北师大版必修5高中数学2.1正弦定理(1)导学案(二)
- 格式:doc
- 大小:133.00 KB
- 文档页数:4
第七节正弦定理和余弦定理【知识与技能】:1、掌握正弦定理、余弦定理及它们的常见变形形式。
2、能够运用正弦定理、余弦定理解决一些简单的三角形度量问题。
3、能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.【教学重点】正弦定理、余弦定理及它们的常见变形形式。
【教学难点】利用正弦定理、余弦定理解三角形,判断三角形形状,求三角形面积等。
【基本知识梳理】一、正弦定理、余弦定理在△ABC中,若角A,B,C所对的边分别是a,b,c,R为△ABC外接圆半径,则:思考:正弦定理,余弦定理解决的问题?二、三角形的面积公式1.S =12a ·h a ,(h a 表示a 边上的高). 2.S =12bc sin A = = . 3.S =12(a +b +c )·r (r 为三角形内切圆半径). 【本节考点研究】考点一:利用正弦、余弦定理解三角形例1、(1)(2013·抚顺模拟)△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,设向量p =(a +c ,b ),q =(b -a ,c -a ),若p ∥q ,则角C 的大小为(B )A.π6 B .π3 C.π2 D .3π2解析:由p ∥q 得()()()0a c c a b b a +---=, ∴a 2+b 2-c 2=ab .∴cos C =a 2+b 2-c 22ab =ab 2ab =12, 又0<C <π, ∴C =π3. (2)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知A =π3,a =3,b =1,则c 等于( B )A .1B .2 C.3-1 D .3思路一:利用正弦定理求解。
思路二:利用余弦定理求解。
【变式训练】(1)若△ABC 的内角A ,B ,C 满足6sin A =4sin B =3sin C ,则cos B =( D ) A.154 B .34 C.31516 D .1116(2) 设△ABC 的内角A ,B ,C 的对边分别为a 、b 、c ,且cos A =35,cos B =513,b =3,则c =_145_. 考点二:利用正弦、余弦定理判定三角形的形状例2、(1)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且三内角A ,B ,C 成等差数列,三边长a ,b ,c 成等比数列,则△ABC 的形状为(A )A .等边三角形B .非等边的等腰三角形C .直角三角形D .钝角三角形(2)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2asin A =(2b +c)sin B +(2c +b)sin C. ①求A 的大小; ②若sin B +sin C =1,试判断△ABC 的形状.解:①由已知和正弦定理得2a 2=(2b +c )b +(2c +b )c ,∴a 2=b 2+c 2+bc ,由余弦定理知cos A =b 2+c 2-a 22bc =-bc 2bc =-12, 又0<A <π,∴A =120°.②由①知,a 2=b 2+c 2+bc ,∴sin 2A =sin 2B +sin 2C +sin B sin C , 即34=sin 2B +sin 2C +sin B sin C . 又sin B +sin C =1,∴sin C =1-sin B ,代入上式,(2sin B -1)2=0, ∴sin B =12, ∴sin B =sin C =12. 又0°<B ,C <90°, ∴B =C , ∴ △ABC 是等腰的钝角三角形【变式训练】(1)在△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,且222222c a b ab =++ ,则△ABC 是( A )A .钝角三角形B .直角三角形C .锐角三角形D .等边三角形(2)在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,若a =2bcos C ,则此三角形一定是( C )A .等腰直角三角形B .直角三角形C .等腰三角形D .等腰三角形或直角三角形【本节课堂小结】1、掌握正弦定理、余弦定理及它们的常见变形式。
正弦定理【三维目标】:一、知识与技能1.通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容和推导过程;2.能解决一些简单的三角形度量问题(会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题);能够运用正弦定理解决一些与测量和几何计算有关的实际问题;3.通过三角函数、正弦定理、向量数量积等多处知识间联系来体现事物之间的普遍联系与辩证统一.4.在问题解决中,培养学生的自主学习和自主探索能力.二、过程与方法让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。
三、情感、态度与价值观1.培养学生在方程思想指导下处理解三角形问题的运算能力;2.培养学生合情推理探索数学规律的数学思想能力,通过三角函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。
【教学重点与难点】:重点:正弦定理的探索和证明及其基本应用。
难点:已知两边和其中一边的对角解三角形时判断解的个数。
【学法与教学用具】:1. 学法:引导学生首先从直角三角形中揭示边角关系:sin sin sin a b c A B C==,接着就一般斜三角形进行探索,发现也有这一关系;分别利用传统证法和向量证法对正弦定理进行推导,让学生发现向量知识的简捷,新颖。
2. 教学用具:多媒体、实物投影仪、直尺、计算器【授课类型】:新授课【课时安排】:1课时【教学思路】:一、创设情景,揭示课题1.在直角三角形中的边角关系是怎样的?2.这种关系在任意三角形中也成立吗?3.介绍其它的证明方法二、研探新知1.正弦定理的推导(1)在直角三角形中:c a A =sin ,1sin ,sin ==C CB B , 即 =c A a sin ,=c B b sin ,=cC c sin ∴A a sin =B b sin =C c sin 能否推广到斜三角形?(2)斜三角形中证明一:(等积法,利用三角形的面积转换)在任意斜△ABC 中,先作出三边上的高AD 、BE 、CF ,则sin AD c B =,sin BE a C =,sin CF b A =.所以111sin sin sin 222ABC S ab C ac B bc A ∆===,每项同除以12abc 即得:sin sin sin a b c A B C==. 证明二:(外接圆法)如图所示,∠A =∠D∴R CD D a A a 2sin sin === 同理B b sin R 2=,Cc sin R 2= 证明三:(向量法)过A 作单位向量j 垂直于−→−AC ,由−→−AC +=−→−CB −→−AB ,两边同乘以单位向量j 得j •(−→−AC +=−→−)CB j •−→−AB ,则j •−→−AC +j •=−→−CB j •−→−AB∴|j |•|−→−AC |cos90︒+|j |•|−→−CB |cos(90︒-C )=| j |•|−→−AB |cos(90︒-A )∴A c C a sin sin = ∴A a sin =Cc sin 同理,若过C 作j 垂直于−→−CB 得:C c sin =Bb sin ∴sin sin sin a bc A B C == 从上面的研探过程,可得以下定理正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即sin sin abA B =sin cC =(3)利用正弦定理和三角形内角和定理,可解决以下两类斜三角形问题:1)两角和任意一边,求其它两边和一角;如BA b a sin sin =; 2)两边和其中一边对角,求另一边的对角,进而可求其它的边和角.如B b a A sin sin =。
(新教材)北师大版精品数学资料第1课时正弦定理1.掌握正弦定理及其证明过程.2.根据已知三角形的边和角,利用正弦定理解三角形.3.能根据正弦定理及三角变换公式判断三角形的形状.古埃及时代,尼罗河经常泛滥,古埃及人为了研究尼罗河水运行的规律,准备测量各种数据.当尼罗河涨水时,古埃及人想测量某处河面的宽度(如图),如果古埃及人通过测量得到了AB的长度,∠BAC,∠ABC的大小,那么就可以求解出河面的宽度CD,古埃及人是如何利用这些数据计算的呢?问题1:在上面的问题中,△ABC的已知元素有和边.若AB=2,∠ABC=30°,∠BAC=120°,则BC=,CD=.解三角形:的过程.问题2:正弦定理:在一个三角形中,各边和它所对的角的正弦的比相等,即. 问题3:正弦定理的拓展:①a∶b∶c=;②设R为△ABC外接圆的半径,则===.问题4:在△ABC中,已知a、b和A时,解的情况如下:A为锐角A为钝角或直角图形关系式①②③解的个数一解两解一解一解1.在△ABC中,下列等式总能成立的是().A.a cos C=c cos AB.b sin C=c sin AC.ab sin C=bc sin BD.a sin C=c sin A2.已知△ABC中,a=4,b=5,A=30°.下列对三角形解的情况的判断中,正确的是().A.一解B.两解C.无解D.一解或无解3.在△ABC中,已知a=5,c=10,A=30°,则B等于.4.在△ABC中,已知b=5,B=,tan A=2,求sin A和边a.利用正弦定理判断三角形的形状在△ABC中,若sin A=2sin B cos C,且sin2A=sin2B+sin2C,试判断△ABC的形状.已知两角及其中一角的对边,解三角形在△ABC中,已知c=10,A=45°,C=30°,解这个三角形.已知两边及其中一边的对角,解三角形在△ABC中,a=,b=,B=45°.求角A,C和边c.在△ABC中,若==,则△ABC是().A.直角三角形B.等边三角形C.钝角三角形D.等腰直角三角形在△ABC中,已知a=8,B=60°,C=75°,则A=,b=,c=.在△ABC中,已知a=,c=2,A=60°,求B、C及b的值.1.在△ABC中,A=60°,a=4,b=4,则().A.B=45°或135°B.B=135°C.B=45°D.以上答案都不对2.△ABC的内角A,B,C的对边分别为a,b,c,若c=,b=,B=120°,则a等于().A.B.2C.D.3.在△ABC中,cos A=,cos B=,则△ABC中三边的比值a∶b∶c=.4.在△ABC中,若B=60°,AC=3,AB=,求A.(2013年·北京卷)在△ABC中,a=3,b=5,sin A=,则sin B等于().A. B. C. D.1考题变式(我来改编):第二章解三角形第1课时正弦定理知识体系梳理问题1:∠ABC、∠BAC AB2已知三角形的几个元素求其他元素问题2:==问题3:sin A∶sin B∶sin C2R问题4:a=b sin A b sin A<a<b a≥b a>b基础学习交流1.D根据正弦定理有:=,所以a sin C=c sin A,故选D.2.B因为a,b,A的关系满足b sin A<a<b,故有两解.3.105°或15°根据正弦定理得:sin C===,∴C=45°或135°,故B=105°或15°.4.解:因为△ABC中,tan A=2,所以A是锐角,又=2,sin2A+cos2A=1,联立解得sin A=,再由正弦定理得=,代入数据解得a=2.重点难点探究探究一:【解析】在△ABC中,根据正弦定理:===2R,∵sin2A=sin2B+sin2C,∴()2=()2+()2,即a2=b2+c2,∴A=90°,∴B+C=180°-A=90°.由sin A=2sin B cos C,得sin90°=2sin B cos(90°-B),∴sin2B=.∵B是锐角,∴sin B=,∴B=45°,C=45°.∴△ABC是等腰直角三角形.【小结】(1)判断三角形的形状,可以从三边的关系入手,也可以从三个内角的关系入手.从条件出发,利用正弦定理进行代换、转化,求出边与边的关系或求出角与角的关系,从而作出准确判断.(2)判断三角形的形状,主要看其是否是正三角形、等腰三角形、直角三角形、钝角三角形或锐角三角形等,要特别注意“等腰直角三角形”与“等腰三角形或直角三角形”的区别.探究二:【解析】∵A=45°,C=30°,∴B=180°-(A+C)=105°.由=得a===10.由=得b===20sin75°,∵sin75°=sin(30°+45°)=sin30°cos45°+cos30°sin45°=,∴b=20×=5+5.【小结】解三角形时,如果已知三角形的任意两个角与一边,由三角形内角和定理,可以计算出三角形的另一个角,由正弦定理可计算出三角形的另两边.探究三:【解析】由正弦定理得=,=,∴sinA=,∴A=60°,C=180°-45°-60°=75°,由正弦定理得:c==.[问题]本题中根据sin A=得出的角A一定是60°吗?[结论]角A不一定是60°,∵a>b,∴角A还可能是120°.于是正确的解答如下:由正弦定理得=,=,∴sin A=.∵a>b,∴A=60°或A=120°.当A=60°时,C=180°-45°-60°=75°,c==;当A=120°时,C=180°-45°-120°=15°,c==.【小结】已知三角形的两个角求第三个角时注意三角形内角和定理的运用,求边时可用正弦定理的变式,把要求的边用已知条件表示出来再代入计算.已知三角形两边和其中一边的对角解三角形时,首先运用正弦定理求出另一边对角的正弦值,再利用三角形中大边对大角看能否判断所求的这个角是锐角,当已知的角为大边对的角时,则能判断另一边所对的角为锐角;当已知小边对的角时,则不能判断.思维拓展应用应用一:B由正弦定理得a=2R sin A,b=2R sin B,c=2R sin C(R为△ABC外接圆的半径),∴==,即tan A=tan B=tan C,∴A=B=C.应用二:45°44(+1)A=180°-(B+C)=180°-(60°+75°)=45°.由正弦定理=,得b===4,由=,得c====4(+1).应用三:由正弦定理==,得sin C===.∵c<a,∴C<A=60°,∴C=45°,∴B=180°-A-C=180°-60°-45°=75°,b===2sin(30°+45°)=+1.基础智能检测1.C由正弦定理得:sin B=,∵a>b,∴B=45°.2.D由正弦定理=⇒sin C=,于是C=30°⇒A=30°⇒a=c=.3.∶1∶2根据cos A=,cos B=可得:A=60°,B=30°,所以C=90°,故a∶b∶c=sin A∶sin B∶sin C=∶1∶2.4.解:由正弦定理==,∵AC=3,AB=,B=60°,∴=,解得sin C=.又AB<AC,∴C=45°,∴A=180°-45°-60°=75°.全新视角拓展B由=得=,从而得出sin B=.思维导图构建。
2.1.1正弦定理教学设计巩固反馈sin6sin75==3+1sin sin60c BbC=;0012015C B∴==当时,,sin6sin15==3-1sin sin120c BbC=综合可得003b=+1,B=75,C=60,或003.b∴=-1,B=15,C=1203、在中,内角所对的边分别是若,则的值为A . B. C. 1 D.【课堂小测】1、已知ΔABC 已知A=450,B=750,b=8;求边a=()A . 8 B. 4 C. 43-3 D. 83-82 .在ΔABC中, 已知A=60o,a=4,b=4,则B =()A . 45o或135o B. 135oC. 45oD. 以上答案都不对2、已知a+b=12 , B=450,A=600则a=,b=.3、已知在ΔABC中,三内角的正弦比为4:5:6,有三角形的周长为7.5,则其三边长分别为.在时间限制情况下学生独立完成,以检验学生对本节课知识方法的掌握情况。
检验学生课堂上掌握情况,以便下节课的教学安排。
课堂小结你学到了……?你对同学的温馨提示是……?不限制学生的发言,引导学生不仅从知识上而且从方法上直至从数学思想上上进行小结,教师适时总结。
布置作业(1)复习本节课所学内容,预习余弦定理;(2)书面作业:课本P10 习题1.1的第1、2题(3)选做题:(体现作业的层次性)证明:正弦定理中,边与其对角的正弦的比例系数为三角形外接圆的直径。
板书。
《正弦定理》教学设计一、教学内容分析本节内容安排在《普通高中课程标准实验教科书·数学必修5》(北师大版)第二章,正弦定理第一课时,是在高一学生学习了三角等知识之后,显然是对三角知识的应用;同时,作为三角形中的一个定理,也是对初中解直角三角形内容的直接延伸,因而定理本身的应用又十分广泛。
根据实际教学处理,正弦定理这部分内容共分为三个层次:第一层次教师通过引导学生对实际问题的探索,并大胆提出猜想;第二层次由猜想入手,带着疑问,以及特殊三角形中边角的关系的验证,通过“作高法”、“等积法”、“外接圆法”、“向量法”等多种方法证明正弦定理,验证猜想的正确性,并得到三角形面积公式;第三层次利用正弦定理解决引例,最后进行简单的应用。
学生通过对任意三角形中正弦定理的探索、发现和证明,感受“观察——实验——猜想——证明——应用”这一思维方法,养成大胆猜想、善于思考的品质和勇于求真的精神。
二、学情分析对于高一的学生来说,已学的平面几何,解直角三角形,三角函数,向量等知识,有一定观察分析、解决问题的能力,但对前后知识间的联系、理解、应用有一定难度,因此思维灵活性受到制约。
根据以上特点,教师恰当引导,提高学生学习主动性,多加以前后知识间的联系,带领学生直接参与分析问题、解决问题并品尝劳动成果的喜悦。
三、设计思想:本节课采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以问题为导向设计教学情境,以“正弦定理的发现和证明”为基本探究内容,为学生提供充分自由表达、质疑、探究、讨论问题的机会,让学生通过个人、小组、集体等多种解难释疑的尝试活动,在知识的形成、发展过程中展开思维,逐步培养学生发现问题、探索问题、解决问题的能力和创造性思维的能力。
四、教学目标:1.让学生从已有的几何知识出发, 通过对任意三角形边角关系的探索,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,实验,猜想,验ABC证,证明,由特殊到一般归纳出正弦定理,掌握正弦定理的内容及其证明方法,理解三角形面积公式,并学会运用正弦定理解决解斜三角形的两类基本问题。
北师大版高中数学必修5 第二章《解三角形》全部教案第一课时 §2.1.1 正弦定理一、教学目标1、知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。
2、过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。
3、情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。
二、教学重点:正弦定理的探索和证明及其基本应用。
教学难点:已知两边和其中一边的对角解三角形时判断解的个数。
三、教学方法:探析归纳,讲练结合 四、教学过程 Ⅰ.课题导入如图1.1-1,固定∆ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。
思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? A 显然,边AB 的长度随着其对角∠C 的大小的增大而增大。
能否用一个等式把这种关系精确地表示出来? C B Ⅱ.探析新课[探索研究] (图1.1-1)在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。
如图1.1-2,在Rt ∆ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有sin a A c =,sin b B c =,又sin 1cC c ==, A 则sin sin sin a b c c A B C=== b c 从而在直角三角形ABC 中,sin sin sin a b cA B C==C a B (图1.1-2)思考:那么对于任意的三角形,以上关系式是否仍然成立?(由学生讨论、分析)可分为锐角三角形和钝角三角形两种情况:如图1.1-3,当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则sin sin abAB=, C同理可得sin sin cbC B =, b a从而sin sin abAB=sin cC=A c B(图1.1-3)思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。