材料按来源分为天然、半合成(改性天然高分子材料)和合成高分子材料。
天然高分子是生命起源和进化的基础。
人类社会一开始就利用天然高分子材料作为生活资料和生产资料,并掌握了其加工技术。
如利用蚕丝、棉、毛织成织物,用木材、棉、麻造纸等。
19世纪30年代末期,进入天然高分子化学改性阶段,出现半合成高分子材料。
1907年出现合成高分子酚醛树脂,标志着人类应用合成高分子材料的开始。
现代,高分子材料已与金属材料、无机非金属材料相同,成为科学技术、经济建设中的重要材料。
3高分子材料的现状4分类高分子材料按来源分为天然、半合成(改性天然高分子材料)和合成高分子材料。
天然高分子是生命起源和进化的基础。
人类社会一开始就利用天然高分子材料作为生活资料和生产资料,并掌握了其加工技术。
如利用蚕丝、棉、毛织成织物,用木材、棉、麻造纸等。
19世纪30年代末期,进入天然高分子化学改性阶段,出现半合成高分子材料。
1870年,美国人Hyatt用硝化纤维素和樟脑制得的赛璐珞塑料,是有划时代意义的一种人造高分子材料。
1907年出现合成高分子酚醛树脂,真正标志着人类应用化学合成方法有目的的合成高分子材料的开始。
1953年,德国科学家Zieglar和意大利科学家Natta,发明了配位聚合催化剂,大幅度地扩大了合成高分子材料的原料来源,得到了一大批新的合成高分子材料,使聚乙烯和聚丙烯这类通用合成高分子材料走人了千家万户,确立了合成高分子材料作为当代人类社会文明发展阶段的标志。
高分子材料按特性分为橡胶、纤维、塑料、高分子胶粘剂、高分子涂料和高分子基复合材料等。
①橡胶是一类线型柔性高分子聚合物。
其分子链间次价力小,分子链柔性好,在外力作用下可产生较大形变,除去外力后能迅速恢复原状。
有天然橡胶和合成橡胶两种。
②高分子纤维分为天然纤维和化学纤维。
前者指蚕丝、棉、麻、毛等。
后者是以天然高分子或合成高分子为原料,经过纺丝和后处理制得。
纤维的次价力大、形变能力小、模量高,一般为结晶聚合物。
③塑料是以合成树脂或化学改性的天然高分子为主要成分,再加入填料、增塑剂和其他添加剂制得。
其分子间次价力、模量和形变量等介于橡胶和纤维之间。
通常按合成树脂的特性分为热固性塑料和热塑性塑料;按用途又分为通用塑料和工程塑料。
④高分子胶粘剂是以合成天然高分子化合物为主体制成的胶粘材料。
分为天然和合成胶粘剂两种。
应用较多的是合成胶粘剂。
⑤高分子涂料是以聚合物为主要成膜物质,添加溶剂和各种添加剂制得。
根据成膜物质不同,分为油脂涂料、天然树脂涂料和合成树脂涂料。
⑥高分子基复合材料是以高分子化合物为基体,添加各种增强材料制得的一种复合材料。
它综合了原有材料的性能特点,并可根据需要进行材料设计。
高分子复合材料也称为高分子改性,改性分为分子改性和共混改性。
⑦功能高分子材料。
功能高分子材料除具有聚合物的一般力学性能、绝缘性能和热性能外,还具有物质、能量和信息的转换、磁性、传递和储存等特殊功能。
已实用的有高分子信息转换材料、高分子透明材料、高分子模拟酶、生物降解高分子材料、高分子形状记忆材料和医用、药用高分子材料等。
高聚物根据其机械性能和使用状态可分为上述几类。
但是各类高聚物之间并无严格的界限,同一高聚物,采用不同的合成方法和成型工艺,可以制成塑料,也可制成纤维,比如尼龙就是如此。
而聚氨酯一类的高聚物,在室温下既有玻璃态性质,又有很好的弹性,所以很难说它是橡胶还是塑料。
按高分子主链结构分类, 碳链高分子,杂链高聚物,元素有机高聚物①碳链高分子:分子主链由C原子组成,如:PP、PE、PVC②杂链高聚物:分子主链由C、O、N、P等原子构成。
如:聚酰胺、聚酯、硅油③元素有机高聚物:分子主链不含C原子,仅由一些杂原子组成的高分子。
如:硅橡胶其它分类按高分子主链几何形状分类:线型高聚物,支链型高聚物,体型高聚物。
按高分子微观排列情况分类:结晶高聚物,半晶高聚物,非晶高聚物。
4名称和用途一般将高分子材料按特性分为五类,即橡胶、纤维、塑料、胶粘剂、涂料。
橡胶是一类线型柔性高分子聚合物。
其分子链间次价力小,分子链柔性好,在外力作用下可产生较大形变,除去外力后能迅速恢复原状,有天然橡胶和合成橡胶两种。
天然橡胶的主要成分是聚异戊二烯;合成橡胶的主要品种有丁基橡胶、顺丁橡胶、氯丁橡胶、三元乙丙橡胶丙烯酸酯橡胶、聚氨酯橡胶、硅橡胶、氟橡胶等等。
天然橡胶因其具有很强的弹性和良好的绝缘性、可塑性、隔水隔气、抗拉和耐磨等特点,广泛地运用于工业、农业、国防、交通、运输、机械制造、医药卫生领域和日常生活等方面,如交通运输上用的各种轮胎;工业上用的运输带、传动带、各种密封圈;医用的手套、输血管;日常生活中所用的胶鞋、雨衣、暖水袋等都是以橡胶为主要原料制造的,国防上使用的飞机、大炮、坦克,甚至尖端科技领域里的火箭、人造卫星、宇宙飞船、航天飞机等都需要大量的橡胶零部件,目前,世界上部分或完全用天然橡胶制成的物品已达7万种以上,其中轮胎的用量要占天然橡胶使用量的一半以上。
相比于天然橡胶,合成橡胶中有少数品种的性能与其相似,大多数与天然橡胶不同,但两者都是高弹性的高分子材料,一般均需经过硫化和加工之后,才具有实用性和使用价值。
合成橡胶在20世纪初开始生产,从40年代起得到了迅速的发展。
合成橡胶一般在性能上不如天然橡胶全面,但它具有高弹性、绝缘性、气密性、耐油、耐高温或低温等性能,因而广泛应用于工农业、国防、交通及日常生活中。
拿丁基橡胶来说,其用于制作各种轮胎的内胎、无内胎轮胎的气密层、各种密封垫圈,在化学工业中作盛放腐蚀性液体容器的衬里、管道和输送带,农业上用作防水材料。
再如合成橡胶中的佼佼者硅橡胶,它具有良好的电绝缘性、耐氧抗老化性、耐光抗老化性以及防霉性、化学稳定性,且无味无毒,不怕高温、严寒,因此在现代医学中广泛发挥了重要作用,如制造的硅橡胶防噪音耳塞、硅橡胶胎头器吸引器、硅橡胶人造血管、硅橡胶鼓膜修补片,此外还有硅橡胶人造气管、人造肺、人造骨、硅橡胶十二指肠管等,功效都十分理想。
另一种广泛应用的高分子材料便是纤维。
纤维分为天然纤纤维和化学纤维。
前者指蚕丝、棉、麻、毛等。
后者是以天然高分子或合成高分子为原料,经过纺丝和后处理制得。
纤维的次价力大、形变能力小、模量高,一般为结晶聚合物。
纤维在各行各业中可算得上是“热门人物”,其最早用于纺织业中,日常生活中的衣物用品大多采用纤维做材料不仅穿得舒服且御寒防晒。
而如今纤维更大的作用早已不仅停留在日常穿着,它在军事、医用、环保等领域也已有举足轻重的作用。
如碳纳米管可用作电磁波吸收材料,用于制作隐形材料、电磁屏蔽材料、电磁波辐射污染防护材料和吸波材料,由于其物质的可降解性,在医用上,聚乳酸或者脱乙酰甲壳素纤维制成的外科缝合线,在伤口愈合后自动降解并吸收,直接避免手术后的拆线;在环保上,聚乳酸作为可完全生物降解性塑料,越来越受到人们重视。
在建筑领域上防渗防裂纤维可以增强混凝土的强度和防渗性能,纤维技术与混凝土技术相结合,可研制出能改善混凝土性能,提高土建工程质量的钢纤维以及合成纤维,前者对于大坝、机场、高速公路等工程可起到防裂、抗渗、抗冲击和抗折性能,后者可以起到预防混凝土早期开裂,在混凝土材料制造初期起到表面保护。
另外,随着生物科技的发展,一些纤维的特性可以派上用场,如类似肌肉的纤维可制成“人工肌肉”、“人体器官”等,是人体组织良好的替代材料。
当代生活中,有一种高分子材料更是占据了材料的半壁江山,那就是塑料。
塑料是以合成树脂或化学改性的天然高分子为主要成分,再加入填料、增塑剂和其他添加剂制得。
其分子间次价力、模量和形变量等介于橡胶和纤维之间。
通常按合成树脂的特性分为热固性塑料和热塑性塑料;按用途又分为通用塑料和工程塑料。
塑料的应用在生活中随处可见,小到塑料袋、各种机械器具,大到工程、航空,毫不夸张的说,塑料已经成为世界的一部分。
抛开其他用途,这里对其最新的应用做以介绍:透明塑料制成整体薄板车顶。
薄板车顶的新概念基于透明灵活的聚碳酸酯或硅树脂材料,可以被永久性地塑造成单个的聚碳酸酯薄板,也可作为可折叠铰链和封条。
拜耳材料科技研发的原型总共配备了四个灵活的薄板部件,形成了四扇“顶窗”,每扇窗都可单独打开和关闭。
导轨用于连接薄板部件,形成一个牢固、透明的聚碳酸酯车顶外壳。
一个同样透明的管子沿车顶结构中央纵向放置,在“顶窗”打开后用来调折叠薄板。
这样可以形成三维立体结构,组件比平坦的薄板更加牢固。
同时也大大降低了单个组件的数量。
用塑料制造车顶为设计者提供了更大的设计空间。
他们可以创造三维几何形状,将玻璃液化合物推至最高限值。
胶粘剂是以合成天然高分子化合物为主体制成的胶粘材料。
分为天然和合成胶粘剂两种。
应用较多的是合成胶粘剂。
胶粘剂的产生很好的解决了聚合物与非金属或金属之间,金属与金属和金属与非金属之间的胶接,尤其对现在工业、工程做出了巨大的贡献。
小到家用三秒胶、波纹板、纸袋、标签、胶带、邮票,大到建筑用胶,工业用胶,甚至在飞机机翼或尾翼和机身的粘接中也不乏胶粘剂的身影。
与传统的编织织布法、金属的焊接法以及铆接、螺栓或钉接等机械联结法相比,胶粘剂粘接法更快、更经济,并能将不同材料结合在一起,而且当粘接两种金属时,胶粘剂能隔开它们以防腐蚀,同时又可降低装配体的疲劳破坏,并比机械联结更轻更强,因此胶粘剂在生活中的应用也有了渐渐取代传统联接法德趋势。
高分子涂料是以多种高分子聚合材料为主要成膜物质,添加触变剂、防流挂剂、防沉淀剂、增稠剂、流平剂、防老剂等添加剂和催化剂,经过特殊工艺加工而成的合成高分子水性乳液防水涂膜,具有优良的高弹性和绝佳的防水性能。
该产品无毒、无味,安全环保。
涂膜耐水性、耐碱性、抗紫外线能力强,具有较高的断裂延伸率,拉伸强度和自动修复功能。
其中以AST合成高分子防水涂料为代表。
品种有聚氨酯防水涂料、丙烯酸酯防水涂料、环氧树脂防水涂料和有机硅防水涂料等。
高分子涂料绿色环保、耐老性强,粘结力强,渗透性好,应用范围非常广阔。
涂料在日常生活中的作用经常被人忽视。
事实上,许多人都认为油漆和涂料只起着墙面维护作用,体现着消费者的审美观。
实际上,不只作为一层外表覆盖物而存在作为家装的必需品,油漆和涂料对一些日常家居用品起着保护作用,有助于延长它寿命。
别小看那只有千分之几英寸的油漆层或涂料层,却可以为建筑物和建材部品提供有效维护,防止它腐蚀磨损,免受高温和低温的抚慰,减小化学品和紫外线、水分和微生物对它有利影响。