近世代数练习题附答案
- 格式:pdf
- 大小:1.30 MB
- 文档页数:20
一、 选择题(本题共5小题,每小题3分,共15分) 一、(从下列备选答案中选择正确答案)1、下列子集对通常复数的乘法不构成群的是( )。
(A) {1,-1,i ,-i } (B) {1,-1} (C) {1,-1,i }2、设H 是群G的子群,a ,b ∈G,则aH = bH 的充要条件是( )。
(A) a -1b -1∈H (B) a -1b ∈H (C) ab -1∈H3、在模6的剩余类环Z 6 中,Z 6 的极大理想是( )。
(A) (2),(3) (B) (2) (C)(3)4、若Q 是有理数域,则(Q(2):Q)是( )。
(A) 6 (B) 3 (C) 25、下列不成立的命题是( )。
(A) 欧氏环是主理想环 (B) 整环是唯一分解环 (C) 主理想环是唯一分解环二、填空题(本题共5空,每空3分,共15分) (请将正确答案填入空格内)1、R 为整环,a ,b ∈R ,b |a ,则(b ) (a )。
2、F 是域,则[](())F x f x 是域当且仅当 。
3、域F 上的所有n 阶方阵的集合M n (F )中,规定等价关系~:A ~B ⇔秩(A )=秩(B ),则这个等价关系决定的等价类有________个。
4、6次对称群S 6中,(1235)-1(36)=____________。
5、12的剩余类环Z 12的可逆元是 。
三、判断题(本题共5小题,每小题2分,共10分) (请在你认为正确的题后括号内打“√”,错误的打“×”)1、设G 是群,∅≠H,若对任意a,b ∈H 可推出ab ∈H ,则H≤G .. ( )2、群G 中的元,a b ,()2,()7,a b ab ba ===,则()14ab =。
( )3、商环6Z Z 是一个域。
( )4、设f 是群G 到群-G 的同态映射,若1()f H G -, 则H G 。
( )5、任意群都同构于一个变换群。
( )四、计算题(本题共2小题,每小题10分,共20分) (要求写出主要计算步骤及结果)1、找出6Z 的全部理想,并指出哪些是极大理想。
近世代数试题及答案一、选择题(每题4分,共20分)1. 下列哪个选项不是群的性质?A. 封闭性B. 存在单位元C. 存在逆元D. 交换律答案:D2. 有限群的阶数为n,那么它的子群的个数至少为:A. nB. 1C. n-1D. n+1答案:B3. 以下哪个命题是正确的?A. 任意两个子群的交集仍然是子群B. 任意两个子群的并集仍然是子群C. 子群的子群仍然是子群D. 子群的补集仍然是子群答案:A4. 群G的阶数为n,那么它的元素的阶数不可能是:A. 1B. nC. 2D. n+1答案:D5. 以下哪个不是环的性质?A. 封闭性B. 交换律C. 分配律D. 结合律答案:B二、填空题(每题4分,共20分)1. 如果集合S上的二元运算*满足结合律,那么称S为________。
答案:半群2. 一个群G的所有子群的集合构成一个________。
答案:格3. 一个环R中,如果对于任意的a,b∈R,都有a+b=b+a,则称R为________。
答案:交换环4. 一个环R中,如果对于任意的a,b∈R,都有ab=ba,则称R为________。
答案:交换环5. 一个群G中,如果存在一个元素a,使得对于任意的g∈G,都有ag=ga=e,则称a为G的________。
答案:单位元三、简答题(每题10分,共30分)1. 请简述子群和正规子群的区别。
答案:子群是群G的非空子集H,满足H中的任意两个元素的乘积仍然在H中,并且H对于G的运算是封闭的。
正规子群是子群N,满足对于任意的g∈G和n∈N,都有gng^-1∈N。
2. 请解释什么是群的同态和同构。
答案:群的同态是两个群G和H之间的函数f,满足对于任意的g1,g2∈G,都有f(g1g2)=f(g1)f(g2)。
群的同构是同态,并且是双射,即存在逆映射。
3. 请解释什么是环的零因子和非零因子。
答案:在环R中,如果存在非零元素a和b,使得ab=0,则称a和b 为零因子。
如果环R中不存在零因子,则称R为无零因子环。
一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1、设G 有6个元素的循环群,a 是生成元,则G 的子集(c)是子群。
A 、{}aB 、{}e a ,C 、{}3,a eD 、{}3,,a a e2、下面的代数系统(G ,*)中,( D )不是群A 、G 为整数集合,*为加法B 、G 为偶数集合,*为加法C 、G 为有理数集合,*为加法D 、G 为有理数集合,*为乘法 3、在自然数集N 上,下列哪种运算是可结合的?( B ) A 、a*b=a-b B 、a*b=max{a,b} C 、 a*b=a+2b D 、a*b=|a-b|4、设1σ、2σ、3σ是三个置换,其中1σ=(12)(23)(13),2σ=(24)(14),3σ=(1324),则3σ=( B ) A 、12σB 、1σ2σC 、22σD 、2σ1σ5、任意一个具有2个或以上元的半群,它( A )。
A 、不可能是群 B 、不一定是群 C 、一定是群 D 、 是交换群二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。
错填、不填均无分。
1、凯莱定理说:任一个子群都同一个----变换群------同构。
2、一个有单位元的无零因子-交换环----称为整环。
3、已知群G 中的元素a 的阶等于50,则4a 的阶等于----25--。
4、a 的阶若是一个有限整数n ,那么G 与---模n 剩余类加群----同构。
5、A={1.2.3} B={2.5.6} 那么A ∩B=---{2}--。
6、若映射ϕ既是单射又是满射,则称ϕ为----双射-------------。
7、α叫做域F 的一个代数元,如果存在F 的-----n a a a ,,,10 使得010=+++n n a a a αα 。
8、a 是代数系统)0,(A 的元素,对任何A x ∈均成立x a x = ,则称a 为---右单位元------。
一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1、设G 有6个元素的循环群,a 是生成元,则G 的子集( )是子群。
A 、{}aB 、{},a eC 、{}3,e aD 、{}3,,e a a2、下面的代数系统(G ,*)中,( )不是群A 、G 为整数集合,*为加法B 、G 为偶数集合,*为加法C 、G 为有理数集合,*为加法D 、G 为有理数集合,*为乘法3、在自然数集N 上,下列哪种运算是可结合的?( )A 、a*b=a-bB 、a*b=max{a,b}C 、 a*b=a+2bD 、a*b=|a-b|4、设1σ、2σ、3σ是三个置换,其中1(12)(23)(13)σ=,2(24)(14)σ=,3(1324)σ=,则3σ=( )A 、21σB 、12σσC 、21σσD 、22σ5、任意一个具有2个或以上元的半群,它( )。
A 、不可能是群B 、不一定是群C 、一定是群D 、 是交换群 6、12阶有限群的任何子群一定不是( )。
A 、2阶B 、3 阶C 、4 阶D 、 5 阶7、设G 是群,G 有( )个元素,则不能肯定G 是交换群。
A 、4个B 、5个C 、6个D 、7个8、有限布尔代数的元素的个数一定等于( )。
A 、偶数B 、奇数C 、4的倍数D 、2的正整数次幂9、若I,J 均是环A 的理想,则( )不一定是A 的理想。
A 、I+JB 、I ∩JC 、I ∪JD 、IJ10、3S 中元素(123)的中心化子有( )A 、(1),(123),(132)B 、(12),(13),(23)C 、(1),(123)D 、S3中的所有元素二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。
错填、不填均无分。
1、凯莱定理说:任一个子群都同一个 同构。
2、一个有单位元的无零因子 称为整环。
《近世代数》作业一.概念解释1.代数运算 2.群的第一定义 3.域的定义 4.满射 5.群的第二定义 6.理想7.单射 8.置换 9.除环 10.一一映射 11.群的指数 12.环的单位元二.判断题1.Φ是集合n A A A ⨯⨯⨯ 21列集合D 的映射,则),2,1(n i A i =不能相同。
2.在环R 到环R 的同态满射下,则R 的一个子环S 的象S 不一定是R 的一个子环。
3.设N 为正整数集,并定义ab b a b a ++= ),(N b a ∈,那么N 对所给运算 能作成一个群。
4.假如一个集合A 的代数运算 适合交换率,那么在n a a a a 321里)(A a i ∈,元的次序可以交换。
5.在环R 到R 的同态满射下,R 得一个理想N 的逆象N 一定是R 的理想。
6.环R 的非空子集S 作成子环的充要条件是:1)若,,S b a ∈则S b a ∈-; 2),,S b a ∈,则S ab ∈。
7.若Φ是A 与A 间的一一映射,则1-Φ是A 与A 间的一一映射。
8.若ε是整环I 的一个元,且ε有逆元,则称ε是整环I 的一个单位。
9.设σ与τ分别为集合A 到B 和B 到C 的映射,如果σ,τ都是单射,则τσ是A 到C 的映射。
10.若对于代数运算 ,,A 与A 同态,那么若A 的代数运算 适合结合律,则A 的代数运算也适合结合律。
11.整环中一个不等于零的元a ,有真因子的冲要条件是bc a =。
12.设F 是任意一个域,*F 是F 的全体非零元素作成的裙,那么*F 的任何有限子群G 必为循环群。
13. 集合A 的一个分类决定A 的一个等价关系。
( )14. 设1H ,2H 均为群G 的子群,则21H H ⋃也为G 的子群。
( )15. 群G 的不变子群N 的不变子群M 未必是G 的不变子群。
( )三.证明题1. 设G 是整数环Z 上行列式等于1或-1的全体n 阶方阵作成集合,证明:对于方阵的普通乘法G 作成一个 群。
近世代数模拟试题一一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内.错选、多选或未选均无分.1、设G 有6个元素的循环群,a 是生成元,则G 的子集(C )是子群。
A 、{}aB 、{}e a ,C 、{}3,a eD 、{}3,,a a e 2、下面的代数系统(G ,*)中,( )不是群A 、G 为整数集合,*为加法B 、G 为偶数集合,*为加法C 、G 为有理数集合,*为加法D 、G 为有理数集合,*为乘法3、在自然数集N 上,下列哪种运算是可结合的?( )A 、a*b=a —bB 、a*b=max{a ,b}C 、 a*b=a+2bD 、a *b=|a-b|4、设1σ、2σ、3σ是三个置换,其中1σ=(12)(23)(13),2σ=(24)(14),3σ=(1324),则3σ=( ) A 、12σ B 、1σ2σ C 、22σ D 、2σ1σ5、任意一个具有2个或以上元的半群,它( )。
A 、不可能是群B 、不一定是群C 、一定是群D 、 是交换群二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。
错填、不填均无分。
1、凯莱定理说:任一个子群都同一个——--变换群—-————同构。
2、一个有单位元的无零因子的—-交换环---称为整环.3、已知群G 中的元素a 的阶等于50,则4a 的阶等于—-25--——.4、a 的阶若是一个有限整数n,那么G 与-模n 乘余类加群-—-———同构。
5、A={1。
2.3} B={2。
5。
6} 那么A ∩B=—-{2}—--。
6、若映射ϕ既是单射又是满射,则称ϕ为--——一一映射—-—-————----—。
7、α叫做域F 的一个代数元,如果存在F 的——不都等于零的元-—-n a a a ,,,10 使得010=+++n n a a a αα 。
练习题参考答案一、 判断题1. R 是A 的元间的等价关系.(错 )见教材第27页习题2(2)2. 则G 是交换群.(正确)见教材第37页习题63、则该群一定为有限群.(错 )见教材第39页例44、则G 与整数加群同构.(正确)见教材49页定理1(1)5、那么G 也是循环群.(错 )三次对称群S 3的真子群为循环群,但S 3不为循环群.6、群G 的子群H 是正规子群的充要条件为1,g G g Hg H -∀∈⊆.(正确)见教材84页定理17、群G 的子群H 是正规子群的充要条件为,对Hg gH G g =∈∀,.(正确)见教材83页定义18、那么R 必定没有右零因子.(正确)见教材139页推论9、则N G /也是循环群.(正确)见教材95页定理310、那么R 的单位元一定是非零元.(正确)由于|R|≥2,故R 中存在非零元a ,由于a 0=0≠a ,说明零元不是单位元.11、整数环与偶数环同态.(错误)设Z Z 2:→ϕ为同态满射,且k 2)1(=ϕ,则24)1()1()11()1(k ==⨯=ϕϕϕϕ,即 242k k =,所以02=k 或12=k ,后者不可能,因此有02=k ,则0)1(=ϕ,得0)(=n ϕ,与ϕ为满射矛盾.12、剩余类环}5,4,3,2,1,0{6------=Z ,47Z 均是整环.(错误)根据教材149页定理2,6Z 有零因子,不是整环,47Z 是整环.13、素数阶群一定是交换群.(正确)根据教材69页推论1,该群中的元素除了单位元,其余元的阶等于群的阶,再根据教材50页推论1知该群为循环群,从而为交换群.二、单项选择题1、指出下列哪些运算是给定集合上的代数运算( ④ )2、设 是正整数集上的二元运算,其中{}b a b a ,max = (即取a 与b 中的最大者),关于运算 ,下列结论不正确的是( ④ )3、设G 是实数集,在其上规定运算k b a b a ++= :,这里k 为G 中固定的常数,那么() ,G 中的单位元e 和元x 的逆元分别是(④ )4、设c b a ,,和x 都是群G 中的元素且xac acx bxc a x ==-,12,那么=x (①)5、设H 是群G 的子群,且G 有左陪集分解G HaH bH cH =,如果6=H ,那么G 的阶=G (② )6、设21:R R f →是环同态满射,b a f =)(,那么下列错误的结论为(③ )7、设},),{(为实数y x y x M =,对任意实数a ,规定)),((),0,(),(:M y x a x y x a ∈∀+→τ,}{为实数a G a τ=,下列说法错误的是(③ )三、填空题1、三次对称群3S 关于子群)}12()1{(,=H 的所有左陪集为__H,(13)H,(23)H___.2、Kayley 定理说:任何群都同一个__双射变换________群同构.3、G auss 整环},{][Z b a bi a i Z ∈+=中的所有单位是 __±1,±i _______.4、设)57)(134(),234)(1372(==στ,则||τ=___6__,=-1στσ)241)(3452(.5、设R 是有单位元的环,且理想I =<a >,那么I 中的元素可以表示为x 1ay 1+…+x m ay m ,x i ,y i ∈R ,m 为整数.6、已知---++=253)(3x x x f ,---++=354)(2x x x g 为域6Z 上的多项式,则=+)()(x g x f 544323+++-x x x ,)(x g 在6Z 上的全部根为 3,1. 7、设H 是群G 的子群,G b a ∈,,则⇔=Hb Ha H ba ∈-1.8、设G =><a 是12阶循环群,则G 的生成元有 a ,a 5,a 7,a 11 .9、实数域R 的全部理想是 0, R .10、模8的剩余类环8Z 的全部零因子是6,4,211、阶大于1、有单位元且无零因子的交换 的环称为整环.四、计算与证明题1.解:(2)单位元为,1π414313212111,,,ππππππππ====----;(3)1阶子群:}{1π;2阶子群:},{},,{},,{},,{41313121ππππππππ,4阶子群:},,,{4321ππππ=G .(1)乘法表如下: 4321ππππ43211πππππ34122πππππ21433πππππ12344πππππ4. 设Z 为整数环,证明:(1)利用理想的定义验证,略(2)设有理想K 包含N ,即,R K N ⊆⊆由于Z 为主理想整环,所以K 为主理想,即有整数正k ,使>=<k K ,由于K N ⊂,且,p N ∈故,k p >=<∈K 从而,kn p =由于p 为素数,所以1k =或p k =,若k=p ,则K=N ;若k=1,则K=R ,所以除了Z 和N ,没有其它理想包含N .5.设R 是可交换的有限环,且含有单位元1,证明:R 中的非零元不是可逆元就是零因子.证明:设,},,,{21n a a a R =},,,{021n a a a R a =∈≠∀,且a 不是可逆元,令},,,,{21n aa aa aa S =由乘法封闭性,知 ,R S ⊆又元素a 不是可逆元,所以 n aa aa aa ,,,21 均不等于单位元1,所以S 为R 的真子集,又,n R =从而,1-≤n S 从而一定存在,j i ≠使,j i aa aa =即,0=-)(j i a a a 所以a 为环R 的零因子.6、设环R 含单位元1,证明:首先有N ⊆R ,又R a ∈∀,有1⋅=a a ,由于N 是R 的一个理想且1∈N ,根据理想的吸收性,有N a a ∈⋅=1,所以R ⊆N ,因此N=R.7、设K 是一个有单位元的整环,证明:K=<a >当且仅当a 是K 的可逆元. 证明:必要性 由于K 有单位元且可交换,故<a >={a r |任意r ∈K},如果K=<a >,则1∈<a >,所以存在r ∈K ,使a r =1,因此a 是K 的可逆元; 充分性 a 是K 的可逆元,则存在r ∈K ,使a r =1,所以1∈<a >,任意s ∈K,由理想的吸收性,可知>∈<⋅=a s s 1,得K ⊆<a >,又显然<a >⊆ K ,所以K=<a >19、设环R 的特征char R=n 为合数,且|R|>1,证明环R 存在零因子.祝大家考试取得好成绩!。
一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个就是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1、设G 有6个元素的循环群,a 就是生成元,则G 的子集( )就是子群。
A 、{}aB 、{}e a ,C 、{}3,a eD 、{}3,,a a e 2、下面的代数系统(G,*)中,( )不就是群A 、G 为整数集合,*为加法B 、G 为偶数集合,*为加法C 、G 为有理数集合,*为加法D 、G 为有理数集合,*为乘法3、在自然数集N 上,下列哪种运算就是可结合的?( )A 、a*b=a-bB 、a*b=max{a,b}C 、 a*b=a+2bD 、a*b=|a-b|4、设1σ、2σ、3σ就是三个置换,其中1σ=(12)(23)(13),2σ=(24)(14),3σ=(1324),则3σ=( )A 、12σB 、1σ2σC 、22σD 、2σ1σ5、任意一个具有2个或以上元的半群,它( )。
A 、不可能就是群B 、不一定就是群C 、一定就是群D 、 就是交换群二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。
错填、不填均无分。
1、凯莱定理说:任一个子群都同一个----------同构。
2、一个有单位元的无零因子-----称为整环。
3、已知群G 中的元素a 的阶等于50,则4a 的阶等于------。
4、a 的阶若就是一个有限整数n,那么G 与-------同构。
5、A={1、2、3} B={2、5、6} 那么A ∩B=-----。
6、若映射ϕ既就是单射又就是满射,则称ϕ为-----------------。
7、α叫做域F 的一个代数元,如果存在F 的-----n a a a ,,,10Λ使得010=+++n n a a a ααΛ。
8、a 就是代数系统)0,(A 的元素,对任何A x ∈均成立x a x =ο,则称a 为---------。
一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1、设G 有6个元素的循环群,a 是生成元,则G 的子集( )是子群。
A 、{}aB 、{}e a ,C 、{}3,a eD 、{}3,,a a e 2、下面的代数系统(G ,*)中,( )不是群A 、G 为整数集合,*为加法B 、G 为偶数集合,*为加法C 、G 为有理数集合,*为加法D 、G 为有理数集合,*为乘法3、在自然数集N 上,下列哪种运算是可结合的?( )A 、a*b=a-bB 、a*b=max{a,b}C 、 a*b=a+2bD 、a*b=|a-b|4、设1σ、2σ、3σ是三个置换,其中1σ=(12)(23)(13),2σ=(24)(14),3σ=(1324),则3σ=( ) A 、12σ B 、1σ2σ C 、22σ D 、2σ1σ5、任意一个具有2个或以上元的半群,它( )。
A 、不可能是群B 、不一定是群C 、一定是群D 、 是交换群二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。
错填、不填均无分。
1、凯莱定理说:任一个子群都同一个----------同构。
2、一个有单位元的无零因子-----称为整环。
3、已知群G 中的元素a 的阶等于50,则4a 的阶等于------。
4、a 的阶若是一个有限整数n ,那么G 与-------同构。
5、A={1.2.3} B={2.5.6} 那么A ∩B=-----。
6、若映射ϕ既是单射又是满射,则称ϕ为-----------------。
7、α叫做域F 的一个代数元,如果存在F 的-----n a a a ,,,10Λ使得010=+++n n a a a ααΛ。
8、a 是代数系统)0,(A 的元素,对任何A x ∈均成立x a x =ο,则称a 为---------。
一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1、设G 有6个元素的循环群,a 是生成元,则G 的子集( )是子群。
A 、B 、C 、D 、{}a {}e a ,{}3,a e {}3,,a a e 2、下面的代数系统(G ,*)中,( )不是群A 、G 为整数集合,*为加法B 、G 为偶数集合,*为加法C 、G 为有理数集合,*为加法D 、G 为有理数集合,*为乘法 3、在自然数集N 上,下列哪种运算是可结合的?( )A 、a*b=a-b B 、a*b=max{a,b} C 、 a*b=a+2b D 、a*b=|a-b|4、设、、是三个置换,其中=(12)(23)(13),=(24)(14),1σ2σ3σ1σ2σ=(1324),则=( )3σ3σA 、 B 、 C 、 D 、12σ1σ2σ22σ2σ1σ5、任意一个具有2个或以上元的半群,它( )。
A 、不可能是群B 、不一定是群C 、一定是群D 、 是交换群二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。
错填、不填均无分。
1、凯莱定理说:任一个子群都同一个----------同构。
2、一个有单位元的无零因子-----称为整环。
3、已知群中的元素的阶等于50,则的阶等于------。
G a 4a 4、a 的阶若是一个有限整数n ,那么G 与-------同构。
5、A={1.2.3} B={2.5.6} 那么A∩B=-----。
6、若映射既是单射又是满射,则称为-----------------。
ϕϕ7、叫做域的一个代数元,如果存在的-----使得αF F n a a a ,,,10 。
010=+++n n a a a αα8、是代数系统的元素,对任何均成立,则称为-------a )0,(A A x ∈x a x = a --。
《近世代数》练习题及参考答案1.设A={a ,b ,c ,d}试写出集合A 的所有不同的等价关系。
2.证明::实数域R 上全体n 阶方阵的集合Mn(R),关于矩阵的加法构成一个交换群。
3.证明:实数域R 上全体n 阶正交矩阵的集合On(R)关于矩阵的乘法构成群.这个群称为n 阶正交群.4.设G=。
⎭⎬⎫⎩⎨⎧≠∈⎪⎪⎭⎫ ⎝⎛0,a R a a a a a 证明:G 关于矩阵的乘法构成群。
5.证明:所有形如n m 32的有理数(m ,n ∈Z )的集合关于数的乘法构成群。
参考答案1. 设A= 试写出集合A 的所有不同的等价关系。
解2.证明::实数域R 上全体n 阶方阵的集合Mn(R),关于矩阵的加法构成一个交换群。
证:(1)显然,Mn(R)为一个具有“+”的代数系统。
(2)∵矩阵的加法满足结合律,那么有结合律成立。
(3)∵矩阵的加法满足交换律,那么有交换律成立。
(4)零元是零矩阵。
∀A ∈Mn(R),A+0=0+A=A 。
(5)∀A ∈Mn(R),负元是-A 。
A+(-A)=(-A)+A=0。
∴(Mn(R),+)构成一个Abel 群。
3.证明:实数域R 上全体n 阶正交矩阵的集合On(R)关于矩阵的乘法构成群.这个群称为n 阶正交群.证:(1)由于E ∈On (R),∵On (R)非空。
(2 ) 任意A,B ∈On (R),有(AB )T=B T A T =B -1A -1=(AB) -1,∴AB ∈On(R),于是矩阵的乘法在On(R)上构成代数运算。
(3) ∵矩阵的乘法满足结合律,那么有结合律成立。
(4)对任意A ∈On (R),有AE=EA=A .∴E 为On (R)的单位元。
(5)对任意A ∈On (R),存在A T ∈On (R),满足AA T =E=AA -1, A T A=E=A -1A .∴A T 为A 在On (R)中的逆元。
∴On (R)关于矩阵的乘法构成一个群。
{}d c b a ,,,4.设G=。
近世代数一、单项选择题1、6阶有限群的任何一个子群一定不是( C )。
A .2阶 B .3阶 C .4阶 D .6阶2、设G 是群,G 有( C )个元素,则不能肯定G 是交换群。
A .4个B .5个C .6个D .7个3、下面的代数系统(,*)G 中,( D )不是群。
A .G 为整数集合,*为加法B .G 为偶数集合,*为加法C .G 为有理数集合,*为加法D .G 为有理数集合,*为乘法4、设G 有6个元素的循环群,a 是生成元,则G 的子集( C )是子群。
A .{}aB .{},a eC .{}3,e aD .{}3,,e a a5、在自然数集N 上,下列哪种运算是可结合的?( B )A .*a b a b =−B .{}*max ,a b a b =C .*2a b a b =+D .a b a b +=−二、填空题1、已知群G 中的元素a 的阶等于50,则4a 的阶等于( 25 )。
2、一个有单位元的无零因子的( 交换环 )称为整环。
3、群的单位元是( 唯一 )的,每个元素的逆元素是( 唯一 )的。
4、一个子群H 的右、左陪集的个数( 相等 )。
5、无零因子环R 中所有非零元的共同的加法阶数称为R 的( 特征 )。
6、设群G 中元素a 的阶为m ,如果na e =,那么m 与n 存在整除关系为( |m n )。
7、如果f 是A 与A 间的一一映射,a 是A 的一个元,则1[()]f f a −=( a )。
8、循环群的子群是( 循环群 )。
9、若{}2,5A =,{}1,0,2B =−,则A B ×=( {}(2,1),(2,0),(2,2),(5,1),(5,0),(5,2)−− )。
10、如果G 是一个含有15个元素的群,那么,对于a G ∀∈,则元素a 的阶只可能是( 1,3,5,15 )。
三、问答题 1、什么是集合A 上的等价关系?举例说明。
【答案】设R 是某个集合上的一个二元关系。
近世代数期末考试试题和答案解析一、单项选择题(本大题共5小题,每小题 3 分,共15 分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1、设G 有6个元素的循环群,a是生成元,则G的子集()是子群。
A、a B 、a,e C 、e,a3D 、e,a,a32、下面的代数系统(G,*)中,()不是群A、G为整数集合,* 为加法 B 、G为偶数集合,* 为加法C、G为有理数集合,* 为加法 D 、G为有理数集合,* 为乘法3、在自然数集N 上,下列哪种运算是可结合的?()A、a*b=a-bB、a*b=max{a,b} C 、a*b=a+2b D 、a*b=|a-b|4、设1、2、3是三个置换,其中1=(12)(23)(13),2=(24)(14),3 =1324),则3=()22A、2 1 B 、 1 2 C 、2 2 D 、 2 15、任意一个具有2 个或以上元的半群,它()。
A、不可能是群B、不一定是群C、一定是群D、是交换群二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。
错填、不填均无分。
1、凯莱定理说:任一个子群都同一个----- 同构。
2、一个有单位元的无零因子称为整环。
43、已知群G中的元素a的阶等于50,则a4的阶等于 -- 。
4、a 的阶若是一个有限整数n,那么G与-- 同构。
5、A={1.2.3} B={2.5.6} 那么A∩B= 。
6、若映射既是单射又是满射,则称为------------ 。
7、叫做域 F 的一个代数元,如果存在 F 的a0,a1, ,a n使得a0 a1a n n 08、a是代数系统( A,0)的元素,对任何x A均成立x a x,则称a为--- 。
9、有限群的另一定义:一个有乘法的有限非空集合G作成一个群,如果满足G 对于乘法封闭;结合律成立、------ 。
10、一个环R对于加法来作成一个循环群,则P 是---- 。
多所高校近世代数题库及部分答案一、(2011年近世代数)判断题(下列命题你认为正确的在题后括号内打“√”,错的打“×”;每小题1分,共10分)1、设A 与B 都是非空集合,那么{}B A x x B A ∈∈=⋃x 且。
( × )2、设A 、B 、D 都是非空集合,则B A ⨯到D 的每个映射都叫作二元运算。
(× )3、只要f 是A 到A 的一一映射,那么必有唯一的逆映射1-f 。
(√ )4、如果循环群()a G =中生成元a 的阶是无限的,则G 与整数加群同构。
(√ )5、如果群G 的子群H 是循环群,那么G 也是循环群。
( × )6、近世代数中,群G 的子群H 是不变子群的充要条件为H Hg g H h G g ⊆∈∀∈∀-1;,。
( √ )7、如果环R 的阶2≥,那么R 的单位元01≠。
(√ )8、若环R 满足左消去律,那么R 必定没有右零因子。
(√ ) 9、)(x F 中满足条件0)(=αp 的多项式叫做元α在域F 上的极小多项式。
(× )10、若域E 的特征是无限大,那么E 含有一个与()p Z 同构的子域,这里Z 是整数环,()p 是由素数p 生成的主理想。
( × )二、(2011年近世代数)单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其号码写在题干后面的括号内。
答案选错或未作选择者,该题无分。
每小题1分,共10分)1、设n A A A ,,,21 和D 都是非空集合,而f 是n A A A ⨯⨯⨯ 21到D 的一个映射,那么(② )①集合D A A A n ,,,,21 中两两都不相同;②n A A A ,,,21 的次序不能调换; ③n A A A ⨯⨯⨯ 21中不同的元对应的象必不相同;④一个元()n a a a ,,,21 的象可以不唯一。
2、指出下列那些运算是二元运算( )①在整数集Z 上,ab b a b a += ; ②在有理数集Q 上,ab b a = ;③在正实数集+R 上,b a b a ln = ;④在集合{}0≥∈n Z n 上,b a b a -= 。
近世代数期末考试试卷及答案⼀、单项选择题(本⼤题共5⼩题,每⼩题3分,共15分)在每⼩题列出的四个备选项中只有⼀个是符合题⽬要求的,请将其代码填写在题后的括号内。
错选、多选或未选均⽆分。
1、设G 有6个元素的循环群,a 是⽣成元,则G 的⼦集(c )是⼦群。
A 、{}aB 、{}e a ,C 、{}3,a eD 、{}3,,a a e 2、下⾯的代数系统(G ,*)中,( D )不是群A 、G 为整数集合,*为加法B 、G 为偶数集合,*为加法C 、G 为有理数集合,*为加法D 、G 为有理数集合,*为乘法3、在⾃然数集N 上,下列哪种运算是可结合的?( B )A 、a*b=a-bB 、a*b=max{a,b}C 、 a*b=a+2bD 、a*b=|a-b|4、设1σ、2σ、3σ是三个置换,其中1σ=(12)(23)(13),2σ=(24)(14),3σ=(1324),则3σ=( B ) A 、12σ B 、1σ2σ C 、22σ D 、2σ1σ5、任意⼀个具有2个或以上元的半群,它( A )。
A 、不可能是群B 、不⼀定是群C 、⼀定是群D 、是交换群⼆、填空题(本⼤题共10⼩题,每空3分,共30分)请在每⼩题的空格中填上正确答案。
错填、不填均⽆分。
1、凯莱定理说:任⼀个⼦群都同⼀个----变换群------同构。
2、⼀个有单位元的⽆零因⼦-交换环----称为整环。
3、已知群G 中的元素a 的阶等于50,则4a 的阶等于----25--。
4、a 的阶若是⼀个有限整数n ,那么G 与---模n 剩余类加群----同构。
5、A={1.2.3} B={2.5.6} 那么A ∩B=---{2}--。
6、若映射?既是单射⼜是满射,则称?为----双射-------------。
7、α叫做域F 的⼀个代数元,如果存在F 的-----n a a a ,,,10 使得010=+++n n a a a αα。
8、a 是代数系统)0,(A 的元素,对任何A x ∈均成⽴x a x = ,则称a 为---右单位元------。
一、 选择题(本题共5小题,每小题3分,共15分) (从下列备选答案中选择正确答案)1、下列子集对通常复数的乘法不构成群的是( )。
(A) {1,-1,i ,-i } (B) {1,-1} (C) {1,-1,i }2、设H 是群G的子群,a ,b ∈G,则aH = bH 的充要条件是( )。
(A) a -1b -1∈H (B) a -1b ∈H (C) ab -1∈H 3、在模6的剩余类环Z 6 中,Z 6 的极大理想是( )。
(A) (2),(3) (B) (2) (C)(3)4、若Q 是有理数域,则(Q(2):Q)是( )。
(A) 6 (B) 3 (C) 25、下列不成立的命题是( )。
(A) 欧氏环是主理想环 (B) 整环是唯一分解环 (C) 主理想环是唯一分解环二、填空题(本题共5空,每空3分,共15分)(请将正确答案填入空格内)1、R 为整环,a ,b ∈R ,b |a ,则(b ) (a )。
2、F 是域,则[](())F x f x 是域当且仅当 。
3、域F 上的所有n 阶方阵的集合M n (F )中,规定等价关系~:A ~B ⇔秩(A )=秩(B ),则这个等价关系决定的等价类有________个。
4、6次对称群S 6中,(1235)-1(36)=____________。
5、12的剩余类环Z 12的可逆元是 。
三、判断题(本题共5小题,每小题2分,共10分) (请在你认为正确的题后括号内打“√”,错误的打“×”)1、设G 是群,∅≠H ,若对任意a,b ∈H 可推出ab ∈H ,则H≤G .. ( )2、群G 中的元,a b ,()2,()7,a b ab ba ===,则()14ab =。
( )3、商环6Z Z 是一个域。
( )4、设f 是群G 到群-G 的同态映射,若1()f H G -, 则H G 。
( )5、任意群都同构于一个变换群。
( )四、计算题(本题共2小题,每小题10分,共20分) (要求写出主要计算步骤及结果)1、找出6Z 的全部理想,并指出哪些是极大理想。
《近世代数》练习题及答案1. B u A,但B不是A的真子集,这个情况什么时候才能出现?解只有在A=B时才能出现。
证明如下:当A=B时,即有BA, A(Z B,若有' a e A而a £ B ,显然矛盾;若BuA,但B不是A的真子集,可知凡属于A的兀素不可能不属于B,故A=B2.A=(1, 2, 3, .... , 100},找一个AXA 到 A 的映射。
解S(a"2)= 1易证。
102都是AXA到A的映射。
3.在你为习题1所找的映射下,是不是A的每一个元都是AXA的一个元的象?解在0]下,有' A的元不是AX A的任何元的象;容易验证在啊下,A的每个元都是AXA的一个元的象。
4.A={所有实数}。
O (a, b) Ta+b=aOb这个代数运算适合不适合结合律?解这个代数运算不适合结合律。
(aOb) Oc=a+2b+2c, aO (bOc) =a+2b+4c(aOb) Oc#aO (bOc)除c=05.假定巾是A与A间的一个---- 映射,a是A的一个元。
厂[0(a)] = ?,如尸(«)] = ?解厂渺(a)] = a0[户(a)]未必有意义;当巾是A的一个一一变换时(/)-' [©(a)] =。
0[厂(a)] = a.6.假定A和,对于代数运算。
和:来说同态,云和云对于代数运算:和;来说同态, 证明A和云对于代数运算。
和;来说同态。
、〒S '• a — a表示A到屈勺同态满射iiE /Il —— ». _—,©2 :。
t。
表示A SU A的同态满射容易验证。
是A到葡满射a。
b T ONMa。
b)l =(/)2(a。
b) = a。
b所以6是A到工的关于代数运算:和;来说同态满射。
7.A={所有有理数},找一个A的对于普通加法来说的自同构(映射x<^x除外)证© : x —> 2x对于普通加法来说是A的一个同构,很容易验证。