初二数学期中考试题
- 格式:doc
- 大小:267.50 KB
- 文档页数:3
八年级上册数学期中考试题一、选择题(每题3分,共30分)1. 若a,b,c是三角形的三边长,且满足a^2 + b^2 = c^2,那么这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等边三角形2. 下列哪个数是无理数?A. 3.14B. πC. 0.33333D. -23. 一个数的立方根等于它本身,这个数可能是:A. 0B. 1C. -1D. 以上都是4. 如果一个正数x的平方根是2x,那么x的值是:A. 0B. 1/4C. 1D. 无法确定5. 一个等腰三角形的底边长为6,两腰相等,若底角为45°,则腰长为:A. 6B. 8C. 9D. 106. 一个数的绝对值是其本身,这个数:A. 一定是正数B. 一定是负数C. 可以是正数或零D. 可以是负数或零7. 下列哪个表达式是正确的?A. (-2)^3 = -8B. √16 = 4C. -√9 = -3D. (-3)^2 = 68. 如果一个数的相反数是它本身,那么这个数是:A. 正数B. 负数C. 零D. 无法确定9. 一个数的平方根是另一个数的立方根,这个数可能是:A. 0B. 1C. 8D. 2710. 一个数的倒数是它本身,这个数是:A. 1B. -1C. 0D. 无法确定二、填空题(每题2分,共20分)11. 一个数的平方等于16,这个数是________。
12. 一个数的立方等于-27,这个数是________。
13. 若a = -3,b = 2,则a^2 - b^2 = ________。
14. 一个数的绝对值是5,这个数可能是________。
15. 若x^2 = 4,则x的值是________。
16. 一个三角形的周长为24,三边长分别为a,b,c,若a + b = 2c,则c的值是________。
17. 一个数的平方根是4或-4,这个数是________。
18. 若一个三角形的三边长分别为3,4,5,则这个三角形是________。
2024学年(上)期中考试初二年级数学科试卷(问卷)考试时量:120分钟满分120分一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列常见的手机软件图标中,是轴对称图形的是()A .B .C .D .2.下列长度的三条线段能组成三角形的是()A .1,2,3.5B .4,5,9C .6,8,10D .7,11,33.在平面直角坐标系中.点()5,1M -关于x 轴对称的点在()A .第一象限B .第二象限C .第三象限D .第四象限4.下列几种说法①全等三角形的对应边相等;②面积相等的两个三角形全等;③周长相等的两个三角形全等;④全等的两个三角形的面积相等.其中正确的是()A .①②B .②③C .③④D .①④5.如图1,墙上置物架的底侧一般会各设计一根斜杆,与水平和竖直方向的支架构成三角形,这是利用三角形的()A .全等性B .美观性C .不稳定性D .稳定性6.如图2,已知AF CE =,//BE DF ,那么添加下列一个条件后,能判定ADF ∆≌CBE ∆的是()A .AFD CEB∠=∠B .//AD CBC .AE CF=D .AD BC=7.如图3,一把直尺压住射线OB ,另一把完全一样的直尺压住射线OA 并且与第一把直尺交于点P ,小明说:“射线OP 就是BOA ∠的平分线.”这样说的依据是()A .角平分线上的点到这个角两边的距离相等B .三角形三条角平分线的交点到三条边的距离相等C .在一个角的内部,到角的两边距离相等的点在这个角的平分线上D .以上均不正确8.如图4,ABC ADE △≌△,BC 的延长线交DA 于点F ,交DE 于点G .若105AED ∠=︒,16CAD ∠=︒,30B ∠=︒,则1∠的度数为().A .66︒B .63︒C .61︒D .56︒9.如图5,AD 是△ABC 的角平分线,DF AB ⊥于点F ,点E ,G 分别在AB ,AC 上,且DE DG =,若24ADG S =△,18AED S =△,则△DEF 的面积为()A .6B .5C .4D .310.如图6,在Rt ABC △中,90C ∠=︒,20A ∠=︒.若某个三角形与△ABC 能拼成一个等腰三角形(无重叠),则拼成的等腰三角形有()A .3种B .5种C .7种D .9种二、填空题(本大题共6小题,每小题3分,共18分)11.如图7,小明从坡角为30︒的斜坡的山底(A )到山顶(B )共走了200米,则山坡的高度BC 为米.12.如图8,是由射线AB BC CD DE EF FA ,,,,,组成的平面图形,若135170∠+∠+∠=︒,则246∠+∠+∠=︒.13.如图9,在平面直角坐标系中,以A (2,0)、B (0,4)为顶点作等腰直角△ABC (其中90ABC ∠=︒,且点C 落在第一象限内),则点C 关于y 轴的对称点C '的坐标为.14.如图10,在△ABC 中,点D 是BC 边的中点,∠BAD =75°,∠CAD =30°,AD =3,则AC 的长为.15.等腰三角形中,一腰上的中线把三角形的周长分为6cm 和15cm 的两部分,则该三角形的腰长为.16.如图,在Rt ABC △中,90ACB ∠=︒,12AC =,BC =5,AB =13,(1)点C 到直线AB 的距离:.(2)动点P 在△ABC 内,且使得ACP △的面积为12,点Q 为AB 上的动点,则PB PQ +的最小值为.三、解答题(本大题共9小题,共72分)17.(本小题满分4分)一个多边形的内角和比它的外角和多900°,求这个多边形的边数.18.(本小题满分4分)如图12,在平面直角坐标系中,△ABC 各顶点的坐标分别为:(4,0),(1,4),(3,1)A B C --,△ABC 关于x 轴的对称图形为△A 1B 1C 1,(1)画出△A 1B 1C 1;(2)写出点A 1,B 1,C 1的坐标.19.(本小题满分6分)如图13,D 是△ABC 的边AB 上一点,CF AB ∥,DF 交AC 于点E ,=DE EF .求证:CF =AD .20.(本小题满分6分)如图14,在△ABC 中,BAC BCA ∠=∠,CD 平分ACB ∠,CE ⊥AB 交AB 的延长线于E 点,若∠DCE =54°,求BCE ∠的度数.21.(本小题满分8分)如图15,在ABC 中,AB AC =.(1)利用尺规,作AC 边的垂直平分线交AC 于点E ,交A 于点D ;(不写作法,保留作图痕迹)(2)在(1)中,连接CD ,若BC=a ,AC=b ,求△BDC 的周长.22.(本小题满分10分)如图16,△ABC 为等腰三角形,AC =BC ,△BDC 和△ACE 分别为等边三角形,AE 与BD 相交于点F ,连接CF 交AB 于点G ,求证:(1)G 为AB 的中点;(2)若∠FAG =15°,求∠BCE 的度数.23.(本小题满分10分)如图17,在△ABC 中,∠ABC 的平分线与AC 的垂直平分线相交于点P ,过点P 作PE ⊥AB 交BA 的延长线于点E .(1)画出△PBE 关于直线PB 对称的△PBF ;(2)求证:AB +BC =2BE ;(3)若AB =7,BC =23,求AE 的长.24.(本小题满分12分)在Rt △ABC 中,AB =AC ,OB =OC ,∠A =90°,∠MON =α,∠MON 的两边分别交直线AB 、AC 于点M 、N .(1)如图1,当α=90°时,求证:AM =CN ;(2)如图2,当α=45°时,问线段BM 、MN 、AN 之间有何数量关系?并证明;(3)如图3,当α=45°时,问线段之间BM 、MN 、AN有何数量关系?并证明.25.(本小题满分12分)在等边△ABC 的AC BC 、边上各取一点P 、Q .(1)如图1,若AQ BP 、相交于点O ,若60BOQ ∠=︒,求证AP CQ =;(2)如图1,连接PQ ,若13AP AC =,AQ BP =,求CPQ ABC S S 的值;(3)如图2,若AQ 是等边△ABC 的中线,点E 是线段AQ 上的动点,AE =CP ,请直接写出当BE +BP 取得最小值时∠EBP的度数.图1图2图17。
一、选择题(每题4分,共40分)1. 下列数中,有理数是()A. √2B. πC. 0.1010010001...D. -1/32. 已知a > b,则下列不等式中正确的是()A. a + 2 > b + 2B. a - 2 < b - 2C. 2a > 2bD. 2a < 2b3. 若a² = 9,则a的值为()A. ±3B. ±6C. ±2D. ±14. 下列各式中,完全平方公式正确的是()A. (a + b)² = a² + 2ab + b²B. (a - b)² = a² - 2ab + b²C. (a + b)² = a² - 2ab + b²D. (a - b)² = a² + 2ab - b²5. 已知x² - 5x + 6 = 0,则x的值为()A. 2B. 3C. 2 或 3D. 1 或 46. 下列函数中,一次函数是()A. y = 2x³ + 3B. y = x² - 2C. y = 3x - 5D. y = √x7. 下列图形中,面积最大的是()A. 正方形B. 长方形C. 等腰三角形D. 平行四边形8. 已知等腰三角形底边长为6cm,腰长为8cm,则其高为()A. 4cmB. 6cmC. 8cmD. 10cm9. 在直角坐标系中,点A(2, 3)关于原点的对称点是()A. (2, -3)B. (-2, 3)C. (-2, -3)D. (2, 3)10. 若平行四边形的对角线互相平分,则该平行四边形是()A. 矩形B. 菱形C. 正方形D. 以上都是二、填空题(每题4分,共40分)11. 2的平方根是______,-3的立方根是______。
12. 若a² = 25,则a的值为______。
一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 17B. 18C. 19D. 202. 在下列各数中,最大的数是:A. 0.5B. 0.7C. 0.8D. 0.93. 下列哪个图形是正方形?A. 圆B. 矩形C. 正方形D. 三角形4. 下列哪个数是偶数?A. 3B. 4C. 5D. 75. 下列哪个数是分数?A. 0.5B. 0.6C. 0.7D. 0.8二、判断题(每题1分,共5分)1. 2 + 3 = 5 ()2. 4 × 5 = 20 ()3. 6 ÷ 2 = 3 ()4. 7 4 = 3 ()5. 8 + 9 = 17 ()三、填空题(每题1分,共5分)1. 9 + 5 = __2. 8 × 6 = __3. 7 ÷ 7 = __4. 6 3 = __5. 5 × 5 = __四、简答题(每题2分,共10分)1. 请简述加法的定义。
2. 请简述减法的定义。
3. 请简述乘法的定义。
4. 请简述除法的定义。
5. 请简述分数的定义。
五、应用题(每题2分,共10分)1. 小明有5个苹果,小红有3个苹果,他们一共有多少个苹果?2. 小明有10个橘子,他吃掉了4个,还剩下多少个?3. 小明有8个橙子,他吃掉了2个,还剩下多少个?4. 小明有6个梨,他吃掉了3个,还剩下多少个?5. 小明有7个葡萄,他吃掉了1个,还剩下多少个?六、分析题(每题5分,共10分)1. 请分析加法、减法、乘法、除法之间的关系。
2. 请分析分数与整数之间的关系。
七、实践操作题(每题5分,共10分)1. 请用实践操作的方法验证加法的定义。
2. 请用实践操作的方法验证减法的定义。
【答案】一、选择题1. A2. D3. C4. B5. A二、判断题1. √2. √3. √4. √5. √三、填空题1. 142. 483. 14. 35. 25四、简答题1. 加法是将两个数相加得到一个和的运算。
一、选择题(每题3分,共30分)1. 下列各数中,绝对值最小的是()A. -3B. -2C. 0D. 2答案:C2. 已知a<0,b<0,则下列各式中正确的是()A. ab>0B. a+b>0C. a-b>0D. a×b>0答案:D3. 下列各数中,有理数是()A. πB. √2C. 3.14D. √-1答案:C4. 下列各数中,无理数是()A. √4B. √-1C. √9D. √0答案:B5. 下列各数中,负数是()A. -2.5B. 0C. 2.5D. -2答案:A6. 下列各数中,正数是()A. -2B. 0C. 2D. -2.5答案:C7. 已知x²=4,则x的值是()A. ±2B. ±1C. ±4D. ±3答案:A8. 下列各数中,质数是()A. 1B. 4C. 6D. 7答案:D9. 下列各数中,合数是()A. 2B. 3C. 4D. 5答案:C10. 下列各数中,偶数是()A. 1B. 2C. 3D. 4答案:B二、填空题(每题5分,共25分)11. 有理数a的相反数是__________。
答案:-a12. 绝对值等于3的数是__________。
答案:±313. 有理数0的倒数是__________。
答案:不存在14. 有理数a与b的乘积为0,则a、b中至少有一个数是__________。
答案:015. 下列各数中,-5的平方根是__________。
答案:±√5三、解答题(每题10分,共40分)16. 计算下列各式的值:(1)(-2)³×(-3)²(2)(4/5)×(3/2)÷(2/3)答案:(1)-2³×(-3)²= -8×9 = -72(2)(4/5)×(3/2)÷(2/3) = (4×3×3)÷(5×2×2) = 36÷20 = 9/517. 已知x²+4x+4=0,求x的值。
2023-2024学年度第二学期期中考试初二数学试卷一、选择题:(本大题共8小题,每小题3分,共24分. 请将答案涂到答题纸上.)1.中国“二十四节气”已被正式列入联合国教科文组织人类非物质文化遗产代表作品录,下列“立春”、“谷雨”、“白露”、“大雪”,四幅作品是中心对称图形的是 ( ▲ )A .B .C .D . 2.分式b a 221与c ab 261的最简公分母是 ( ▲ ) A .abc B .a 2b 2c C .6a 2b 2c D .12a 2b 2c3.下列计算正确的是 ( ▲ )A .39±=B .1028=+C .()55-2=D .326=÷4.如图,在平行四边形ABCD 中,∠A +∠C =80°,则∠D = ( ▲ )A .80°B .40°C .70°D .140°5.若k 1<0<k 2,则在同一平面直角坐标系内,函数y =k 1x 和xk y 2=的图象大致是( ▲ ) A . B . C . D .6.若点A (﹣2,y 1),B (﹣1,y 2)都在函数xy 6=的图象上,则y 1,y 2的大小关系是( ▲ ) A .y 1>y 2 B .y 1=y 2 C .y 1<y 2 D .不能确定7.甲、乙两人每小时一共可做30个电器零件,两人同时开始工作,当甲做了90个零件时乙做了60个零件,设甲每小时能做x 个零件,根据题意可列分式方程为 ( ▲ )A .x x -=309060B .x x -=306090C .x x +=309060D .xx +=309090 8.现有一张平行四边形纸片ABCD ,AD >AB ,要求用尺规作图的方法在边BC ,AD 上分别找点M .N ,使得四边形AMCN 为平行四边形,甲、乙两位同学的作法如图所示,下列判断正确的是 ( ▲ )A .甲对、乙不对B .甲不对、乙对C .甲、乙都对D .甲、乙都不对第4题 第8题二、填空题:(本大题共8小题,每小题3分,共24分. 请将答案填写在答题纸上.)9.若代数式51-x 有意义,则实数x 的取值范围是 ▲ . 10.已知最简二次根式1-x 与二次根式22是同类二次根式,则x = ▲ .11.如图,A ,B 两地被池塘隔开,小明先在AB 外选一点C ,然后测出AC ,BC 的中点M ,N ,并测量出MN 长为12m ,由此可知A ,B 间距离= ▲ m .12.如图,矩形ABCD 的对角线相交于点O ,AB =3,AD =4,则线段AO 的长度为 ▲ .13.如图,在正方形网格中,图②是由图①经过变换得到的,其旋转中心可能是点 ▲ .14.若关于x 的方程xm x x -=--554有增根,则m = ▲ . 15.a 是方程x 2﹣x ﹣1=0的一个根,则代数式2024﹣2a 2+2a 的值是 ▲ .16.如图,在平面直角坐标系中,正方形OABC 的顶点O 与原点重合,顶点A ,C 分别在x 轴,y 轴上,反比例函数()0,0>>=x k xk y 的图象与正方形的两边AB ,BC 分别交于点M ,N ,连接OM ,ON ,MN ,若∠MON =45°,MN =3,则k 的值为 ▲ .三. 解答题:(本大题共9小题,共72分. 请将解答过程填写在答题纸上.)17.(6分)计算:(1)3232-2-210⨯+⎪⎭⎫ ⎝⎛ . 解方程:(2)0542=--x x 18.(6分)先化简44222112+--÷⎪⎭⎫ ⎝⎛-+x x x x ,再从不等式组0≤x <3中选择一个适当的整数,代入求值.19.(7分)如图,菱形ABCD 的对角线交于O 点,BE ∥AC ,CE ∥DB .(1)求证:四边形OBEC 是矩形;(2)若AB =5,BD =6,则四边形OBEC 的面积为 .20.(8分)已知关于x 的一元二次方程x 2﹣(m ﹣4)x ﹣m +3=0.(1)求证:该方程总有两个实数根; 第11题 第12题 第13题 第16题(2)若x 1,x 2是该方程的两个实数根,且(x 1+1)(x 2+1)=a ,求a 的值.21.(9分)如图1,反比例函数()0≠=m xm y 与一次函数y =kx+b (k ≠0)的图象交于点A (1,3),点B (n ,1),一次函数y =kx +b (k ≠0)与y 轴相交于点C .(1)求反比例函数和一次函数的表达式;(2)连接OA ,OB ,求△OAB 的面积;(3)当xm b kx >+时,x 的范围为 ▲ .22.(4分)已知平行四边形ABCD 是中心对称图形,点E 是平面上一点,请仅用无刻度直尺画出点E 关于平行四边形ABCD 对称中心的对称点F .(1)如图1,点E 是平行四边形ABCD 的AD 上一点;(2)如图2,点E 是平行四边形ABCD 外一点.23.(8分)第十九届亚运会在杭州举行.某网络经销商购进了一批以杭州亚运会为主题的文化衫进行销售,文化衫的进价每件30元.根据市场调查:在一段时间内,销售单价是45元时,每日销售量是550件;销售单价每涨1元,每日文化衫就会少售出10件.设该批文化衫的销售单价为x 元(x >55).(1)请你写出销售量y (件)与销售单价x (元)的函数关系式 ▲ .(2)若经销商获得了10000元销售利润,则该文化衫单价x 应为多少元?24.(12分)如图,点P 是y 轴正半轴上的一个动点,过点P作y 轴的垂线l ,与反比例函数xy 4-= 的图象交于点A .把直线l 上方的反比例函数图象沿着直线l 翻折,其它部分保持不变,所形成的新图象称为“x y 4-=的l 镜像”. (1)当OP =3时:①点M ⎪⎭⎫ ⎝⎛2-21-, ▲ “x y 4-=的l 镜像”;(填“在”或“不在”) ②“xy 4-=的l 镜像”与x 轴交点坐标是 ▲ ; (2)过y 轴上的点Q (0,﹣1)作y 轴垂线,与“x y 4-=的l 镜像”交于点B 、C ,点B 在点C 左侧。
一、选择题(每题5分,共50分)1. 若x²-6x+9=0,则x的值为()A. 1B. 3C. 2D. 6答案:B解析:将x²-6x+9=0写成(x-3)²=0的形式,可知x=3。
2. 下列各数中,绝对值最小的是()A. -2B. 0C. 1D. -1答案:B解析:绝对值是数与0的距离,所以绝对值最小的数是0。
3. 下列函数中,是二次函数的是()A. y=x²+2x+1B. y=2x²-3x+4C. y=x³+x²+1D. y=x²+2x+3答案:A解析:二次函数的一般形式为y=ax²+bx+c(a≠0),所以选项A是二次函数。
4. 若a、b是方程x²-4x+4=0的两个根,则a+b的值为()A. 2B. 4C. 0D. -4答案:A解析:根据韦达定理,方程x²-4x+4=0的两个根之和为4。
5. 若一个等腰三角形的底边长为8,腰长为6,则这个三角形的面积为()A. 12B. 24C. 36D. 48答案:B解析:由等腰三角形的性质可知,底边上的高是腰长的平方除以底边长的两倍,即高为6²/8=4.5。
所以这个三角形的面积为底边长乘以高除以2,即8×4.5/2=24。
6. 下列各式中,正确的是()A. 2a+b=2a+2bB. 3a-2b=2a+bC. 3a+2b=3a-2bD. 2a+b=2a-2b答案:C解析:将等式两边的同类项合并,可得3a+2b=3a-2b。
7. 若一个正方形的对角线长为10,则这个正方形的周长为()A. 20B. 25C. 30D. 40答案:D解析:正方形的对角线长等于边长的√2倍,所以边长为10/√2=5√2。
正方形的周长为4×边长,即4×5√2=20√2。
8. 下列各数中,能被3整除的是()A. 14B. 15C. 16D. 17答案:B解析:一个数能被3整除,当且仅当它的各位数字之和能被3整除。
可编辑修改精选全文完整版初二数学期中考试试卷(含答案)初二数学期中考试试卷(含答案)一、选择题:共40分1. 下列哪一个选项是正确的?()A. 三角形的内角和为90度B. 直角三角形的两条直角边的边长之和大于斜边的边长C. 平行四边形的对边垂直D. 两条相互垂直的直线一定相交于一点答案:B2. 若一个数的个位数和十位数相加等于十位数,百位数的值为3,则该数是()A. 210B. 123C. 132D. 102答案:C3. 当x取什么值时,方程2x - 5 = -7的解唯一?()A. 1B. -1C. 4D. -4答案:A4. 在一个比赛中,小明以每小时40公里的速度骑自行车行驶,他经过3小时后,还剩下120公里的路程未行驶。
这个比赛的总路程是()A. 240公里B. 320公里C. 400公里D. 480公里答案:C5. 若a:b = 3:5,b:c = 2:7,则a:c =()A. 3:5B. 6:7C. 3:35D. 6:35答案:B二、填空题:共30分1. 一个角度的补角是135°,那么这个角度的度数是_______。
答案:452. 单价为40元的商品,现在打7折,最终的价格是_______元。
答案:283. 把一个正方形的边长增加1cm,它的面积增加_________平方厘米。
答案:24. 若一个数的3/5是80,那个数是_______。
答案:1205. 若x的值满足x ÷ 2 = 5,那么x是_______。
答案:10三、解答题:共30分1. 一个三位数,个位数字是它的和的2倍,十位数字比个位数字大2,百位数字比十位数字大2,求这个三位数是多少。
答案:假设这个三位数为abc,根据题意得到以下等式:个位数字: a = 2(b + c)十位数字: b = c + 2百位数字: c = b + 2代入第二个等式得:b = (c + 2)再代入第三个等式得:c = ((c + 2) + 2),化简得:c = c + 4显然,上述等式没有解,因此这个三位数不存在。
一、选择题(每题3分,共30分)1. 下列数中,有理数是()A. √9B. √16C. √25D. √36答案:D解析:有理数是可以表示为两个整数之比的数。
选项A、B、C都是无理数,因为它们不能表示为两个整数的比。
而√36 = 6,是有理数。
2. 若a > b,则下列不等式中正确的是()A. a + 1 > b + 1B. a - 1 > b - 1C. a + 1 < b + 1D. a - 1 < b - 1答案:A解析:在不等式两边同时加上或减去相同的数,不等号的方向不变。
因此,a + 1 > b + 1是正确的。
3. 已知x + y = 5,xy = 4,则x^2 + y^2的值为()A. 21B. 25C. 16D. 9答案:A解析:利用公式(x + y)^2 = x^2 + 2xy + y^2,可得x^2 + y^2 = (x + y)^2 -2xy = 5^2 - 2×4 = 25 - 8 = 17。
因此,选项A正确。
4. 下列函数中,反比例函数是()A. y = 2x + 3B. y = 3x^2C. y = 2/xD. y = 5x答案:C解析:反比例函数的形式为y = k/x,其中k为常数。
选项C符合这个形式,因此是反比例函数。
5. 在△ABC中,∠A = 45°,∠B = 60°,则∠C的度数为()A. 75°B. 105°C. 120°D. 135°答案:C解析:三角形内角和为180°,∠A + ∠B + ∠C = 180°。
代入已知角度,得45° + 60° + ∠C = 180°,解得∠C = 180° - 105° = 75°。
因此,选项C正确。
6. 下列图形中,中心对称图形是()A. 等腰三角形B. 正方形C. 等边三角形D. 梯形答案:B解析:中心对称图形是指存在一个点,使得图形上的任意一点关于这个点对称。
一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √9B. √-9C. πD. √3 - √22. 下列运算中,正确的是()A. (-3)² = 9B. (-3)³ = -27C. (-3)⁴ = 81D. (-3)⁵ = -2433. 已知a = 2,b = -3,则a² - 2ab + b²的值为()A. 5B. -5C. 0D. 14. 下列函数中,是二次函数的是()A. y = 2x + 3B. y = x² + 2x + 1C. y = 3x³ - 2D. y = √x5. 已知二次函数y = ax² + bx + c(a ≠ 0)的图像开口向上,且顶点坐标为(1,-2),则a、b、c的值分别为()A. a > 0,b = 2,c = -1B. a > 0,b = -2,c = -1C. a < 0,b = -2,c = -1D. a < 0,b = 2,c = -16. 下列各数中,属于实数集R的是()A. √-1B. πC. 2/3D. √4 - √97. 已知一元二次方程x² - 4x + 3 = 0,则该方程的解为()A. x₁ = 1,x₂ = 3B. x₁ = 3,x₂ = 1C. x₁ = -1,x₂ = -3D. x₁ = -3,x₂ = -18. 下列各数中,绝对值最小的是()A. -5B. -4C. 0D. 19. 已知a、b是方程2x² - 5x + 3 = 0的两个实数根,则a + b的值为()A. 5/2B. -5/2C. 2D. -210. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = x² + 2x + 1C. y = k/x(k ≠ 0)D. y = 3x³ - 2二、填空题(每题3分,共30分)11. 已知a = -3,b = 4,则a² + b²的值为________。
一、选择题1. 已知等差数列{an}的前n项和为Sn,且S3=9,S5=25,则数列{an}的公差d为()A. 1B. 2C. 3D. 42. 在直角坐标系中,点A(1,2),点B(3,4),点C在x轴上,且三角形ABC的面积为6,则点C的坐标为()A.(0,0)B.(-1,0)C.(1,0)D.(3,0)3. 下列函数中,定义域为实数集的有()A. y=√(x+1)B. y=x^2+2x+1C. y=1/xD. y=ln(x)4. 已知函数f(x)=2x-1,则函数f(x+1)的图像关于点(0,1)对称,则函数f(x)的图像关于点()A.(1,0)B.(0,1)C.(-1,0)D.(0,-1)5. 在△ABC中,角A、B、C的对边分别为a、b、c,且a=4,b=6,c=8,则sinA的值为()A. 1/2B. 1/3C. 1/4D. 2/3二、填空题6. 若等比数列{an}的第三项a3=16,第五项a5=32,则数列{an}的公比q为______。
7. 已知函数f(x)=ax^2+bx+c(a≠0),若f(1)=2,f(2)=6,则f(3)的值为______。
8. 在△ABC中,角A、B、C的对边分别为a、b、c,若sinA=3/5,sinB=4/5,则sinC的值为______。
9. 已知函数f(x)=2x-3,若f(x+1)的图像向右平移2个单位,则平移后的函数表达式为______。
10. 在直角坐标系中,若点P(m,n)在直线y=x+1上,则点P到原点的距离d=______。
三、解答题11. (本题共15分)已知数列{an}是等差数列,且a1=2,d=3,求:(1)数列{an}的通项公式;(2)数列{an}的前10项和S10;(3)若数列{bn}是等比数列,且b1=1,b2=3,求证:数列{an}和{bn}是等差数列和等比数列的混合数列。
12. (本题共20分)已知函数f(x)=ax^2+bx+c(a≠0),若f(-1)=0,f(1)=4,且△=b^2-4ac=0,求:(1)函数f(x)的图像与x轴的交点坐标;(2)若点P(m,n)在函数f(x)的图像上,且m+n=0,求点P的坐标。
初二数学期中试题及答案一、选择题(每题2分,共20分)1. 下列哪个数是无理数?A. -3.14B. 0.33333(无限循环)C. πD. √22. 一个数的平方根是4,这个数是:A. 16B. -16C. 8D. -83. 如果a > b > 0,那么下列哪个不等式是正确的?A. a + b > 2bB. a + b < 2bC. a - b > 0D. a - b < 04. 一个直角三角形的两条直角边分别是3和4,那么斜边的长度是:A. 5B. 6C. 7D. 85. 函数y = 3x + 2的斜率是:A. 2B. 3C. -3D. -26. 下列哪个图形是轴对称图形?A. 圆B. 三角形C. 正方形D. 五边形7. 一个数的立方根是2,这个数是:A. 6B. 8C. -8D. 48. 一个数的倒数是1/8,这个数是:A. 8B. 1/8C. -8D. -1/89. 一个圆的半径是5,那么它的面积是:A. 25πB. 50πC. 100πD. 125π10. 如果x = 2是方程2x - 3 = 5的解,那么方程的解是:A. x = 1B. x = 2C. x = 3D. x = 4二、填空题(每题2分,共20分)11. 一个数的绝对值是5,这个数可能是_________。
12. 一个数的相反数是-3,这个数是_________。
13. 一个数的平方是25,这个数可能是_________。
14. 一个数的立方是-8,这个数是_________。
15. 一个数的平方根是±3,这个数是_________。
16. 一个数的倒数是2,这个数是_________。
17. 一个数的立方根是-2,这个数是_________。
18. 一个圆的直径是10,那么它的半径是_________。
19. 一个直角三角形的斜边是5,一条直角边是3,那么另一条直角边是_________。
数学初2期中考试题及答案一、选择题(每题2分,共10分)1. 下列哪个数不是有理数?A. πB. √2C. -3D. 0.33333(无限循环)答案:A2. 如果一个三角形的两边长分别为3和4,且第三边长是整数,那么这个三角形的周长可能是:A. 7B. 8C. 9D. 10答案:B3. 一个正数的平方根是4,那么这个正数是:A. 16B. -16C. 4D. 0答案:A4. 以下哪个表达式的结果是一个负数?A. (-2)^3B. (-2)^2C. -2^2D. 2^2答案:A5. 一个数的倒数是1/4,这个数是:A. 4B. 1/4C. 1/2D. 2答案:A二、填空题(每空1分,共10分)6. 如果a-b=2,那么b-a=______。
答案:-27. 一个数的立方根是3,这个数是______。
答案:278. 一个直角三角形的两条直角边长分别为6和8,那么斜边长为______。
答案:109. 如果一个数的绝对值是5,那么这个数可能是______或______。
答案:5 或 -510. 一个数的平方是36,这个数是______或______。
答案:6 或 -6三、计算题(每题5分,共15分)11. 计算下列各题,并写出计算过程:a) (-3) × (-2) × 5b) (-4)^2 - 3 × 2答案:a) 原式= 3 × 2 × 5 = 30b) 原式 = 16 - 6 = 1012. 计算下列表达式的值:a) √(64)b) (-1/2)^3答案:a) 原式 = 8b) 原式 = -1/813. 解一元一次方程:a) 2x + 5 = 11b) 3y - 4 = 5答案:a) 2x = 6,x = 3b) 3y = 9,y = 3四、解答题(每题10分,共20分)14. 某班有40名学生,其中男生占60%,女生占40%。
如果班级要组织一次郊游,需要每名同学交10元,那么总共需要多少元?答案:男生人数= 40 × 60% = 24女生人数 = 40 - 24 = 16总费用= (24 + 16) × 10 = 400元15. 一个长方体的长、宽、高分别是8cm、6cm和5cm,求这个长方体的表面积和体积。
初二数学期中复习试卷大全1. 选择题:下列哪个图形是轴对称图形?A. 正方形B. 圆形C. 三角形D. 长方形2. 填空题:计算下列等式的结果:3x + 2 = 73. 判断题:在直角坐标系中,点(2,3)位于第二象限。
()4. 选择题:下列哪个方程是二次方程?A. 2x + 3 = 5B. x^2 + 2x + 1 = 0C. 3x - 4 = 2D. 4x + 3 = 05. 填空题:计算下列等式的结果:2(x - 3) = 126. 判断题:如果一个三角形的两边分别是3和4,那么这个三角形是直角三角形。
()7. 选择题:下列哪个选项是方程2x + 3 = 5的解?A. x = -1B. x = 0C. x = 1D. x = 28. 填空题:计算下列等式的结果:5(x - 2) = 159. 判断题:如果一个三角形的两边分别是5和12,那么这个三角形是直角三角形。
()10. 选择题:下列哪个选项是方程x^2 + 2x + 1 = 0的解?A. x = -1B. x = 0C. x = 1D. x = 211. 解答题:计算下列等式的结果:5(x - 2) = 1512. 选择题:下列哪个选项是方程3x - 4 = 2的解?A. x = -1B. x = 0C. x = 1D. x = 213. 填空题:计算下列等式的结果:2(x + 3) = 1014. 判断题:如果一个三角形的两边分别是6和8,那么这个三角形是直角三角形。
()15. 选择题:下列哪个选项是方程4x + 3 = 0的解?A. x = -1B. x = 0C. x = 1D. x = 216. 解答题:计算下列等式的结果:2(x + 3) = 1017. 选择题:下列哪个选项是方程x^2 + 2x + 1 = 0的解?A. x = -1B. x = 0C. x = 1D. x = 218. 填空题:计算下列等式的结果:3(x - 3) = 919. 判断题:如果一个三角形的两边分别是7和24,那么这个三角形是直角三角形。
2022-2023学年度第二学期期中考试八年级数学试卷一、选择题:1.下列手机中的图标是中心对称图形的是 ( )A .B .C .D .2.如图,在平行四边形ABCD 中,∠A =110°,则∠D 的度数为 ( )A .70°B .80°C .110°D .120°3.已知线段a =9,b =1,如果线段c 是线段a 、b 的比例中项,那么c = ( )A .2B .3C .4.5D .54.已知一元二次方程x 2﹣3x +1=0有两个实数根x 1,x 2,则x 1+x 2的值为 ( )A .1B .-1C .3D .-35.如图,A 、B 两地被池塘隔开,小康通过下列方法测出了A 、B 间的距离:先在AB 外选一地点C ,然后测出AC ,BC 的中点M 、N ,并测量出MN 的长为18m ,由此他就知道了A 、B 间的距离.下列有关他这次探究活动的结论中,错误的是 ( )A .AB =36m B .MN ∥ABC .MN =CBD .CM =AC6.如图,如果∠EAD =∠CAB ,那么添加下列一个条件后,仍不能确定△ADE 与△ABC 相似的是 ( )A .∠B =∠D B .∠AED =∠C C .D .第2题 第5题 第6题 第7题7.如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m 2,若设道路的宽为xm ,则所列的方程为 ( )A. B. C. D. 8.如右图,矩形ABCD 的对角线AC 、BD 相交于点O ,CE ∥BD ,DE ∥AC.若AC =4,则四边形CODE 的周长为 ( )A .4B .8C .12D .20AE AC AD AB =BC DEAC AE =5702203220322=+--⨯x x x 570202322032=⨯--⨯x x 570)20)(232(=--x x 570)220)(32(=--x x二、填空题:(本大题共8小题,每小题3分,共24分. 请将答案填写在答题纸上.)9.如图,直线l 1∥l 2∥l 3,直线AC 和DF 被l 1,l 2,l 3所截,如果AB =2,BC =4,DE =3,那么EF 的长是 .10.若关于x 的方程x 2﹣4x +k =0有两个不相等的实数根,则k 的取值范围是 .11. 已知线段AB=10,点C 是线段AB 上的黄金分割点(AC BC ),则线段AC 的长度为 .(黄金比≈0.618)12.商店今年1月份的销售额是4万元,3月份的销售额是9万元,从1月份到3月份,则该店销售额平均每月的增长率为 .13.已知m 是方程x 2﹣x ﹣2=0的一个根,则m 2-m+2023的值为 .14.如图,在▱ABCD 中,E 是AD 上一点,且AE :AD =3:5,连接BE 、AC 相交于F ,则S △AEF :S △CBF = ▲ .第9题 第14题 第15题 第16题15.如图,在△ABC 中,∠B =90°,AB =8cm ,BC =16cm ,动点P 从点A 开始沿着边AB 向点B 以2cm /s 的速度移动,动点Q 从点B 开始沿着边BC 向点C 以4cm /s 的速度移动.若P 、Q 两点同时开始运动,当点P 运动到点B 时停止,点Q 也随之停止.运动过程中,若以B 、P 、Q 为顶点的三角形与△ABC 相似,则运动时间为 s .16. 如图,矩形ABCD 中,AD=2,AB=6,矩形ABCD 的对角线AC ,BD 相交于点O ,点E ,F 为CD 边上两个动点,且EF=2,则OF+BE 的最小值为 ▲ .三.解答题:(本大题共8小题,共72分. 请将解答过程填写在答题纸上.)17.(8分) 解下列方程:(1)x 2﹣5x =0; (2)x 2﹣4x ﹣1=0.18.(6分)如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC 的顶点均在格点上.(1)画出将△ABC 关于原点O 的中心对称图形△A 1B 1C 1;(2)将△DEF 绕点E 逆时针旋转90°得到△D 1EF 1,画出△D 1EF 1;(3)若△DEF 由△ABC 绕着某点旋转得到的,则这点的坐标为 .19.(6分)如图,在△ABC 中,D 是AC 边上的一点,∠ABD=∠C .(1)请说明:△ADB ∽△ABC ;(2)若AB=6,AD=4,则AC 的长度为 .20.(8分)已知关于x 的方程x 2﹣kx +2k ﹣5=0.(1)求证:无论k取何值,此方程总有两个不相等的实数根;(2)若此方程的一个根是1,请求出k的值和方程的另一个根.21.(7分)如图,在▱ABCD中,AC的垂直平分线分别交BC、AD于点E、F,垂足为O,连接AE、CF.(1)求证:四边形AECF为菱形;(2)若AB=5,BC=7,则AC= 时,四边形AECF为正方形.22.(4分)在平行四边形ABCD中,E为AD的中点,请仅用无刻度的直尺完成下列画图,不写画法,保留画图痕迹.(1)如图1,在BC上找出一点F,使点F是BC的中点;(2)如图2,在BD上找出一点G,使点BD=3GD.23.(9分)某乐园摊位上销售一批玩偶,平均每天可售出30件,每件盈利40元.为了扩大销售,增加盈利,摊主采取了降价措施.假设在一定范围内,玩偶的单价每降1元,摊主平均每天可多售出2件.(1)若某天该玩偶每件降价10元,则该玩偶的销量为 件,当天可获利 元;(2)如果该摊主销售这批玩偶要保证每天盈利为1400元,同时尽快减少库存,那么玩偶的单价应降多少元?24.(11分)阅读理解:如图1,在线段AC上有一点P,若△ABP与△CDP相似,则称点P为△ABP与△CDP 的“似联点”.例如:如图2,△ABP1∽△CDP1,△AP2B∽△CDP2,则点P1、P2为△ABP与△CDP的两个“似联点”.如图3,矩形ABCD中,AB=4,BC=m(m>2),点E是AD边上一定点,DE=1且EF∥AB.(1)当m=4时,线段EF上存在点P为△EDP与△BPF的“似联点”,则EP= ;(2)当m=4.5时,线段EF上△EDP与△BPF的“似联点”P有 个,请说明理由;(3)随着m (m >2)的变化,线段EF 上△EDP 与△BPF 的“似联点”P 的个数有哪些变化?请直接写出相对应的m 的值或取值范围.图1图2 图3 图425.(13分)如图,已知直线AB :交y 轴于点A ,交x 轴于点B ,直线AC 交x 轴于点C (3,0),请解答下列问题:(1)点A 的坐标为 ,点B 的坐标为 ;(2)如图1,作射线BD ∥y 轴,交直线AC 于点D ,请说明:AD 平分∠BAO ;(3)点P 为直线AB 上的一个动点,连接CP ,若,求点P 的坐标;(4)过C 作直线垂直于x轴,若M是直线上的一个动点,在坐标平面内是否存在点N,使以A 、B 、M 、N 为顶点的四边形是矩形?若存在,请直接写出点N 的坐标;若不存在,请说明理由.(图1) (备用图) (备用图)643+-=x y 3=∆∆BPCAPC S S l l。
初二期中数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 计算下列哪个表达式的结果为负数?A. \(3 - (-2)\)B. \(-4 + 5\)C. \(-3 \times 2\)D. \(6 \div 2\)答案:C3. 如果 \(x = 3\),那么 \(2x - 5\) 的值是多少?A. 1B. 4C. 6D. 0答案:A4. 一个数的平方等于9,这个数是多少?A. 3B. -3C. 3或-3D. 只有3答案:C5. 以下哪个图形是轴对称图形?A. 平行四边形B. 矩形C. 梯形D. 不规则多边形答案:B6. 以下哪个选项表示的是一次函数?A. \(y = 2x + 3\)B. \(y = x^2 + 1\)C. \(y = \frac{1}{x}\)D. \(y = 3\)答案:A7. 一个等腰三角形的两边长分别为5和8,那么它的周长是多少?A. 18B. 21C. 26D. 无法确定答案:B8. 以下哪个分数是最简分数?A. \(\frac{6}{8}\)B. \(\frac{9}{12}\)C. \(\frac{5}{7}\)D. \(\frac{10}{15}\)答案:C9. 如果一个圆的半径是3厘米,那么它的面积是多少?A. 28.26平方厘米B. 9平方厘米C. 18.84平方厘米D. 3.14平方厘米答案:C10. 下列哪个选项是不等式 \(2x - 3 > 5\) 的解?A. \(x > 4\)B. \(x < 4\)C. \(x > 2\)D. \(x < 2\)答案:A二、填空题(每题3分,共30分)11. 一个数的相反数是-5,这个数是______。
答案:512. 如果一个角的补角是120°,那么这个角的度数是______。
答案:60°13. 计算 \((-2)^3\) 的结果是______。
初二数学试卷一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案填在相应位置上...... 1.下列图形中,既是轴对称图形又是中心对称图形的是( )A B C D2. 下列事件是必然事件的为( )A.明天太阳从西方升起B.掷一枚硬币,正面朝上C.打开电视机,正在播放“新闻夜班车”D.任意一个三角形,它的内角和等于180°3.下列分式:①223a a ++;②22a b a b --;③412()a a b -;④12x -其中最简分式有 ( ) A .1个 B .2个 C .3个 D .4个4. 若反比例函数(0)k y k x=≠的图像过点(2,1),则这个函数的图像还经过的点是( ) A .(一2,1) B .(一l ,2) C .(一2,一1) D .(1,一2)5.已知四边形ABCD 中,∠A=∠B=∠C=90︒,如果添加一个条件,即可推出该四边形是正方形,那么这个条件可以是( )A .∠D=90︒B .AB=CDC .AD=BCD .BC=CD6.将一个长为10 cm 、宽为8 cm 的矩形纸片对折两次后,沿所得矩形两邻边中点的膀(如图①)剪下,将剪下的图形打开,得到的菱形ABCD(如图②)的面积为( )A .10 2cmB .20 2cmC .40 2cmD .80 2cm7.如图,在△ABC 中,BD 、CE 是△ABC 的中线,BD 与CE 相交于点0,点F 、G 分别是BO 、CO 的中点,连接AO .若AO=6 cm ,BC=8 cm ,则四边形DEFG 的周长是( )A .14 cmB .18 cmC .24 cmD .28 cm8.为了了解我市2014年中考数学学科各分数段成绩分布情况,从中抽取150名考生的中考数学成绩进行统计分析.在这个问题中,样本是指 ( )A .150B .被抽取的150名考生C .被抽取的150名考生的中考数学成绩D .我市2014年中考数学成绩9.函数y =a x (a≠0)与y =a(x -1)(a≠0)在同一平面直角坐标系中的大致图像是( )10.如图,将矩形ABCO 放在直角坐标系中,其中顶点B 的坐标为(10, 8),E 是BC 边上一点,:将△ABE 沿AE 折叠,点B 刚好与OC 边上点D 重合,过点E 的反比例函数y=k x 的图象与边AB 交于点F , 则线段AF 的长为( ) A .154 B. 2 C .158 D . 32二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置.11.一个口袋中装有4个白色球,1个红色球,搅匀后随机从袋中摸出1个球是白色球的概率是 .12.四边形ABCD 中,对角线AC 、BD 相交于点0,给出下列四个条件:①AD ∥BC ;②AD=BC ;③OA=OC ;④OB=OD从中任选两个条件,能使四边形ABCD 为平行四边形的选法有 种.13.如图,将矩形ABCD 绕点A 顺时针旋转到矩形A’B’C’D’的位置,旋转角为a (0°<a<90°).若∠1=110°,则a = .14.苏州中学举行了一次科普知识竞赛,满分为100分,学生得分的最低分为31分.如图 所示是根据学生竞赛成绩绘制的频数分布直方图的一部分,已知参加这次知识竞赛的学生共有40人,则得分在60~70分的频率为 .A B xy O C (第17题)15.已知函数()221ay a x -=-是反比例函数,则a = . 16.如果分式22a a -+的值为零,则a 的值为______ ______17.如图,点A 在函数y =2 x (x >0)的图像上,点B 在函数y =6 x(x >0)的图像上,点C 在x 轴上.若AB ∥x 轴,则△ABC 的面积为 .18.如图,在四边形ABCD 中,AB ∥DC ,AD=BC=5,DC=7, AB=13,点P 从点A 出发,以3个单位/s 的速度沿AD→DC 向终点C 运动,同时点Q 从点B 出发,以1个单位/s 的速度沿BA 向终点A 运动,在运动期间,当四边形PQBC 为平行四边形时,运动时间为( )秒.三、解答题(本大题共76分)19.(本题8分,每小题4分) 计算:(1)244x -+22x ++12x - (2) 111a ⎛⎫+ ⎪-⎝⎭÷2111a ⎛⎫+ ⎪-⎝⎭20. (1)(本题5分)先化简,再求代数式的值: 221m 2m 11m 2m 4++⎛⎫-÷ ⎪+-⎝⎭,其中m =1。
一、选择题(每题5分,共50分)1. 下列数中,是正数的是()A. -3B. 0C. 2D. -52. 若a、b是方程x²-5x+6=0的两个根,则a+b的值为()A. 1B. 2C. 3D. 43. 下列各数中,属于有理数的是()A. √2B. πC. 0.1010010001…D. 3/44. 下列各式中,正确的是()A. a²=b²,则a=bB. a²=b²,则a=b或a=-bC. a²=b²,则a²=b²D. a²=b²,则a=b或a=-b或a=05. 已知等差数列{an}中,a₁=3,公差d=2,则第10项an的值为()A. 17B. 19C. 21D. 236. 下列函数中,是二次函数的是()A. y=x²+2x+1B. y=x³+2x²+1C. y=x²+x+1D. y=x²+2x+37. 若x=2是方程x²-3x+2=0的根,则方程的另一个根是()A. 1B. 2C. 3D. 48. 已知a、b是方程2x²-5x+3=0的两个根,则a²+b²的值为()A. 8B. 9C. 10D. 119. 下列各数中,绝对值最小的是()A. -3B. 0C. 2D. -510. 已知三角形ABC的三个内角A、B、C满足A+B+C=180°,则下列各式中正确的是()A. A+B>CB. A+B>CC. A+C>BD. A+C>B二、填空题(每题5分,共50分)1. 已知等差数列{an}中,a₁=5,公差d=3,则第10项an的值为______。
2. 若x=2是方程x²-3x+2=0的根,则方程的另一个根是______。
3. 下列各数中,属于有理数的是______。
2024年人教版初二数学上册期中考试卷(附答案)一、选择题(每题1分,共5分)1.下列哪个数是质数?A. 4B. 6C. 7D. 92.下列哪个图形是轴对称图形?A. 正方形B. 矩形C. 梯形D. 圆3.下列哪个不等式成立?A. 3x < 5B. 2x > 8C. 4x = 12D. 5x ≤ 154.下列哪个数是平方数?A. 3B. 4C. 5D. 65.下列哪个函数是一次函数?A. y = 2x + 3B. y = x^2C. y = 3x^3D. y = 4x + 5x二、判断题(每题1分,共5分)1.两个偶数的和一定是偶数。
()2.一个等腰三角形的底边长度是腰长的一半。
()3.一个正方形的对角线长度等于边长的根号2倍。
()4.一个数的立方根等于它的平方根的平方。
()5.两个相邻的整数一定互质。
()三、填空题(每题1分,共5分)1.一个正方形的周长是20厘米,它的边长是______厘米。
2.一个长方体的长、宽、高分别是2厘米、3厘米、4厘米,它的体积是______立方厘米。
3.一个等腰三角形的底边长是10厘米,腰长是8厘米,它的面积是______平方厘米。
4.一个数是另一个数的两倍,它们的差是______。
5.一个一次函数的斜率是2,它经过点(1,3),这个函数的解析式是______。
四、简答题(每题2分,共10分)1.简述平行四边形的性质。
2.简述一次函数的定义。
3.简述等差数列的定义。
4.简述平方根的定义。
5.简述圆的性质。
五、应用题(每题2分,共10分)1.一个长方形的长是10厘米,宽是6厘米,求它的周长和面积。
2.一个等腰三角形的底边长是8厘米,腰长是5厘米,求它的面积。
3.一个一次函数的斜率是3,它经过点(2,5),求这个函数的解析式。
4.一个数的立方是64,求这个数。
5.一个圆的半径是4厘米,求它的周长和面积。
六、分析题(每题5分,共10分)1.分析正方形的性质,并举例说明。
育才中学2004~2005学年度第一学期期中试卷
初二数学
一、选择题(每题2分,共24分)
1.9的平方根是()
(A)3 (B)3
(C)3
±(D)3
±
2.下列能构成直角三角形三边长的是()
(A)1、2、3 (B)2、3、4
(C)3、4、5 (D)4、5、6
3.如图,以数轴的单位长线段为边作一个正方形,以数轴的原点为旋转中心,将过原点的对
角线顺时针旋转,使对角线的另一端点落在数轴正半轴的点A处,则点A表示的数是
()
(A)
2
1
1
(C)3 ( D)2
4. ①无理数是开方开不尽的数②带根号的数是无理数
③无论x取何实数, 1
2+
x都有意义④绝对值最小的实数是零
上述说法正确的有( )
(A) 1个(B) 2个
(C ) 3个(D) 4个
5.下列说法错误的是( )
(A)1
)1
(2=
-(B)()1
1
33-
=
-
(C)2的平方根是2
±(D)()2
3
2
)3
(-
⨯
-
=
-
⨯
-
6.如图,三个正方形围成一个直角三角形,64、400
则图中字母所代表的正方形面积是)
(A)400+64 (B)2
264
400-
(C)400-64 (D)2
264
400-
7.下列条件中能判断四边形ABCD为平行四边形的是()
(A)AB=BC CD=DA (B)AB∥CD AB=CD
(C)AD∥BC AB=CD (D)AD∥BC ∠B=∠C
8.将图形按顺时针方向旋转900后的图形是 ( )
(A)(B)(C)(D)
9.矩形、菱形、正方形都具有的性质是()
(A)一组邻边相等,对角线互相垂直平分
(B)一组邻角相等,对角线也相等
(C)一组对边平行且相等,对角线互相平分
(D)对角线相等,且互相垂直平分
10.和数轴上的点成一一对应关系的数是()
A.自然数
B.有理数
C.无理数
D. 实数
11.三个数:-7,―2 , ―3,的大小关系是()
A. -7<-3<-2
B.-3<-7<-2
C.-2<-7<-3
D. -3<-2<-7
12.如图:是我校的长方形水泥操场,如果一学生要
从A角走到C角,至少走()
A.140米
B.120米
C.100米
D.90米
二、填空题(每题3分,共24分)
13.6的相反数是;绝对值等于2的数是.
14.□ABCD中,∠A=60°,则∠B= ,∠C= .
15.化简()
=-2
3
2 ;1449⨯= .
16.估算比较大小:(填“>”、“<”或“=”) 23 32;
213- 2
1
17.在下列各数1.414,2,3.14,
25
.2 ,4,π,0.303003003…,316,中: 有理数有________________________,无理数有_____________________________。
18.如图所示,图形①经过_______变化成图形②,
图形②经过______变化成图形③,
图形③经过________变化成图形④。
19.如图: ABCD 中AC =AD , ∠B =72°,则∠CAD =_________°。
20.已知:四边形ABCD 中,AB =CD ,要使四边形ABCD 为平行四边形,需要增加
__________________________________________________________________。
(只需填一个你认为正确的条件即可)
三、计算与化简(每题4分,共16分)
21.()
1525- 22.123
1
27+-
23.
(
)(
)131
38
16
72-++
- 24.()
401022
+-
四、操作与探索(25、26题各6分,共12分) 25.(1)如图,经过平移,小船上的点A 移到了点B ,作出平移后的小船。
A
B
(2)如图,正△ABC ,将此三角形绕点C 顺时针旋转,使CB 与CA 重合,得△ACD ①作出△ACD
②四边形ABCD 是什么四边形?
26.如图,正方形网格中的每个小正方形边长都是1,任意连结这些小正方形的顶点,可得到一些线段。
请在图中画出1352===EF CD AB 、、这样的线段,并选择其中的一
个说明这样画的道理.
A B
C D
A ① ② ③ ④
E C D B
A
五、解答下列各题(每小题4分,共16分) .
27. 已知:如图,在平行四边形ABCD 中,E 、F 分别在AB 、CD 上,且BE=DF 问:AF ∥EC 吗?试说明理由.
28.如图,已知:□ABCD 的对角线AC 、BD 相交于O 点,△AOB 为等边三角形,AB=4cm 。
(1)□ABCD 为矩形吗?请说明理由.
(2)求四边形ABCD 的面积.
29.已知:如图,菱形ABCD 的周长为8cm ,∠ABC :∠BAD =2:1,对角线AC 、BD 相交于点O ,求AC 的长及菱形的面积.
六、观察与思考(30题4分,31题4分,共8分)
30.如图,一个梯子AB 长2.5 米,顶端A 靠在墙AC 上,这时梯子下端B 与墙角C 距离为1.5米,梯子滑动后停在DE 的位置上,测得BD 长为0.5米,求梯子顶端A 下落了多少米?
31.用一根较长的绳子检验教室的门框是否为矩形,你怎样检验?分步骤为:
(1)
(2)
理由是
.
F
E
D C B
A
D C B A O。