就业政策测试卷题目含答案(正式稿,占总分50%)
- 格式:doc
- 大小:53.50 KB
- 文档页数:8
th的发音规则记忆口诀咱先来说说这个th在单词里的两种发音情况。
一种是发[θ]的音,就像在单词“think”(思考)里,你发这个音的时候啊,就感觉有一股轻轻的气流从你的舌头和牙齿中间吹出来,就像小风儿一样,丝丝的。
还有“thank”(感谢)这个词,当你说“thank you”的时候,那个“th”的音要是发对了,就特别地道。
你想象一下,你在真诚地感谢别人,这个轻轻的[θ]音就像是你内心那股真诚的小气流,从嘴里缓缓吹出呢。
再比如说“thin”(瘦的),形容一个人很瘦的时候,这个音发出来就像是在轻轻地描述这个人的身材,好像这个音都变得很“瘦”很轻盈了呢。
那另一种发音就是[ð]啦。
比如说“this”(这个),这个音发的时候啊,舌头是要轻轻咬住的,就像你轻轻地咬住一块小饼干,但是又不能咬太狠哦。
“that”(那个)也是这样,你在指着一个东西说“that”的时候,这个音发得对,就感觉特别自然。
还有“the”这个单词,在英语里可太常用啦,像“the book”(这本书),这个[ð]的音就像是把这个单词稳稳地放在句子里,给人一种很踏实的感觉。
我这儿有个记忆口诀哦,“th组合看前后,实词轻咬气流走,虚词浊音舌头搂”。
啥意思呢?就是说啊,如果是实词,像“think”“thank”“thin”这种有实际意义的词,这个th就发那种轻轻咬舌然后有气流出来的[θ]音。
而像“this”“that”“the”这种虚词呢,就发舌头轻轻搂住的[ð]音。
咱再举些例子哈。
就像“three”(三),这是个实词吧,那就是[θriː],你看这个发音,气流轻轻吹过舌头和牙齿中间,就像三个小气流在跳舞一样。
再看“they”(他们),这是虚词,就是[ðeɪ],舌头轻轻一搂,这个音就出来了,就像你在温柔地提到他们一样。
宝子们啊,其实这个th的发音规则也不是很难,只要多练练,按照这个口诀来,肯定能发得特别标准。
在英语学习中,我们经常会遇到以字母“th”开头的单词。
这些单词在发音和拼写上有一定的规律,但同时也有很多例外。
因此,掌握一些记忆技巧对于提高英语水平是非常有帮助的。
首先,我们可以注意到,以“th”开头的单词通常有两种发音:清辅音/θ/和浊辅音/ð/。
例如,think(思考)中的“th”发清辅音/θ/,而this(这个)中的“th”发浊辅音/ð/。
通过区分这两种发音,我们可以更好地理解和记忆这些单词。
其次,有些以“th”开头的单词在发音和拼写上有一定的规律。
例如,以“-ough”结尾的单词通常发清辅音/θ/,如thought(思考)、breath(呼吸)等。
而以“-ight”结尾的单词通常发浊辅音/ð/,如breathe (呼吸)、height(高度)等。
通过掌握这些规律,我们可以更快地记住这些单词。
此外,我们还可以通过联想记忆法来帮助记忆以“th”开头的单词。
例如,可以将“think”(思考)与“thank”(感谢)联系起来,因为它们都有相同的前缀“th-”。
通过这种方式,我们可以更容易地记住这些单词。
【免费下载】虚拟键码VK值大全(Virtual-Key_Codes)虚拟键码适用于:桌面应用程序下表显示了符号常量的名称,十六进制值,鼠标或键盘等值的系统所使用的虚拟键码。
按数字顺序列出的代码。
恒/值描述VK_LBUTTON鼠标左键0X01VK_RBUTTON鼠标右键0X02VK_CANCEL控制中断处理0x03VK_MBUTTON鼠标中键(三键鼠标)0X04VK_XBUTTON1X1鼠标按钮0X05VK_XBUTTON2X2鼠标按钮0X06-未定义0X07VK_BACK退格键0X08VK_TABTAB 键0X09-保留的0X0A-0BVK_CLEARCLEAR 键0X0CVK_RETURN回车键0X0D-未定义0X0E-0FVK_SHIFT按住SHIFT 键0x10VK_CONTROLCTRL 键0x11VK_MENUALT 键0X12VK_PAUSEPAUSE 键0x13VK_CAPITAL CAPS LOCK 键、管路敷设技术通过管线敷设技术,不仅可以解决吊顶层配置不规范问题,而且可保障各类管路习题到位。
在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。
管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。
线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。
、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。
ORIGINAL ARTICLEGraph based semi-supervised learning via label fittingWeiya Ren 1•Guohui Li 1Received:8April 2015/Accepted:29October 2015ÓSpringer-Verlag Berlin Heidelberg 2015Abstract The global smoothness and the local label fit-ting are two key issues for estimating the function on the graph in graph based semi-supervised learning (GSSL).The unsupervised normalized cut method can provide a more reasonable criterion for learning the global smooth-ness of the data than classic GSSL methods.However,the semi-supervised norm of the normalized cut,which is a NP-hard problem,has not been studied well.In this paper,a new GSSL framework is proposed by extending nor-malized cut to its semi-supervised norm.The NP-hard semi-supervised normalized cut problem is innovatively solved by effective algorithms.In addition,we can design more reasonable local label fitting terms than conventional GSSL methods.Other graph cut methods are also investi-gated to extend the proposed semi-supervised learning algorithms.Furthermore,we incorporate the nonnegative matrix factorization with the proposed learning algorithms to solve the out-of-sample problem in semi-supervised learning.Solutions obtained by the proposed algorithms are sparse,nonnegative and congruent with unit matrix.Experiment results on several real benchmark datasets indicate that the proposed algorithms achieve good results compared with state-of-art methods.Keywords Graph based semi-supervised learning ÁGlobal smoothness ÁLabel fitting ÁGraph cut ÁBasis matrix ÁCongruency approximation1IntroductionIn the past several years,the semi-supervised learning (SSL)approach,which combines limited labeled samples with rich unlabeled samples to improve learning ability,has attracted lots of attention [1–6].As an important branch of SSL,graph based semi-supervised learning (GSSL)[7–12]has recently become popular in wide applications due to their high accuracy and computational efficiency.Its application areas include image annotation [13,14],col-lective image parsing [15]and medical diagnosis [16].Some researches focus on the graph construction [17–19]in GSSL,while others focus on the propagation strategy,such as Gaussian fields and harmonic functions (GFHF)[9],local and global consistency (LGC)[7],greedy gra-dient max-cut (GGMC)[8],and manifold regularization [20].Specifically,LGC and GFHF treat the soft label matrix as the only variable in optimization,while GGMC solves a bivariate optimization problem over the predicted soft labels and the initial hard labels.GSSL is also one kind of graph-based learning (GL),which treats samples from a data set as vertices in a graph and builds pairwise weights between these vertices.Global smoothness and local label fitting are two key issues in GSSL [7,20,21].For global smoothness learning,many graph cut methods are available,such as normalized cut [21],ratio cut [22],average cut [23],minimum cut [24]and min–max cut [25].Given a dataset X 2R m 9n ,and the neighborhood graph with affinity matrix W ,normalized cut is defined as&Weiya Renweiyren.phd@Guohui Liguohli@1College of Information System and Management,National University of Defense Technology,Changsha 410072,People’s Republic of ChinaInt.J.Mach.Learn.&Cyber.DOI 10.1007/s13042-015-0458-yNcut P 1;P 2;...;P k ðÞ,12X k i ¼1W P i ; Pi ðÞvol P i ðÞ:ð1Þwhere P 1,P 2,…,P k are a partition of P (P 1[P 2...[P k ¼P ;P i \P j ¼;;i ¼j and P i ¼;;i ¼1;...;c ),W ðP i ;P j Þ,Pa 2P i ;b 2P j w ab ,vol ðP i Þ,P a 2P i ;b 2P w ab andP i is the com-plementary set of P i .However,finding the optimal normalized cut has proven to be NP-hard.In addition,it is also a challenge to incor-porate prior information in normalized cut.Some litera-tures [26,27]incorporate prior information to normalized cut by adding certain constraints.Yang et al.[28]consider prior information by first separating and assigning training data to the source or the sink set.Instead of considering label information,Kulis et al.[29]use pairwise must-link constraints and cannot-link constraints.A kernel learning approach is then proposed to extend normalized cut to its semi-supervised norm.Nevertheless,these methods cannot perform as well as LGC or GGMC in practice [8].In this paper,the NP-hard semi-supervised normalized cut problem is innovatively solved by considering con-straints relaxation.We extend the normalized cut to its semi-supervised norm to construct the proposed GSSL framework.In addition,designing local label fitting terms can be more flexible than conventional GSSL methods [7–9].The LGC method,which is one of the most popular GSSL methods,can also be integrated into our framework if we discard all constraints and adopt the simplest label fitting strategy.Furthermore,we blend the proposed graph based semi-supervised learning method with nonnegative matrix factorization to solve the out-of-sample classifica-tion problem.It also can be regard as the extending of RNMF [30]by incorporating label information.The rest of the paper is organized as follows:Sect.2presents the graph based semi-supervised learning.In Sect.3,we introduce the algorithms to solve the graph based semi-supervised learning problem.In Sect.4,three graph cuts are adopted to produce other semi-supervised learning methods.Experiment results are presented in Sect.5.Finally,conclusions are drawn in Sect.6.2Graph based semi-supervised learningIt turns out [31]that minimizing normalized cut can beequivalently recast asargmin V T V ¼I ;V !0tr V T LV ÀÁð2Þwhere tr ðÁÞdenotes the trace of a matrix,L =I –S is the normalized Laplacian matrix,I is the identity matrix,S ¼D À1=2WD À1=2and D is an n 9n diagonal matrix withD ii ¼Pj w ij .V 2R n Âc is a specific discrete indicator matrix (or label matrix),which means each row of V has a unique nonzero positive value (see details in [31,32]).Suppose there are c classes,and the label set becomes L ¼f 1;2;...;c g .Point x i (1B i B n )can be labeled as y i ¼f j j V ij ¼0g or y i ¼arg max jV ij .In semi-supervised learning,data are partially labeled.We assume the dataset is organized asX ¼½x 1;...;x l ;x l þ1;...;x n 2R m Ân,suppose the first l points x i (i B l )are labeled and the remaining points x j (l ?1B j B n )are unlabeled.Define a n 9c matrix Y with Y ij =1if x i is labeled as j (1B j B c )and Y ij =0otherwise.Then semi-supervised normalized cut can be formulated as followsargmin V T V ¼I ;V !0tr V T LV ÀÁþl f ðV ;Y Þ:ð3Þwhere l [0is the tuned parameter,f (V ,Y )is the label fitting term,and V is a specific indicator matrix.2.1l [0Now we discuss the specific form of f (V ,Y )when l [0.There are many ways to define f (V ,Y ),and the simplest way isf V ;Y ðÞ¼jj V ÀY jj 2F :ð4Þwhere jj Ájj F denotes the Frobenius norm of a matrix.Notice that if we discard all constraints in (3)and define f (V ,Y )by (4),we can get a standard LGC problem.Obviously,it is not a good label fitting term especially when labeled samples are relatively few.If we only focus on fitting the labeled data,f (V ,Y )can be defined asf V ;Y ðÞ¼jj K V ÀY jj 2F :ð5Þwhere denotes element-wise product of matrices,K is a n 9c matrix with K iz =1(z =1,2,…,c )if x i is labeled and K iz =0(z =1,2,…,c )otherwise.Here we show an example to show the difference in (4)and (5).Considering the following toy examplematrix Y ¼010000000100000266664377775:This matrix indicates that there are five samples in total and the number of categories is three.The first sample belongs to category two and the fourth sample belongs to category one.Int.J.Mach.Learn.&Cyber.According to the definition of K,we haveK¼111 000 000 111 000266664377775:Suppose we know the optimal solution isVü01=ffiffiffi3p0 01=ffiffiffi3p0 01=ffiffiffi3p0 100 001266664377775:Considering following solutionsV1¼1=ffiffiffi3p0001=ffiffiffi3p01=ffiffiffi3p001001266664377775;V2¼01=ffiffiffi3p01=ffiffiffi3p01=ffiffiffi3p100003266664377775:Then,jj V1ÀY jj2F¼5jj V2ÀY jj2F¼9:84:jj K V1ÀY jj2F¼3:33jj K V2ÀY jj2F¼0:17:Thus,V1is a better solution if we consider(4)and V2is a better solution if we consider(5).However,V2is obvi-ously a better solution in this case.We can alsofind that constraints in(4)and(5)are both semi-hard constraints for V,i.e.,they only lead the max value of V’s row V(i)(i=1,2,…,n)equals1if x i is labeled and equals0otherwise.Now we consider soft constraint for V,i.e., we hope the max value of V’s row V(i)(i=1,2,…,n)equals the sum of V(i)if x i is labeled and equals0otherwise.Math-ematically,f(V,Y)can be defined asf V;YðÞ¼l1jj U V jj2þl2jj Y VÀY ðV1c1T cÞjj2F:ð6Þwhere U is a n9c matrix,and l1,l2[0are the tuned parameters.If x i is labeled and its label is j,then U iz=1 (z=1,2,…,c;z=j)and U ij=0.Besides,U iz=0 (z=1,2,…,c)if x i is unlabeled.1c is a vector with 1c=[1,…,1]T2R c91.For a labeled point x i with label j,thefirst term of(6) leads V iz=0(z=1,2,…,c;z=j)and the second term leads V ij equals the sum of the i-th row of V.Notice that the second term is a soft constraint for V,which do not require the max value of any row equals1.According to the definition of U,we haveU¼101000000011000266664377775:Notice thatjj U V1jj2¼1:33:jj U V2jj2¼0:jj Y V1ÀY V11k1T kÀÁjj2¼1:33:jj Y V2ÀY V21k1T kÀÁjj2¼0:Obviously,V2is a better solution than V1if we consider (6).In brief,f(V,Y)defined in(5)and(6)do not affected by the unlabeled data,which are more reasonable labelfitting terms than(4).The above designs areflexible,and one can design more reasonable labelfitting terms to incorporate prior information.2.2l¼1If we assume l=?,then problem(3)becomesargminV T u V u¼I;V u!0tr V T LVÀÁ:s:t:V l¼Y l:ð7Þwhere V¼½V l;V u ,and V l2R lÂc;V u2RðnÀlÞÂc,are the solutions of the labeled data and the unlabeled data, respectively.Y l is a part of Y,where Y=[Y l;Y u].It can be seen as the hard constraint for labelfitting.L can be divided intoL¼L ll L luL ul L uu!:ð8ÞWe haveV T LV¼½V l;V u TL ll L luL ul L uu!V l;V u½¼V T l L ll V lþV T l L lu V uþV T u L ul V lþV T u L uu V u:ð9ÞSince V l=Y l and L lu=L ul T,the constant term V T l L ll V l can be dropped,then problem(7)becomesargminV T u V u¼I;V u!0trð2V TuL ul Y lþV T u L uu V uÞ:ð10ÞInt.J.Mach.Learn.&Cyber.2.3Out of sample problemNote that algorithms in 2.1and 2.2cannot solve the out-of-sample problem.In this section,we develop the graph based semi-supervised learning method which can solve the out-of-sample problem.If the data is nonnegative,we combine the nonnegative matrix factorization with problem (3).Then problem (3)becomesargmin V T V ¼I ;U ;V !0jj X ÀUV T jj 2Fþc tr V T LV ÀÁþl f ðV ;Y Þ:ð11Þwhere X =[x 1,…,x l ,x l ?1,…,x n ]2R m 9n ,U 2R m 9c is the basis matrix,c [0,l C 0are the tuned parameters and V 2R n Âc is the solution matrix (or the representation matrix).If l [0,we can define f (V ,Y )by (4),(5),(6).Now we discuss the case when l =?.When l =?,problem (11)becomesargmin V T u V u ¼I ;U ;V u!0jj X ÀUV T jj 2Fþc tr V T LV ÀÁ:s :t :V l ¼Y l :ð12ÞDivide X as X =[X l ,X u ],then we have XVU T¼X l ;X u ½ V l ;V u ½ U T¼X l V l U TþX u V u U T:UV TVU T¼U ½V l ;V u TV l ;V u ½ U T¼UV T l V l U T þUV Tu V u U T :Thusjj X ÀUV T jj 2¼tr XXTÀÁÀ2X l V l U T þX u V u U TÂÃþUV T l V l U T þUV TuV u U T :Drop constant terms,and problem (12)becomesargmin V T u V u ¼I ;U ;V u!0À2X l V l U T þX u V u U T ÂÃþUV T l V l U TþUV Tu V u U Tþc trace ð2V T u L ul Y l þV Tu L uu V u Þ:ð13ÞThe key to solve the out-of-sample problem is the basis matrix U .When a new sample x arrives,the representation v of x can be computed by solving argmin v !0jj x ÀUv T jj 2:ð14ÞAt last,we can determine the label of x by contrasting the obtained v and the trained V .Usually,1-nn (nearest neighbor)method is adopt to do this job.3Algorithms3.1l [0We first discuss how to solve problem (3).The problem in (3)is a discrete optimization problems.Thus,finding the optimal solution is NP-hard.To get around this,relaxationscan be considered.As mentioned above,if f (V ,Y )isdefined by (4),then (3)becomes to a standard LGC problem by discarding the orthogonality and the discrete-ness constraints.In this way,the discreteness and the orthogonality of the solutions are totally ignored.Actually,we want to preserve more constraints in (3).Firstly,we keep the nonnegative constraint strictly.Though the dis-creteness constraint is always discarded,we still want the solutions be sparse.In [33],we propose a novel algorithm by congruent approximation to solve the normalized cut problem.The orthogonality constraint and sparseness of solutions can be properly reached by considering the con-gruent approximation.Consider the regularizerR ðV Þ tr V T V ÀÁÀlogdet V T V ÀÁ:ð15ÞIt is a strictly convex function [34]and this regularizer can be viewed as a special case of the LogDet divergence [35].The regularizer R is used to approximate the orthogonality constraint V T V =I c .By considering the regularizer R ,(3)becomesargmin V !0tr V T LV ÀÁþk R þl f ðV ;Y Þ:ð16ÞConsidering different f ðV ;Y Þ,we have the followingthree objective functionsO 1¼argmin V !0tr V T LV ÀÁþa jj V ÀY jj 2F þk R :ð17ÞO 2¼argmin V !0tr V T LV ÀÁþb jj K V ÀY jj 2F þk R :ð18ÞO 3¼argmin V !0tr V T LV ÀÁþl 1jj U V jj 2þl 2jj Y V ÀYV 1k 1T k ÀÁjj 2þk R :ð19Þwhere a ;b ;l 1;l 2;k [0are the regularization parameters,and L =I –S is the normalized Laplacian matrix with S ¼D À1=2WD À1=2.We first discuss how to minimize the objective function O 1,which can be rewritten asO 1¼tr V T LV þk V T V ÀÁÀk logdet V T VÀÁþa tr ½V ÀY ðÞT V ÀY ðÞ :ð20ÞLet /jk be the Lagrange multiplier for constraint v jk !0.Denote U ¼½/jk ,then the Lagrange M isM ¼tr V T LV ÀÁþk tr V T V ÀÁÀk logdet V T VÀÁþa tr ½V ÀY ðÞTV ÀY ðÞ þtr U V T ÀÁ:ð21ÞLet the derivatives of M with respect to V vanish,wehaveo Mo V¼2LV þ2k V À2k V V T V ÀÁÀ1þ2a ðV ÀY ÞþU :ð22ÞInt.J.Mach.Learn.&Cyber.Using the KKT conditions [36]/jk V jk ¼0,we get the following equations for V jk LV ðÞjk þk V jk Àk V V T V ÀÁÀ1 jkþa V jk Àa Y jk !V jk ¼0:ð23ÞThese equations lead to the following update ruleV jk V jk SV þa Y þk V V T V ðÞÀ1h i þjkV þk V þa V þk V ðV T V ÞÀ1h i Àjk:ð24Þwhere we separate the positive and negative parts of amatrix B (B ¼V ðV T V ÞÀ1)as:B þik ¼j B ik j þB ik ðÞ=2;B Àik ¼j B ik j ÀB ik ðÞ=2.Similar to minimize O 1,minimizing the objective function O 2leads to the following update ruleV jk V jk SV þb Y þk V V T V ðÞÀ1h i þjkV þk V þb K V þk ½V ðV T V ÞÀ1Àjk:ð25ÞMinimizing the objective function O 3leads to the fol-lowing update ruleV jk V jk SV þl 2Y V 1k 1T k ÀÁþk V V TV ðÞÀ1h i þ jkV þk V þl 1U V þl 2Y V þk ½V ðV T V ÞÀ1 Àjk:ð26Þ3.2l ¼1Now we discuss the updating rule for problem (10).Byconsidering the regularizer R ðV u Þ tr V T u V u ÀÁÀlogdet V T u V u ÀÁ,problem (10)can be recast as O 4¼trace ðV T LV Þþk R ðV u Þ:ð27ÞLet /jk be the Lagrange multiplier for constraint v jk !0.Denote U ¼½/jk ,then the Lagrange L isL ¼trace ðV T LV ÞþR ðV u Þþtr U V T uÀÁ:ð28ÞTheno L o V u¼2L ul Y l þ2L uu V u þ2k V u À2k V u ðV Tu V u ÞÀ1þU :ð29ÞUsing the KKT conditions [36]/jk V jk ¼0,we get the following equations for V ujkv u jkv u jk L Àuu V u þL Àul Y l þk V u V Tu V uÀÁÀ1hi þjk L þuu V u þL þul Y l þk V u þk V u V T u V uÀÁÀ1h i À jk:ð30Þ3.3Out of sample problemNow we discuss the updating rule for problem (11)byconsidering the regularizer R V ðÞ¼tr V T V ðÞÀlogdet V T V ðÞwhen l [0and R V u ðÞ¼tr V T uV u ÀÁÀlogdet V T u V u ÀÁwhen l ¼1.When l [0,problem (11)can be recast asargmin U ;V !0jj X ÀUV T jj 2Fþc tr V T LV ÀÁþl f V ;Y ðÞþk R :ð31ÞThe objective function of (31)isO 5¼jj X ÀUV T jj 2Fþc tr V T LV ÀÁþl f V ;Y ðÞþk R :ð32ÞLet w jk be the Lagrange multiplier for constraint u jk !0.Denote W ¼½w jk ,then the Lagrange L of (32)isL ¼jj X ÀUV T jj 2F þc tr V T LV ÀÁþk R þl f V ;Y ðÞþtr W U T ÀÁ:ð33ÞLet the derivatives of L with respect to U vanish,wehaveo Lo U¼À2XV þ2UV T V þW :ð34ÞUsing the KKT conditions [36]w jk u jk ¼0,we get the following equations for u jk u jk u jkðXV Þjk ðUV V Þjk:ð35ÞSimilar to minimize O 1–O 3,minimizing the objective function O 5with different f ðV ;Y Þleads the following update rulesV jk V jk X T U þc SV þa Y þk V V T V ðÞÀ1h i þjkVU T U þc V þk V þa V þk ½V ðV T V ÞÀ1Àjk:ð36ÞV jk V jk X TU þc SV þb Y þk V V TV ðÞÀ1h i þjkVU T U þc V þk V þb K V þk ½V ðV T V ÞÀ1Àjk:ð37ÞInt.J.Mach.Learn.&Cyber.V jk V jk X TU þc SV þl 2YV 1k 1T kÀÁþk V V TV ðÞÀ1hi þjkVU T U þc V þk V þl 1U V þl 2Y V þk ½V ðV T V ÞÀ1 Àjk:ð38Þwhere a [0is used to substitute l in (36),and b [0is used to substitute l in (37).When l =?,problem (12)[or problem (13)]can be recast asargmin U ;V u !0À2X l V l U T þX u V u U T ÂÃþUV T l V l U T þUV Tu V u U T þc trace 2V T u L ul Y l þV Tu L uu V u ÀÁþk R ðV u Þ:ð39ÞIt is easy to know the updating rule for U is same as (35),and the updating rule for V u isv u jkv u jk X T u U þc L Àuu V u þc L Àul Y l þk V u V T u V uÀÁÀ1hi þjkV u U T U þc L þuu V u þc L þul Y l þk V u þk V u V T u V uÀÁÀ1h i À jk:ð40ÞNow we discuss the method to solve (14),which is O 6¼jj x ÀUv T jj 2F :ð41ÞLet w j be the Lagrange multiplier for constraint v j C 0.Denote w ¼½w j ,then the Lagrange L of (41)isL ¼jj x ÀUv T jj 2F þtr w v T ÀÁ:ð42ÞLet the derivatives of L with respect to v vanish,wehaveo Lo v¼vU T U Àx T U þw :ð43ÞUsing the KKT conditions [36]w j v j ¼0,we get thefollowing equations for v j v i v i ðx T U ÞiðvU T U Þi:ð44Þ4Graph cutsIn Sect.3,algorithms are designed to study the semi-su-pervised graph cut problem under the normalized cut (Ncut)[7]criterion.Besides,other graph criterions including the min–max cut (Mmcut)[25]and ratio cut (Rcut)[22]can also be considered to study the semi-su-pervised graph cut problem.In this section,we investigate min–max cut and ratio cut to extend the proposed learning algorithms.Note that (2)is used as the graph cut regularizer to learn the global smoothness of the data.If we denote the graphcut regularizer as J .Then the semi-supervised graph cut problem can be written as argmin V T V ¼I ;V !0J þl f ðV ;Y Þ:ð45ÞThe semi-supervised graph cut problem that solves theout-of-sample problem can be written as argminV T V ¼I ;U ;V !0jj X ÀUV T jj 2F þc J þl f ðV ;Y Þ:ð46ÞIn fact,original normalized cut problem [21]can berecast asargmin ~J Ncut ¼argmintr ½~V T D ÀW ðÞ~V :s :t :~VT D ~V ¼I k ;~V!0:ð47Þwhere ~V2R n Âk is a specific indicator matrix.Transformation can be considered,and (47)can be recast asargminJ Ncut ¼argmintr V T I ÀD À1=2WD À1=2V h i :s :t :V T V ¼I k ;V !0:ð48Þwhere V 2R n Âk is a specific indicator matrix.It is easy to know that ~V¼D À1=2V (~V in (47),and V in (48)).Both (47)and (48)are normalized cut problems,and we can name them original normalized cut and normalized cut respectively.We can first solve the normalized cut problem in Sect.3,and then solve the original normalizedcut problem by ~V¼D À1=2V .Ratio cut problem can be recast as argminJ Rcut ¼argmintrace ½V T D ÀW ðÞV :s :t :V T V ¼I k ;V !0:ð49Þwhere V 2R n Âk is a specific indicator matrix.Minmax cut problem can be recast as argmin ~JMmcut ¼argmin X k i ¼1~v T iD ~v i v T iW v i :s :t :~VT D ~V ¼I k ;~V !0:ð50Þwhere ~vi is i -th column of ~V ,and ~V 2R n Âk is a specific indicator matrix.Transformation can be considered,and (50)can be recast asargminJ Mmcut ¼argmin X k i ¼1v T i v iv T iD À1=2WD À1=2v i :s :t :V T V ¼I k ;V !0:ð51Þwhere v i is i -th column of V ,and V 2R n Âk is a specificindicator matrix.Int.J.Mach.Learn.&Cyber.It is easy to know that ~V¼D À1=2V (~V in (50),and V in (51)).Both (50)and (51)are minmax cut problems,we can named them original minmax cut and minmax cut.We can first solve the minmax cut problem,and then solve theoriginal minmax cut by ~V¼D À1=2V .If we use Ratio cut as the graph cut regularizer,we can find that ratio cut and normalized share the same updating rules in Sect.3.The difference between them is that they use different Laplacian matrices.Normalized cut uses I ÀD À1=2WD À1=2as the Laplacian matrix,while ratio cut uses D –W as the Laplacian matrix.If we use minmax cut as the graph cut regularizer,we can adopt the proposed method in Sect.3to solve the semi-supervised minmax cut problem.When l [0,updating rules for problem (45)with three kinds of f (V ,Y )arev jk v jk L a V c þa Y þk ½V ðV TV ÞÀ1þjk V b þk V þa V þk ½V ðV T V ÞÀ1À jk:ð52Þv jk v jk L a V c þb Y þk ½V ðV TV ÞÀ1þjkV b þk V þb K V þk ½V ðV T V ÞÀ1Àjk:ð53Þv jk v jk L a V c þl 2YV 1k 1T kÀÁþk ½V ðV TV ÞÀ1þjkV b þk V þl 1U V þl 2Y V þk ½V ðV T V ÞÀ1 Àjk:ð54Þwhere V b ¼1T 1a 1v 1;1T 2a 2v 2;h...;1T k a k v k ,V c ¼v T 1v1ðv 1L a v 1Þ2:v 1;v T 2v 2ðv 2L a v 2Þ2v 2;...;v T k v k ðv kL a v kÞ2v k!;and L a ¼D À1=2WD À1=2.When l =?,we first divide L a asL a ¼L a ll L a luL a ul L a uu!:ð55ÞThen we divide v i as v i ¼½v li ;v ui ,where v i is i -th col-umn of V .The updating rule can be obtained byv u jk v u jk L a ul V c þL a uu V h þk V u V T u V uÀÁÀ1h i þ jkV b þk V u þk V u V T u V uÀÁÀ1h i Àjk:ð56Þwhere V b ¼1T 1a 1v u 1;1T 2a 2v u 2;...;1T k a kv uk h i,V c ¼v T 1v 1v T 1L a v 1ðÞ2y l 1;v T 2v 2v T 2L a v 2ðÞ2y l 2;...;v T k v k v T k L a v k ðÞ2y lk!;V h ¼v T 1v 1v T 1L a v 1ðÞ2v u 1;v T 2v 2ðv T 2La v 2Þ2v u 2;...;v T k v kðv T k L a v k Þ2v uk :When l [0,updating rules for problem (46)with threekinds of f ðV ;Y Þarev jk v jk X T U þc L a V c þa Y þk ½V ðV TV ÞÀ1þjkVU T U þc V b þk V þa V þk ½V ðV T V ÞÀ1Àjk:ð57Þv jk v jk X T U þc L a V c þb Y þk ½V ðV TV ÞÀ1 þjkVU T Uþc V b þk V þb K V þk ½V ðV T V ÞÀ1 Àjk:ð58Þv jk v jkðX T U þc L a V c þl 2Y ðV 1k 1T k Þþk ½V ðV TV ÞÀ1 þÞjkðVU T U þc V b þk V þl 1U V þl 2Y V þk ½V ðV T V ÞÀ1 ÀÞjk:ð59ÞWhen l =?,we havev u jk v u jkX T u U þc L a ul V c þc L a uu V h þk V u V Tu V uÀÁÀ1h i þjkV u U T U þc V b þk V u þk V u V T u V uÀÁÀ1h i Àjk:ð60ÞwhereV b ¼1v T 1L a v 1v u 1;1v T 2L a v 2v u 2;...;1v T k L a v k v uk h i,V c ¼v T 1v 1v T 1L a v 1ðÞ2y l 1;v T 2v 2v T 2L a v 2ðÞ2y l 2;...;v T k v k v T k L a v k ðÞ2y lk!;V h ¼v T 1v 1v T 1L a v 1ðÞ2v u 1;v T 2v 2ðv T 2La v 2Þ2v u 2;...;v T k v kðv T k L a v k Þ2v uk :5ExperimentsIn this section,we construct experiments to demonstratethe effectiveness of the proposed algorithms.We use four categories of public datasets in the experiments,including image data,text data and handwritten digit data.We summarized these databases in Table 1.These datasets are •Yale Database.The Yale database 1contains 165grayscale images of 15individuals.There are 11images per subject,one per different facial expression or configuration.Each image is represented by a 1024-dimensional vector in image space.Table 1Statistics of the four datasets Dataset Size (n)Dimensionality (m)#of Classes (k)YaleB 640205610TDT2150036,77130USPS 50025610Yale1651024151/projects/yalefaces/yalefaces.html .Int.J.Mach.Learn.&Cyber.。
th浊辅音的发音规则
浊辅音TH的发音规则
TH浊辅音(Voiced dental fricative)是英语中的一个特殊辅音音素。
它的发音有一定的规则。
1. 声带振动:TH浊辅音是一个浊辅音,发音时声带要振动。
可以通过将手指放在喉咙上方来感受声带的振动。
2. 舌尖的位置:发TH音时,舌尖要接触到上排牙齿的后侧,舌尖与牙齿之间形成小的间隙。
3. 嘴唇的放松:发TH音时,嘴唇要放松,不要伸出或收紧。
4. 声道的张开:发TH音时,口腔要张开,舌尖轻轻触碰上排牙齿的后侧,形成一个小的通道。
5. 声音的摩擦:发TH音时,空气从舌尖与上排牙齿之间的通道中挤出,产生摩擦声。
请注意,TH音在口语中通常有两种发音: voiced dental fricative (/ð/)和voiceless dental fricative (/θ/)。
其中,前者表示浊辅音TH,如英语单词 "this",后者表示清辅音TH,如英语单词 "think"。
练习发音时,可以通过反复练习单词、短语和句子,并观察嘴唇、舌头和牙齿的位置来提高发音准确性。
还可以借助语音指导教材和在线发音教程进行训练。
记住,熟能生巧。
通过持续的练习和观察,逐渐掌握TH浊辅音的发音规则。
希望这些提示能帮助你更好地发音和表达英语中的TH音。
字母组合th的读音规则总结蚁字母组合th的读音规则总结莀现就中学英语课本中出现的含有字母组合th的单词,进行分类归纳,对其在单词中的读音总结以下几条。
蕿1.在th后以字母-er结尾的单词中,th读浊辅音/e/。
螄例:altogether/?:lt?'gee?/,farther/'fae?/,feather/'fee?/,whether/'wee?/,either/'aie?/,gather/'g?e?/蚄2.一般情况下,在代词、冠词、介词、连词或副词中的字母组合th,读浊辅音/e/。
蒀例:within/wi'ein/,without/wi'eaut/,these/ei:z/,therefore/'ee?f?:/,al-though/?:le?u/,those/e?uz/,the/e?/,thus/eas/螅发音特殊的单词:through/θru:/,throughout/θru:'aut/蒆3.字母组合th在数词(包括基数词和序数词)中读清辅音/θ/。
蒂例:three/θri:/,thirty/'θ?:ti/,thirteen/'θ?:'ti:n/,薀third/θ?:d/,fourth/f?:θ/,fiftieth/'fiftiiθ/,膆thousand/'θauz?nd/,hundredth/'handr?dθ/羄4.除上述单词外,一般位于词首的th读/θ/。
膁例:theatre/'θi?t?/,thick/θik/,thin/θin/,throat/θr?ut/,theory/'θi?ri/,thrust/θrast/,thre ad/θred/,thorough/'θar?/,Thursday/'θ?:zdi/蚀5.以th结尾的单词,th读清辅音/θ/。
广州大学毕业生就业政策知识测验(附参考答案)不定项选择题:(答案一个或多个,50题,2分/题,共100分)1. 劳动合同期限三个月以上不满一年的,试用期不得超过个月;劳动合同期限一年以上不满三年的,试用期不得超过个月;三年以上固定期限和无固定期限的劳动合同,试用期不得超过个月。
A.一,三,六B.一,二,三C.一,二,六D.二,三,六2. 关于试用期表述正确的是A. 同一用人单位与同一劳动者只能约定一次试用期。
B.以完成一定工作任务为期限的劳动合同或者劳动合同期限不满三个月的,不得约定试用期。
C.试用期不包含在劳动合同期限内。
D. 劳动合同仅约定试用期的,试用期不成立,该期限为劳动合同期限。
3. 劳动者在试用期的工资不得低于本单位相同岗位最低档工资或者劳动合同约定工资的百分之,并不得低于用人单位所在地的最低工资标准。
A.60%B.70%C.80%D.90%4. 对“五险一金”理解正确的是A.“五险”是指五种保险,包括养老保险、医疗保险、失业保险、工伤保险和生育保险,“一金”是指住房公积金。
B. “五险”均是由企业和个人共同缴纳的保费。
C. 单位录用职工的,应当自录用之日起30日内到住房公积金管理中心办理缴存登记。
D. 住房公积金全部由单位缴存。
5. 对《毕业生就业协议书》相关问题理解正确的是A. 《协议书》必须学生本人和用人单位及学校就业主管部门三方签署才有效。
B. 《协议书》只要学生本人和用人单位双方签署即有效。
C. 《协议书》每个学生只有一份。
D. 已经签约后又悔约的同学,在跟用人单位达成一致的解约意见前可先申请第二份《协议书》。
6. 对“生源地”理解正确的是A. 生源地对大部分学生来说是指高考时候的户口所在地。
B. 对高考借考的同学来说,生源地就是指借考地。
C. 生源地不同于籍贯和出生地。
D. 专插本的同学,其生源地是指就读专科前的常住户口所在地,如果是职中考进高职院校的,其生源地就应该以考入职中前户口所在地为准。
7. 学生张某,高考时户口所在地为广东梅州五华,且在五华参加高考,升大学时将户口迁至学校,在张某读大二的时候,父母由于工作调动原因将户口迁移到深圳,张某同学的生源地为。
A.梅州五华 B.学校户口所在地 C.深圳市 D.以上选项都不对8. 以下对与《报到证》相关问题表述正确的是A. 学生遗失《报到证》不论多久均可申请补办。
B. 未取得毕业资格的毕业生一般没有报到证,待获得毕业证书后三个月内必须向学校就业中心申请办理《报到证》,超过三个月后申请的将不再受理。
C. 在大学生就业在线网上申请了不就业并经审核后的升学的同学没有《报到证》。
D. 按照民族生和定向生的相关规定,其《报到证》派遣回到生源地主管部门。
9. 本科生李某,毕业前夕考研成功,顺利拿到了上海交大的研究生录取通知书,李某也在大学生就业在线申请了升学不参加就业,学校也审核通过了,李某就读研究生后不到2个月又找到了一个理想的单位,这时候李某能否重新申请派遣办理《报到证》?A. 可以B. 不可以10. 对“改派”理解正确的是A. 毕业生申请改派必须是在毕业后一年之内进行B. 暂缓就业一年后取消的也可以申请改派C.申请改派的学生要提供的材料一般有原单位退函,新单位正式接受函,原《报到证》。
D. 已落实就业单位的毕业生不能随便申请办理改派。
11. 广州生源毕业生陈某,在毕业的时候没有落实就业单位,被派遣回生源地就业主管部门报到(即报到证抬头为广州市人力资源和社会保障局,报到部门是广州市高校毕业生就业指导中心),3个月后,陈某被广州市自来水公司正式录用,并签了三方协议,这时候陈某可去那个部门重新办理派遣手续?A. 广州市高校毕业生就业指导中心B. 学校就业指导中心C. 一定要到广东省高校毕业生就业指导中心D. 不需要办理任何手续12 对暂缓就业理解正确的是A. 毕业当年超过6月10日后不能再申请办理暂缓就业。
B. 暂缓就业可以保留毕业生应届生的身份。
C. 不能正常毕业的同学也可以申请办理暂缓就业。
D. 毕业前申请了升学的学生不能办理申请暂缓就业。
13. 暂缓就业毕业生陈某,在暂缓就业2年内都没有去办理取消暂缓就业手续,此后陈同学该怎么办?A. 到省就业中心去领取暂缓到期的《报到证》。
B. 到学校就业指导中心去领取暂缓到期的《报到证》。
C.如果户口仍在学校,则必须凭《报到证》去学校户籍科办理户口迁移手续。
D.陈同学的档案由省就业指导中心直接寄送到生源地就业主管部门。
14. 对与档案相关的问题理解正确的是A. 档案和工作单位是绝对不能分开的。
B.毕业生档案一般不可以自带,其档案在办理报到证后由学校统一寄送。
C. 派遣到广州市人力资源和社会保障局或广州市教育局的,其档案由学生档案室直接移交到广州市高校毕业生就业指导中心。
D. 凡办理暂缓就业的毕业生档案由档案室统一移交广东省高校毕业生就业指导中心。
15. 关于毕业生户口迁移正确的是A. 暂缓就业的毕业生可将户口保留在学校两年。
B. 办理户口迁移手续必须提供详细户口迁移地址。
C. 户口迁出地必须与《报到证》地址方向一致,否则有可能无法入户。
D. 办理人事代理的毕业生,可随意将户口迁到亲戚或朋友家。
16. 关于人事代理相关问题理解正确的是A. 人事关系是委托人才市场办理,但是实质的劳动关系仍然是和签约的单位。
B. 人事代理的户口和档案是可以分离的。
C. 人事代理的集体户口不是正式户口D.“户口空挂”的毕业生不能申请办理改派。
17. “人事代理”的主要服务有A. 计算工龄,国家规定的档案工资调升。
B. 转正定级、职称定级、职称评定。
C. 受理出境事宜、党团关系管理。
D. 代办社会保险、边防证、证件年审、出具以档案为依据的各种公证材料等。
18. 以下对人才市场集体户口理解正确的是A. 子女可以随父母入人才市场的集体户口。
B.人才市场集体户口的户口卡是人才市场统一保管的,需要的时候到人才市场借用并及时归还。
C. 结婚的时候,人才市场一般都会要求入户者将户口从集体户迁出,不允许凭集体户的户口卡去办理结婚手续。
D.集体户口要变成独立户口的途径是购买房产。
19. 关于“干部身份”问题理解正确的是A. 干部身份是原计划经济体制下人事管理制度沿用至今的产物。
B. 对于刚毕业的学生来说,干部身份的载体就是《协议书》。
C. 满一年后办理了转正定级即具有了干部身份。
D. 转正定级后,干部身份的转移就相当于人事关系的转移,干部身份的载体就是人事关系。
20. 关于教师资格认定相关问题理解正确的是A. 师范类毕业生教师资格认定由学校统一组织。
B. 非师范毕业生要申请办理教师资格证可参照社会人员认定中小学(含中等职业学校)和幼儿园教师资格的相关规定办理。
C. 学生不能正常毕业也可以办理教师资格证。
D. 申请教师资格证的体检可以在任何县级以上医院进行。
21. 以下关于“三支一扶”相关问题表述正确的是A. “三支一扶”是指到农村基层从事支教、支农、支医和扶贫工作。
B. “三支一扶”服务期限一般为2年。
C. 参加“三支一扶”的学生享受政府的生活补贴、交通补贴、缴纳社会保险等。
D. 服务期满考核合格的享受报考专门为服务基层项目人员设置的公务员定向考录职位,在事业单位公开招聘及升学考试中加分等优惠政策。
22. “大学生志愿服务西部计划”的服务期限是A.2年B.3年C.4年D.1—3年23. “广东省大学生志愿服务山区计划”的服务期限是A.2年B.3年C.1—2年D.1—3年24.到乡镇事业单位服务的志愿者服务满1年后,在现岗位空缺情况下,经考核合格,可与所在单位签订不少于的聘用合同。
A.1年B.2年C.3年D.4年25. 关于西部计划和山区计划的政策待遇正确的是A. 服务期满2年且考核合格的志愿者,3年内报考研究生,初试总分加10分,同等条件下优先录取。
B. 服务期满2年且考核合格的,报考公务员等享受相关优惠政策。
C. 服务期间,不计算工龄。
D. 服务满1年后,在现岗位空缺情况下,经考核合格,即可与所在单位签订不少于5年的聘用合同。
26. 关于“大学生村官”表述正确的是A. 选聘重点是应届毕业和毕业1至2年的本科生、研究生。
B. 到村工作年限一般为2—3年。
C. 选聘对象年龄为25岁以下。
D. 参加过“三支一扶”、“志愿服务西部计划”等活动期满的高校毕业生,本人自愿且具备选聘条件的,经组织推荐可作为选聘对象。
27. 关于“大学生村官”任职表述正确的是A. 是中共正式党员的,一般安排担任村党组织书记助理职务。
B. 是中共预备党员或非中共党员的,一般安排担任村委会主任助理职务。
C. 是共青团员的,可安排兼任村团组织书记、副书记职务。
D. 经过一段时间的实际工作、被大多数党员和群众认可的,可通过推荐参加选举担任村党组织书记、副书记等职务。
28. 关于“大学生农村从教上岗退费”政策表述正确的是A. “大学生农村从教”由广东省教育厅牵头组织实施。
B.被选聘的毕业生是到汕头、韶关、湛江、肇庆、茂名、惠州、梅州、汕尾、河源、阳江、清远、潮州、揭阳、云浮14个市以及恩平市的乡镇(不含县城所在镇)及乡镇以下的中小学校(包括全日制普通中小学和中等职业学校)任教。
C. 选聘对象必须符合教师资格条件要求和任教岗位基本要求。
D.非师范教育类高校毕业生可不用取得相应任教岗位的教师资格证书。
29. 以下关于“大学生农村从教上岗退费”的退费标准和申请程序正确的是A.上岗退费的标准按每人每年6000元计算。
B. 本科及以上学历(学位)高校毕业生上岗退费以4年为限,专学历高校毕业生上岗退费以3年为限。
C.符合上岗退费政策规定条件的毕业生,且承诺履行到农村从教上岗退费协议书规定的义务,应于规定时间由本人向县(市、区)教育局提出申请。
D.大学生农村从教上岗退费由县(市、区)教育局统一上报。
30. 关于“农村教师特岗计划”政策表述正确的是A.农村教师特岗计划是由教育部、财政部、原人事部、中央编办于2006年联合启动实施的“特岗计划”。
B.该计划是公开招聘高校毕业生到中西部地区“两基”攻坚县农村义务教育阶段学校任教,特岗教师聘期3年。
C.参加过“大学生志愿服务西部计划”、有从教经历的志愿者和参加过半年以上实习支教的师范院校毕业生同等条件下优先录取。
D.报名者应同时符合教师资格条件要求和招聘岗位要求。
31. 关于特岗教师服务期满后的出路正确的是A.可以选择在当地留任,保证有编有岗,并享受当地教师同等待遇。
B. 异地留转,或到城镇学校应聘。
C.可重新选择就业,各地政府包括教育部门将提供便利。
D.如果不在当地留任,可保证安排其它地方就业。
32. 关于义务兵和士官的区别正确的是A.我军现役士兵按兵役性质分为义务兵役制士兵和志愿兵役制士兵。