matlab数值分析插值
- 格式:pptx
- 大小:321.71 KB
- 文档页数:6
佛山科学技术学院实 验 报 告课程名称 数值分析 实验项目 插值法与数据拟合 专业班级 机械工程 姓 名 余红杰 学 号 10 指导教师 陈剑 成 绩 日 期 月 日一、实验目的1、学会Lagrange 插值、牛顿插值和三次样条插值等基本插值方法;2、讨论插值的Runge 现象3、学会Matlab 提供的插值函数的使用方法,会用这些函数解决实际问题。
二、实验原理1、拉格朗日插值多项式2、牛顿插值多项式3、三次样条插值 三、实验步骤1、用MATLAB 编写独立的拉格朗日插值多项式函数2、用MATLAB 编写独立的牛顿插值多项式函数3、用MATLAB 编写独立的三次样条函数(边界条件为第一、二种情形)4、已知函数在下列各点的值为:根据步骤1,2,3编好的程序,试分别用4次拉格朗日多项式4()L x 、牛顿插值多项式4()P x 以及三次样条函数()S x (自然边界条件)对数据进行插值,并用图给出 {(,),0.20.08,0,1,2,,10i i i x y x i i =+=},4()L x 、4()P x 和()S x 。
5、在区间[-1,1]上分别取10,20n =用两组等距节点对龙格函数21(),(11)125f x x x=-≤≤+作多项式插值,对不同n 值,分别画出插值函数及()f x 的图形。
6、下列数据点的插值可以得到平方根函数的近似,在区间[0,64]上作图。
(1)用这9个点作8次多项式插值8()L x 。
(2)用三次样条(第一边界条件)程序求()S x 。
7、对于给函数21()125f x x =+在区间[-1,1]上取10.2(0,1,,10)i x i i =-+=,试求3次曲线拟合,试画出拟合曲线并打印出方程,与第5题的结果比较。
四、实验过程与结果:1、Lagrange 插值多项式源代码:function ya=lag(x,y,xa) %x 所有已知插值点 %y 插值点对应函数值 %xa 所求点,自变量 %ya 所求点插值估计量 ya=0; mu=1; %初始化%循环方式求L 系数,并求和: for i = 1:length(y) for j = 1:length(x) if i ~= jmu = mu * (xa - x(j) ) / ( x(i) - x(j) ); else continue end endya = ya + y(i) * mu ; mu = 1; end2、Newton 源代码:function ya = newton(x,y,xa) %x 所有已知插值点 %y 插值点对应函数值 %xa 所求点,自变量 %ya 所求点插值估计量 %建立系数零矩阵D 及初始化:D = zeros(length(x)-1);ya = y(1);xi = 1;%求出矩阵D,该矩阵第一行为牛顿插值多项式系数:for i=1:(length(x)-1)D(i,1) = (y(i+1) -y(i))/(x(i+1) -x(i));endfor j=2:(length(x)-1)for i=1:(length(x)-j)D(i,j) = (D(i+1,j-1) - D(i,j-1)) / (x(i+j) - x(i)); endend%xi为单个多项式(x-x(1))(x-x(2))...的值for i=1:(length(x)-1)for j=1:ixi = xi*(xa - x(j));endya = ya + D(1,i)*xi;xi = 1;end3、三次样条插值多项式(1)(第一边界条件)源代码:function y=yt1(x0,y0,f_0,f_n,x) _____________(1)%第一类边界条件下三次样条插值;%xi 所求点;%yi 所求点函数值;%x 已知插值点;%y 已知插值点函数值;%f_0左端点一次导数值;%f_n右端点一次导数值;n = length(x0);z = length(y0);h = zeros(n-1,1);k=zeros(n-2,1);l=zeros(n-2,1);S=2*eye(n);for i=1:n-1h(i)= x0(i+1)-x0(i);endfor i=1:n-2k(i)= h(i+1)/(h(i+1)+h(i));l(i)= 1-k(i);end%对于第一种边界条件:k = [1;k]; _______________________(2)l = [l;1]; _______________________(3)%构建系数矩阵S:for i = 1:n-1S(i,i+1) = k(i);S(i+1,i) = l(i);end%建立均差表:F=zeros(n-1,2);for i = 1:n-1F(i,1) = (y0(i+1)-y0(i))/(x0(i+1)-x0(i));endD = zeros(n-2,1);for i = 1:n-2F(i,2) = (F(i+1,1)-F(i,1))/(x0(i+2)-x0(i));D(i,1) = 6 * F(i,2);end%构建函数D:d0 = 6*(F(1,2)-f_0)/h(1); ___________(4)dn = 6*(f_n-F(n-1,2))/h(n-1); ___________(5)D = [d0;D;dn]; ______________(6)m= S\D;%寻找x所在位置,并求出对应插值:for i = 1:length(x)for j = 1:n-1if (x(i)<=x0(j+1))&(x(i)>=x0(j))y(i) =( m(j)*(x0(j+1)-x(i))^3)/(6*h(j))+...(m(j+1)*(x(i)-x0(j))^3)/(6*h(j))+...(y0(j)-(m(j)*h(j)^2)/6)*(x0(j+1)-x(i))/h(j)+... (y0(j+1)-(m(j+1)*h(j)^2)/6)*(x(i)-x0(j))/h(j) ; break;else continue;endendend(2)(自然边界条件)源代码:仅仅需要对上面部分标注的位置做如下修改:__(1):function y=yt2(x0,y0,x)__(2):k=[0;k]__(3):l=[l;0]__(4)+(5):删除—(6):D=[0:D:0]4、——————————————PS:另建了一个f方程文件,后面有一题也有用到。
插值MATLAB实现(牛顿差商插值误差龙格现象切比雪夫插值)插值是数值分析中的一种方法,通过已知数据点的函数值来估计函数在其他点的值。
MATLAB提供了多种方法来实现插值,包括牛顿差商插值、插值误差分析、龙格现象和切比雪夫插值。
下面将详细介绍这些方法的实现原理和MATLAB代码示例。
1.牛顿差商插值:牛顿差商插值是一种基于多项式插值的方法,其中差商是一个连续性的差分商。
该方法的优势在于可以快速计算多项式的系数。
以下是MATLAB代码示例:```matlabfunction [coeff] = newton_interpolation(x, y)n = length(x);F = zeros(n, n);F(:,1)=y';for j = 2:nfor i = j:nF(i,j)=(F(i,j-1)-F(i-1,j-1))/(x(i)-x(i-j+1));endendcoeff = F(n, :);end```该代码中,输入参数x和y分别表示已知数据点的x坐标和y坐标,返回值coeff表示插值多项式的系数。
2.插值误差分析:插值误差是指插值函数与原始函数之间的差异。
一般来说,通过增加插值节点的数量或使用更高次的插值多项式可以减小插值误差。
以下是MATLAB代码示例:```matlabfunction [error] = interpolation_error(x, y, x_eval)n = length(x);p = polyfit(x, y, n-1);y_eval = polyval(p, x_eval);f_eval = sin(pi*x_eval);error = abs(f_eval - y_eval);end```该代码中,输入参数x和y分别表示已知数据点的x坐标和y坐标,x_eval表示插值节点的x坐标,error表示插值误差。
3.龙格现象:龙格现象是插值多项式在等距插值节点上错误增长的现象。
如何利用Matlab技术进行数据插值数据插值是一种常用的数学方法,用于根据已知数据点的信息,推断出未知位置的数据。
在各个学科领域,如地理学、环境科学、经济学等,数据插值都被广泛应用于实际问题的解决中。
在这篇文章中,我们将探讨如何利用Matlab技术进行数据插值。
数据插值的目标是根据已有的数据点,建立一个适当的函数模型,并利用该模型对未知位置处的数据进行估计。
Matlab作为一种功能强大的数学计算和可视化软件,提供了各种强大的函数和工具箱,使得数据插值变得更加便捷和高效。
首先,我们需要将已有的数据点导入到Matlab中。
一般来说,数据以文本文件的形式存储,每一行代表一个数据点,包含该点的横坐标和纵坐标。
我们可以使用Matlab内置的读取文本数据的函数,如`dlmread`或`importdata`来导入数据。
导入后,我们可以使用`plot`函数将数据点绘制出来,以便于观察数据的分布情况。
在进行数据插值之前,首先需要对数据进行预处理。
如果数据中存在异常值或者缺失值,我们可以使用Matlab提供的函数来进行数据清洗。
例如,可以使用`isnan`函数判断数据是否缺失,并使用`interp1`函数对缺失值进行插值处理。
接下来,我们将介绍几种常用的数据插值方法,并演示如何在Matlab中应用这些方法。
首先是最简单的线性插值方法。
线性插值基于已知数据点之间的直线拟合,通过求解直线方程,来推测未知位置处的数据值。
Matlab提供了`interp1`函数来实现线性插值,我们可以指定插值的方法为`'linear'`,并传入已知数据点的横坐标和纵坐标,以及待插值的位置进行插值计算。
此外,Matlab还提供了其他更高级的插值方法,如多项式插值、样条插值等。
多项式插值使用多项式函数拟合已知数据点,通过计算多项式函数的值来进行插值。
Matlab提供了`polyfit`函数来拟合多项式函数,以及`polyval`函数来计算多项式函数的值。
matlab插值函数Matlab是一种功能强大的数值计算和科学编程环境,内置了许多插值函数,可以用来在不连续数据点之间进行插值或者外推。
下面将介绍其中一些常用的插值函数以及如何使用它们。
1. interp1函数:interp1函数用于一维数据的插值。
它可以根据给定的数据点和插值方法,在一些给定点上进行插值。
例如,可以使用线性插值、多项式插值或者样条插值。
interp1函数的基本语法如下:```Vq = interp1(X, V, Xq, method)```其中,X是原始的自变量数据点,V是对应的因变量数据点,Xq是需要进行插值的点,method是插值方法。
2. interp2函数:interp2函数用于二维数据的插值。
它可以根据给定的数据点和插值方法,在二维平面上的一些给定点上进行插值。
interp2函数在进行插值时,会自动处理数据点的网格化和内插。
常用的插值方法包括线性插值、三次插值和样条插值。
interp2函数的基本语法如下:```Vq = interp2(X, Y, V, Xq, Yq, method)```其中,X和Y是原始的自变量网格,V是对应的因变量数据点,Xq和Yq是需要进行插值的点,method是插值方法。
3. griddedInterpolant函数:griddedInterpolant函数是一个灵活的插值器,可以用于任意维度的插值。
该函数对输入数据进行光滑处理,然后生成一个可调用的插值器对象。
可以使用插值器对象在给定点上进行插值,也可以通过设置插值属性来调整插值方式。
griddedInterpolant函数的基本语法如下:```F = griddedInterpolant(X, V, method)Vq=F(Xq)```其中,X是原始的自变量数据点,V是对应的因变量数据点,method 是插值方法。
F是生成的插值器对象,Xq是需要进行插值的点,Vq是插值结果。
4. scatteredInterpolant函数:scatteredInterpolant函数可以用于不规则数据点的插值。
matlab插值实验报告Matlab插值实验报告引言:在数学和工程领域中,插值是一种常见的数据处理方法。
它通过已知数据点之间的推断来填补数据的空缺部分,从而获得连续的函数或曲线。
Matlab是一种功能强大的数值计算软件,具备丰富的插值函数和工具包。
本实验旨在通过使用Matlab进行插值实验,探索插值方法的原理和应用。
实验步骤:1. 数据准备首先,我们需要准备一组实验数据。
以一个简单的二维函数为例,我们选择f(x) = sin(x),并在区间[0, 2π]上取若干个等间隔的点作为已知数据点。
2. 线性插值线性插值是插值方法中最简单的一种。
它假设函数在两个已知数据点之间是线性变化的。
在Matlab中,可以使用interp1函数进行线性插值。
我们将已知数据点和插值结果绘制在同一张图上,以比较它们之间的差异。
3. 多项式插值多项式插值是一种常用的插值方法,它通过已知数据点构造一个多项式函数来逼近原始函数。
在Matlab中,polyfit函数可以用来拟合多项式。
我们可以选择不同的多项式次数进行插值,并观察插值结果与原始函数之间的差异。
4. 样条插值样条插值是一种更为精确的插值方法,它通过在每个小区间内构造局部多项式函数来逼近原始函数。
在Matlab中,可以使用spline函数进行样条插值。
我们可以选择不同的插值节点数目,并比较插值结果的平滑程度和逼近效果。
5. 拉格朗日插值拉格朗日插值是一种基于多项式的插值方法,它通过构造插值多项式来逼近原始函数。
在Matlab中,可以使用polyval函数进行拉格朗日插值。
我们可以选择不同的插值节点数目,并观察插值结果与原始函数之间的差异。
实验结果:通过实验,我们得到了不同插值方法的结果,并将其与原始函数进行了比较。
在线性插值中,我们观察到插值结果与原始函数之间存在一定的误差,特别是在函数变化较快的区域。
而多项式插值和样条插值在逼近原始函数方面表现更好,特别是在插值节点数目较多的情况下。
Matlab中的插值和平滑方法1. 引言在数值分析和数据处理中,插值和平滑是常用的技术手段,可以用于填补数据的空缺以及降低数据中的噪声。
Matlab作为一种强大的数值计算和数据处理软件,提供了丰富的插值和平滑方法,本文将介绍其中的一些常用方法及其应用。
2. 插值方法2.1 线性插值线性插值是最简单的一种插值方法,它假设待插值函数在相邻数据点之间是线性变化的。
Matlab中提供了interp1函数实现线性插值,可以通过设定插值点的横坐标向量和已知数据点的横坐标向量,以及对应的纵坐标向量,得到插值结果。
2.2 分段插值分段插值是一种更精确的插值方法,它假设待插值函数在相邻数据点之间是分段线性变化的。
Matlab中的interp1函数也可以实现分段插值,通过指定'linear'插值方法和 'pchip'插值方法,可以得到不同的插值结果,前者得到的结果比较平滑,而后者更接近原始数据的形状。
2.3 样条插值样条插值是一种更高阶的插值方法,它假设待插值函数在相邻数据点之间是多项式变化的。
Matlab中的spline函数可以实现三次样条插值,它通过计算每个数据点处的二阶导数,得到一个以每个数据点为节点的三次多项式函数。
样条插值可以更加精确地还原数据,但也容易受到离群点的干扰。
3. 平滑方法3.1 移动平均移动平均是一种常用的平滑方法,它通过计算数据点周围一定范围内的平均值,得到平滑后的结果。
Matlab中的smoothdata函数提供了不同的平滑方法,包括简单移动平均、指数移动平均和加权移动平均等,可以根据具体需求选择适当的方法。
3.2 Savitzky-Golay滤波Savitzky-Golay滤波是一种基于最小二乘法的平滑方法,它通过拟合多项式曲线来实现数据的平滑。
Matlab中的sgolay函数可以实现Savitzky-Golay滤波,通过指定不同的拟合阶数和窗口大小,可以得到不同程度的平滑结果。
在Matlab中如何进行数据插值与拟合引言:数据处理是科学研究与工程开发中不可或缺的环节之一。
而数据插值和拟合则是数据处理中常用的技术手段。
在Matlab这一强大的数值分析工具中,提供了丰富的函数与工具箱,使得数据插值与拟合变得更加便捷高效。
本文将详细阐述在Matlab中如何进行数据插值与拟合,并介绍几个常用的插值与拟合方法。
一、数据插值数据插值是通过已知的有限个数据点,推导出数据点之间未知位置上的数值。
在Matlab中,可以利用interp1函数进行数据插值。
假设我们有一组离散的数据点,存储为两个向量x和y。
那么,可以通过以下步骤进行数据插值:1. 调用interp1函数,并传入x和y作为输入参数。
```matlabxi = linspace(min(x), max(x), n);yi = interp1(x, y, xi, '方法');```其中,xi是插值点的位置,min和max分别是x向量的最小值和最大值,n是插值点的数量。
'方法'是要使用的插值方法,可以选择线性插值(method='linear')、样条插值(method='spline')等。
2. 绘制插值结果曲线。
```matlabplot(x, y, 'o', xi, yi)legend('原始数据','插值结果')```使用plot函数可以绘制原始数据点和插值结果的曲线。
通过设置不同的插值方法和插值点的数量,可以探索不同的插值效果。
二、数据拟合数据拟合是通过已知的一组数据点,找到一个符合数据趋势的函数模型。
在Matlab中,可以利用polyfit函数进行多项式拟合。
假设我们有一组离散的数据点,存储为两个向量x和y。
那么,可以通过以下步骤进行数据拟合:1. 调用polyfit函数,并传入x和y作为输入参数。
```matlabp = polyfit(x, y, n);```其中,n是多项式的次数,p是拟合多项式的系数。
matlab 插值法MATLAB 插值法是数据处理和信号处理中常用的一种算法。
在数据采集或数据处理中,通常会遇到数据缺失或者采样点不足的情况,这时候就需要用到插值法来对数据进行补充或者重构。
插值法的基本思想是,给定一些离散的数据点,通过一种数学方法,构造出一个连续的函数,使得在已知数据点处,该函数与原数据点一致。
常见的插值方法有线性插值、多项式插值、样条插值等。
线性插值法是最简单的一种插值方法。
在采样点之间的区域内,采用一次多项式函数去逼近该区域内的某个未知函数。
其公式如下所示:f(x) = f(x0)(1 - t) + f(x1)t其中,x0 和 x1 是相邻两个采样点,t 是一个权重系数,表示该点在两个采样点之间的位置。
多项式插值法是用一个 n 次多项式函数逼近原函数 f(x)。
在采样点处,两个函数的取值相同,同时也能保证一定的光滑性。
其公式如下所示:f(x) = a0 + a1x + a2x^2 + ... + anxnS''(x) = M0(x - x0) + N0, x0 ≤ x ≤ x1其中,M 和 N 是未知的系数,通过计算两个相邻区间中的连续性和光滑性来解出系数。
除了以上三种插值方法,还有其他的插值算法,例如离散傅里叶插值法、拉格朗日插值法等。
总之,MATLAB 中的插值函数为 interp1,它的语法格式如下:yi = interp1(x, y, xi, method)其中,x 和 y 为已知函数的取值点,xi 为要进行插值的点的位置,method 是采用的插值方式。
例如,method = 'linear' 表示采用线性插值法。
MATLAB 中还提供了很多其他的 method 选项,用户可以根据实际情况选择适合的方法。
MATLAB 插值算法在信号处理和图像处理中广泛应用,例如,图像的放大缩小、色彩调整、去噪等都可以用插值算法实现。
因此,掌握 MATLAB 插值算法可以帮助我们更好地进行数据处理和信号处理。
MATLAB中的插值方法及其应用引言数据在科学研究和工程应用中起着至关重要的作用。
然而,在实际问题中,我们常常遇到数据不完整或者不连续的情况。
为了填补这些数据的空隙,插值方法应运而生。
插值方法可以通过已知的点估计未知点的值,从而使得数据连续化。
MATLAB作为一款强大的数值计算软件,提供了丰富的插值方法及其应用。
本文将对MATLAB中常用的插值方法进行介绍,并探讨它们在实际应用中的价值和效果。
一、线性插值方法线性插值是最简单和常用的插值方法之一。
它假设两个已知数据点之间的插值点在直线上。
MATLAB中的线性插值可以通过interp1函数实现。
例如,对于一组已知的点(x1,y1)和(x2,y2),我们可以使用interp1(x,y,xq,'linear')来估计插值点(xq,yq)的值。
线性插值方法的优点在于简单易懂,计算速度快。
然而,它的缺点在于无法处理非线性关系和复杂的数据分布。
因此,在实际应用中,线性插值方法往往只适用于简单的数据场景。
二、多项式插值方法多项式插值是一种常用的插值技术,它假设插值点在已知数据点之间的曲线上,而非直线。
MATLAB中的polyfit和polyval函数可以帮助我们实现多项式插值。
多项式插值方法的优点在于可以逼近各种形状的曲线,对数据的逼真度较高。
然而,当插值点之间的数据分布不均匀时,多项式插值容易产生振荡现象,即“龙格现象”。
因此,在实际应用中,我们需要根据具体问题选择合适的插值阶数,以避免过拟合和振荡现象的发生。
三、样条插值方法样条插值是一种光滑且精确的插值方法。
它通过在已知数据点之间插入一系列分段多项式,使得插值曲线具有良好的光滑性。
MATLAB中的spline函数可以帮助我们实现样条插值。
样条插值方法的优点在于可以处理数据分布不均匀和曲线形状复杂的情况。
它能够减少振荡现象的发生,并保持曲线的光滑性。
然而,样条插值方法的计算复杂度较高,需要更多的计算资源。