当前位置:文档之家› 第5讲.几何问题之角平分线题型Ⅰ(教师)

第5讲.几何问题之角平分线题型Ⅰ(教师)

第5讲.几何问题之角平分线题型Ⅰ(教师)
第5讲.几何问题之角平分线题型Ⅰ(教师)

第五讲.几何问题之角平分线题型Ⅰ

【教学目标】

1.掌握角平分线的性质和判定;

2.综合应用角的平分线的性质和判定解决相关问题;

3.综合应用垂直平分线、等腰三角形、四边形等知识解决相关问题;

4.学习分析问题、解决问题的能力。

【知识、方法梳理】:

一.知识要点详解:

1.角平分线的性质定理:

(1)角平分线的性质定理:角平分线上的点到这个角的两边的距离相等。 (2)定理的数学表示:如图1,已知OE 是AOB ∠的平分线,F 是OE 上一点,若 CF OA ⊥于点C ,DF OB ⊥于点D ,则CF DF =。 (3)定理的作用:①证明两条线段相等;②用于几何作图问题; (4)角是一个轴对称图形,它的对称轴是角平分线所在的直线。

图1C

图2C

E

2.角平分线性质定理的逆定理:

(1)角平分线性质定理的逆定理:在角的内部,且到角的两边距离相等的点在这个角的角平分线上。

(2)定理的数学表示:如图2,已知点F 在AOB ∠的内部,且FC OA ⊥于C ,FD OB ⊥于D ,若FD FC =,则点F 在AOB ∠的平分线上。

(3)定理的作用:用于证明两个角相等或证明一条射线是一个角的角平分线。 (4)注意角平分线的性质定理与逆定理的区别和联系。

3.关于三角形三条角平分线的定理: (1)关于三角形三条角平分线交点的定理:

三角形三条角平分线相交于一点,并且这一点到三边的距离相等。

定理的数学表示:如图3,如果AP 、BQ 、CR 分别是ABC ?的内角BAC ∠、ABC ∠、

ACB ∠的平分线,那么:

① AP 、BQ 、CR 相交于一点I ;

② 若ID 、IE 、IF 分别垂直于BC 、CA 、AB 于点D 、E 、F ,则DI EI FI ==。 定理的作用:①用于证明三角形内的线段相等;②用于实际中的几何作图问题。 (2)三角形三条角平分线的交点位置与三角形形状的关系:

三角形三个内角角平分线的交点一定在三角形的内部。

4.关于线段的垂直平分线和角平分线的作图:

(1)会作已知线段的垂直平分线; (2)会作已知角的角平分线; (3)会作与线段垂直平分线和角平分线有关的简单综合问题的图形.

二.角平分线定理使用中的几种辅助线作法:(如下图示)

1.已知角平分线,构造全等三角形;

2.已知一个点到角的一边的距离,过这个点作另一边的垂线段;

3.已知角平分线和其上面的一点,过这一点作角的两边的垂线段。

D

B N

P E D

C

B

A

三.角平分线性质定理之联想:

1.由角平分线的性质联想两线段相等;

2.由角平分线的轴对称性构造全等三角形;

3.过角平分线上一点作一边的平行线,构成等腰三角形。

【典例精讲】

模块一.角平分线的对称性:

基本图形

例1.如图,AD 是ABC ?的角平分线,DE AB ⊥,DF AC ⊥,垂足分别是E F ,。连接EF ,交AD 于点G 。说出AD 与EF 之间有什么关系?证明你的结论。

【分析】:两条线段之间的关系有长度和位置两种关系,因此我们可以从这两方面去猜测判断。角是以其平分线为对称轴的轴对称图形,此题可以利用这一点进行判断。 【解答】:EF AD ⊥,且EG FG =

证明:Q AD 平分BAC ∠

DE AB ⊥,DF AC ⊥,垂足分别是E F ,

∴DE DF =

在Rt DEA ?和Rt DFA ?中:Q DE DF

AD AD =??=?

∴Rt DEA Rt DFA ??? ∴ADE ADF ∠=∠

在DGE ?和DGF ?中:Q DE DF GDE GDF DG DG =??

∠=∠??=?

∴DGE DGF ???

EG FG =,90DGE DGF ∠=∠=o ∴EF AD ⊥,且EG FG =。

?点评:通过此题我们知道,证明两条线段相等,除了利用全等三角形的性质外,还可以利用角平分线的性质。这样我们又多了一种证明线段相等的办法。在利用角平分线的性质时,“角平分线”和“两个垂直”这两个条件缺一不可。

例2.如图,BE CF =,DF AC ⊥于F ,DE AB ⊥于E ,BF 和CE 交于点D 。 求证:AD 平分BAC ∠。

【分析】:要证AD 平分BAC ∠,已知条件中已经有两个垂直,即已经有点到角的两边的距离了,只要证明这两个距离相等即可。而要证明两条线段相等,可利用全等三角形的性质来证明。

【证明】:Q DF AC ⊥于F ,DE AB ⊥于E ∴90DEB DFC ∠=∠=o 在BDE ?和CDF ?中

Q DEB DFC BDE CDF BE CF ∠=∠??

∠=∠??=?

∴BDE CDF ??? ∴DE DF =

又Q DF AC ⊥于F ,DE AB ⊥于E ∴AD

平分BAC ∠。

?点评:判定角的平分线时若题目中只给出一个条件DE DF =或DF AC ⊥,DE AB ⊥,那么得出AD 平分BAC ∠这一结论是错误的。

例 3.如图,在ABC ?中,90C ∠=o ,AD 平分BAC ∠,DE AB ⊥于E ,F 在AC 上,

BD DF =。求证:CF EB =。

【分析】:由已知条件很容易得到

DC DE =;要证明CF EB =,只要证明其所在三角形全等即可,再由此去找全等条件。

【证明】:

Q AD 平分BAC ∠,90C ∠=o ,DE AB ⊥

∴DC DE =

在Rt FCD ?与Rt BED ?中 Q DC DE DF BD =??=?

∴Rt FCD Rt BED ??? ∴CF EB =。

?点评:掌握角平分线的性质和判定固然重要,但学会分析题目所给条件更是解决问题的关键。

例4.如图,已知在ABC ?中,BD DC =,12∠=∠。求证:AD 平分BAC ∠。

【分析】:有两种方法证明AD 平分BAC ∠:一是直接利用定义证明BAD CAD ∠=∠;二是利用角平分线的判定,证明点D 到角的两边距离相等。

仔细观察,前者需要证明三角形全等,但此题使用全等条件中的“边边角”,无法证明两个三角形全等。后者通过作垂线构造出三角形,其条件足以证明两个三角形全等。

【证明】:过点D 作DE AB ⊥于E ,DF AC ⊥于F ∴90BED CFD ∠=∠=o

在BDE ?与CDF ?中: Q 12BED CFD BD CD ∠=∠??

∠=∠??=?

∴BDE CDF ??? ∴DE DF =

又Q DE AB ⊥于E ,DF AC ⊥于F ∴AD 平分BAC ∠。 ?点评:

1.当题目中有角平分线这一条件时,解题时常过角平分线上的点向角的两边作垂线;当有垂线这一条件时,常作辅助线得到角的平分线;

2.用角平分线证明线段相等或角相等时,常常与证明三角形全等配合使用,证明时要先观察需证明的线段或角(或通过等量代换得到的线段或角)在哪两个可能全等的三角形中。

例5.如图,已知在四边形ABCD 中,180B D ∠+∠=o ,AC 平分BAD ∠,CE AD ⊥,E 为垂足。求证:2AB AD AE +=。

【证明】:延长AB ,过C 作CH AB ⊥,H 为垂足 Q AC 平分BAD ∠,且CE AD ⊥,CH AB ⊥

∴CH CE =

又Q 190HCA ∠+∠=o ,290ECA ∠+∠=o ,12∠=∠ ∴HCA ECA ∠=∠

在ACH ?与ACE ?中: Q 90HCA ECA H AEC AC AC ∠=∠??

∠=∠=??=?

o

∴ACH ACE ??? ∴AH AE =

又Q 180ABC HBC ∠+∠=o ,180ABC D ∠+∠=o ∴HBC D ∠=∠

在Rt BHC ?与Rt DEC ?中, Q 90HBC D BHC DEC HC EC ∠=∠??

∠=∠=??=?

o ∴Rt BHC Rt DEC ??? ∴HB DE =

∴AB AD AB AE ED +=++AB AE BH =++AH AE =+2AE = ∴2AB AD AE +=

例6. 如图1,Rt ABC ?中,90ACB ∠=o

,CD AB ⊥,垂足为D 。AF 平分CAB ∠,交CD 于点E ,交CB 于点F 。 (1)求证:CE CF =。

(2)将图2中的ADE ?沿AB 向右平移到'

'

'

A D E ?的位置,使点'

E 落在BC 边上,其它条件不变,如图2所示。试猜想:'

BE 与CF 有怎样的数量关系?请证明你的结论。

图1

图2

【解析】(1)证明:

,

90.

90,

90,90.

CD AB ADC ACB CAF CFA DAE AED ⊥∴∠=∠=∴∠+∠=∠+∠=o

o

o o

Q Q

AF Q 平分CAB ∠.

.

..

CAF DAE CFA AED CEF CE CF ∴∠=∠∴∠=∠=∠∴=

(2)解:'

BE CF =.

证明:如图2,过点E 作EG AC ⊥于点G .

又AF Q 平分CAB ∠,ED AB ⊥,ED EG ∴=.

由平移的性质可知:''

D E DE =,''

D E GE ∴=.

90ACB ∠=o

Q ,90ACD DCB ∴∠+∠=o .

CD AB ⊥Q 于.90.

D B DCB ∴∠+∠=o .ACD B ∴∠=∠

在Rt CEG ?与'

'

Rt BE D ?中,

''''''',,,..

GCE B CGE BD E EG E D CEG BE D CE BE ∠=∠∠=∠=∴???∴=Q

由(1)可知CE CF =,

'CF BE =.

例7.(1)如图1所示,在ABC ?中,AD 是BAC ?的外角平分线,P 是AD 上异于点A 的任意一点,试比较PB PC +与AB AC +的大小,并说明理由。

(2)如图2所示,AD 是ABC ?的内角平分线,其它条件不变,试比较PC PB -与AC AB -的大小,并说明理由。

图1

图2

【解析】(1)PB PC +>AB AC +,理由如下:

在BA 的延长线上截取AE AC =,连接PE ,如图1 AD Q 是BAC ?的外角平分线, .CAP EAP ∴∠=∠

在ACP ?和AEP ?中,AC AE =,CAP EAP ∠=∠,AP AP =. ACP AEP ∴???,

在BPE ?中,PB PE +>BE ,

,

.

BE BA AE AB AC PB PC AB AC =+=+∴+>+Q

(2)PC PB AC AB -<-,理由如下:

在AC 上取一点E ,使AE AB =,连接PE ,如图2 AD Q 平分BAC ∠, EAP BAP ∴∠=∠.

AE AB =Q ,AP AP =, APE APB ∴???, PE PB ∴=.

在EPC ?中,,PC PE EC -<即PC PB AC AE -<-,

PC PB AC AB ∴-<-.

【双基训练】

1.如图,12∠=∠,PD OA ⊥于D ,PE OB ⊥于E ,下列结论中错误的是( ) ().A PD PE = ().B OD OE = ().C DPO EPO ∠=∠ ().C PD OD =

2.如图,ABC ?中,120ABC ∠=o

,26C ∠=o

,且DE AB ⊥,DF AC ⊥,DE DF = 求ADC ∠的度数。

3.已知:12∠=∠,34∠=∠,求证:AP 平分BAC ∠。

4.如图,D 是ABC ?的外角ACE ∠的平分线上一点,DF AC ⊥于F ,DE BC ⊥于E ,且交

BC 的延长线于E 。求证:CE CF =。

5.如图,在ABC ?中,D 为BC 的中点,DE BC ⊥交BAC ∠的平分线AE 于E , EF AB ⊥于F ,EG AC ⊥交AC 延长线于G 。求证:BF CG =

6.如图,AB //CD ,90B ∠=o ,E 是BC 的中点,DE 平分ADC ∠。求证:AE 平分DAB ∠。

【纵向应用】

7.如图,F G

,是OA上两点,M N

,是OB上两点,且FG MN

=,

PFG PMN

S S

??

=,试问点P 是否在AOB

∠的平分线上?

8.如图,在ABC

?中,3

AB AC

=,BAC

∠的平分线交BC于点D,过点B作BE AD

⊥,垂足为E,求证:AD DE

=.

D

B

A

C

【横向拓展】

9.求证:三角形的三条角平分线相交于一点。

练习题答案

【双基训练】 二.答案:D

三.答案:137o

四.【提示】过点P 作PE AB ⊥、PF AC ⊥,利用角平分线性质可得PE PF =。 4.【证明】

Q CD 是ACE ∠的平分线,DF AC ⊥于F ,DE BC ⊥于E

∴90DEC DFC ∠=∠=o ,DE DF = 在Rt DEC ?和Rt DFC ?中 Q DC DC DE DF

=??=? ∴Rt DEC Rt DFC ???

∴CE CF =

5.【证明】连接BE 、EC ,由DE BC ⊥,BD DC =,

∴BE EC =,AE ?平分BAC ∠,EF AB ⊥,EG AC ⊥, ∴EF EG =

∴Rt BFE Rt CGE ??≌,∴BF CG = 6.【证明】:过点E 作EF AD ⊥于F

Q DE 平分ADC ∠,EC DC ⊥,EF FD ⊥

∴CE EF = 又Q CE BE = ∴EF BE =

又Q EF AF ⊥,BE AB ⊥ ∴AE 平分DAB ∠。

【纵向应用】

7.【证明】:过点P 作PD OA ⊥于D ,PE OB ⊥于E

Q 12PFG S FG PD ?=

?,1

2

PMN S MN PE ?=?, 而PFG PMN S S ??=

∴11

22

FG PD MN PE ?=?

又Q FG MN = ∴PD PE = 又Q PD OA ⊥于D ,PE OB ⊥于E ∴P 在AOB ∠的平分线上。

8.证明:如下图,延长BE 交AC 延长线于F ,取CF 中点M ,连接EM . AD Q 平分BAC ∠,AE BE ⊥,AE AE =,

()BAE FAE ASA ∴???.

E ∴是B

F 中点,AB AF =. M Q 是CF 中点, ME ∴∥BC .

3AB AC =Q , 3AF AC ∴=.

AC CM ∴=,CD ∥ME , D ∴是AE 中点. AD DE ∴=.

D

M

A C

【横向拓展】

9.证明:如图,设角平分线AD 与BE 相交于点O 。点O 到三边AB 、BC 、CA 的距离分

别是1d 、2d 、3d

∵O 在A ∠平分线AD 上, ∴13d d =

∵O 在B ∠平分线BE 上, ∴12d d =,∴23d d = ∵2d 、3d 是点O 到C ∠两边的距离, ∴点O 在C ∠的平分线CF 上 ∴AD 、BE 、CF 交于一点O 。

几何画板在高中数学教学中的应用

《几何画板》在高中数学教学中的应用

摘要:几何画板对高中数学教学引起了革命性的变革,数学中的概念、定理、公式、借助几何画板得以形象、直观、动态展示,大大降低了数学学习难度,文章从三个方面阐述了几何画板在高中数学教学中的应用,对推进高中数学课堂改革有积极作用。 关键词:几何画板;代数;几何;解析几何 对于数学科学来说主要是抽象思维和理论思维,这是事实;但从人类数学思维系统的发展来说,形象思维是最早出现的,并在数学研究和教学中都起着重要的作用。不难想象,一个没有得到形象思维培养的人会有很高的抽象思维、理论思维的能力。同样,一个学生如果根本不具备数学想象力,要把数学学好那也是不可能的。正如前苏联著名数学家a.h.柯尔莫戈洛夫所指出的:“只要有可能,数学家总是尽力把他们正在研究的问题从几何上视觉化。”因此,随着计算机多媒体的出现和飞速发展,在网络技术广泛应用于各个领域的同时,也给学校教育带来了一场深刻的变革——用计算机辅助教学,改善人们的认知环境——越来越受到重视。从国外引进的教育软件《几何画板》以其学习入门容易和操作简单的优点及其强大的图形和图象功能、方便的动画功能被国内许多数学教师看好,并已成为制作中学数学课件的主要创作平台之一。那么,《几何画板》在高中数学教学中有哪些应用呢?作为一名高中数学教师笔者就此谈几点体会: 一、《几何画板》在高中代数教学中的应用 “函数”是中学数学中最基本、最重要的概念,它的概念和思维

方法渗透在高中数学的各个部分;同时,函数是以运动变化的观点对现实世界数量关系的一种刻划,这又决定了它是对学生进行素质教育的重要材料。就如华罗庚所说:“数缺形少直观,形缺数难入微。”函数的两种表达方式——解析式和图象——之间常常需要对照(如研究函数的单调性、讨论方程或不等式的解的情况、比较指数函数和对数函数图象之间的关系等)。为了解决数形结合的问题,在有关函数的传统教学中多以教师手工绘图,但手工绘图有不精确、速度慢的弊端;应用几何画板快速直观的显示及变化功能则可以克服上述弊端,大大提高课堂效率,进而起到事倍功半的效果。具体说来,可以用《几何画板》根据函数的解析式快速作出函数的图象,并可以在同一个坐标系中作出多个函数的图象,如在同一个直角坐标系中作出函数y=x2、y=x3和y=x1/2的图象,比较各图象的形状和位置,归纳幂函数的性质;还可以作出含有若干参数的函数图象,当参数变化时函数图象也相应地变化,如在讲函数 y=asin(ωx+φ)的图象时,传统教学只能将a、ω、φ代入有限个值,观察各种情况时的函数图象之间的关系;利用《几何画板》则可以以线段b、t的长度和a点到x轴的距离为参数作图(如图1),当拖动两条线段的某一端点(即改变两条线段的长度)时分别改变三角函数的首相和周期,拖动点a则改变其振幅,这样在教学时既快速灵活,又不失一般性。 《几何画板》在高中代数的其他方面也有很多用途。例如,借助于图形对不等式的一些性质、定理和解法进行直观分析——由“半

初中数学几何辅助线技巧

几何常见辅助线口诀三角形 图中有角平分线,可向两边作垂线。 也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。 角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。 线段和差及倍半,延长缩短可试验。 线段和差不等式,移到同一三角去。 三角形中两中点,连接则成中位线。 三角形中有中线,倍长中线得全等。 四边形 平行四边形出现,对称中心等分点。 梯形问题巧转换,变为三角或平四。 平移腰,移对角,两腰延长作出高。 如果出现腰中点,细心连上中位线。 上述方法不奏效,过腰中点全等造。 证相似,比线段,添线平行成习惯。 等积式子比例换,寻找线段很关键。 直接证明有困难,等量代换少麻烦。 斜边上面作高线,比例中项一大片。 圆形

半径与弦长计算,弦心距来中间站。 圆上若有一切线,切点圆心半径联。 切线长度的计算,勾股定理最方便。 要想证明是切线,半径垂线仔细辨。 是直径,成半圆,想成直角径连弦。 弧有中点圆心连,垂径定理要记全。 圆周角边两条弦,直径和弦端点连。 弦切角边切线弦,同弧对角等找完。 要想作个外接圆,各边作出中垂线。 还要作个内接圆,内角平分线梦圆。 如果遇到相交圆,不要忘作公共弦。 内外相切的两圆,经过切点公切线。 若是添上连心线,切点肯定在上面。 要作等角添个圆,证明题目少困难。 由角平分线想到的辅助线 一、截取构全等: 如图,AB//CD,BE平分∠ABC,CE平分∠BCD,点E在AD上,求证:BC=AB+CD。

分析:在此题中可在长线段BC上截取BF=AB,再证明CF=CD,从而达到证明的目的。这里面用到了角平分线来构造全等三角形。另外一个全等自已证明。此题的证明也可以延长BE与CD的延长线交于一点来证明。自己试一试。 二、角分线上点向两边作垂线构全等: 如图,已知AB>AD, ∠BAC=∠FAC,CD=BC。求证:∠ADC+∠B=180 分析:可由C向∠BAD的两边作垂线。近而证∠ADC与∠B之和为平角。 三、三线合一构造等腰三角形: 如图,AB=AC,∠BAC=90 ,AD为∠ABC的平分线,CE⊥BE.求证:BD=2CE。 分析:延长此垂线与另外一边相交,得到等腰三角形,随后全等。四、角平分线+平行线: 如图,AB>AC, ∠1=∠2,求证:AB-AC>BD-CD。

2018数学中考专题--5-角平分线问题专题

2018年数学中考 角平分线专题 下面就以五种情况进行专题研究 1. 如图1,角平分线遇平行必有等腰三角形; 2. 如图2,垂直角平分线的直线与该角两边交成等腰三角形,并且垂足F 是GH 的中点(三线合一) ; 3. 如图3,角平分线定理; 4. 补半角成倍角,或分倍角为半角; 5. 角平分线与圆. D C E B A O H F G O C B A K N M Q P O A C B 图1 图2 图3 一、 角平分线遇平行找等腰三角形 1 . 探究1 如图①,AD 为等边△ABC 的内角平分线,显然有 AC CD AB DB = . 探究2 如图 ②,若△ABC 为任意三角形,线段AD 为其内角平分线, AC CD AB DB = 一定成立吗?证明你的判断. 应用:如图③,在Rt △ABC 中,∠ACB=90°,AC=24,AB=40,E 为AB 上一点且AE=15,CE 交其内角平分线 AD 于F. 试求DF FA 的值. C A B D A B D C A E B C D F ① ② ③ 2. 如图 1 ,点O 是△ABC 的内心,过点O 作EF ∥AB ,与AC 、BC 分别交于点E 、F ,则( ) A. EF AE BF >+ B. EF AE BF <+ C. EF AE BF =+ D. EF AE BF ≤+ F E O A B C E D A B C 图1 图2 3. 如图2,梯形ABCD 中,AD ∥BC ,AB=3,BC=5,连接BD ,∠BAD 的平分线交BD 于点E ,且AE ∥CD ,则AD 的长为 .

4. 如图3,在△ABC中,BC=6,E、F分别是AB、AC的中点,P在射线EF上,BP交CE于D,Q在CE上且BQ平分∠CBP. 设BP=y,PE=x. (1)当 1 3 CQ CE =时,求y与x之间的函数关系式; (2)当 1 CQ CE n =(n为不小于2的常数)时,直接写出y与x之间的函数关系式. Q P F E A B C D 图3 5.(1)如图①,在四边形ABCD中,AB∥DC,E为BC边的中点,∠BAE=∠EAF,AF与CD相交于F点. 试探究线段AB与AF、CF之间的等量关系,并证明你的结论; A B E F C D D C F E B A 图①图② (2)如图②,当F在DC的延长线上时(其他条件不变),请你直接写出线段AB与AF、CF之间的数量关系.

初中几何常见辅助线作法口诀及习题大全

人说几何很困难,难点就在辅助线。辅助线,如何添?把握定理和概念。还要刻苦加钻研,找出规律凭经验。三角形 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。四边形 平行四边形出现,对称中心等分点。梯形里面作高线,平移一腰试试看。平行移动对角线,补成三角形常见。证相似,比线段,添线平行成习惯。等积式子比例换,寻找线段很关键。直接证明有困难,等量代换少麻烦。斜边上面作高线,比例中项一大片。

作辅助线的方法一:中点、中位线,延线,平行线。如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的。二:垂线、分角线,翻转全等连。如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,得到全等形,,这时辅助线的做法就会应运而生。其对称轴往往是垂线或角的平分线。三:边边若相等,旋转做实验。如遇条件中有多边形的两边相等或两角相等,有时边角互相配合,然后把图形旋转一定的角度,就可以得到全等形,这时辅助线的做法仍会应运而生。其对称中心,因题而异,有时没有中心。故可分“有心”和“无心”旋转两种。四:造角、平、相似,和、差、积、商见。如遇条件中有多边形的两边相等或两角相等,欲证线段或角的和差积商,往往与相似形有关。在制造两个三角形相似时,一般地,有两种方法:第一,造一个辅助角等于已知角;第二,是把三角形中的某一线段进行平移。故作歌诀:“造角、平、相似,和差积商见。”托列米定理和梅叶劳定理的证明辅助线分别是造角和平移的代表)五:两圆若相交,连心公共弦。如果条件中出现两圆相交,那么辅助线往往是连心线或公共弦。六:两圆相切、离,连心,公切线。如条件中出现两圆相切(外切,切),或相离(含、外离),那么,辅助线往往是连心线或外公切线。七:切线连直径,直角与半圆。如果条件中出现圆的切线,那么辅助线是过切点的直径或半径使出现直角;相反,条件中是圆的直径,半径,那么辅助线是过直径(或半径)端点的切线。即切线与直径互为辅助线。如果条件中有直角三角形,那么作辅助线往往是斜边为直径作辅助圆,或半圆;相反,条件中有半圆,那么在直径上找圆周角——直角为辅助线。即直角与半圆互为辅助线。八:弧、弦、弦心距;平行、等距、弦。如遇弧,则弧上的弦是辅助线;如遇弦,则弦心距为辅助线。如遇平行线,则平行线间的距离相等,距离为辅助线;反之,亦成立。如遇平行弦,则平行线间的距离相等,所夹的弦亦相等,距离和所夹的弦都可视为辅助线,反之,亦成立。有时,圆周角,弦切角,圆心角,圆角和圆外角也存在因果关系互相联想作辅助线。九:面积找底高,多边变三边。如遇求面积,(在条件和结论中出现线段的平方、乘积,仍可视为求面积),往往作底或高为辅助线,而两三角形的等底或等高是思考的关键。如遇多边形,想法割补成三角形;反之,亦成立。另外,我国明清数学家用面积证明勾股定理,其辅助线的做法,即“割补”有二百多种,大多数为“面积找底高,多边变三边”。

(完整版)运用几何画板辅助初中数学教学的实践及案例

运用几何画板辅助初中数学教学的实践及案例 摘要:当我们从数学的本质特点和学生的认知特点出发,运用“几何画板”这种工具,通过数学实验这种教与学的方式,去影响学生数学认知结构的意义建构,帮助学生本质地理解数学,培养学生的数学精神、发现与创新能力时,我们就把握住了数学教育的时代性和科学性。 关键词:素质教育新课程改革信息技术与课程的整合数学实验室 一、运用几何画板辅助初中数学教学的实践及案例 1.有效创设动态情境,激发学生学习兴趣 几何画板能简单、准确、动态地表达几何图形和现象,这就为学生学习知识、观察思维提供了一个良好的场所和环境。在课堂中数学老师可以展示一些与学习内容关系非常密切的实例,使学生观其形,闻其音,丰富学生的感观,使学生自然地深入教师精心设计的情景中,不知不觉地思索着,学习着。如用几何画板制作一辆公路上运动的自行车,并请学生思考图中包含了哪些图形,在学生思考的过程中,双击“动画”按钮,使屏幕上的自行车往返运动。还可利用“轨迹跟踪点”的功能演示出自行车行进时车轮上一点、脚蹬上一点或车把上一点形成的轨迹,来说明“点动成线”的事实。这辆平常的自行车在数学课上出现,给刚步入几何大门的孩子们带来了欢笑和几分神奇。就在这愉悦的气氛中,他们迈进了平面几何的门槛,点、直线、线段、圆等几何图形已从他们最熟悉的现实世界中抽象出来了。而这种抽象是他们用眼观察,同时是自己亲身感受到的,激发了他们学习几何的动机,点燃了他们学习的热情。 2.利用几何画板辅助教师讲授基础知识,帮助学生理解基本概念,帮助概念解析 概念是一事物区别于它事物的本质属性,概念来源于生活。在教学中讲授或学习概念常常需要借助图形进行直观性表述。几何中的概念,如“中点”,如果离开了具体的图形的帮助,那么其本质含义就无法揭示和表现出来,因而,图形成为说明概念的“形态式”语言。平面几何教学难,难在于学生不能把概念转换为图形语言,从图形中理解抽象的概念,学习也就望而却步。为此,在几何教学中,要善于利用几何画板强大的图形功能,使概念有具体直接的形象。例如用几何画板教学“三线八角”时,可以先让学生观察课件中八个角之间的位置关系,在学生观察思考的过程中,双击“同位角”按钮,几何画板能把图中的四组同位角从图中自动地拉出,单击鼠标,显示在屏幕上的四组同位角又分别返回原图中去;内错角、同旁内角类似,起到了快速、直观的效果。更重要的是还可以拖动其中任何一条直线使图形发生变化,来说明这些角的位置关系并未发生变化,从而使学生进一步认识其质的规定性,深化了对概念的理解,提高了课堂教学的效率。 例如反比例函数的图像的特点,学生不好把握,什么叫“与坐标轴无限接近,但永不相交”?为了帮助学生理解双曲线的特点,可以利用几何画板来形象地展示这一特点。如要作y= 图像,需要首先建立坐标系,在x轴上取点a,度量该点的横坐标,然后利用“度量”菜单中的“计算”功能计算出,“度量”菜单下的“绘制点”绘出点b(x, y),最后依次选中点a、b,选择“构造”菜单中的“轨迹”,完成双曲线的绘制。然后演示拖动图中的点a向右运动,让学生观察点的运动和数据的变化,问:当x值越来越大,y是如何变化的?学生会看到随着点a向右运动,点a与x轴的距离越来越小。教师趁机再问:图像上的点会与两轴相交吗?再仔细观察双曲线与坐标轴的关系,猜想的结果是不会相交,教师再引导分析,找出真正的原因在于x和y不能为0。

初中几何常用辅助线专题

初中几何常见辅助线做法 一、三角形常见辅助线做法 方法1:有关三角形中线的题目,常将中线加倍; 含有中点的题目,常常做三角形的中位线,把结论恰当的转移 例1、如图5-1:AD 为△ABC 的中线,求证:AB +AC >2AD 。 【分析】:要证AB +AC >2AD ,由图想到: AB +BD >AD,AC +CD >AD ,所以有AB +AC + BD +CD >AD +AD =2AD ,左边比要证结论多BD +CD ,故不能直接证出此题,而由2AD 想到 要构造2AD ,即加倍中线,把所要证的线段转移到同一个三角形中去。 证明:延长AD 至E ,使DE=AD ,连接BE ,则AE =2AD ∵AD 为△ABC 的中线 (已知) ∴BD =CD (中线定义) 在△ACD 和△EBD 中 ?? ???=∠=∠=)()()(辅助线的作法对顶角相等已证ED AD EDB ADC CD BD ∴△ACD ≌△EBD (SAS ) ∴BE =CA (全等三角形对应边相等) ∵在△ABE 中有:AB +BE >AE (三角形两边之和大于第三边) ∴AB +AC >2AD 。 例2、如图4-1:AD 为△ABC 的中线,且∠1=∠2,∠3=∠4,求证:BE +CF >EF 证明:延长ED 至M ,使DM=DE ,连接 CM ,MF 。在△BDE 和△CDM 中, ∵?? ???=∠=∠=)()(1)(辅助线的作法对顶角相等中点的定义MD ED CDM CD BD ∴△BDE ≌△CDM (SAS ) 又∵∠1=∠2,∠3=∠4 (已知) ∠1+∠2+∠3+∠4=180°(平角的定义) ∴∠3+∠2=90°,即:∠EDF =90° 1 4-图A B C D E F M 123 4A B C D E 1 5-图

几何画板十个实例教学教程

几何画板实例教程:(1)模拟时钟 1,制作表盘 打开图表----定义坐标系,以原点为圆心构造圆O,右击圆周选选择粗线,颜色任意。在圆周上取点B,选取点O、B打开菜单变换---缩放选择固定比为4:5得到点B′ 构造线段BB′右击选择粗线,选择点O 打开变换标记中心,选择线段BB′(不要断点)打开菜单变换---旋转六十度,同理旋转十一次得到 。

在圆周任意取点C,选取O和C打开菜单变换---缩放,固定比选择为9:10 得到C′构造线段CC′,选取点C和线段CC′变换旋转6°,C旋转得到点D,然后选取点C打开菜单变换---迭代,影像选择点D,迭代次数操作键盘加号得到58次:

设y轴与圆的交点为E以点0为缩放中心将点E分别缩放90%,60℅,30%,得到点F、G、H隐藏网格和坐标轴,分别构造线段OF,OG,OH并设置为虚线、细线、粗线得到图:到此为止表盘完成了。 2:制作按钮操作时钟 打开菜单图标—新建参数标签改为秒,值的精确度选择为百分之一 打开菜单度量---计算,使用函数trunc分别计算一下结果:秒针旋转的角度、分针的旋转角度、时针的旋转角度。

选取参数“秒=1”打开编辑---操作类按钮—动画 范围设置为0到86400(一天一夜二十四小时共86400秒),标签改为“启动时钟”。 再次选择参数秒同上面一样打开动画按钮,不同的是把范围改为0到0.001,(此范围保证各指针的旋转的角度为0°),标签改为“归零”

选取打开菜单变换---标记角度,然后选取秒针(即图中的虚线)做变换—旋转变换,同理再分别选取分针和时针的旋转角度

做分针和时针的旋转变换。 此时点击启动时钟和归零就可以得到时钟的转动的效果了。(没有用的线可以隐藏了) 3.制作合并文本 用文本工具分别作时、分、秒三个独立的文本 再分别打开度量---计算下面三个值: 此结果是小时的取整; 此结果是秒的显示数字; 此结果为分的显示数字 分别右键单击三个结果选择属性—值的精确度选择单位。 依次选择下面的文本和值打开菜单编辑—合并文本

初中数学几何图形的辅助线添加方法大全

初中数学添加辅助线的方法汇总 作辅助线的基本方法 一:中点、中位线,延长线,平行线。 如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的。 二:垂线、分角线,翻转全等连。 如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,得到全等形,,这时辅助线的做法就会应运而生。其对称轴往往是垂线或角的平分线。 三:边边若相等,旋转做实验。 如遇条件中有多边形的两边相等或两角相等,有时边角互相配合,然后把图形旋转一定的角度,就可以得到全等形,这时辅助线的做法仍会应运而生。其对称中心,因题而异,有时没有中心。故可分“有心”和“无心”旋转两种。四:造角、平、相似,和、差、积、商见。 如遇条件中有多边形的两边相等或两角相等,欲证线段或角的和差积商,往往与相似形有关。在制造两个三角形相似时,一般地,有两种方法:第一,造一个辅助角等于已知角;第二,是把三角形中的某一线段进行平移。故作歌诀:“造角、平、相似,和差积商见。”

托列米定理和梅叶劳定理的证明辅助线分别是造角和平移的代表) 五:两圆若相交,连心公共弦。 如果条件中出现两圆相交,那么辅助线往往是连心线或公共弦。 六:两圆相切、离,连心,公切线。 如条件中出现两圆相切(外切,内切),或相离(内含、外离),那么,辅助线往往是连心线或内外公切线。 七:切线连直径,直角与半圆。 如果条件中出现圆的切线,那么辅助线是过切点的直径或半径使出现直角;相反,条件中是圆的直径,半径,那么辅助线是过直径(或半径)端点的切线。即切线与直径互为辅助线。 如果条件中有直角三角形,那么作辅助线往往是斜边为直径作辅助圆,或半圆;相反,条件中有半圆,那么在直径上找圆周角——直角为辅助线。即直角与半圆互为辅助线。 八:弧、弦、弦心距;平行、等距、弦。 如遇弧,则弧上的弦是辅助线;如遇弦,则弦心距为辅助线。 如遇平行线,则平行线间的距离相等,距离为辅助线;反之,亦成立。 如遇平行弦,则平行线间的距离相等,所夹的弦亦相等,距离和所夹的弦都可视为辅助线,反之,亦成立。 有时,圆周角,弦切角,圆心角,圆内角和圆外角也存在因果关系互相联想

初中几何常见辅助线作法口诀

初中几何常见辅助线作法口诀 人说几何很困难,难点就在辅助线。辅助线,如何添?把握定理和概念。还要刻苦加钻研,找出规律凭经验。 三角形 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。四边形 平行四边形出现,对称中心等分点。梯形里面作高线,平移一腰试试看。平行移动对角线,补成三角形常见。证相似,比线段,添线平行成习惯。等积式子比例换,寻找线段很关键。直接证明有困难,等量代换少麻烦。斜边上面作高线,比例中项一大片。 圆 半径与弦长计算,弦心距来中间站。圆上若有一切线,切点圆心半径连。切线长度的计算,勾股定理最方便。要想证明是切线,半径垂线仔细辨。是直径,成半圆,想成直角径连弦。弧有中点圆心连,垂径定理要记全。圆周角边两条弦,直径和弦端点连。弦切角边切线弦,同弧对角等找完。要想作个外接圆,各边作出中垂线。还要作个内接圆,内角平分线梦圆如果遇到相交圆,不要忘作公共弦。内外相切的两圆,经过切点公切线。若是添上连心线,切点肯定在上面。要作等角添个圆,证明题目少困难。辅助线,是虚线,画图注意勿改变。假如图形较分散,对称旋转去实验。基本作图很关键,平时掌握要熟练。解题还要多心眼,经常总结方法显。切勿盲目乱添线,方法灵活应多变。分析综合方法选,困难再多也会减。虚心勤学加苦练,成绩上升成直线。

作辅助线的常用方法

在利用三角形三边关系证明线段不等关系时,如直接证不出 来,可连接两点或廷长某边构成三角形,使结论中出现的线段在一个或几个三角形中,再运用三角形三边的不等关系证明,如: 例1、 已知如图1-1:D 、E 为△ABC 内两点, 求证:AB+AC>BD+DE+CE. 证明:(法一) 将DE 两边延长分别交AB 、AC 于M 、N , 在△AMN 中,AM+AN > MD+DE+NE;(1) 在△BDM 中,MB+MD>BD ; (2) 在△CEN 中,CN+NE>CE ; (3) 由(1)+(2)+(3)得: AM+AN+MB+MD+CN+NE>MD+DE+NE+BD+CE ∴AB+AC>BD+DE+EC (法二:图1-2) 延长BD 交 AC 于F ,廷长CE 交BF 于G , 在△ABF 和△GFC 和△GDE 中有: AB+AF> BD+DG+GF (三角形两边之和大于第三边)…(1) GF+FC>GE+CE (同上)………………………………..(2) DG+GE>DE (同上)…………………………………….(3) 由(1)+(2)+(3)得: AB+AF+GF+FC+DG+GE>BD+DG+GF+GE+CE+DE ∴AB+AC>BD+DE+EC 。 一、 在利用三角形的外角大于任何和它不相邻的内角时如直接证不出来时,可连接两 点或延长某边,构造三角形,使求证的大角在某个三角形的外角的位置上,小角处于这个三角形的内角位置上,再利用外角定理: 例如:如图2-1:已知D 为△ABC 内的任一点,求证:∠BDC>∠BAC 。 因为∠BDC 与∠BAC 不在同个三角形中,没有直接的联系,可适当添加辅助线构造新的三角形,使∠BDC 处于在外角的位置,∠BAC 处于 在内角的位置; 证法一:延长BD 交AC 于点E ,这时∠BDC 是△EDC 的外角, A B C D E N M 1 1-图A B C D E F G 2 1-图A B C D E F G 1 2-图

初中数学三角形内外角平分线有关命题的证明及应用

三角形内外角平分线 一.命题的证明及应用 在中考常有及三角形内外角平分线有关的题目,若平时不注意总结是很难一下子解决的.下面来一起学习一下. 命题1 如图1,点D是△ABC两个内角平分线的交点,则∠D=90° +∠A. 证明:如图1: ∵∠1=∠,∠2=∠, ∴2∠1+2∠2+∠A=180°① ∠1+∠2+∠D=180°② ①-②得: ∠1+∠2+∠A=∠D③ 由②得: ∠1+∠2=180°-∠D④ 把③代入④得: ∴180°-∠D+∠A=∠D

∠D=90°+∠A. 点评利用角平分线的定义和三角形的内角和等于180°,不难证明. 命题2 如图2,点D是△ABC两个内角平分线的交点,则∠D=90°-∠A. 证明:如图2: ∵DB和DC是△ABC的两条外角平分线, ∴∠D=180°-∠1-∠2 =180°-(∠DBE+∠DCF) =180°-(∠A+∠4+∠A+∠3) =180°-(∠A+180°) =180°-∠A-90°

=90°-∠A; 点评利用角平分线的定义和三角形的一个外角等于及它不相邻两外角的和以及三角形的内角和等于180°,可以证明. 命题3 如图3,点E是△ABC一个内角平分线及一个外角平分线的交点,则∠E=∠A. 证明:如图3: ∵∠1=∠2,∠3=∠4, ∠A+2∠1=2∠4① ∠1+∠E=∠4② ①×代入②得: ∠E=∠A. 点评利用角平分线的定义和三角形的一个外角等于及它不相邻两外角的和,很容易证明.

命题4 如图4,点E是△ABC一个内角平分线BE及一个外角平分线CE的交点,证明:AE是△ABC的外角平分线. 证明:如图3: ∵BE是∠ABC的平分线,可得:EH=EF CE是∠ACD的平分线, 可得:EG=EF ∴过点E分别向AB、AC、BC所在的直线引垂线,所得的垂线段相等. 即EF=EG=EH ∵EG=EH ∴AE是△ABC的外角平分线. 点评利用角平分线的性质和判定能够证明. 应用上面的结论能轻松地解答一些相关的比较复杂的问题,下面来一起看. 例1如图5,PB和PC是△ABC的两条外角平分线. ①已知∠A=60°,请直接写出∠P的度数. ②三角形的三条外角平分线所在的直线形成的三角形按角分类属于什么三角形? 解析:①由命题2的结论直接得:∠P=90°-∠A=90°-×60°=60°

几何画板教程——从入门到精通

写在前面 我们经过几年的信息技术课程的学习,对常用的办公软件、网页制作软件都有了比较详细的了解,为我们有效利用信息技术改造学习奠定了良好的基础。本学年,我们将就信息技术和学科学习的整合进行探索,分上下两篇:上篇主要学习用几何画板做数理实验的方法;下篇则重点掌握信息技术在研究性学习中的应用。 考虑到初三课程的实际情况,我们没有严格按照课时来安排容,而是用专题和案例的方式来组织材料,方便各校根据教学环境和课时情况灵活安排教学进度。 我们在教育信息中心为初三信息技术的学习开辟了专门的:网络探索(WebQuest),域名是https://www.doczj.com/doc/337591824.html,。本课程的相关工具和例都在这里提供,各章节的编者担任相应栏目的版主,随时欢迎广大师生前往交流。 欢迎随时访问网络探究,了解网络学习的最新进展!

上篇用几何画板做数理实验 同学们都喜欢物理和初三新开的化学,因为这两门课都有好多实验,那么数学就没有实验吗? 有的。我们可以用特定的“数字化的实验室软件”来验证数学定律,探索数学规律。这样的软件现在国外有很多,比较著名的有国的“数学实验室”和国外的“几何画板”。鉴于初中的数学知识围,我们可以先学习简单易学的“几何画板”,高中以后我们可以借助大型的“数学实验室”平台来完成更多的数学实验。 说明:几何画板是一个著名的教学工具软件,网上可以下载其试用版本,国已经有3.05版的汉化版本。本教材以3.0版为例编写。在我们的网络探索社区(https://www.doczj.com/doc/337591824.html,)的信息技术教材专区中,有专门的几何画板学习讨论专栏,方便于同学们在网上交流学习心得,讨论学习问题。同时,本课程的案例程序也可以在该栏目找到。最新的几何画板试用版本也会放到这里供下载,请到自行下载安装。(安装过程请参考yzy68.home.sohu./Jc/Jhhb.htm), 在市教育信息中心(https://www.doczj.com/doc/337591824.html,)的虚拟教研社区“培训大楼”中,也有几何画板专栏,专门供老师和有兴趣的同学讨论几何画板的高级使用问题。 除了用几何画板进行大量的数学探索实验之外,与数学紧密相连的物理同样可以在几何画板上完成很多实验。我们将选取大家在初中数学和物理中遇到的一些典型问题为例子,利用几何画板来完成一些数学和物理实验。学完这些例子,相信同学们会熟练地应用几何画板,并且对学习过的或将要学的数学知识、物理知识有更进一步的认识。好啦,让我们开始吧。 首先请下载安装好几何画板软件,打开几何画板,可以看到如下的窗口,各部分的功能如图所示: 图1-0.1 我们主要认识一下工具箱和状态栏,其它的功能在今后的学习过程中将学会使用。

谈谈几何画板在初中数学教学中的应用

谈谈几何画板在初中数学教学中的应用 新课改下的数学课堂一直强调有效地提高课堂效率、高效课堂,但在教学中会发现,有效的课堂时间上,教师要花费很多的时间去画图形或者准备图形课件,既浪费了时间又没能让学生参与到真正的数学动手与探究中来。所以在教学中我认真学习《几何画板》,结合教学实际运用到几何教学中,现就自己在教学中的体会谈谈几何画板在数学教学中的应用。 一、几何画板在初中数学教学中的作用 1、体现数学美,激发学生对数学的学习兴趣 都说数学美,可是它的美究竟体现在什么地方呢?教师也很难说清楚,学生更是难明白。在初中阶段,和谐的几何图形、优美的函数曲线都无形中为我们提供了美的素材,在以往为了让学生感受,教师花费很大的精力、体力去搜集图片,资料,在黑板上无休止地画图。如今,利用几何画板按几下就可以绘出金光闪闪的五角星、旋转变换的正方形组合等等一系列能体现数学美丽一面的图形。用它们来引入正题,学生会很快进入角色,带着问题、兴趣、期待来准备听课,效果可想而知。例如:我在讲解三角形内角和定理应用时,首先在屏幕上迅速制作了一个有颜色变化的五角星,同学们很快就被吸引,教师跟着提出问题。五角星的五个角的度数和是多少呢?学生们七嘴八舌,议论纷纷,当教师用画板的度量功能和计算功能得出它的五个角和为180度时,学生们惊讶不已。立刻就有同学着手证明……在总结出一般解法之后,教师进一步提出问题,七角星和九角星的各角读数

和是多少呢?……一节课在积极热烈的气氛中进行着。原本静止枯燥的数学课变成了生动、活泼、优美感人的舞台,学生情绪高涨,专注、渴求和欣喜的神情挂在脸上。兴趣是学生学习的最好的老师,是原动力。 当我们使用《几何画板》动态地、探索式地表现直线与圆的位置关系,圆与圆的位置关系,还有象圆锥的侧面展开图等等,都能把形象变直观,实现空间想象能力的培养。实践证明使用《几何画板》探索学习数学不仅不会成为学生的负担,相反使抽象变形象,微观变宏观,给学生的学习生活带来极大的乐趣,学生完全可以在轻松愉快的氛围中获得知识。 2、符合学生的心理特点,提高课堂效率 传统的数学教学方法,基本上是信息的单向传输,即“讲、练、评”三位一体的教学模式,反馈处于不自觉状态中,不利于分层教学、因材施教,不易激发学生的求知欲和兴趣。现代教学媒体《几何画板》能化静态为动态,化抽象为具体,能够寓趣味性、技巧性和知识性于一体。把计算机引入数学教学课堂,对教学本身是个改革,每当我在课堂上演示“教学软件”时,教室里鸦雀无声,所有的眼睛都盯着显示屏,全神贯注地观看演示结果,极大调动了学生学习数学的兴趣。同时我的课件也是根据中学生的知识特点,不断地向学生提出启发性的问题,以激发学生主动学习的积极性,培养学生独立思考和自学能力。几何画板课件能有利于“因材施教”,为课堂个别化教学提供了可能性。教师可以根据学生的具体情况灵活掌握并能处理好知识面的

初中几何辅助线大全-最全

三角形中作辅助线的常用方法举例 一、延长已知边构造三角形: 例如:如图7-1:已知AC =BD ,AD ⊥AC 于A ,BC ⊥BD 于B , 求证:AD =BC 分析:欲证 AD =BC ,先证分别含有AD ,BC 的三角形全等,有几种方案:△ADC 与△BCD ,△AOD 与△BOC ,△ABD 与△BAC ,但根据现有条件,均无法证全等,差角的相等,因此可设法作出新的角,且让此角作为两个三角形的公共角。 证明:分别延长DA ,CB ,它们的延长交于E 点, ∵AD ⊥AC BC ⊥BD (已知) ∴∠CAE =∠DBE =90° (垂直的定义) 在△DBE 与△CAE 中 ∵?? ???=∠=∠∠=∠)()() (已知已证公共角AC BD CAE DBE E E ∴△DBE ≌△CAE (AAS ) ∴ED =EC EB =EA (全等三角形对应边相等) ∴ED -EA =EC -EB 即:AD =BC 。 (当条件不足时,可通过添加辅助线得出新的条件,为证题创造条件。) 二 、连接四边形的对角线,把四边形的问题转化成为三角形来解决。 三、有和角平分线垂直的线段时,通常把这条线段延长。 例如:如图9-1:在Rt △ABC 中,AB =AC ,∠BAC =90°,∠1=∠2,CE ⊥BD 的延长于E 。求证:BD =2CE 分析:要证BD =2CE ,想到要构造线段2CE ,同时 A E F A B C D E 1 7-图O

CE 与∠ABC 的平分线垂直,想到要将其延长。 证明:分别延长BA ,CE 交于点F 。 ∵BE ⊥CF (已知) ∴∠BEF =∠BEC =90° (垂直的定义) 在△BEF 与△BEC 中, ∵ ?? ???∠=∠=∠=∠)() () (21已证公共边已知BEC BEF BE BE ∴△BEF ≌△BEC (ASA )∴CE=FE= 2 1 CF (全等三角形对应边相等) ∵∠BAC=90° BE ⊥CF (已知) ∴∠BAC =∠CAF =90° ∠1+∠BDA =90°∠1+∠BFC =90° ∴∠BDA =∠BFC 在△ABD 与△ACF 中 ?? ? ??∠=∠∠=∠)()()(已知=已证已证AC AB BFC BDA CAF BAC ∴△ABD ≌△ACF (AAS )∴BD =CF (全等三角形对应边相等) ∴BD =2CE 四、取线段中点构造全等三有形。 例如:如图11-1:AB =DC ,∠A =∠D 求证:∠ABC =∠DCB 。 分析:由AB =DC ,∠A =∠D ,想到如取AD 的中点N ,连接NB ,NC ,再由SAS 公理有△ABN ≌△DCN ,故BN =CN ,∠ABN =∠DCN 。下面只需证∠NBC =∠NCB ,再取BC 的中点M ,连接MN ,则由SSS 公理有△NBM ≌△NCM ,所以∠NBC =∠NCB 。问题得证。 证明:取AD ,BC 的中点N 、M ,连接NB ,NM ,NC 。则AN=DN ,BM=CM ,在△ABN 和△DCN 中 ∵ ?? ???=∠=∠=)() () (已知已知辅助线的作法DC AB D A DN AN 1 11-图D C B A M N

《运用几何画板进行数学教学方法的创新研究

《运用<几何画板>进行数学教学方法的创新研究》研究报告 重庆市黔江新华中学课题组 一、课题研究的背景与意义 21世纪是人才竞争的世纪,21世纪的教育是信息技术教育的时代。以培养学生的创新精神和实践能力为重点,以完善学生学习方式特征,以应用现代教育技术为标志的新教育理念便应运而生。在传统教学方式上的变革与创新便愈发显得重要和迫切。 (一) 现代社会对人才的需求。20世纪90年代以来,社会生活方式的变迁以及科学技术的突飞猛进,对每个社会成员都提出了全新的要求。可持续发展理念和战略,要求每个社会成员具有终身发展的愿望和能力,具有自主获取新知识的能力。 (二) 新一轮课程改革的发展。《基础教育课程改革纲要》提出了转变学生学习方式的任务,提倡自主、合作、探究的学习方式,而真正的合作学习和探究学习一定是自主学习。因此,倡导自主学习成为转变学生学习方式的首要任务。从教与学的关系来看,教的方式决定学的方式,学生的自主学习离不开教师的指导。研究促进学生自主学习的策略具有很强的现实意义。 (三) 当前课堂教学存在的问题。传统学习方式把学习建立在学生的客体性、受动性、依赖性的一面上,从而导致人的主动性、能动性和独立性的不断销蚀。长期以来课堂教学沿袭满堂灌、满堂问的教学模式,使学生的学习变成了一种外在强制下的被动行为、他控行为。学生常常在盲目的状态下进行学习和作业,很少能进行自我控制、自我调整的学习活动。这种缺乏能动性、自觉性的被动学习,完全丧失了促进主体成长和发展的长远价值与意义。从指导与自主的关系看,过于重视教师的主导作用,教师牵得比较多,学生总是处于被动地位;而实施素质教育以后,大力提倡发挥学生的主体作用,教师又不敢多指导。因而,如何

初中几何辅助线作法大全

初中几何辅助线作法讲解 线、角、相交线、平行线 规律1.如果平面上有n (n ≥2)个点,其中任何三点都不在同一直线上,那么每两点画一条直线,一共可以画出12 n (n -1)条. 规律2.平面上的n 条直线最多可把平面分成〔12 n (n +1)+1〕个部分. 规律3.如果一条直线上有n 个点,那么在这个图形中共有线段的条数为 12n (n -1)条. 规律4.线段(或延长线)上任一点分线段为两段,这两条线段的中点的距离等于线段长 的一半. 例:如图,B 在线段AC 上,M 是AB 的中点,N 是BC 的中点. 求证:MN =12 AC 证明:∵M 是AB 的中点,N 是BC 的中点 ∴AM = BM = 12AB ,BN = CN = 12 BC ∴MN = MB +BN = 12AB + 12BC = 12(AB + BC ) ∴MN =12 AC 练习:1.如图,点C 是线段AB 上的一点,M 是线段BC 的中点. 求证:AM = 12(AB + BC ) 2.如图,点B 在线段AC 上,M 是AB 的中点,N 是AC 的中点. N M C B A M C B A

求证:MN = 12BC 3.如图,点B 在线段AC 上,N 是AC 的中点,M 是BC 的中点. 求证:MN = 12AB 规律5.有公共端点的n 条射线所构成的交点的个数一共有12 n (n -1)个. 规律6.如果平面内有n 条直线都经过同一点,则可构成小于平角的角共有2n (n -1) 个. 规律7. 如果平面内有n 条直线都经过同一点,则可构成n (n -1)对对顶角. 规律8.平面上若有n (n ≥3)个点,任意三个点不在同一直线上,过任意三点作三角形一共可作出16 n (n -1)(n -2)个. 规律9.互为邻补角的两个角平分线所成的角的度数为90o . 规律10.平面上有n 条直线相交,最多交点的个数为12 n (n -1)个. 规律11.互为补角中较小角的余角等于这两个互为补角的角的差的一半. 规律12.当两直线平行时,同位角的角平分线互相平行,内错角的角平分线互相平行, 同旁内角的角平分线互相垂直. 例:如图,以下三种情况请同学们自己证明. H G F E D B C A H G F E D B C A H G F E D B C A N M C B A N C B A

《几何画板》在高中数学教学中的应用

《几何画板》在高中数学教学中的应用 徐秋慧对于数学科学来说主要是抽象思维和理论思维,这是事实;但从人类数学思维系统的发展来说,形象思维是最早出现的,并在数学研究和教学中都起着重要的作用。不难想象,一个没有得到形象思维培养的人会有很高的抽象思维、理论思维的能力。同样,一个学生如果根本不具备数学想象力,要把数学学好那也是不可能的。正如前苏联著名数学家A.H.柯尔莫戈洛夫所指出的:“只要有可能,数学家总是尽力把他们正在研究的问题从几何上视觉化。”因此,随着计算机多媒体的出现和飞速发展,在网络技术广泛应用于各个领域的同时,也给学校教育带来了一场深刻的变革——用计算机辅助教学,改善人们的认知环境——越来越受到重视。从国外引进的教育软件《几何画板》以其学习入门容易和操作简单的优点及其强大的图形和图象功能、方便的动画功能被国内许多数学教师看好,并已成为制作中学数学课件的主要创作平台之一。那么,《几何画板》在高中数学教学中有哪些应用呢?作为一名高中数学教师笔者就此谈几点体会: 一、《几何画板》在高中代数教学中的应用 “函数”是中学数学中最基本、最重要的概念,它的概念和思维方法渗透在高中数学的各个部分;同时,函数是以运动变化的观点对现实世界数量关系的一种刻划,这又决定了它是对学生进行素质教育的重要材料。就如华罗庚所说:“数缺形少直观,形缺数难入微。”函数的两种表达方式——解析式和图象——之间常常需要对照(如研究函数的单调性、讨论方程或不等式的解的情况、比较指数函数和对数函数图象之间的关系等)。为了解决数形结合的问题,在有

关函数的传统教学中多以教师手工绘图,但手工绘图有不精确、速度慢的弊端;应用几何画板快速直观的显示及变化功能则可以克服上述弊端,大大提高课堂效率,进而起到事倍功半的效果。 具体说来,可以用《几何画板》根据函数 一个坐标系中作出多个函数的图象,如在同 一个直角坐标系中作出函数y=x2、y=x3和 y=x1/2的图象,比较各图象的形状和位置,归纳幂函数的性质;还可以作出含有若干参数的函数图象,当参数变化时函数图象也相应地变化,如在讲函数y=Asin(ωx+φ)的图象时,传统教学只能将A、ω、φ代入有限个值,观察各种情况时的函数图象之间的关系;利用《几何画板》则可以以线段b、T的长度和A点到x轴的距离为参数作图(如图1),当拖动两条线段的某一端点(即改变两条线段的长度)时分别改变三角函数的首相和周期,拖动点A则改变其振幅,这样在教学时既快速灵活,又不失一般性。 《几何画板》在高中代数的其他方面也有很多用途。例如,借助于图形对不等式的一些性质、定理和解法进行直观分析——由“半径不小于半弦”证明不等式“a+b≥2ab(a、b∈R+)等;再比如,讲解数列的极限的概念时,作出数列a n=10-n的图形(即作出一个由离散点组成的函数图象),观察曲线的变化趋势,并利用《几何画板》的制表功能以“项数、这一项的值、这一项与0的绝对值”列表,帮助学生直观地理解这一较难的概念。 二、《几何画板》在立体几何教学中的应用 立体几何是在学生已有的平面图形知识的基础上讨论空间图形的性质;它所

数学中几何辅助线的常规作法集锦

专题7:几何辅助线(图)作法探讨 一些几何题的证明或求解,由原图形分析探究,有时显得十分复杂,若通过适当的变换,即添加适当的辅助线(图),将原图形转换成一个完整的、特殊的、简单的新图形,则能使 原问题的本质得到充分的显示,通过对新图形的分析,原问题顺利获解。网络上有许多初中几何常见辅助线作法歌诀,下面这一套是很好的: 人说几何很困难,难点就在辅助线。辅助线,如何添?把握定理和概念。 还要刻苦加钻研,找出规律凭经验。 三角形 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。 四边形 平行四边形出现,对称中心等分点。梯形里面作高线,平移一腰试试看。 平行移动对角线,补成三角形常见。证相似,比线段,添线平行成习惯。 等积式子比例换,寻找线段很关键。直接证明有困难,等量代换少麻烦。 斜边上面作高线,比例中项一大片。 圆 半径与弦长计算,弦心距来中间站。圆上若有一切线,切点圆心半径连。 切线长度的计算,勾股定理最方便。要想证明是切线,半径垂线仔细辨。 是直径,成半圆,想成直角径连弦。弧有中点圆心连,垂径定理要记全。 圆周角边两条弦,直径和弦端点连。弦切角边切线弦,同弧对角等找完。 要想作个外接圆,各边作出中垂线。还要作个内切圆,内角平分线梦圆。 如果遇到相交圆,不要忘作公共弦。内外相切的两圆,经过切点公切线。 若是添上连心线,切点肯定在上面。要作等角添个圆,证明题目少困难。 辅助线,是虚线,画图注意勿改变。假如图形较分散,对称旋转去实验。 基本作图很关键,平时掌握要熟练。解题还要多心眼,经常总结方法显。 切勿盲目乱添线,方法灵活应多变。分析综合方法选,困难再多也会减。 虚心勤学加苦练,成绩上升成直线。

相关主题
文本预览
相关文档 最新文档