高考数学不等式解题方法技巧
- 格式:doc
- 大小:484.50 KB
- 文档页数:4
高考数学中常规的不等式证明思路及技巧数学是高考中必不可少的一门科目,而数学中的不等式证明题目更是高考难点之一。
不等式证明题目考察的是学生的推理能力、逻辑思维能力和精准计算能力。
本文将介绍常见的不等式证明思路及技巧,以帮助高中生更好地应对高考数学中的不等式证明题目。
一、利用已知条件推出结论在不等式证明题目中,往往会给出一些已知条件,利用这些条件我们可以推出某个结论,从而间接证明不等式的正确性。
在做题时,我们应该把题目中的已知条件先作出标注,理清思路后再进行推导。
例如:给定实数 $x$,$y$,$z$,满足 $x^2+y^2+z^2=1$,求证:$x+y+z\leq \sqrt{3}$。
解析:首先,我们可以根据均值不等式得出 $x+y+z\leq\sqrt{3(x^2+y^2+z^2)}$。
接下来,根据题目中的条件$x^2+y^2+z^2=1$,我们可以将被开方量化简为 $\sqrt{3}$,从而得到 $x+y+z\leq \sqrt{3}$。
因此,我们成功地证明了该不等式的正确性。
二、借助已知不等式证明目标不等式借助已知不等式间接证明目标不等式的正确性是不等式证明中最常用的方法之一。
这种方法需要对不等式理解深入,需要对不等式的性质有全面认知。
可以通过加、减、乘、除等运算方式进行变形,或者通过引理证明的方式来证明目标不等式的正确性。
例如:已知 $ab+bc+ca=1$,证明$\dfrac{a}{1+b^2}+\dfrac{b}{1+c^2}+\dfrac{c}{1+a^2}\geq\dfrac{3\sqrt{3}}{4}$。
解析:首先,我们可以通过柯西不等式将原不等式中的多项式化成分数进行求解。
具体而言,我们有:$$\begin{aligned}&\dfrac{a}{1+b^2}+\dfrac{b}{1+c^2}+\dfrac{c}{1+a^2}\\ &\geq\dfrac{(a+b+c)^2}{a+ab^2+b+b^2c+c+c^2a+a^2}\\ &\geq\dfrac{3}{\dfrac{a}{c}+\dfrac{b}{a}+\dfrac{c}{b}+1}\\ &\geq\dfrac{3}{\sqrt[4]{\dfrac{abc}{abc}}+1}\\ &=\dfrac{3}{2}\end{aligned}$$由此,我们可以通过制定合适的策略,借助已知不等式成功证明了目标不等式的正确性。
开篇语:不等式恒成立问题在高中数学是一类重点题型,高考也是必考内容。
由于不等式问题题型众多,题目也比较灵活。
所以在学习过程中,同学们要学会总结各种解题方法!方法一:分离参数法解析:分离参数法适用的题型特征:当不等式的参数能够与其他变量完全分离出来,并且分离后不等式其中一边的函数的最值或范围可求时,则将参数式放在不等式的一边,分离后的变量式放在另一边,将变量式看成一个新的函数,问题即转化为求新函数的最值或范围,若a≥f(x)恒成立,则a≥f(x)max,若a≤f(x)恒成立,则a≤f(x)min方法二:变换主元法(也可称一次函数型)解析:学生通常习惯把x当成主元(未知数),把另一个变量p看成参数,在有些问题中这样的解题过程繁琐,如果把已知取值范围的变量当成主元,把要求取值范围的变量看成参数,则可简便解题。
适用于变换主元法的题型特征是:题目有两个变量,且已知取值范围的变量只有一次项,这时就可以将不等式转化为一次函数求解。
方法三:二次函数法解析:二次函数型在区间的恒成立问题:解决这类问题主要是分析 1,判断二次函数的开口方向2,二次函数的判别式是大于0还是小于03,判断二次函数的对称轴位置和区间两端值的大小,即判断函数在区间的单调性 方法四:判别式法解析:不等式一边是分式,且分式的分子和分母的最高次项都是二次项时,利用判别式法可以快速的解题,分离参数将会使解题变得复杂。
方法五:最值法解析:不等式两边是两个函数,且含有参数时,我们可以分出出参数,构造新函数,求函数的导数来求得新函数的最值。
总结:在解不等式恒成立的问题时,应根据不等式的特点,选择适合的方式快速准确的解题。
平时练习过程中,应注意观察,总结!。
高考数学中如何处理不等式和函数不等式高中生的一大考验就是高考。
而在高考数学中,不等式和函数不等式是必考的考点。
然而,相较于直观的解题方法,不等式和函数不等式常常需要一定的技巧和灵活的思维方式。
本文将从解不等式和函数不等式的基本方法、案例分析和解题技巧等几个方面来探讨高考数学中如何处理不等式和函数不等式。
一、解不等式和函数不等式的基本方法1、将不等式化为一般形式。
处理不等式的第一步是把它化为一般形式,并且尽量把不等式的系数整理规范化。
然后,要对系数进行讨论来确定解不等式的范围。
举个例子:解不等式 $x-1\ge2x+3$。
我们可以移项化简得到$x\le-4$。
这样,我们就得出了不等式的解,也就是 $(-\infty,-4]$。
2、降低不等关系的阶数。
减少不等式中的绝对值、分式、开方等带有异于一次的函数形式,能促进求根工作。
有时还可以利用平方、移项等方法,将含有不等关系的式子处理为左式和右式的关系,即分成两个简单的不等式。
举个例子:解不等式 $|x+2|+|x+3|\ge5$。
我们可以使用等效方法将不等式处理为两个不等式的和,即 $|x+2|\ge1$ 或$|x+3|\ge4$。
最后的解集为 $x\le-3$ 或 $x\le-2$ 或 $x\ge2$。
3、分类讨论解不等式。
不同的不等式形式需要采用不同的解题方法。
没有一个万能的方法。
因此,我们需要根据特点和个别情况,考虑选择合适的解题方法。
举个例子:解不等式 $\frac{3}{1-x}+\frac{x+1}{x-3}\le0$。
我们可以把不等式的解划分为 $x\le-2$,$-2\lt x\lt1$ 和$x\ge1$ 三个区间来分别进行讨论。
二、案例分析1、绝对值不等式绝对值不等式是高中数学中非常重要的一个概念。
例如: $|x-2|<5$ 。
这里,我们可以先把不等式转化成两种不等式:$x-2<5$ 和 $x-2>-5$,再分别求解,得:x<7 和 x>-3。
高考数学中的不等式求解方法总结高考数学中不等式求解是一个重要的知识点,也是备战高考时需要重点掌握的内容之一。
不等式本身在数学领域具有广泛的应用,掌握不等式的求解方法也有助于学生更好地理解和应用数学知识。
在本文中,我们将总结高考数学中的不等式求解方法。
一、最值法当不等式的二次项系数为正数(即$ax^2+bx+c$,其中$a>0$)时,可使用最值法。
该方法的基本思路是,先确定 $x$ 的取值范围,然后通过求函数的最值来确定函数的正负性和取值范围。
如下例子:$$ x^2 - 6x + 5 > 0 $$该不等式中 $a=1$,所以最值法适用。
首先,我们需要求出二次函数 $y=x^2 - 6x + 5$ 的对称轴,即 $\frac{-b}{2a}=\frac{6}{2}=3$,也就是说,当 $x=3$ 时,函数取到最小值 $y=-1$。
因此我们可以将不等式转化为 $(x-3)^2-1>0$,进一步化简为 $|x-3| >1$。
根据绝对值的定义可知,$|x-3| >1$ 相当于$x<2$ 或 $x>4$。
因此该不等式的解集为 $(-\infty,2)\cup(4,+\infty)$。
二、配方法配方法是不等式求解的一种比较通用的方法,它的基本思路是,将不等式中的项按一定的方式加减或乘除,使得原不等式变为一个可以比较的简单的不等式。
常见的配方法有以下几种:1. 同除法通过同除法,将不等式中的一次项的系数变为 $1$,例如:$$ \frac{1}{x} + \frac{2}{x+2} < 1 $$可同除以 $x(x+2)$,得到:$$ 1< x(x+2)+2x $$化简得:$$ -x^2 -4x +1 <0 $$代数式的符号是问题的重点,由于 $a<0$,所以合法解集为 $-2+\sqrt{3} < x < -2-\sqrt{3}$。
2. 变量代换通过将不等式中的变量做适当的代换,将原不等式转化为一个更容易求解的不等式。
不等式解题漫谈一、活用倒数法则 巧作不等变换——不等式的性质和应用不等式的性质和运算法则有许多,如对称性,传递性,可加性等.但灵活运用倒数法则对解题,尤其是不等变换有很大的优越性.倒数法则:若ab>0,则a>b 与1a <1b等价。
此法则在证明或解不等式中有着十分重要的作用。
如:(1998年高考题改编)解不等式log a (1-1x)>1.分析:当a>1时,原不等式等价于:1-1x >a,即 1x <1-a ,∵a>1,∴1-a<0, 1x <0,从而1-a,1x 同号,由倒数法则,得x>11-a ; 当0<a<1时,原不等式等价于 0<1- 1x <a,∴1-a<1x <1, ∵0<a<1,∴ 1-a>0, 1x >0, 从而1-a, 1x 同号,由倒数法则,得1<x<11-a;综上所述,当a>1时,x ∈(11-a ,+∞);当0<a<1时,x ∈(1,11-a).注:有关不等式性质的试题,常以选择题居多,通常采用特例法,排除法比较有效。
二、小小等号也有大作为——绝对值不等式的应用绝对值不等式:||a|-|b||≤|a ±b|≤|a|+|b|。
这里a,b 既可以表示向量,也可以表示实数。
当a,b 表示向量时,不等式等号成立的条件是:向量a 与b 共线;当a,b 表示实数时,有两种情形:(1)当ab ≥0时,|a+b|=|a|+|b|, |a-b|=||a|-|b||;(2)当ab ≤0时,|a+b|=||a|-|b||, |a-b|=|a|+|b|.简单地说就是当a,b 同号或异号时,不等式就可转化为等式(部分地转化),这为解决有关问题提供了十分有效的解题工具。
如:若1<1a <1b,则下列结论中不正确的是( )A 、log a b>log b aB 、| log a b+log b a|>2C 、(log b a)2<1D 、|log a b|+|log b a|>|log a b+log b a|分析:由已知,得0<b<a<1,∴a,b 同号,故|log a b|+|log b a|=|log a b+log b a|,∴D 错。
高考数学中的解不等式题技巧高中数学中的解不等式是一个常见、重要而又复杂的话题,这也是每年高考必考的内容之一。
为了在高考中拿到更高的数学成绩,解不等式题的优秀技巧和方法就是必不可少的。
本文将为大家详细介绍高考数学中的解不等式题技巧。
一、确定不等式类型解不等式首先要确定不等式的类型,例如一次不等式、二次不等式以及一次不等式与二次不等式混合形式。
不同类型的不等式可能需要不同的解题方法和工具,所以正确地区分不同类型的不等式是解题的第一要素。
二、移项变号不等式中的每项都可以加上或减去相同的数,也可以乘以或除以相同的数,但是要注意判断是不是乘以负数。
在移项变号的过程中,必须保证不等式的方向不变,因为在不等式两侧同时加上一个正数,不等式转化成一个更大的不等式,而在不等式两侧同时加上一个负数,不等式转化成一个更小的不等式。
三、化简如果一个不等式的系数较复杂或有分数,可以通过合并同类项、约分、通分等等化简的方式,使其变得更简单明了,从而更方便地应用解不等式的技巧。
四、双边平方在处理二次不等式时,我们可以使用“双边平方”的方式将其化简成一次不等式,并继续应用一次不等式的解题方法。
不过,需要注意的是,双边平方的过程会使原不等式一些根号项的变化,并且有时会引入不合法解。
因此,在解二次不等式时,需要先判断根号里面的内容的正负,再进行双边平方,确定解的范围,并得出正确的解。
五、裂项在解不等式时,有时我们发现一个不等式的系数和项数都很复杂,难以应用一般的解题方法,这时候可以尝试使用“裂项”的方法,将不等式分解成几个部分,然后分别处理每个部分,最后得到整个不等式的解。
裂项方法的使用需要观察不等式的因式分解式,找到化简的方法,并找出合理的间隔点以及分段条件。
六、代入对于较复杂的不等式,我们可以先猜测一个解,然后代入验证是否成立,从而快速或全面地解出不等式的解。
这种方法的优点是简单易行,而且针对某些形式的不等式,代入还可以直接得到答案,缩短解题时间。
高考数学中不等式的证明方法和技巧有哪些在高考数学中,不等式的证明是一个重要的考点,也是很多同学感到头疼的问题。
不等式的证明方法多种多样,需要我们灵活运用数学知识和思维方法。
下面,我们就来详细探讨一下高考数学中不等式的证明的一些常见方法和技巧。
一、比较法比较法是证明不等式最基本的方法之一,分为作差比较法和作商比较法。
作差比较法的基本步骤是:将两个式子作差,然后对差进行变形,判断差的正负性。
如果差大于零,则被减数大于减数;如果差小于零,则被减数小于减数。
例如,要证明 a > b ,我们可以计算 a b ,然后通过因式分解、配方等方法将其变形为易于判断正负的形式。
作商比较法适用于两个正数比较大小。
将两个正数作商,然后与 1比较大小。
如果商大于 1,则被除数大于除数;如果商小于 1,则被除数小于除数。
比如,要证明 a > b (a、b 均为正数),计算 a/b ,若 a/b > 1 ,则 a > b 。
二、综合法综合法是从已知条件出发,利用已知的定理、公式、性质等,经过逐步的逻辑推理,最后推导出所要证明的不等式。
例如,已知 a > 0 ,b > 0 ,且 a + b = 1 ,要证明 a^2 +b^2 ≥1/2 。
因为 a + b = 1 ,所以(a + b)^2 = 1 ,即 a^2 + 2ab + b^2 =1 。
又因为2ab ≤ a^2 + b^2 ,所以 a^2 + b^2 +2ab ≤ 2(a^2 + b^2) ,即1 ≤ 2(a^2 + b^2) ,从而得出 a^2 +b^2 ≥ 1/2 。
三、分析法分析法是从要证明的不等式出发,逐步寻求使不等式成立的充分条件,直到所需条件为已知条件或明显成立的事实。
比如,要证明√a +√b <√(a + b) (a > 0 ,b > 0 )。
先将不等式移项得到√a +√b √(a + b) < 0 ,然后对其进行分析,逐步转化为易于证明的形式。
分析法的书写格式通常是“要证……,只需证……”。
高考数学如何解决复杂的不等式题目不等式是高考数学中一个重要的考点,也是考生们容易遇到困惑的难题。
通过掌握一定的解题思路和技巧,我们可以有效地解决复杂的不等式题目。
本文将介绍一些解决不等式题目的方法和策略,帮助考生们应对高考中的挑战。
一、一元一次不等式的解法一元一次不等式是最简单的不等式形式,其解法与一元一次方程相似。
我们可以通过移项和化简的方式来求解。
首先,将所有的项都移到同一边,得到一个等式。
然后我们可以根据系数的正负以及零的位置来判断解集的情况,最后得到不等式的解。
二、二次不等式的解法二次不等式的解法相对复杂一些,需要通过因式分解或配方法等方式来求解。
在解二次不等式时,我们首先要将其转化为一个二次方程,然后再找到方程的解集。
我们可以通过以下两种方法来解二次不等式:1. 因式分解法:将二次不等式化为一个二次方程,通过因式分解将其展开为二个一次因式相乘的形式,然后根据因式的正负来确定解的范围。
2. 配方法:对于一般的二次不等式,我们可以通过配方法将其转化为完全平方的形式。
通过将方程配成完全平方后,我们可以通过解方程的方式来求解不等式。
三、绝对值不等式的解法绝对值不等式是一种特殊的不等式形式,在解法上需要注意绝对值的性质。
对于一元绝对值不等式,我们可以根据绝对值的定义将其分为两种情况来解决:1. 绝对值的定义:|a| = a (a≥0); |a| = -a (a<0)。
2. 情况一:如果不等式中的绝对值对应的是一个非负数,我们可以直接去掉绝对值符号,根据非负数的性质来解不等式。
3. 情况二:如果不等式中的绝对值对应的是一个负数,我们需要将绝对值转化为相反数的形式,然后在解不等式。
四、多元不等式的解法多元不等式是由多个变量构成的不等式,其解法要考虑多个变量之间的关系。
在解多元不等式时,我们可以通过以下步骤来进行:1. 将所有的项移到同一边,化简成一个等式。
2. 利用一元不等式的解法,将多元不等式转化为一元不等式。
高考数学如何解决复杂的不等式问题高考数学中,不等式问题一直是考试中的难点之一。
解决复杂的不等式问题需要灵活运用不等式的性质以及各种解不等式的方法。
本文将介绍解决复杂不等式问题的一些有效方法与技巧,帮助考生在高考数学中更好地应对不等式题目。
一、一元一次不等式一元一次不等式是最简单的不等式问题,形式一般为ax+b>0或ax+b<0。
解决一元一次不等式问题,可以通过下面的步骤进行:1. 化简不等式:将一元一次不等式化简为标准形式。
即将不等式左右两边移项,使得系数为正或负。
2. 约束条件:根据不等式中的约束条件,判断解的范围。
3. 解不等式:根据一元一次不等式的性质,得到不等式的解集。
二、一元二次不等式一元二次不等式是高考数学中常见的复杂不等式类型之一。
一元二次不等式的解决方法一般分为以下几种情况:1. 利用一元二次不等式的图像解题:将一元二次不等式转化为图像,通过观察图像的形状来确定解的范围和解集。
2. 利用配方法解题:对一元二次不等式进行配方法,将其化为平方形式,并利用平方的性质来解决不等式。
3. 利用根的性质解题:对一元二次不等式利用根的性质来解题。
即求出一元二次不等式的根,并根据根的位置来判断解的范围。
三、绝对值不等式绝对值不等式是数学中常见的不等式类型之一。
解决绝对值不等式问题,可以按照以下步骤进行:1. 分情况讨论:将绝对值不等式进行分情况讨论,根据绝对值的定义来确定绝对值的取值范围。
2. 解不等式:将不等式的绝对值表达式划分为两个部分,分别求解,得到不等式的解。
四、常见的不等式定理与性质在解决复杂不等式问题时,常常需要用到一些不等式定理与性质。
以下是一些常见的不等式定理与性质:1. 线性不等式性质:对于线性不等式,若两边同乘(除)一个正数,则不等号方向不变;若两边同乘(除)一个负数,则不等号方向反向。
2. 开方不等式性质:对于开方不等式,若两边平方,则不等号方向不变。
3. 加减不等式性质:对于加减不等式,若右边加(减)一个数,则不等号方向不变。
高考数学技巧解决不等式的简便方法不等式在高考数学中占据重要地位,掌握解决不等式问题的技巧对于学生们来说至关重要。
本文将介绍几种简便的方法,帮助高中生们更加有效地解决不等式题目。
方法一:零点法对于一元一次不等式,使用零点法是相对简便的方法。
假设不等式为f(x)>0,我们可以先求出f(x)的零点,然后根据零点的位置判断不等式的解集。
举例来说,如果我们有不等式2x+3>0,首先求出方程2x+3=0的解x=-1.5,可以得到方程的解集为x>-1.5。
方法二:区间判断法区间判断法适用于一元二次不等式。
我们可以先将一元二次不等式化为二次函数的形式,然后通过判断二次函数的取值范围来确定不等式的解集。
举例来说,如果我们有不等式x^2-4x+3<0,我们可以将该不等式化简为(x-1)(x-3)<0。
然后我们绘制出二次函数y=(x-1)(x-3)的图像,通过观察图像在x轴的上方还是下方来确定不等式的解集。
方法三:增减法增减法适用于一些特殊的不等式,例如当不等式中存在绝对值,或者不等式左右两侧都是函数时,可以使用增减法来解决问题。
举例来说,如果我们有不等式|3x-1|<2,我们可以根据绝对值的性质将该不等式化简为-2<3x-1<2。
然后我们可以根据不等式的形式来进行分析,得到解集-1<x<1。
方法四:因式分解法对于一些复杂的不等式,通过因式分解可以将不等式化为简单的形式,从而更方便地求解。
举例来说,如果我们有不等式x^3+x^2+x<0,我们可以对该不等式进行因式分解,得到x(x+1)(x+1)<0。
然后我们可以根据不等式的性质来确定解集。
方法五:数轴法数轴法是解决不等式问题常用的方法之一。
通过绘制数轴,将不等式中的关键点标出,并根据关键点的位置来确定解集。
举例来说,如果我们有不等式2x^2-3x-2>0,我们可以先求出方程2x^2-3x-2=0的解x=-1和x=2,然后在数轴上标出这两个点。
如何应对高考数学中的不等式题目高考数学中的不等式题目一直以来都是考生普遍认为较为困难的题型之一。
不等式的解题过程需要灵活的思维和熟练的运算能力,因此,掌握一定的解题技巧与方法是非常重要的。
本文将介绍一些应对高考数学中不等式题目的有效方法,帮助考生在考试中取得更好的成绩。
一、理解不等式的基本概念与性质在解决不等式问题之前,首先应该理解不等式的基本概念与性质。
不等式是数学中描述数量关系的一种形式,由不等号“<”、“>”、“≤”、“≥”来表示大小关系。
在解题过程中,应特别注意以下几个基本性质:1. 不等式的加减法性质:如果不等式的两边同时加上或减去同一个数,不等式的关系不会改变。
2. 不等式的乘法性质:如果不等式的两边同时乘以一个正数(或除以一个正数),不等式的关系不会改变;如果不等式的两边同时乘以一个负数(或除以一个负数),不等式的关系会发生颠倒。
3. 不等式的倒置性质:如果将不等式的两边同时乘以-1,不等式的关系会发生颠倒。
二、掌握解不等式常用的方法和技巧在解决不等式问题时,可以采取以下一些常用的方法和技巧:1. 确定不等式的解集:首先将不等式转化为等价的形式,然后确定其解集。
常见的转化方法包括移项、合并同类项和配方等。
2. 利用数轴表示法:将不等式的解集在数轴上表示出来,有助于直观地理解不等式的解集。
通过画数轴、标出关键点、判定符号等步骤,可以更方便地确定不等式的解集范围。
3. 考虑特殊取值:在解不等式问题时,通过考虑不等式中变量的特殊取值,可以得到一些具体的解集范围。
特别是在遇到分式不等式时,通常可以通过设定分母为0来确定一些特殊取值。
4. 利用函数图像法:将不等式中的不等式关系和函数图像的位置结合起来,可以更直观地解决不等式问题。
通过观察函数图像的上升和下降趋势,可以判断不等式的解集和区间。
三、不等式题目的练习与实战技巧针对高考数学中的不等式题目,考生还需要进行大量的练习和实战演练,以提高解题能力和应对考试的技巧:1. 多做真题和模拟题:通过多做真题和模拟题,学习和掌握不同类型不等式题目的解题方法和技巧。
高考数学如何快速解决复杂的不等式问题不等式问题在高考数学中占据重要的位置,解决复杂的不等式问题需要灵活运用相关的数学知识和技巧。
本文将介绍一些方法和策略,帮助同学们快速解决复杂的不等式问题。
一、一元一次不等式一元一次不等式是最简单的不等式问题之一,其解的思路与方程类似。
首先,将不等式中的常数项移项,使得不等式变为等式,并写出其解集;然后,根据不等号的性质确定解集的范围。
例如,对于不等式2x+3>5,可以将常数项移项得到2x>2,然后除以2得到x>1,即解集为(1,+∞)。
二、一元二次不等式一元二次不等式在高考数学中出现频率较高,解决这类不等式问题可以使用图像法、开口方向法和根判别法等方法。
1. 图像法:将一元二次不等式转化为一元二次方程,并绘制出关于x的二次函数图像。
通过观察函数图像与x轴的位置关系,确定不等式的解集。
例如,对于不等式x^2-4x+3<0,可以将其转化为方程x^2-4x+3=0,求得方程的根x=1和x=3,在图像上标出这两个根,并观察函数图像在根之间的部分与x轴的位置关系,确定解集为(1,3)。
2. 开口方向法:将一元二次不等式转化为标准形式,并确定开口的方向。
例如,对于不等式2x^2+5x+3>0,可以通过求解方程2x^2+5x+3=0,得到方程的根x=-1和x=-3/2,再观察二次曲线的开口方向,确定解集为(-∞,-3/2)∪(-1,+∞)。
3. 根判别法:对于一元二次不等式ax^2+bx+c(a>0),通过求解方程ax^2+bx+c=0,得到方程的两个根x1和x2。
根据二次函数的凹凸性,确定解集的范围。
例如,对于不等式x^2+6x+9>0,方程的根为x=-3,因为a=1>0,所以二次曲线开口向上,根据函数图像与x轴的关系,确定解集为(-∞,-3)∪(-3,+∞)。
三、绝对值不等式绝对值不等式是高考数学中常见的一类问题,可以通过分情况讨论的方法求解。
高考数学应试技巧之不等式高考数学考试中,不等式是一个非常重要的知识点。
掌握好不等式,不仅可以帮助考生在数学科目中获得更高的分数,还能够在学习和生活中起到实际的作用。
本文将从几个方面介绍高考数学应试技巧之不等式。
一、基础知识的掌握首先,考生必须掌握不等式的基础知识。
不等式是指一种包含两个以上变量的关系,其中包含大小比较的符号。
在数学中,一般用符号“<”、“>”、“≤”、“≥”表示大小比较的关系。
例如,当x > 0时,根据不等式“x(2-x)<1”,可以推导出x的取值范围。
其次,考生还应该掌握几种常见的不等式类型,如绝对值不等式、平均值不等式、柯西不等式等。
这些不等式的应用非常广泛,掌握它们对考生来说非常有益处。
二、考试技巧的掌握在考试中,考生需要掌握一些应对不等式题目的技巧。
以下是一些常用的技巧:1.等式的化简对于一些复杂的不等式,首先可以尝试将其化简为等式。
这样可以大大简化问题的难度,并且有利于进一步推导。
例如,对于不等式“x(2-x)<1”,可以将其化简为“x² - 2x + 1 > 0”,这样就可以更方便地求得x的取值范围。
2.逆向思维有些不等式问题看似微不足道,但实际上需要考生进行逆向思维。
具体来说,就是通过推导判断一个不等式是否成立。
例如,当x > 0时,不等式“x(2-x)<1”是否成立呢?通过逆向思考,不难得出结论:不等式成立。
3.巧用基本不等式基本不等式是一种非常基础的不等式类型,它可以帮助考生在很多题目中得到解决。
具体来说,就是通过应用“平均数≥几何平均数≥调和平均数”这一基本不等式,来推导出其他不等式的解。
三、提高能力的方法最后,还有一些方法可以帮助考生提高不等式解题能力,例如:1.多做题目在学习不等式的过程中,考生应该多做一些相关的题目,熟悉各种不等式的应用场景和解题方法。
这样可以帮助考生更好地掌握不等式的应用技巧。
2.举一反三通过对不等式知识点的深入理解,可以更好地应用到其他问题中。
高考数学中的不等式求解方法数学中的不等式是我们学习的一个重要知识点,它不仅在我们的学习中经常出现,在日常生活中也有着广泛的应用。
高考数学中的不等式求解方法更是需要我们深入研究的一个方向。
在这篇文章中,我将向大家介绍几种高考数学中常用的不等式求解方法,希望能帮助大家在数学高考中取得好成绩。
一、一次不等式的求解方法一次不等式是我们学习中最基础的不等式,通式为ax+b>0。
它的求解方法十分简单,只需要把这个不等式看成一个一元一次方程即可。
将b移到等式的另一边,然后用x将a除掉即可得到x>b/a。
这个结果就是不等式的根。
如果不等式的系数a小于零,则根的符号需要取反。
二、二次不等式的求解方法二次不等式的求解方法则要复杂一些。
它的方程应该长这样:ax²+bx+c>0。
这个不等式可以通过方程的根来求解。
如果我们把这个不等式看成一个一元二次方程,那么它的解就是x1和x2的值。
让我们来看一个例子。
假设我们有一个二次不等式5x²-5x+1>0。
我们需要求的是这个不等式的根。
根据二次函数的求根公式,我们可以得出:Δ=b²-4ac=25-20=5x1=(-b+√Δ)/2a=(5+√5)/10x2=(-b-√Δ)/2a=(5-√5)/10因为不等式中的系数是正数,我们只需要关注其中一个根x1。
所以,我们得到了这个不等式的根,x>x1。
这就是这个不等式的解。
三、分式不等式的求解方法分式不等式是高考数学中比较复杂的一个不等式形式,它的形式可以写成f(x)/g(x)>0。
其中,f(x)和g(x)都是多项式函数。
它的求解方法采用分段法进行。
具体的步骤如下:1. 找出f(x)和g(x)的所有零点,也就是它们的根。
2. 根据这些零点将数轴分成几个部分。
3. 接下来,我们需要对每一个分段分别进行判断。
首先将f(x)和g(x)的符号标记在分段的两个端点上。
如果f(x)和g(x)的符号相同,那么这个分段就符合不等式。
不等式应试技巧总结1、不等式的性质:(1)同向不等式可以相加;异向不等式可以相减:若,a b c d >>,则a c b d +>+(若,a b c d ><,则a c b d ->-),但异向不等式不可以相加;同向不等式不可以相减; (2)左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘:若0,0a b c d >>>>,则ac bd >(若0,0a b c d >><<,则a bc d>); (3)左右同正不等式:两边可以同时乘方或开方:若0a b >>,则n na b >>(4)若0ab >,a b >,则11a b <;若0ab <,a b >,则11a b>。
【例】(1)对于实数c b a ,,中,给出下列命题:①22,bc ac b a >>则若;②b a bc ac >>则若,22;③22,0b ab a b a >><<则若;④b a b a 11,0<<<则若;⑤baa b b a ><<则若,0; ⑥b a b a ><<则若,0;⑦b c b a c a b a c ->->>>则若,0;⑧11,a b a b >>若,则0,0a b ><。
其中正确的命题是______(答:②③⑥⑦⑧);(2)已知11x y -≤+≤,13x y ≤-≤,则3x y -的取值范围是______(答:137x y ≤-≤);(3)已知c b a >>,且,0=++c b a 则a c 的取值范围是______(答:12,2⎛⎫-- ⎪⎝⎭)2. 不等式大小比较的常用方法:(1)作差:作差后通过分解因式、配方等手段判断差的符号得出结果;(2)作商(常用于分数指数幂的代数式);(3)分析法;(4)平方法;(5)分子(或分母)有理化;(6)利用函数的单调性;(7)寻找中间量或放缩法 ;(8)图象法。
其中比较法(作差、作商)是最基本的方法。
【例】(1)设0,10>≠>t a a 且,比较21log log 21+t t aa 和的大小(答:当1a >时,11log log 22a a t t +≤(1t =时取等号);当01a <<时,11log log 22a a t t +≥(1t =时取等号));(2)设2a >,12p a a =+-,2422-+-=a a q ,试比较q p ,的大小(答:p q >);(3)比较1+3log x 与)10(2log 2≠>x x x 且的大小(答:当01x <<或43x >时,1+3log x >2log 2x ;当413x <<时,1+3log x <2log 2x ;当43x =时,1+3log x =2log 2x )3. 利用重要不等式求函数最值时,你是否注意到:“一正二定三相等,和定积最大,积定和最小”这17字方针。
【例】(1)下列命题中正确的是A 、1y x x =+的最小值是 2 B、2y =的最小值是 2 C 、423(0)y x x x =-->的最大值是2- D 、423(0)y x x=-->的最小值是2-(答:C ); (2)若21x y +=,则24xy+的最小值是______(答:;(3)正数,x y 满足21xy +=,则yx 11+的最小值为______(答:3+);4.常用不等式有:(12211a b a b+≥≥≥+(根据目标不等式左右的运算结构选用) ; (2)a 、b 、c ∈R ,222a b c ab bc ca ++≥++(当且仅当a b c ==时,取等号);(3)若0,0a b m >>>,则b b ma a m+<+(糖水的浓度问题)。
【例】如果正数a 、b 满足3++=b a ab ,则ab 的取值范围是_________(答:[)9,+∞)5、证明不等式的方法:比较法、分析法、综合法和放缩法(比较法的步骤是:作差(商)后通过分解因式、配方、通分等手段变形判断符号或与1的大小,然后作出结论。
).常用的放缩技巧有:211111111(1)(1)1n n n n n n n n n-=<<=-++--=<<= 【例】(1)已知c b a >>,求证:222222ca bc ab a c c b b a ++>++ ;(2) 已知R c b a ∈,,,求证:)(222222c b a abc a c c b b a ++≥++;(3)已知,,,a b x y R +∈,且11,x y a b>>,求证:x y x a y b >++;(4)若a 、b 、c 是不全相等的正数,求证:lglg lg lg lg lg 222a b b c c a a b c +++++>++;(5)已知R c b a ∈,,,求证:2222a b b c +22()c a abc a b c +≥++;(6)若*n N ∈(1)n +<n ;(7)已知||||a b ≠,求证:||||||||||||a b a b a b a b -+≤-+;(8)求证:2221111223n++++<。
6.简单的一元高次不等式的解法:标根法:其步骤是:(1)分解成若干个一次因式的积,并使每一个因式中最高次项的系数为正;(2)将每一个一次因式的根标在数轴上,从最大根的右上方依次通过每一点画曲线;并注意奇穿过偶弹回;(3)根据曲线显现()f x 的符号变化规律,写出不等式的解集。
【例】(1)解不等式2(1)(2)0x x -+≥。
(答:{|1x x ≥或2}x =-);(2)不等式(0x -≥的解集是____(答:{|3x x ≥或1}x =-);(3)设函数()f x 、()g x 的定义域都是R ,且()0f x ≥的解集为{|12}x x ≤<,()0g x ≥的解集为∅,则不等式()()0f x g x >的解集为______(答:(,1)[2,)-∞+∞); (4)要使满足关于x 的不等式0922<+-a x x (解集非空)的每一个x 的值至少满足不等式08603422<+-<+-x x x x 和中的一个,则实数a 的取值范围是______.(答:81[7,)8) 7.分式不等式的解法:分式不等式的一般解题思路是先移项使右边为0,再通分并将分子分母分解因式,并使每一个因式中最高次项的系数为正,最后用标根法求解。
解分式不等式时,一般不能去分母,但分母恒为正或恒为负时可去分母。
【例】(1)解不等式25123xx x -<---(答:(1,1)(2,3)-); (2)关于x 的不等式0>-b ax 的解集为),1(+∞,则关于x 的不等式02>-+x bax 的解集为____________(答:),2()1,(+∞--∞ ).8.绝对值不等式的解法:(1)分段讨论法(最后结果应取各段的并集): 【例】解不等式|21|2|432|+-≥-x x (答:x R ∈);(2)利用绝对值的定义; (3)数形结合;【例】解不等式|||1|3x x +->(答:(,1)(2,)-∞-+∞)(4)两边平方:【例】若不等式|32||2|x x a +≥+对x R ∈恒成立,则实数a 的取值范围为______。
(答:4{}3) 9、含参不等式的解法:求解的通法是“定义域为前提,函数增减性为基础,分类讨论是关键.”注意解完之后要写上:“综上,原不等式的解集是…”。
注意:按参数讨论,最后应按参数取值分别说明其解集;但若按未知数讨论,最后应求并集.【例】(1)若2log 13a<,则a 的取值范围是__________(答:1a >或203a <<); (2)解不等式2()1ax x a R ax >∈-(答:0a =时,{|x 0}x <;0a >时,1{|x x a>或0}x <;0a <时,1{|0}x x a<<或0}x <)提醒:(1)解不等式是求不等式的解集,最后务必有集合的形式表示;(2)不等式解集的端点值往往是不等式对应方程的根或不等式有意义范围的端点值。
如关于x 的不等式0>-b ax 的解集为)1,(-∞,则不等式02>+-bax x 的解集为__________(答:(-1,2)) 11.含绝对值不等式的性质:a b 、同号或有0⇔||||||a b a b +=+≥||||||||a b a b -=-;a b 、异号或有0⇔||||||a b a b -=+≥||||||||a b a b -=+.【例】设2()13f x x x =-+,实数a 满足||1x a -<,求证:|()()|2(||1)f x f a a -<+12.不等式的恒成立,能成立,恰成立等问题:不等式恒成立问题的常规处理方式?(常应用函数方程思想和“分离变量法”转化为最值问题,也可抓住所给不等式的结构特征,利用数形结合法)1).恒成立问题若不等式()A x f >在区间D 上恒成立,则等价于在区间D 上()min f x A >若不等式()B x f <在区间D 上恒成立,则等价于在区间D 上()max f x B <【例】(1)设实数,x y 满足22(1)1x y +-=,当0x y c ++≥时,c 的取值范围是______(答:)1,+∞);(2)不等式a x x >-+-34对一切实数x 恒成立,求实数a 的取值范围_____(答:1a <);(3)若不等式)1(122->-x m x 对满足2≤m 的所有m 都成立,则x 的取值范围_____(答:(712-,312+)); (4)若不等式n a n n1)1(2)1(+-+<-对于任意正整数n 恒成立,则实数a 的取值范围是_____(答:3[2,)2-);(5)若不等式22210x mx m -++>对01x ≤≤的所有实数x 都成立,求m 的取值范围.(答:12m >-)2). 能成立问题若在区间D 上存在实数x 使不等式()A x f >成立,则等价于在区间D 上()max f x A >; 若在区间D 上存在实数x 使不等式()B x f <成立,则等价于在区间D 上的()min f x B <.【例】已知不等式a x x <-+-34在实数集R 上的解集不是空集,求实数a 的取值范围______(答:1a >) 3). 恰成立问题若不等式()A x f >在区间D 上恰成立, 则等价于不等式()A x f >的解集为D ; 若不等式()B x f <在区间D 上恰成立, 则等价于不等式()B x f <的解集为D .。