六年级数学概念知识点整理(上册)
- 格式:doc
- 大小:230.50 KB
- 文档页数:16
小学6年级数学知识点归纳汇总六年级上册知识点概念总结1.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。
2.分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
但分子分母不能为零.。
3.分数乘法意义分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
一个数与分数相乘,可以看作是求这个数的几分之几是多少。
4.分数乘整数:数形结合、转化化归5.倒数:乘积是1的两个数叫做互为倒数。
6.分数的倒数找一个分数的倒数,例如3/4 把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/3。
3/4是4/3的倒数,也可以说4/3是3/4的倒数。
7.整数的倒数找一个整数的倒数,例如12,把12化成分数,即12/1 ,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是1/12 ,12是1/12的倒数。
8.小数的倒数:普通算法:找一个小数的倒数,例如0.25 ,把0.25化成分数,即1/4 ,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/19.用1计算法:也可以用1去除以这个数,例如0.25 ,1/0.25等于4 ,所以0.25的倒数4 ,因为乘积是1的两个数互为倒数。
分数、整数也都使用这种规律。
10.分数除法:分数除法是分数乘法的逆运算。
11.分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
12.分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。
13.分数除法应用题:先找单位1。
单位1已知,求部分量或对应分率用乘法,求单位1用除法。
14.比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。
六年级上册数学全部知识点一、分数1、理解分数概念:分数是由分子和分母组成,分子是分开的,分母是分子所在的总数,表示两个整数之间的比重;特征:分子与分母之间的比值;作用:用分数可以表示出一个数介于两个整数之间的任何数;2、运算(1)相同分母分数的加减法相同分数的加减法:将分子加减即可。
(2)不同分母分数的加减不同分数的加减法:先将分母统一,然后将分子加减即可。
(3)分数的乘除运算将两个分数相乘:将分子和分母分别相乘即可;将两个分数相除:将分子和分母交换再相乘即可。
三、根式1、根式的定义根式又称亚分式、立方根式,是表示平方根(或立方根)的一种式子。
是包含开方符号的一种数学运算表达式,它是一种特殊的正分式或正亚分式。
2、根式的展开展开根式:乘方法;联立根式:开根号法;3、根式的乘除运算二次方根式的乘法:将乘方的同类项相乘;三次方根式的乘法:将系数相乘,连分数乘积的分子、分母乘积;二次方根式的除法:把被除式减去除数,得出商;三次方根式的除法:把被除式分为分子和分母,把除数分为分子和分母,再分别将这两个分子和两个分母相乘,得到商;四、几何成比例1、定义几何成比例是指在一个相同的几何图形内,测量出的条形(或弧形)长或圆的半径之间,呈现出等比例。
2、求出成比例比求出比例比:将所测量出的两个数分别除以其中最小的一个数,得出两个数之间的比例比;3、判断几何图形是否成比例判断几何图形是否成比例:将该图形内测量出的长度和半径分别除以其中最小的一个,若所得到的两个数之间的比例比相同,即可判断该图形成比例;五、统计与概率1、统计统计是指收集与分析文字、表格或图表中的数字信息,以便准确地反映其情况。
它包括:(1)收集与分析数据;(2)求出变量的均值、方差、离差等;(3)使用中心弦图、直方图、折线图等工具绘制出数据的分布情况;(4)根据数据判断变量的特征;(5)利用函数描述数据的变化规律。
2、概率概率:指在多次实验中,当发生某一事件时的可能性大小。
小学版六年级数学上册知识点整理归纳一. 整数1. 整数的概念整数是由正整数、0、负整数组成,用...-3,-2,-1,0,1,2,3...表示。
2. 整数的大小比较如果两个整数的绝对值相等,则正数大于负数;否则,绝对值大的整数大。
3. 相反数对于整数a,-a叫做a的相反数。
4. 绝对值对于整数a,|a|代表a的绝对值。
二. 小数1. 小数的概念在数轴上,以1为整体分成的10个等分,每个等分再以1为整体分成10等分,这些等分就构成了小数部分。
例如0.8,就是整数部分0和小数部分0.8的和。
2. 小数的读法例如0.25可以读作“零点二五”。
3. 小数与分数小数可以转化为分数。
例如0.6可以转化为6/10,再化简为3/5。
三. 分数1. 分数的概念分数是表示一部分与总数的比例的数。
2. 分数的组成部分分数由分子和分母两部分组成,例如3/5,其中3为分子,5为分母。
3. 分数的大小比较如果两个分数的分母相同,则分子大的分数大;否则,分数化为相同分母,再比较分子的大小。
4. 分数的约分与通分分数可以化简为最简分数,称为约分。
分数化为相同分母的过程,称为通分。
四. 几何图形1. 三角形三角形是由三条线段围成的图形。
2. 直角三角形直角三角形是其中一条角为直角的三角形。
3. 面积平面图形的面积是指该图形的空间范围大小。
4. 周长平面图形周长是指该图形边缘线段的长度之和。
五. 时间1. 时间的概念时间可以用来表示事件发生的先后顺序和持续的时间长度。
2. 时间的单位常用的时间单位有年、月、日、小时、分钟、秒。
3. 时间的读法例如8:30可以读作“八点半”。
4. 时间的换算60秒=1分钟,60分钟=1小时,24小时=1天,365天=1年。
小学六年级数学知识点归纳六年级上册知识点概念总结1.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。
2.分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
但分子分母不能为零.。
3.分数乘法意义分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
一个数与分数相乘,可以看作是求这个数的几分之几是多少。
4.分数乘整数:数形结合、转化化归5.倒数:乘积是1的两个数叫做互为倒数。
6.分数的倒数找一个分数的倒数,例如3/4 把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/3。
3/4是4/3的倒数,也可以说4/3是3/4的倒数。
7.整数的倒数找一个整数的倒数,例如12,把12化成分数,即12/1 ,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是1/12 ,12是1/12的倒数。
8.小数的倒数:普通算法:找一个小数的倒数,例如0.25 ,把0.25化成分数,即1/4 ,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/19.用1计算法:也可以用1去除以这个数,例如0.25 ,1/0.25等于4 ,所以0.25的倒数4 ,因为乘积是1的两个数互为倒数。
分数、整数也都使用这种规律。
10.分数除法:分数除法是分数乘法的逆运算。
11.分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
12.分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。
13.分数除法应用题:先找单位1。
单位1已知,求部分量或对应分率用乘法,求单位1用除法。
14.比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。
六年级上册数学知识点(概念)归纳与整理(人教版)第二单元 分数乘法(一)、分数乘法的意义。
1、分数乘整数:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算。
例如:512 ×6,表示:6个512 相加是多少,还表示512的6倍是多少。
2、一个数(小数、分数、整数)乘分数:一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。
例如:6×512 ,表示:6的512 是多少。
27 ×512 ,表示:27 的512 是多少。
(二)、分数乘法的计算法则:1、整数和分数相乘:整数和分子相乘的积作分子,分母不变。
2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。
3、注意:能约分的先约分,然后再乘,得数必须是最简分数。
当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(三)、分数大小的比较:1、一个数(0除外)乘以一个真分数,所得的积小于它本身。
一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。
一个数(0除外)乘以一个带分数,所得的积大于它本身。
2、如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。
(四)、解决实际问题。
1分数应用题一般解题步行骤. (1)找出含有分率的关键句。
(2)找出单位“1”的量(3)根据线段图写出等量关系式:单位“1”的量×对应分率=对应量。
(4)根据已知条件和问题列式解答。
2.乘法应用题有关注意概念。
(1)乘法应用题的解题思路:已知一个数,求这个数的几分之几是多少?(2)找单位“1”的方法:从含有分数的关键句中找,注意“的”前“比”后的规则。
当句子中的单位“1”不明显时,把原来的量看做单位“1”。
(3)甲比乙多几分之几表示甲比乙多的数占乙的几分之几,甲比乙少几分之几表示甲比乙少数占乙的几分之几。
(4)在应用题中如:小湖村去年水稻的亩产量是750千克,今年水稻的亩产量是800千克,增产几分之几?题目中的“增产”是多的意思,那么谁比谁多,应该是“多比少多”,“多”的是指800千克,“少”的是指750千克,即800千克比750千克多几分之几,结合应用题的表达方式,可以补充为“今年水稻的亩产量比去年水稻的亩产量多几分之几?”(5)“增加”、“提高”、“增产”等蕴含“多”的意思,“减少”、“下降”、“裁员” 等蕴含“少”的意思,“相当于”、“占”、“是”、“等于”意思相近。
六年级上册数学知识点概念总结六年级上册知识点概念总结1.分数乘法:分数乘法的意义与整数乘法的意义相同;就是求几个相同加数和的简便运算。
2.分数乘法的计算法则:分数乘整数;用分数的分子和整数相乘的积作分子;分母不变;分数乘分数;用分子相乘的积作分子;分母相乘的积作分母。
但分子分母不能为零.。
3.分数乘法意义分数乘整数的意义与整数乘法的意义相同;就是求几个相同加数的和的简便运算。
一个数与分数相乘;可以看作是求这个数的几分之几是多少。
4.分数乘整数:数形结合、转化化归5.倒数:乘积是1的两个数叫做互为倒数。
6.分数的倒数找一个分数的倒数;例如3/4 把3/4这个分数的分子和分母交换位置;把原来的分子做分母;原来的分母做分子。
则是4/3。
3/4是4/3的倒数;也可以说4/3是3/4的倒数。
7.整数的倒数找一个整数的倒数;例如12;把12化成分数;即12/1 ;再把12/1这个分数的分子和分母交换位置;把原来的分子做分母;原来的分母做分子。
则是1/12 ;12是1/12的倒数。
8.小数的倒数:普通算法:找一个小数的倒数;例如0.25 ;把0.25化成分数;即1/4 ;再把1/4这个分数的分子和分母交换位置;把原来的分子做分母;原来的分母做分子。
则是4/19.用1计算法:也可以用1去除以这个数;例如0.25 ;1/0.25等于4 ;所以0.25的倒数4 ;因为乘积是1的两个数互为倒数。
分数、整数也都使用这种规律。
10.分数除法:分数除法是分数乘法的逆运算。
11.分数除法计算法则:甲数除以乙数(0除外);等于甲数乘乙数的倒数。
12.分数除法的意义:与整数除法的意义相同;都是已知两个因数的积与其中一个因数求另一个因数。
13.分数除法应用题:先找单位1。
单位1已知;求部分量或对应分率用乘法;求单位1用除法。
14.比和比例:比和比例一直是学数学容易弄混的几大问题之一;其实它们之间的问题完全可以用一句话概括:比;等同于算式中等号左边的式子;是式子的一种(如:a:b);比例;由至少两个称为比的式子由等号连接而成;且这两个比的比值是相同(如:a:b=c:d)。
六年级数学上册知识点整理资料讲解研究资料:人教版六年级数学上册概念知识点整理第一单元:分数乘法一、分数乘法一)分数乘法的意义:1.分数乘整数和整数乘法的意义相同。
它们都是求几个相同加数的和的简便运算。
例如:888 × 5 表示求5个888的和是多少,也表示888的5倍是多少。
2.一个数乘分数是求一个数的几分之几是多少。
例如:8383 × 1/4 表示求83的1/4是多少。
二)分数乘法的计算法则:1.分数与整数相乘:分子与整数相乘的积做分子,分母不变。
如果整数和分母可以约分,则约分后再计算。
2.分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
如果能约分,则先约分再计算。
3.分数连乘的计算方法:先约分,就是把所有的分子中可与分母相约的数先约分,再用分子乘分子作积的分子,分母乘分母作积的分母。
4.当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
三)乘法规律:(乘法中比较大小时)一个数(除外)乘大于1的数,积大于这个数。
一个数(除外)乘小于1的数(除外),积小于这个数。
一个数(除外)乘1,积等于这个数。
四)分数混合运算的运算顺序和整数的运算顺序相同。
速记歌谣:先乘除后加减,有了括号先算里,同级运算从左起,简便方法不忘记。
五)整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律:ab = ba乘法结合律:(ab)c = a(bc)乘法分配律:(a + b)c = ac + bc二、分数乘法的解决问题已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)1.画线段图:1)两个量的关系:画两条线段图;(2)部分和整体的关系:画一条线段图。
2.找单位“1”:一般在分率句中分率的前面;或“占”、“是”、“比”的后面。
3.求一个数的几倍:一个数×几倍;求一个数的几分之几是多少:一个数×4.写数量关系式技巧:几 ÷几 = 几1)“的”相当于“×”,“占”、“是”、“比”相当于“=”。
六年级上册数学知识点大全1500字六年级上册数学知识点大全:一、整数运算1.正整数和负整数的概念及表示方法;2.整数的比较与排序;3.整数的加法、减法、乘法和除法运算;4.整数的乘方运算;5.整数的混合运算。
二、分数运算1.分数的概念及表示方法;2.分数的比较与排序;3.分数的加法、减法、乘法和除法运算;4.分数的混合运算。
三、小数运算1.小数的概念及表示方法;2.小数的比较与排序;3.小数的加法、减法、乘法和除法运算;4.小数的混合运算。
四、不等关系及解不等式1.不等关系的概念及符号表示;2.解一元一次不等式;3.解包含绝对值的不等式。
五、算式的变形与等式的解1.算式的相等关系;2.算式的变形与等式的解。
六、数与代数式1.数、代数(变量)和代数式的概念;2.代数式的数值计算和变量计算;3.图形与代数式的关系。
七、几何图形1.平面图形的基本性质;2.平行线、垂直线、相交线的判定;3.平面图形的分类与分析;4.几何图形的投影。
八、图形的轴对称和中心对称1.轴对称图形的性质与判定;2.中心对称图形的性质与判定;3.两种对称关系的联系与区别。
九、运算律和运算法则1.加法和乘法的运算律;2.数的运算律;3.运算法则的应用。
十、数量关系1.相等关系的图象表示;2.比例关系的概念及图象表示;3.百分数的概念及图象表示。
十一、统计与概率1.统计图表的读取和制作;2.统计数据的分析和应用;3.概率的理解和计算;4.概率问题的应用分析。
以上就是六年级上册数学的全部知识点,掌握了这些知识点,学生就能够在数学学习中得心应手,顺利完成各种题目的解答和应用。
小学六年级上册数学各单元知识点小学六年级上册数学共有十一个单元,每个单元的知识点如下:1. 第一单元:数与代数- 数的认识:数的读法、数的大小比较- 数的加法和减法:竖式计算、交换律和结合律- 乘法口诀表:认识并背诵乘法口诀表2. 第二单元:整数- 正数、负数:了解正数和负数的概念- 整数的加法和减法:正数相加、正数和负数相加、负数相加- 整数的乘法:相乘的规律3. 第三单元:图形与坐标- 点、线、面:了解图形的基本概念- 线段的长度:如何测量线段的长度- 坐标系:认识平面直角坐标系4. 第四单元:图形的变换- 平移、翻转、旋转:了解图形的基本变换操作- 关于对称轴的对称:认识图形的对称性5. 第五单元:小数- 小数的认识:了解小数的概念和读法- 小数的加法和减法:竖式计算- 小数的乘法和除法:带小数点的乘法和除法计算6. 第六单元:百分数- 百分数的认识:了解百分数的概念和读法- 百分数的表示和转化:将百分数转化为小数、将小数转化为百分数- 百分数的加法和减法:竖式计算7. 第七单元:平方与平方根- 平方数:认识平方数和平方根的概念- 计算平方:计算一个数的平方- 开平方:计算一个数的平方根8. 第八单元:长方体的面积和体积- 长方体的面积:计算长方体各个面的面积、计算总面积- 长方体的体积:计算长方体的体积9. 第九单元:圆- 圆的认识:了解圆的概念和相关术语- 圆的面积和周长:计算圆的面积和周长10. 第十单元:时间- 时钟的认识:了解时、分、秒的概念- 时钟的读法:读时、读分、读秒- 时钟的计算:计算时间差、计算时间段11. 第十一单元:数据的处理- 统计图表:了解柱状图和折线图的制作和分析- 数据的整理和处理:收集数据、整理数据、分析数据以上是小学六年级上册数学各单元的知识点,希望对你有帮助!。
六年级数学上册知识点整理归纳完整版六年级上册数学知识点第一单元分数乘法一)分数乘法意义1.分数乘整数的意义与整数乘法相同,即求几个相同加数的和的简便运算。
例如:3/4 × 7 表示求7个3/4的和是多少?2.一个数乘分数的意义是求一个数的几分之几是多少。
例如:5 × 2/3 表示求5的2/3是多少?二)分数乘法计算法则1.分数乘整数的运算法则是:分子与整数相乘,分母不变。
例如:2/3 × 4 = 8/32.分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
例如:2/3 × 1/2 = 2/6 = 1/3三)积与因数的关系一个数(除外)乘大于1的数,积大于这个数。
a ×b = c,当b。
1时,c。
a。
一个数(除外)乘小于1的数,积小于这个数。
a ×b = c,当b < 1时,c < a(b ≠ 0)。
一个数(除外)乘等于1的数,积等于这个数。
a ×b = c,当b = 1时,c = a。
四)分数乘法混合运算1.分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
整数乘法运算定律同样适用于分数乘法,运算定律可使计算更简便。
其中包括乘法交换律、乘法结合律和乘法分配律。
倒数的意义是指乘积为1的两个数互为倒数。
需要注意的是,倒数是两个数的关系,它们互相依存,不能单独存在。
判断两个数是否互为倒数的唯一标准是它们相乘的积是否为1.求倒数的方法包括求分数、整数、带分数和小数的倒数。
1的倒数是它本身,而0没有倒数,因为任何数乘以0的积都是0,且不能作分母。
任意数a(a≠0)的倒数为1/a,非零整数a的倒数为a/1,分数的倒数是倒数的分数。
真分数的倒数是假分数,真分数的倒数大于1,也大于它本身,而假分数的倒数小于或等于1,带分数的倒数小于1.分数乘法可用于解决各种问题。
例如,要求一个数的几分之几是多少,可以用单位“1”的量与分数相乘。
下面是人教版六年级数学上册的概念知识点整理:1.数的认识-认识自然数、整数、分数、小数等概念-认识正数、负数和零的概念-了解数的大小比较和排列2.数的读法和写法-数字的读法和写法-十进制的概念,理解位权和数位-简单数的四则运算3.整数的加法和减法-整数的加减法运算-用数轴表示整数的加减法过程-整数运算的法则和性质-解决实际问题的整数运算4.有理数的加法和减法-有理数的加减法运算-解决实际问题的有理数运算5.小数的认识-认识小数的概念和意义-小数的读法和写法-小数的大小比较和排序6.小数的加法和减法-小数的加减法运算-用模拟算法和抽象算法解决小数运算问题7.分数的认识-分数的概念和意义-分数的读法和写法-分数的比较和排序8.分数的加法和减法-分数的加减法运算-分数运算的法则和性质-解决实际问题的分数运算9.对分数的认识-认识多个单位组成的分数-认识真分数、假分数和带分数10.分数的乘法-分数的乘法运算-解决实际问题的分数乘法11.分数的除法-分数的除法运算-解决实际问题的分数除法12.分数和小数的互化-分数和小数的互化过程-分数和小数的相互转换13.常用分数和小数的计算-分数和小数的计算技巧-解决实际问题的分数和小数的计算14.单位换算-体重、长度、容量等常用单位的换算-解决实际问题的单位换算15.图形的认识-认识直线、射线、线段等几何概念-认识多边形、圆等图形16.直角和直角三角形-认识直角和直角三角形的性质和特征-计算直角三角形的长度17.图形的相似-认识相似图形的概念和性质-判定相似图形的条件-计算相似图形的长度比和面积比。
小学六年级数学上册知识点总结一、数与运算1. 整数- 大数的读写与比较- 整数的四则运算- 整数的倍数与因数- 质数与合数- 奇数与偶数- 整数的性质和运算规律2. 分数- 分数的意义和性质- 真分数与假分数- 分数的四则运算- 分数与整数的互化- 分数的比较和排序- 混合数和带分数3. 小数- 小数的意义和性质- 小数的四则运算- 小数与整数、分数的互化- 用小数表示实际问题4. 比例与百分数- 比例的概念和基本性质- 比例式的解法- 百分数的意义和应用- 百分数与分数、小数的互化- 利率和利息的计算二、几何1. 平面图形- 平行线和垂线的性质- 角的概念和分类- 三角形的性质和分类- 四边形的性质和分类- 圆的性质和圆周角2. 图形的变换- 平移、旋转和翻转的概念- 对称图形的识别和绘制3. 图形的测量- 周长和面积的计算(正方形、长方形、三角形、平行四边形、梯形、圆)- 体积的计算(长方体和立方体)三、统计与概率1. 统计- 数据的收集和整理- 频数和频率的概念- 条形图、折线图和饼图的绘制和解读2. 概率- 可能性的认识- 简单事件的概率计算四、解决问题1. 应用题- 解决与生活实际相关的数学问题- 分析问题和找出等量关系- 利用方程和不等式解决问题2. 数学思维- 逻辑推理和证明- 数学问题的多种解法五、综合实践1. 数学活动- 参与数学游戏和竞赛- 数学知识的综合运用2. 数学探究- 发现生活中的数学问题- 进行小组合作探究以上总结了小学六年级数学上册的主要知识点。
学生应通过练习和复习,确保对每个知识点都有深刻的理解和掌握。
教师和家长可以根据这份总结来辅导和检查学生的学习情况。
六年级上册数学知识点(概念)归纳与整理(人教版)第二单元 分数乘法(一)、分数乘法的意义.1、分数乘整数:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算. 例如:512 ×6,表示:6个512 相加是多少,还表示512的6倍是多少.2、一个数(小数、分数、整数)乘分数:一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少.例如:6×512 ,表示:6的512 是多少.27 ×512 ,表示:27 的512 是多少.(二)、分数乘法的计算法则:1、整数和分数相乘:整数和分子相乘的积作分子,分母不变.2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母.3、注意:能约分的先约分,然后再乘,得数必须是最简分数.当带分数进行乘法计算时,要先把带分数化成假分数再进行计算.(三)、分数大小的比较:1、一个数(0除外)乘以一个真分数,所得的积小于它本身.一个数(0除外)乘以一个假分数,所得的积等于或大于它本身.一个数(0除外)乘以一个带分数,所得的积大于它本身.2、如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大.(四)、解决实际问题. 1分数应用题一般解题步行骤. (1)找出含有分率的关键句. (2)找出单位“1”的量(3)根据线段图写出等量关系式:单位“1”的量×对应分率=对应量. (4)根据已知条件和问题列式解答. 2.乘法应用题有关注意概念.(1)乘法应用题的解题思路:已知一个数,求这个数的几分之几是多少?(2)找单位“1”的方法:从含有分数的关键句中找,注意“的”前“比”后的规则.当句子中的单位“1”不明显时,把原来的量看做单位“1”.(3)甲比乙多几分之几表示甲比乙多的数占乙的几分之几,甲比乙少几分之几表示甲比乙少数占乙的几分之几.(4)在应用题中如:小湖村去年水稻的亩产量是750千克,今年水稻的亩产量是800千克,增产几分之几?题目中的“增产”是多的意思,那么谁比谁多,应该是“多比少多”,“多”的是指800千克,“少”的是指750千克,即800千克比750千克多几分之几,结合应用题的表达方式,可以补充为“今年水稻的亩产量比去年水稻的亩产量多几分之几?”(5)“增加”、“提高”、“增产”等蕴含“多”的意思,“减少”、“下降”、“裁员” 等蕴含“少”的意思,“相当于”、“占”、“是”、“等于”意思相近.(6)当关键句中的单位“1”不明显时,要把关键句补充完整,补充成“谁是谁的几分之几”或“甲比乙多几分之几”、 “甲比乙少几分之几”的形式. (7)乘法应用题中,单位“1”是已知的.(8)单位“1”不同的两个分率不能相加减,加减属相差比,始终遵循“凡是比较,单位一致”的规则. (9).找到单位“1”后,分析问题,已知单位“1”用乘法,未知单位“1”用除法(注意:求单位“1”是最后一步用除法,其余计算应在前). 单位“1”×分率=比较量 ; 比较量÷分率=单位“1” (10).单位“1”不同的两个分率不能相加减,解应用题时应把题中的不变量做为单位“1”,统一分率的单位“1”,然后再相加减.(11).单位“1”的特点: ①单位“1”为分母; ②单位“1”为不变量. (12)分率与量要对应.①多的对应量对多的分率; ②少的对应量对少的分率; ③增加的对应量对增加的分率; ④减少的对应量对减少的分率; ⑤提高的对应量对提高的分率; ⑥降低的对应量对降低的分率; ⑦工作总量的对应量对工作总量的分率; ⑧工作效率的对应量对工作效率的分率; ⑨部分的对应量对部分的分率; ⑩总量的对应量对总量的分率; 例如:1、求一个数的几分之几是多少?(求一个数的几分之几用乘法计算) 方法:单位“1”的数量×对应分率=对应数量. 2、分数的连乘.找到每一个分率的单位“1”. (五)、倒数1、倒数:乘积是1的两个数互为倒数.2、求倒数的方法:把这个数写成分数形式,然后将分子和分母交换位置.3、0没有倒数,1的倒数是它本身.4、真分数的倒数都大于它本身,假分数的倒数等于或小于它本身. 注意:倒数必须是成对的两个数,单独的一个数不能称做倒数.第三单元 分数除法(一)、分数除法的意义:分数除法的意义:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算.例如: 4152 表示:已知两个数的积是52 ,与其中一个因数41,求另一个因数是多少.52÷4表示已知两个数的积是52,与其中一个因数4,求另一个因数是多少.还表示把52平均分成4份,每份是多少.(二)、分数除法的计算:分数除法的计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数. (三)比和比的应用:1.比的意义:两个数相除又叫做两个数的比.比的后项不能为0. 2. 比值的意义:比的前项除以后项所得的商,叫做比值. 3.比值的表示方式:通常用分数、小数和整数表示.4.比同除法的关系:比的前项相当于被除数,后项相当于除数,比值相当于商. 5.比同分数的关系:比的前项相当于分子,比的后项相当于分母,比值相当于分数的值. 6.比的基本性质:比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变.7. 化简比的方法:根据比的基本性质,把两个数的比化成最简单的整数比,叫做化简比,比的前项和后项必须是互质的整数.例如:(1) 16﹕20=(16÷4)﹕(20÷4)=4﹕5 (2)56 ﹕34 =(56 ×12)﹕(34 ×12)=10﹕9(3)1.8﹕0.09 =(1.8×100)﹕(0.09×100)=180﹕9=20﹕18.在工农业生产中和日常生活中,常常需要把一个数量按照一定的比来进行分配.这种方法通常叫做按比例分配.9.按比例分配的解题方法:(1)先求出总的份数,再求出各部分数量占总数的几分之几. (2)用总数乘各部分的分率求出各部分的数量. 10.分数除法中,被除数与商的大小关系:一个数(0除外)除以一个真分数,所得的商大于它本身. 一个数(0除外)除以一个假分数,所得的商小于或等于它本身. 一个数(0除外)除以一个带分数,所得的商小于它本身. (四)解分数应用题注意事项:1.找单位“1”的方法:从含有分率的句子中找,“的”前或“比”后的规则.当句子中的单位“1”不明显时,把原来的量看做单位“1”.2.找到单位“1”后,分析问题,已知单位“1”用乘法,未知单位“1”用除法(注意:求单位“1”是最后一步用除法,其余计算应在前).数量关系: 单位“1”×对应分率=对应数量; 对应量÷对应分率=单位“1”的量3.单位“1”不同的两个分率不能相加减,解应用题时应把题中的不变量做为单位“1”,统一分率的单位“1”,然后再相加减.4.单位“1”的特点: ①单位“1”为分母; ②单位“1”为不变量. 5.“已知一个数的几分之几是多少,求这个数”的解题方法:(1)设单位“1”的量为x,列方程解答. (2)对应数量÷对应分率=单位“1”的总数量. 6.工程问题:把工作总量看作单位“1”,工作效率=1工作时间工作时间=1÷工作效率合作时间 = 工作总量÷工作效率之和 第四单元 圆1、圆心:圆中心一点叫做圆心.用字母“O ”来表示.半径:连接圆心和圆上任意一点的线段叫做半径,用字母“r ”来表示. 直径:通过圆心并且两端都在圆上的线段叫做直径,用字母“d ”表示. 2.圆心确定圆的位置,半径确定圆的大小.3.在同一个圆内,所有的半径都相等,所有的直径都相等.在同一个圆内,有无数条半径,有无数条直径.在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半.用字母表示为:d =2r r =12d4.圆的周长:围成圆的曲线的长度叫做圆的周长.5.圆的周长总是直径的3倍多一些,这个比值是一个固定的数.我们把圆的周长和直径的比值叫做圆周率,用字母π表示.圆周率是一个无限不循环小数.在计算时,取π≈3.14.世界上第一个把圆周率算出来的人是我国的数学家祖冲之.6.圆的周长公式:C=πd 或C=2πr7、圆的面积:圆所占平面的大小叫圆的面积.8.把一个圆割成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,宽相当于圆的半径,因为长方形面积=长×宽,所以圆的面积= πr ×r =πr²9.圆的面积公式:S=πr² 或者S=π(d ÷2)² 或者S=π(C ÷π ÷2)²10.在一个正方形里画一个最大的圆,圆的直径等于正方形的边长.圆的面积和正方形面积的比是π:4. 在一个圆里画一个最大正方形的,圆的直径的长度等于正方形的对角线的长度,正方形的面积=对角线×对角线÷2=直径×直径÷2 .11.在一个长方形里画一个最大的圆,圆的直径等于长方形的短边.12.一个环形,外圆的半径是R,内圆的半径是r,它的面积是S=πR ²-πr² 或 S=π(R ²-r²). (其中R =r +环的宽度.)13.环形的周长=外圆周长+内圆周长14.半圆的周长等于圆的周长的一半加直径. 半圆周长公式:C=πd ÷2+d 或C=πr +2r 15.半圆面积=圆面积÷2 公式为:S=πr²÷246.在同一个圆里,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数.而面积扩大或缩小以上倍数的平方倍.例如:在同一个圆里,半径扩大4倍,那么直径和周长就都扩大4倍,而面积扩大16倍. 17.两个圆的半径比等于直径比等于周长比,而面积比等于以上比的平方.例如:两个圆的半径比是2:3,那么这两个圆的直径比和周长比都是2:3,而面积比是4:9. 18.当一个圆的半径增加a厘米时,它的周长就增加2πa厘米;当一个圆的直径增加a厘米时,它的周长就增加πa厘米.19.在同一圆中,圆心角占圆周角的几分之几,它所在扇形面积就占圆面积的几分之几;所对的弧就占圆周长的几分之几.20.当长方形,正方形,圆的周长相等时,圆的面积最大,长方形的面积最小; 当长方形,正方形,圆的面积相等时,长方形的周长最大,圆的周长最小.*21.扇形弧长公式:L=2360n nr d ππ⨯⨯ 或 360扇形的面积公式:S=360n⨯πr² (n 为扇形的圆心角度数,r 为扇形所在圆的半径)22.轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴.23.有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆.有2条对称轴的图形是:长方形 有3条对称轴的图形是:等边三角形 有4条对称轴的图形是:正方形 有无数条对称轴的图形是:圆、圆环. 24.直径所在的直线是圆的对称轴. 25、π倍表第五单元 百分数1.百分数的定义:表示一个数是另一个数的百分之几的数,叫做百分数.百分数也叫做百分率或百分比. 百分数表示两个数之间的比率关系,不表示具体的数量,无单位名称. 例如:25%的意义:表示一个数是另一个数的25%.2.百分数通常不写成分数形式,而在原来分子后面加上“%”来表示.分子部分可为小数、整数,可以大于100,小于100或等于100.3.小数与百分数互化的规则:把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;(加向右) 把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位.(去向左) 4.百分数与分数互化的规则:把分数化成百分数,通常先把分数化成小数(除不尽的保留三位小数),再把小数化成百分数; 把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数. 5、常用的分数、小数及百分数的互化12 =0.5=50% 14 =0.25=25% 34 =0.75=75% 15 =0.2=20% 25 =0.4=40% 35 =0.6=60 45 =0.8=80% 18 =0.125=12.5% 38 =0.375=37.5% 58 =0.625=62.5% 78 =0.875=87.5% 110 =0.1=10%116 =0.0625=6.25% 120 =0.05=5% 125 =0.04=4% 140 =0.025=2.5%150 =0.02=2% 1100=0.01=1% 6.百分率公式:求百分率就是求一个数是另一个数的百分之几.(算式要加×100%,包括浓度、利润率)100%=⨯发芽种子数发芽率试验种子总数 100%=⨯面粉的重量出粉率小麦的重量100%=⨯合格产品数合格率产品总数 100%=⨯实际出勤人数出勤率总人数()100%=⨯油的重量出油率花生仁油菜子的重量100%=⨯盐的重量含盐率盐水的重量 100%⨯糖的重量含糖率=糖水的重量 100%=⨯及格的人数及格率参加考试的总人数100%=⨯命中的数量命中率打的总数量 100%=⨯活了的棵数成活率栽的总棵数100%=⨯正确的题数正确率做题的总数 100%=⨯大米的重量出米率稻谷的重量7. 求一个数比另一个数多(或少)百分之几(另一个数是单位“1”)实际生活中,人们常用增加了百分之几、减少了百分之几、节约了百分之几等来表示增加、或减少的幅度.求甲比乙多百分之几 (甲-乙)÷乙×100% 求乙比甲少百分之几 (甲-乙)÷甲×100%8.求一个数的百分之几是多少 ? 一个数(单位“1”) ×百分率9. 已知一个数的百分之几是多少,求这个数 ? 部分量÷百分率=一个数(单位“1”) 10、浓度问题溶质(盐)的重量+溶剂(水)的重量=溶液(盐水)的重量 溶质(盐)的重量÷溶液(盐水)的重量×100%=浓度 溶液(盐水)的重量×浓度=溶质(盐)的重量 溶质(盐)的重量÷浓度=溶液(盐水)的重量 最常用的是用方程解浓度问题比如两种不同浓度的溶液混合,最常用的数量关系是 甲溶液质量×甲的浓度+乙溶液质量×乙的浓度 =总溶液质量×总的浓度第六单元 统计扇形统计图的特点:可以清楚直观地反映各部份数量同总量之间的关系.折线统计图的特点:不但能够看出数量的多少,还可以反映出数量增减变化的情况. 条形统计图的特点:能够清楚的看出数量的多少.补充一:图形计算公式1 正方形:周长=边长×4 面积=边长×边长2 长方形:周长=(长+宽)×2 长=周长÷2-宽 面积=长×宽 长=面积÷宽3 三角形:面积=底× 高÷2 三角形高=面积 ×2÷底 三角形底=面积 ×2÷高4 平行四边形:面积=底×高 底=面积÷高5 梯形:面积=(上底+下底)×高÷2 高=面积 ×2÷(上底+下底) 上底=面积 ×2÷高-下底6 圆形 (1)周长=直径×圆周率(π)=2×圆周率π×半径 (2)面积=半径×半径×圆周率(π)7 正方体 表面积=棱长×棱长×6 体积=棱长×棱长×棱长8 长方体 表面积=(长×宽+长×高+宽×高)×2 体积=长×宽×高补充二:其他应用题基本数量关系式平均数问题:总数÷总份数=平均数和差问题:(和+差)÷2=大数(和-差)÷2=小数和倍问题:和÷(倍数+1)=1份数 1份数×倍数=几份数差倍问题:差÷(倍数-1)=1份数 1份数×倍数=几份数植树问题:(1)两端都要植树棵数=全长÷棵距+1⑵一端植树及封闭线路上植树棵数=全长÷棵距⑶两端都不植树棵数=全长÷棵距-1盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间年龄问题:年龄差永远不变。
六年级数学全册概念背诵知识点总结1、分数乘法意义分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
一个数与分数相乘,可以看作是求这个数的几分之几是多少。
2、分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
但分子分母不能为零。
3、分数乘整数:数形结合、转化化归4、倒数:乘积是1的两个数叫做互为倒数。
5、分数的倒数找一个分数的倒数,例如3/4 把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/3。
3/4是4/3的倒数,也可以说4/3是3/4的倒数。
6、整数的倒数找一个整数的倒数,例如12,把12化成分数,即12/1 ,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是1/12,12是1/12的倒数。
7、小数的倒数:普通算法:找一个小数的倒数,例如0.25 ,把0.25化成分数,即1/4 ,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/1。
用1计算法:也可以用1去除以这个数,例如0.25 ,1/0.25等于4,所以0.25的倒数4,因为乘积是1的两个数互为倒数。
分数、整数也都使用这种规律。
8、分数除法:分数除法是分数乘法的逆运算。
9、分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
10、分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。
11、分数除法应用题:先找单位1。
单位1已知,求部分量或对应分率用乘法,求单位1用除法。
12、分数混合运算的运算顺序与整数混合运算的运算顺序完全相同,都是先算乘除,再算加减,有括号的先算括号里的。
①如果是同一级运算,按照从左到右的顺序依次计算。
②如果是分数连乘,可先进行约分,再进行计算;③如果是分数乘除混合运算时,要先把除法转换成乘法,然后按乘法运算。
六年级上册数学知识点概念总结六年级上册知识点概念总结1.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。
2.分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
但分子分母不能为零.。
3.分数乘法意义分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
一个数与分数相乘,可以看作是求这个数的几分之几是多少。
4.分数乘整数:数形结合、转化化归5.倒数:乘积是1的两个数叫做互为倒数。
6.分数的倒数找一个分数的倒数,例如3/4 把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/3。
3/4是4/3的倒数,也可以说4/3是3/4的倒数。
7.整数的倒数找一个整数的倒数,例如12,把12化成分数,即12/1 ,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是1/12 ,12是1/12的倒数。
8.小数的倒数:普通算法:找一个小数的倒数,例如0.25 ,把0.25化成分数,即1/4 ,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/19.用1计算法:也可以用1去除以这个数,例如0.25 ,1/0.25等于4 ,所以0.25的倒数4 ,因为乘积是1的两个数互为倒数。
分数、整数也都使用这种规律。
10.分数除法:分数除法是分数乘法的逆运算。
11.分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
12.分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。
13.分数除法应用题:先找单位1。
单位1已知,求部分量或对应分率用乘法,求单位1用除法。
14.比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。
第一单元 位置1、 用数对确定点的位置,如(3,5)表示:(第三列,第五行)几 列 几 行↓ ↓竖排叫列 横排叫行一般(从左往右看) (从前往后看)2、平移时用“上”、“下”、“前”、“后”、“左”、“右”来表述。
3、 图形左、右平移: 行不变 图形上、下平移: 列不变第二单元 分数乘法一、分数乘法(一)分数乘法的意义:1、分数乘整数与整数乘法的意义相同。
都是求几个相同加数的和的简便运算。
例如: 98×5表示求5个98的和是多少? 也表示98的5倍是多少? 5×98 表示求5的98是多少 2、分数乘分数是求一个数的几分之几是多少。
例如: 98×43表示求98的43是多少? (二)、分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
3、为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
4、分数连乘的计算方法:先约分,就是把所有的分子中可与分母相约的数先约分,再用分子乘分子作积的分子,分母乘分母作积的分母。
(三)、规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数。
????? 一个数(0除外)乘小于1的数(0除外),积小于这个数。
????? 一个数(0除外)乘1,积等于这个数。
(四)、分数混合运算的运算顺序和整数的运算顺序相同。
(五)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律: a × b = b × a乘法结合律: ( a × b )×c = a × ( b × c )乘法分配律:( a + b )×c = a c + b c二、分数乘法的解决问题(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)1、画线段图:(1)两个量的关系:画两条线段图;(2)部分和整体的关系:画一条线段图。
第一单元 位置1、 用数对确定点的位置,如(3,5)表示:(第三列,第五行)↓ ↓竖排叫列 横排叫行一般(从左往右看) (从前往后看)2、平移时用“上”、“下”、“前”、“后”、“左”、“右”来表述。
3、图形左、右平移: 行不变 图形上、下平移: 列不变第二单元 分数乘法 一、分数乘法(一)分数乘法的意义:1、分数乘整数与整数乘法的意义相同。
都是求几个相同加数的和的简便运算。
例如: 98×5表示求5个98的和是多少? 也表示98的5倍是多少? 5×98 表示求5的98是多少 2、分数乘分数是求一个数的几分之几是多少。
例如: 98×43表示求98的43是多少? (二)、分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
3、为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
4、分数连乘的计算方法:先约分,就是把所有的分子中可与分母相约的数先约分,再用分子乘分子作积的分子,分母乘分母作积的分母。
(三)、规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
(四)、分数混合运算的运算顺序和整数的运算顺序相同。
(五)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律: a ×b = b ×a乘法结合律:( a ×b )×c = a ×( b ×c )乘法分配律:(a + b )×c = a c + b c二、分数乘法的解决问题(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)1、画线段图:(1)两个量的关系:画两条线段图;(2)部分和整体的关系:画一条线段图。
2、找单位“1”:一般在分率句中分率的前面;或“占”、“是”、“比”的后面。
3、求一个数的几倍:一个数×几倍;求一个数的几分之几是多少:一个数×几几4、写数量关系式技巧:(1)“的”相当于“×”“占”、“是”、“比”相当于“= ”(2)分率前是“的”:单位“1”的量×分率=分率对应量(3)分率前是“多或少”的意思:单位“1”的量×(1±分率)=分率对应量三、倒数1、倒数的意义:乘积是1的两个数互为..倒数。
强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。
(要说清谁是谁的倒数)。
2、求倒数的方法:(1)、求分数的倒数:交换分子分母的位置。
(2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。
(3)、求带分数的倒数:把带分数化为假分数,再求倒数。
(4)、求小数的倒数:把小数化为分数,再求倒数。
3、1的倒数是1;0没有倒数。
因为1×1=1;0乘任何数都得0,1(分母不能为0)4、对于任意数(0)a a≠,它的倒数为1a ;非零整数a的倒数为1a;分数ba的倒数是ab;5、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。
第三单元分数除法一、分数除法1、分数除法的意义:乘法:因数×因数= 积除法:积÷一个因数= 另一个因数分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。
2、分数除法的计算法则:除以一个不为0的数,等于乘这个数的倒数。
3、规律(分数除法比较大小时):(1)、当除数大于1,商小于被除数;(2)、当除数小于1(不等于0),商大于被除数;(3)、当除数等于1,商等于被除数。
4、“[]”叫做中括号。
一个算式里,如果既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的。
二、分数除法解决问题已知单位“1”的几分之几是多少,求单位“1”的量。
)1、数量关系式和分数乘法解决问题中的关系式相同:(1)分率前是“的”:单位“1”的量×分率=分率对应量(2)分率前是“多或少”的意思:单位“1”的量×(1±分率)=分率对应量2、解法:(建议:最好用方程解答)(1)方程:根据数量关系式设未知量为X,用方程解答。
(2对应量÷对应分率= 单位“1”的量3、求一个数是另一个数的几分之几:就一个数÷另一个数4、求一个数比另一个数多(少)几分之几:两个数的相差量÷单位“1”的量或:①求多几分之几:大数÷小数– 1②求少几分之几:1 - 小数÷大数三、比和比的应用(一)、比的意义1、比的意义:两个数相除又叫做两个数的比。
2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。
比的前项除以后项所得的商,叫做比值。
比的后项不能为0,因为比的后项相当于除法中的除数,除数不能为0.例如15 :10 = 15÷10=23(比值通常用分数表示,也可以用小数或整数表示)∶∶∶∶前项比号后项比值3、比可以表示两个相同量的关系,即倍数关系。
也可以表示两个不同量的比,得到一个新量。
例:路程÷速度=时间。
4、求比值的方法:用比的前项除以比的后项。
5、区分比和比值比:表示两个数的倍数关系,可以写成比的形式,也可以用分数表示。
有比的前项和比的后项比值:相当于商,是一个数,是一个结果,可以是整数,分数,也可以是小数。
6、根据分数与除法的关系,两个数的比也可以写成分数形式。
例如3:2也可以写成32,仍读作“3:2”。
7、比和除法、分数的联系:8、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。
9、根据比与除法、分数的关系,可以理解比的后项不能为0。
体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。
(二)、比的基本性质1、根据比、除法、分数的关系: 商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。
分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。
比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。
3、根据比的基本性质,可以把比化成最简单的整数比。
4.①用比的前项和后项同时除以它们的最大公因数。
(1) ②两个分数的比:用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。
③两个小数的比:向右移动小数点的位置,先化成整数比再化简。
(2)用求比值的方法。
如: 15∶10 = 15÷10 = 23 = 3∶2 5.按比例分配:把一个数量按照一定的比来进行分配。
这种方法通常叫做按比例分配。
如: 已知两个量之比为:a b ,则设这两个量分别为ax bx 和。
6、路程一定,速度比和时间比成反比。
(如:路程相同,速度比是4:5,时间比则为5:4)工作总量一定,工作效率和工作时间成反比。
(如:工作总量相同,工作时间比是3:2,工作效率比则是2:3)(三)和比的应用题有关的概念1、求每份数的方法和÷分数和=每份数相差数÷相差份数=每份数部分数÷对应份数=每份数2、图形求比的常见公式长方体:(长+宽+高)的和=棱长和÷4 长方形:(长+宽)的和=周长÷23、相遇问题速度和= 路程÷相遇时间第四单元圆一、认识圆1、圆的定义:圆是由曲线围成的一种平面图形。
2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。
一般用字母O表示。
它到圆上任意一点的距离都相等.(画圆切忌别忘记标圆心0)3、半径:连接圆心到圆上任意一点的线段叫做半径。
一般用字母r表示。
把圆规两脚分开,两脚之间的距离就是圆的半径。
4、直径:通过圆心并且两端都在圆上的线段叫做直径。
一般用字母d表示。
直径是一个圆内最长的线段。
5、圆心确定圆的位置,半径确定圆的大小。
(画圆给出半径标半径r=?,给出直径标直径d=?)6、在同圆或等圆内,有无数条半径,有无数条直径。
所有的半径都相等,所有的直径都相等。
1。
7.在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的2d或r=d÷2用字母表示为:d=2r或r =28、轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。
折痕所在的这条直线叫做对称轴。
9、长方形、正方形和圆都是对称图形,都有对称轴。
这些图形都是轴对称图形。
10、只有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。
只有2条对称轴的图形是:长方形只有3条对称轴的图形是:等边三角形只有4条对称轴的图形是:正方形;有无数条对称轴的图形是:圆、圆环。
二、圆的周长1、圆的周长:围成圆的曲线的长度叫做圆的周长。
用字母C表示。
2、圆周率实验:在圆形纸片上做个记号,与直尺0刻度对齐,在直尺上滚动一周,求出圆的周长。
发现一般规律,就是圆周长与它直径的比值是一个固定数(π)。
圆的周长总是它直径的3倍多一些。
3.圆周率:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率。
用字母π(pai)表示。
(1)一个圆的周长总是它直径的3倍多一些,这个比值是一个固定的数。
圆周率π是一个无限不循环小数。
在计算时,一般取π ≈ 3.14。
(2)在判断时,圆周长与它直径的比值是π倍,而不是3.14倍。
(3)世界上第一个把圆周率算出来的人是我国的数学家祖冲之。
4、圆的周长公式:C= πd d = C ÷π或C=2π r r = C ÷2π5、在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。
在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。
6、区分周长的一半和半圆的周长:(1)周长的一半:等于圆的周长÷2 计算方法:2π r÷ 2 即π r (2)半圆的周长:等于圆的周长的一半加直径。
计算方法:πr+2r 即 5.14 r三、圆的面积1、圆的面积:圆所占平面的大小叫做圆的面积。
用字母S表示。
2、一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。
顶点在圆心的角叫做圆心角。
3、圆面积公式的推导:(1)、用逐渐逼近的转化思想:体现化圆为方,化曲为直;化新为旧,化未知为已知,化复杂为简单,化抽象为具体。
(2)、把一个圆等分(偶数份)成的扇形份数越多,拼成的图像越接近长方形。
(3)、拼出的图形与圆的周长和半径的关系。
圆的半径= 长方形的宽圆的周长的一半= 长方形的长因为:长方形面积= 长×宽所以:圆的面积= 圆周长的一半×圆的半径S圆= πr ×r = πr2圆的面积公式:S圆= πr2 r2 = S ÷π1 2圆的面积公式:S =πr2 ÷2 或S =12πr21 4圆的面积公式:S =πr2 ÷4 或S =14πr24、环形的面积:(环形的面积等于外圆面积与内圆面积的差)一个环形,外圆的半径是R,内圆的半径是r。