遥感原理与应用总结
- 格式:doc
- 大小:9.31 MB
- 文档页数:17
遥感技术的原理和应用1. 遥感技术的概述遥感技术是指利用航空器和卫星等遥感平台对地球表面进行高分辨率、多光谱的观测和监测的一种技术。
它通过获取地球表面反射、辐射和散射的电磁能量,将其转化为数字信息,从而获取地表特征的一种方法。
2. 遥感技术的原理遥感技术的原理基于以下几个核心概念:2.1 电磁能谱电磁能谱是指在不同波长的电磁辐射中,包含了各种能量和信息的分布。
遥感技术利用不同波长的电磁辐射来观测地球表面,衍生出不同的信息。
2.2 传感器传感器是遥感技术中的核心设备,用于接收和记录地球表面发出的电磁辐射。
传感器的种类多种多样,包括运载在卫星上的遥感传感器、航空器上的航空传感器等。
2.3 数字图像处理遥感技术通过将传感器接收到的电磁辐射转化为数字图像,然后利用数字图像处理技术对图像进行增强、分类、配准等处理,从而提取出地表特征。
3. 遥感技术的应用3.1 环境监测遥感技术可以对地球上的环境进行全面和实时的监测。
可以通过监测植被覆盖、土地利用、气候变化等因素,为环境保护和自然资源管理提供重要数据。
3.2 土地资源调查遥感技术可以用于土地资源的调查和评估。
通过获取地表的光谱信息,可以判断土壤的类型、水分含量、植被生长状况等,为农业生产和土地规划提供依据。
3.3 城市规划遥感技术可以帮助城市规划部门更好地了解城市的发展情况和需求。
通过监测城市的土地利用、建筑高度、交通状况等,可以为城市规划提供数据支持。
3.4 自然灾害监测遥感技术在自然灾害监测方面具有重要作用。
通过监测地表变化、水体沉积物等,可以提前预警和监测洪水、地震、火灾等自然灾害的发生。
3.5 农业生产遥感技术可以应用于农业生产的监测和管理。
通过监测植被生长情况、土壤水分状况等,可以提高农作物的产量和质量,实现精细化农业管理。
3.6 资源勘探遥感技术在矿产资源勘探方面有广泛应用。
通过监测地表的地质特征和矿产指标,可以提供矿区选址和资源储量估计的依据。
简述遥感的基本原理及应用遥感是利用人造卫星、飞机、无人机或地面观测站等平台对地球表面进行观测和测量的技术。
遥感的基本原理是通过接收和记录地球表面反射和辐射的能量,并将其转化为电信号,进而提供地面信息和数据。
遥感技术主要应用于地质勘探、农业、气象、环境保护、城市规划等领域。
遥感的基本原理包括电磁波与物体相互作用、反射与辐射、传感器及数据的获取与处理等。
遥感利用电磁波来获取地面信息,电磁波通过空气、云、尘埃等自然界中的物质传播,当它与地球表面上的物体相互作用时,会发生反射、散射、吸收等过程。
利用这些过程,遥感技术可以测量并分析地球表面上的对象的光谱、热力学特性和形状等重要信息。
遥感的应用广泛,涵盖了很多领域。
在地质勘探方面,遥感可以帮助寻找地下资源,如石油、天然气和矿藏。
通过分析地质特征、土壤类型和植被覆盖等信息,可以确定矿区位置和资源储量。
在农业领域,遥感可以监测作物的生长状况、土壤湿度和病虫害等问题,提供精确的农作物管理和灾害预警信息。
在气象领域,遥感可以监测大气成分、云层和降水等,为气象预报和天气监测提供重要数据。
在环境保护方面,遥感可以检测森林覆盖变化、土地利用变化和水资源管理等问题,促进可持续发展和生态保护。
在城市规划方面,遥感可以提供城市发展和用地规划所需的数据,帮助城市规划师做出更科学的决策,在城市建设过程中提高效率和减少资源浪费。
遥感还有其他一些应用领域。
例如,遥感可以监测自然灾害,如洪水、地震、火灾等,及时提供救援和应急响应。
遥感还可以监测海洋和水质,了解海洋生态系统的变化和海洋资源的利用情况。
另外,遥感还可以用于考古学领域,帮助寻找古代文明的遗址和文化遗产等。
此外,遥感技术还可以用于导航和测绘等领域,提供高精度的地理数据。
总之,遥感技术的基本原理和应用十分重要和广泛。
通过利用遥感技术,可以获取地球表面的重要信息,提供决策支持和数据支持,促进各个领域的发展和进步。
同时,随着遥感技术的不断发展和创新,未来遥感技术的应用领域还将继续扩大,为人类社会的可持续发展做出更大的贡献。
第一章:1. 遥感的定义遥感是指对地观测,即从不同高度的工作平台上通过传感器,对地球表面目标的电磁波反射或辐射信息进行探测,并经信息的记录、传输、处理和解译分析,对地球的资源与环境进行探测和监测的综合性技术。
2. 遥感的分类(1)按遥感平台分类:地面遥感、航空遥感、航天遥感(2)按工作方式:主动式遥感、被动式遥感(3)按工作波段:紫外遥感、可见光遥感、红外遥感、微波遥感、多光谱和高光谱遥感(4)按记录方式:成像遥感、非成像遥感(5)按遥感应用领域分类:从大的研究领域:外层空间遥感、大气遥感、陆地遥感、海洋遥感),从具体应用领域(城市遥感、环境遥感、农业遥感和林业遥感、地质遥感、气象遥感、军事遥感)3. 遥感技术系统的组成部分:信息获取、信息记录与传输、信息处理、信息应用第二章:1.电磁波谱:将电磁波按波长或频率递增或递减顺序排列红外波段:0.76-1000um(近红外(识别植物类型,分析植物长势,监测植被的病虫害) (热红外遥感主要使用3-15um的红外线,探测地下热源、火山、森林火灾、热岛效应)2.辐射通量:电磁辐射单位时间内通过某一表面的能量辐射通量密度:通过单位面积的辐射通量辐射出射度:单位面积发射出的辐射通量辐射照度(辐照度):投射到单位面积上的辐射通量3.绝对黑体:如果一个物体对任何波长的电磁辐射都全部吸收而毫无反射和透射,则称这个物体为绝对黑体(黑体辐射与温度成正相关)4.(1)太阳辐射的特性:1地球上的能源来源于太阳,太阳是被动遥感最主要的辐射源2在距离地球一个天文单位内,太阳辐射在大气上界处的垂直入射的辐射通量密度称为太阳常数3地球大气层以外的太阳光谱辐照度曲线为平滑的连续曲线(2)地球辐射特性:1地球上的能源来源于太阳的直射能量与天空漫入射的能量2被地表吸收的太阳辐射能,又重新被地表辐射(3)比辐射率:单位面积上地物发射的某一波长的辐射通量密度与同温度下黑体在同一波长上的辐射通量密度之比,又称发射率6.电磁辐射能与地表的相互作用有三种基本物理过程:反射、吸收和透射(1)物体对电磁波的反射可表现的三种形式:镜面反射:当入射能量全部或几乎全部按相反方向反射,且反射角等于入射角漫反射:当入射能量在所有方向均匀反射,即入射能量以入射点为中心在整个半球空间内向四周各向同性反射能量的现象(即伯朗反射)一个完全的漫反射体称为伯朗体方向反射:介于伯朗表面和镜面之间的,其反射方向各不相同,而具有明显的方向性,即在某些方向上反射最强烈的现象7.光谱反射率:地物在某波段的反射通量与该波段的入射通量之比地物的反射波谱特性:地物波谱反射率随波长变化而改变的特性8.水体的反射主要在蓝绿光波段,在近红外、中红外有很强的吸收带植物在绿光附近有一个反射波峰,两侧的蓝光和红光有两个吸收带9.影像地物反射光谱特性的因素:1太阳位置即太阳高度和方位角2传感器位置即观测角和方位角3不同的地理位置、太阳位置、地理景观、海拔高度大气透明度4地物本身性质的变异5时间的变化、季节的变化10.大气对电磁辐射传输作用大气对电磁辐射传输的作用过程的影响包括:散射、吸收、反射、扰动、折射和偏振,对遥感数据,主要是散射和吸收(1)大气吸收:将电磁波辐射能量转换成分子的热运动,使能量减少,主要吸收水蒸气、二氧化碳和臭氧电磁波辐射在大气传输中透过率较高的波段称为大气窗口(2)大气散射:电磁波在传播过程中遇到微粒而使传播方向发生改变,并向各个方向散开瑞利散射:引起散射的大气粒子直径远小于入射电磁波波长(蓝天)米氏散射:。
遥感的原理与应用课程总结简介遥感是指利用卫星、飞机等远距离传感器获取地球表面信息的一种技术。
遥感的原理与应用是一门涉及光学、电磁学等学科的综合性课程,本文对遥感的原理及应用进行总结。
遥感的原理遥感技术是通过传感器测量地球表面的电磁辐射,并将其转化为数字信号。
遥感的原理主要包括以下几个方面:1.电磁辐射:地球表面物体不断向外发射电磁辐射,包括可见光、红外线、微波等各种波段。
通过测量地球表面物体的辐射能量和频率分布,可以获取相关信息。
2.传感器:遥感数据的获取依赖于特定类型的传感器。
常见的遥感传感器包括光学传感器、红外传感器、微波传感器等。
不同传感器对于不同波段的电磁辐射有不同的敏感度。
3.数字图像处理:传感器获取的电磁辐射信息将以数字图像的形式呈现。
通过数字图像处理技术,可以对遥感图像进行增强、分类、分析等操作,提取出有用的地表信息。
遥感的应用遥感技术在众多领域都有广泛的应用。
下面列举了几个常见的遥感应用领域:1.地球观测:遥感技术能够提供大范围、连续的地球观测数据。
这些数据可以用于监测自然资源的分布、环境变化的监测等。
例如,通过遥感图像可以观测到森林覆盖面积的变化、海洋温度的变化等。
2.城市规划:遥感技术可以为城市规划提供重要的数据支持。
通过获取高分辨率的遥感图像,可以分析城市的土地利用情况、交通网络、建筑物分布等信息,为城市规划提供科学依据。
3.农业管理:遥感技术可以对农业资源进行监测和管理。
通过获取农田的遥感图像,可以判断土壤质量、作物生长状况、灾害情况等,为农业生产提供有效的决策支持。
4.灾害监测与评估:遥感技术在灾害监测和评估方面具有重要的应用价值。
通过获取灾区的遥感图像,可以快速准确地评估灾害的范围和损失情况,为救援和重建工作提供参考。
总结遥感是一门应用广泛且具有重要意义的技术,它通过传感器获取地球表面的电磁辐射信息,并通过数字图像处理技术对遥感图像进行分析和应用。
遥感技术在地球观测、城市规划、农业管理、灾害监测等众多领域都有广泛的应用。
遥感原理与应用各章节知识点总结
遥感原理与应用各章节知识点总结如下:
1. 遥感定义:遥感是指通过非接触的方式,远距离感知目标物体的基本属性,包括位置、形状、大小、方向、表面温度等。
2. 电磁波谱:遥感的工作基础是电磁波谱,包括可见光、红外线、微波等不同波段的电磁波。
不同的物体对不同波段的电磁波有不同的反射和吸收特性,因此通过测量这些特性,可以反演出物体的基本属性。
3. 传感器:传感器是遥感的“眼睛”,它能够接收和记录电磁波谱中特定波段的信息。
常见的传感器包括光学相机、红外扫描仪、微波雷达等。
4. 数据处理:数据处理是遥感中非常重要的环节,它包括预处理、增强、变换和分析等步骤。
通过这些步骤,可以将原始的遥感数据进行处理,提取出有用的信息,并对这些信息进行解释和识别。
5. 应用领域:遥感的应用领域非常广泛,包括资源调查、环境保护、城市规划、交通管理、气象监测、灾害预警等。
6. 发展趋势:随着科技的不断发展,遥感技术也在不断进步和完善。
未来的遥感技术将更加注重智能化、自动化和实时化,同时也会更加注重多源数据的融合和综合应用。
以上是遥感原理与应用各章节知识点总结,如需获取更具体的内容,建议查阅相关教材或权威资料。
遥感技术的原理优势应用一、遥感技术的原理•遥感技术是通过卫星、无人机等载荷设备获取地球表面信息的一种技术。
其原理主要基于电磁波的辐射、反射和传播规律。
•遥感技术利用传感器捕捉地表反射、发射或辐射的电磁能量,将其转化为数字图像或其他形式的信息。
•遥感技术利用卫星和无人机等载荷设备对地面进行全方位、多角度观测,可以获取地球上的各种信息,包括地形、植被、水文、气候、土壤等。
二、遥感技术的优势遥感技术具有以下优势:1.获取大范围、无偏差的数据:遥感技术可以覆盖广阔的地理范围,获取大量数据,而且不受人为主观因素的限制,数据具有客观性和无偏差性。
2.周期性观测和重复性观测:遥感技术可以进行周期性的观测,从而获取同一地区不同时期的数据,并可以对数据进行比较分析,研究地表变化情况。
3.高时空分辨率的数据:遥感技术可以获取高分辨率的数据,即可以观测到较小的地物和地表细节,也可以观测到瞬时的地表变化。
4.多源数据融合:遥感技术可以融合多个传感器的数据,同时获取多种地球表面信息,提高信息提取的准确性和精度。
5.非接触式观测:遥感技术不需要直接接触地面,可以在较远的距离进行观测,减少了人为干扰和对环境的破坏。
三、遥感技术的应用领域遥感技术在许多领域中都得到了广泛应用,主要包括以下几个方面:1.农业:遥感技术可以用于农作物生长监测、土壤质量评估、农作物面积统计等。
通过遥感数据,可以提前预测农作物的生长状态和产量,为农业生产提供科学依据。
2.城市规划:遥感技术可以用于城市土地利用调查、建筑物高度测量、城市扩张监测等。
通过遥感数据,可以对城市的发展进行评估和规划,提高城市规划的科学性和可行性。
3.环境保护:遥感技术可以用于环境污染监测、水体质量评估、森林覆盖监测等。
通过遥感数据,可以及时监测环境变化,评估环境质量,提供科学依据和决策支持。
4.资源调查:遥感技术可以用于矿产资源调查、能源资源勘探、水资源管理等。
通过遥感数据,可以快速获取资源信息,为资源开发和管理提供科学依据。
第一章:绪论knowledge points(知识点):掌握:遥感(狭义)、遥感技术、景、分辨率;遥感技术系统的组成;遥感的特性;目前主要的遥感卫星、遥感软件了解:遥感的分类;遥感的发展史;遥感与测绘学科的关系遥感:是一门新兴的科学技术,主要指从远距离、高空以至外层空间的平台上,利用可见光、红外、微波等探测器,通过摄影或扫描、信息感应、传输和处理,从而识别地面物质的性质和运动状态的现代化技术系统。
对象:地面;载体:电磁波(主要)目的:研究地面物质的性质和运动状态(周期性、重复性)过程:成像、传输、处理、应用2.遥感技术:从地面到高空各种对地球、天体观测的综合性技术系统的总称。
1)空间信息采集2)地面接收与预处理3)地面实况调查4)信息的提取与应用1.遥感的特性:Characteristics宏观(空间)特性:Spatial视域范围大光谱特性:Spectral多波段,没有可见光的限制,扩大了观测范围时相特性:Temporal可周期成像,有利于研究和动态监测景的概念:在遥感数据的发布过程中,将获得的连续条带影像按一定的距离划分为若干幅影像。
空间分辨率:传感器瞬时视场可观察到的地面大小光谱分辨率:探测光谱辐射能量的最小波长间隔1米分辨率2.遥感的分类:Classes按遥感对象(应用)分:土地遥感;环境遥感;大气遥感;海洋遥感;农业遥感;林业遥感;水利遥感地质遥感(按接收信息方式分:主动遥感(Active);被动遥感(Passive)按遥感平台(高度)分:航天遥感(Astronautics);航空遥感(Airborne);地面遥感(Subaerial)主动方式:扫描(图像方式):像面扫描(被动型相控阵雷达);物面扫描:微波辐射计;真实孔径雷达;合成孔径雷达非扫描(非图像方式):微波散射计;微波高度计;激光光谱仪;激光高度计;激光水深计;激光测距仪被动方式:扫描(图像方式):1、像面扫描:电视摄像机;固体扫描仪(CCD)2物面扫描:光机扫描仪;固体扫描仪非扫描:1、非图像方式:微波辐射计;地磁测量仪;重力测量仪;傅立叶光谱仪2、图像方式(照相机):黑白;天然彩色;红外;彩色红外(2) 按平台(高度)分类:航天遥感Astronautics:1、轨道卫星:地球同步卫星;太阳同步卫星:长寿命(500-1000 km)(3600 km),短寿命(150-500 km)/2、载人飞船(<500 km)3、航天飞机(<300 km)4、/探空火箭(100-650 km)航空遥感Airborne:1、飞机:高空飞机(>15km);中空飞机(9-15km);低空飞机(<9km)2、气球:飘浮气球(<50km);系留气球(<5km)地面遥感Subaerial:高塔(<300m);车船(<30m);观测架(几米)§1-4 遥感与测绘的关系Relationship between RS. and Surveying & Mapping1. 遥感制图是测绘领域的发展方向:空间范围广,信息量大;成图周期短,能以一定的周期反复观测几乎全部地球表面,便于实时动态监测;能够快速获取大量的地面景物的直观的定位资料,可用作研究地物的空间分布;受地域、气候、地形等的限制小;精度提高(接图少);完成了制图自动化(软件功能强大)2.利用遥感卫星影像制图的优点:(Advantages)借助影像与地面相应点间的对应关系,确定地物的种类、形状、大小、及其平面位置;借助影像与地面相应点间的几何关系,制作各种比例尺的地形图;加速了测绘工作进度,节省了劳动力,扩大了工作的范围和领域。
第一章1、遥感的定义:通过不接触被探测的目标,利用传感器获取目标数据,通过对数据进行分析,获取被探测目标、区域和现象的有用信息2、广义的遥感:在不直接接触的情况下,对目标物或自然现象远距离感知的一种探测技术。
3、狭义的遥感:指在高空和外层空间的各种平台上,应用各种传感器(摄影仪、扫描仪和雷达等)获取地表的信息,通过数据的传输和处理,从而实现研究地面物体形状、大小、位置、性质以及环境的相互关系。
4、探测依据:目标物与电磁波的相互作用,构成了目标物的电磁波特性。
(信息被探测的依据)传感器能收集地表信息,因为地表任何物体表面都辐射电磁波,同时也反射入照的电磁波。
地表任何物体表面,随其材料、结构、物理/化学特性,呈现自己的波谱辐射亮度。
5、遥感的特点:1)手段多,获取的信息量大。
波段的延长(可见光、红外、微波)使对地球的观测走向了全天候全天时。
2)宏观性,综合性。
覆盖围大,信息丰富,一景TM影像185×185km2,可见的,潜在的各类地表景观信息。
3)时间周期短。
重复探测,有利于进行动态分析6、遥感数据处理过程7、遥感系统:1)被探测目标携带信息2)电磁波辐射信息的获取3)信息的传输和记录4)信息的处理和应用第三章1、电磁波的概念:在真空或物质中电场和磁场的相互振荡以及振动而进行传输的能量波。
2、电磁波特征(特征及体现):1)波动性:电磁辐射以波动的形式在空间中传播2)粒子性:以电磁波形式传播出去的能量为辐射能,其传播也表现为光子组成的粒子流的运动紫外线、X射线、γ射线——粒子性可见光、红外线——波动性、粒子性微波、无线电波——波动性3、叠加原理:当空间同时存在由两个或两个以上的波源产生的波时,每个波并不因其他的波的存在而改变其传播规律,仍保持原有的频率(或波长)和振动方向,按照自己的传播方向继续前进,而空间相遇的点的振动的物理量,则等于各个独立波在该点激起的振动的物理量之和。
4、相干性与非相干性:由叠加原理可知,当两列频率、振动方向相同,相位相同或相位差恒定的电磁波叠加时,在空间会出现某些地方的振动始终加强,另一些地方的振动始终减弱或完全抵消,这种现象叫电磁波的相干性。
第一篇名词解释1、遥感技术:在遥感平台的支持下,不与探测目标接触,从远处吧目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术。
2、遥感器:遥感器又称为传感器,是接收、记录目标电磁波特性的仪器。
常见的传感器有摄影机、扫描仪、雷达、辐射计、散射计等。
3、电磁波谱:将电磁波在真空中传播的波长或频率、递增或递减依次排列为一个序谱,将此序谱称为电磁波谱。
4、黑体:对任何波长的电磁辐射都全吸收的假想的辐射体。
5、大气散射:辐射在传播过程中遇到小微粒(气体分子或悬浮微粒等)而使传播方向改变,并向各个方向散开,从而减弱了原方向的辐射强度、增加了其他方向的辐射强度的现象。
6、大气窗口:电磁波通过大气层时较少被反射、吸收和散射的,透过率较高的波段。
7、地物波谱:地物的电磁波响应特性随电磁波长改变而变化的规律,称为地表物体波谱,简称地物波谱。
地物波谱特性是电磁辐射与地物相互作用的一种表现。
8、地物反射率:地物的反射能量与入射总能量的比,即ρ=(Pρ/P0 )×100%。
表征物体对电磁波谱的反射能力。
9、地物反射波谱:是研究可见光至近红外波段上地物反射率随波长的变化规律。
表示方法:一般采用二维几何空间内的曲线表示(地物反射波谱曲线),横坐标表示波长,纵坐标表示反射率。
10、摄影成像:依靠光学镜头及放置在焦平面的感光记录介质(胶片or CCD)来记录物体的影像的成像方式11、扫描成像:依靠探测元件和扫描镜对目标地物以瞬时视场为单位进行逐点、逐行取样,以得到目标地物电磁波特性信息,形成一定谱段图像的成像方式。
12、微波遥感:通过微波传感器,获取目标地物在1mm—1m光谱范围内发射或反射的电磁辐射,以此为依据,通过判读处理来识别地物的技术。
13、像点位移:中心投影的影像上,地形的起伏除引起相片比例尺变化外,还会引起平面上的点位在相片位置上的移动,这种现象称为像点位移,其位移量就是中心投影与垂直投影在统一水平面上的投影误差。
遥感技术的原理与应用遥感,也叫遥测遥感技术,是指利用传感器和卫星等远距离探测技术获取地球表面信息的技术。
遥感技术可以获取地球大范围、连续的、实时的、快速的不同层次、不同时间尺度的图像和数据,为自然资源调查、环境监测、水文水资源调查、灾害预警、城市规划、农业生产、林业经营、海洋调查等领域提供了广阔的应用前景。
遥感技术的原理遥感技术的基本原理是利用物体对电磁波的反射、辐射或传输特性来提取有关于物体的信息。
电磁波包括可见光、近红外线、红外线、微波等,在地球大气不同层次的介质中传播,与地球上不同的物体交互作用并被散射、反射、透过、辐射等,再由探测器返回地面。
遥感技术的应用1.自然资源调查利用遥感技术可以进行大规模的土地资源调查,对土地利用状态和方式进行监测、评估、预测和分析,为农业生产、生态环境保护、城市规划等提供数据支持。
2.环境监测遥感技术可以快速、广泛、动态地监测环境污染源、污染程度和污染物在大气、水源等介质中的扩散和运移过程,为环境保护和生态环境治理提供数据支持。
3.水文水资源调查利用遥感技术可以获取地表水资源、地下水资源、水土流失等水文水资源信息,辅助决策和规划。
4.灾害预警遥感技术可以对自然灾害的形成、演变、影响范围等进行及时监测和预警,提供预防自然灾害的预警和指导信息。
5.城市规划遥感技术可以获取城市空间结构、土地利用变化、建筑物高度、道路交通情况等信息,为城市规划和土地利用管理提供数据支持。
6.农业生产利用遥感技术可以进行农业作物遥感监测,提高农业生产效益,为农业决策和精准农业提供技术支持。
7.林业经营遥感技术可以实现森林资源动态监测、调查、统计和土地分类以及森林病虫害的应对等一系列生态和经济管理活动的支持,为林业经营管理提供数据支持。
8.海洋调查遥感技术可以获取海水中的浮游动植物、河口等区域的悬浮物、沉积物、水温、水深等信息,为海洋调查和海洋经济活动提供数据支持。
结语总之,遥感技术是现代地球科学和信息技术的重要组成部分,其应用范围广泛,可以为各个领域的决策者和研究者提供准确和全面的地球信息。
绪论第一章遥感物理基础Chapter 1 Physical basis of remote sensing电磁波:在真空或物质中通过传播电磁场的振动而传输电磁能量的波。
(在真空或介质中传播的交变电磁场)电磁波是通过电场和磁场之间相互联系和转化传播的,是物质运动能量的一种特殊传递形式。
原子光谱、分子光谱和晶体光谱波粒二象性:1 波动性:表现出干涉、衍射、偏振等现象。
一般成像只记录了电磁波的振幅,只有全息成像时才同时记录振幅和相位,在遥感成像时,只有雷达成像是如此。
干涉的影响:利—利用能量增大的趋势使图像清晰,方向性强;弊—造成同一物质所表现的性质不同SAR成像时,斑点的产生就是由于电磁波的干涉引起的。
衍射的影响:(1)使电磁辐射通量的数量、质量和方向都发生变化,结果测量不准确,对目标物的解译也带来困难。
(2)缩小阴影区域。
(3)影响遥感仪器的分辨能力。
光的偏振现象说明光波是横波,在微波技术中称为“极化”。
多普勒效应:电磁辐射因辐射源或观察者相对于传播介质的移动,而使观察者接受到的频率发生变化的现象。
2 粒子性的基本特点是能量分布的量子化光电效应应用:扫描成像、电视摄像等,把光像变成电子像,把对人眼无作用的电磁辐射变成人们可以看见的影像。
3、波粒二象性的关系电磁波的波动性与粒子性是对立统一的,E(能量)、P(动量)是粒子的属性,υ(频率),λ(波长)是波动的属性,二者通过h联系起来。
光的波动性和粒子性是光在不同条件下的不同表现:从数量上看:少量光子的运动表现出粒子性;大量光子的运动表现出波动性。
从频率上看:频率高的光子粒子性强,频率低的光子波动性强。
当光和其它物质发生相互作用时表现为粒子性,当在传播时表现为波动性。
为什么说遥感的物理基础是电磁波理论?➢不同地物电磁波特性不同(表现为不同颜色,不同温度)➢传感器接收的是电磁波➢数据传输是电磁波➢数据处理的是地物电磁波信息➢应用的是地物电磁波特性电磁波谱:将电磁波在真空中按照波长或频率的依大小顺序划分成波段,排列成谱。
遥感的原理与应用心得体会一、遥感的原理遥感是指通过使用感知设备获取目标物体的信息,而不需要直接接触物体。
它通过感知设备记录和测量不同波段的能量,从而提供有关地球表面各种特征的信息。
遥感的原理主要包括以下几个方面:1. 电磁能量的辐射与传播遥感主要利用电磁能量的辐射与传播特性来实现目标物体信息的获取。
电磁能量在不同波段之间以不同的速度传播,不同波段的电磁辐射能量与物体的特性有关,因此可以通过测量不同波段的电磁辐射能量来获取目标物体的信息。
2. 电磁能量与物体的相互作用当电磁波束照射到物体表面时,它会与物体表面发生相互作用。
根据物体的不同特性,电磁能量可以被反射、吸收和散射。
通过测量电磁能量的反射、吸收和散射情况,可以获取物体的特性信息。
3. 遥感数据的获取与处理遥感数据的获取主要通过使用感知设备,如卫星、飞机或地面测量仪器来获取。
通过这些感知设备,可以获取到不同波段的电磁辐射能量数据。
然后,使用遥感技术对这些数据进行处理和分析,提取出目标物体的信息。
二、遥感的应用遥感技术在许多领域都有广泛的应用。
它可以提供大量的地球表面信息,对于环境监测、资源管理、农业、气象预测等都有重要意义。
以下是一些典型的遥感应用:1. 地质勘查与矿产资源评估遥感技术可以提供大面积的地质和矿产信息,通过分析遥感数据,可以快速准确地识别地质构造和矿产类型,提供重要的地质勘查信息。
2. 环境监测与生态保护遥感技术可以对环境污染、森林砍伐、湿地损失等进行监测和评估,帮助制定环保政策和保护措施,维护生态平衡。
3. 农业生产监测与精准农业遥感技术可以监测农作物的种植情况、生长状态、土壤湿度等,提供精准的农业生产监测和决策支持,提高农业生产效益。
4. 城市规划与土地管理遥感技术可以提供大规模的城市地貌、土地利用、建筑物分布等信息,用于城市规划、土地管理和资源调配。
5. 自然灾害监测与预警遥感技术可以对地震、洪水、火灾等自然灾害进行监测和预警,帮助及时采取应对措施,减少灾害损失。
遥感基础学习知识原理与应用知识点一、遥感的基本概念与分类1.遥感的定义:遥感是指通过遥远距离采集并记录地球表面信息的科学技术。
2.遥感的分类:按照遥感的数据类型可分为光学遥感、微波遥感和热红外遥感;按照数据获取平台可分为航空遥感和卫星遥感。
二、遥感的基本原理1.辐射传输原理:地球表面物体受到太阳辐射照射后,会发生反射、散射和吸收,这些辐射经过大气层的传输和变化后达到遥感仪器,形成遥感数据。
2.遥感数据的获取原理:通过遥感仪器记录地球表面物体的辐射或能量信息,如通过遥感卫星的光学传感器记录地球表面反射光谱。
3.遥感数据的处理原理:遥感数据需要经过预处理、解译和分析等过程,以提取有价值的信息。
三、遥感的主要技术与方法1.遥感图像解译:通过对遥感图像进行目视或计算机辅助解译,识别和判读地表物体。
2.遥感数字化:遥感图像通过扫描或数字相机获取,然后通过数字化处理,得到数字图像。
3.遥感分类:将遥感图像中的地表物体划分成不同的类别或类型,如土地利用分类、植被类型分类等。
4.遥感定量分析:通过对遥感图像进行数学模型和算法的分析,提取地表物体的数量信息,如土地覆盖变化分析、物质迁移分析等。
5.遥感辅助决策:通过利用遥感图像数据进行地表资源调查、规划设计和决策支持等。
四、典型遥感应用领域1.地质勘探与矿产资源:通过遥感技术可以探测到地下的地质信息和矿产资源分布情况。
2.土地利用与土地覆盖:通过遥感图像可以对土地利用类型进行分类和监测,了解土地利用变化和土地覆盖的动态变化情况。
3.植被监测与农业信息提取:通过遥感技术可以获取到植被的生长状况、植被类型和叶面积指数等信息,对农业生产进行监测和评估。
4.城市规划与环境监测:通过遥感技术可以获取到城市的用地分布、建筑物高度和环境污染等信息,对城市规划和环境保护进行监测和分析。
5.自然灾害监测与评估:通过遥感技术可以实时获取地震、火灾、洪水等自然灾害的信息,进行监测和评估,为应急救灾提供支持。
遥感原理与应用知识点总结遥感原理与应用是地理信息科学和地球科学领域中的重要学科,主要涉及利用遥感技术获取地球表面信息的方法、原理和应用。
以下是遥感原理与应用的重要知识点总结:1、遥感定义:遥感是指通过非接触传感器,从远处获取地球表面各类信息的技术。
2、电磁波谱:遥感技术主要利用电磁波谱中的可见光、红外线、微波等波段,不同波段的信息携带的地面信息不同。
3、辐射与反射:遥感传感器接收到的辐射包括目标物体的自身辐射和反射太阳光。
反射率是物体反射能量与入射能量之比,是遥感影像分析的重要参数。
4、分辨率:分辨率是遥感影像中能够识别的最小细节,可分为空间分辨率、光谱分辨率和时间分辨率。
5、图像增强:通过图像处理技术,对遥感影像进行色彩调整、滤波、边缘增强等操作,以提高影像的可读性和目标物体的识别精度。
6、图像分类:基于遥感影像的像素值和特征,利用计算机视觉和图像处理技术进行自动或半自动的分类,得到专题图层。
7、动态监测:遥感技术可以对同一地区不同时相的影像进行对比分析,发现地表信息的动态变化,如土地利用变化、环境污染监测等。
8、应用领域:遥感技术在环境保护、城市规划、资源调查、灾害监测、全球变化研究等领域有广泛应用。
9、遥感数据融合:将不同来源的遥感数据融合在一起,可以提高遥感影像的质量和精度,为应用提供更加准确可靠的数据支持。
10、3S技术:遥感(Remote Sensing)、地理信息系统(Geographic Information System)和全球定位系统(Global Positioning System)的结合,可以实现空间数据的快速获取、处理和应用。
以上知识点是遥感原理与应用学科的核心内容,理解和掌握这些知识点有助于更好地应用遥感技术解决实际问题。
同时,随着遥感技术的发展,新的理论和方法不断涌现,需要不断学习和更新知识。
除了上述知识点外,遥感原理与应用还包括许多其他重要内容。
例如,传感器设计和制造涉及的技术和标准,遥感数据的预处理和后处理方法,以及遥感应用中涉及的法规和政策等。
遥感原理与应用知识点1. 遥感原理:遥感是通过感知地球表面的电磁辐射,获取地球表面信息的一种技术。
遥感原理包括光谱原理、能量传输原理、能量反射原理、能量辐射原理等。
2. 遥感数据:遥感数据是通过遥感技术获取的地球表面信息的数字化数据。
遥感数据分为光学遥感数据和微波遥感数据两大类。
3. 遥感影像解译:遥感影像解译是指通过对遥感影像进行分析和解读,提取地物信息和分析地物特征的过程。
遥感影像解译可以通过目视解译、计算机辅助解译和机器学习等方法进行。
4. 遥感应用领域:遥感技术广泛应用于地质勘探、农业、林业、环境监测、城市规划、气象预测等领域。
遥感技术可以提供大范围、高分辨率、多时相的地表信息,为各个领域的研究和决策提供支持。
5. 遥感数据处理:遥感数据处理是指对遥感数据进行预处理、特征提取、分类和变化检测等操作的过程。
遥感数据处理可以利用遥感软件和算法进行,包括影像校正、影像增强、影像分类等步骤。
6. 遥感技术发展趋势:随着遥感技术的不断发展,遥感数据的获取和处理能力不断提升,遥感技术在高分辨率遥感、多源数据融合、人工智能和机器学习等方面的应用也越来越广泛。
7. 遥感产品:遥感产品是指通过对遥感数据进行处理和分析得到的具有实际应用价值的产品,如土地利用/覆盖分类图、植被指数图、地形图等。
遥感产品可以为各种应用领域提供信息支持和决策参考。
8. 遥感与地理信息系统(GIS)的结合:遥感数据可以与地理信息系统(GIS)相结合,实现对地理信息的获取、管理和分析。
遥感数据可以作为GIS的数据源,为GIS提供空间数据和地理信息的更新和补充。
遥感原理与应用的总结1. 什么是遥感遥感(Remote Sensing)是指利用卫星、飞机、无人机等载体将地球表面信息转化为人类可以观测和分析的数据的技术和科学方法。
通过遥感技术可以获取地球表面的环境和地理信息,帮助我们更好地认识和管理地球。
2. 遥感的原理遥感依靠电磁辐射与地物的相互作用来获取信息。
电磁辐射是自然界普遍存在的一种能量传播方式,包括可见光、红外线、微波、雷达波等。
遥感技术通过测量和分析地球表面的电磁辐射来了解地球的环境和地貌。
遥感的原理可以简单概括为以下几个步骤:2.1 辐射源发射地球表面的物体会向周围环境发射各种波长的电磁辐射。
这些辐射可以是自然发射的,也可以是人为引起的,比如太阳辐射、人工光源辐射等。
2.2 辐射传输辐射从辐射源处传播到地球大气和地表的过程称为辐射传输。
这个过程受到大气中的气体、水汽、颗粒物等的吸收、散射和折射等影响。
2.3 辐射接收遥感载体(比如卫星、飞机、无人机)上的接收器会接收地球表面发出的辐射,形成遥感图像或数据。
接收到的辐射信号会受到大气的影响,需要进行辐射校正处理。
2.4 图像处理接收到的遥感图像或数据需要进行处理,包括辐射定标、几何校正、空间重采样、切片和拼接等操作。
通过图像处理,可以提取出地表特征和信息。
3. 遥感的应用遥感技术在各个领域中都有广泛的应用,主要包括:3.1 大气环境监测遥感技术可以监测大气污染物的浓度和排放源,用于环境保护和预警。
通过遥感技术,可以实时监测大气中的二氧化碳、臭氧、颗粒物等污染物的分布情况和运动轨迹。
3.2 农业资源调查遥感技术可以通过监测农田的植被生长情况、土地利用状况和水资源分布等数据,为农业生产提供决策支持。
利用遥感技术可以对农田进行精准测绘,提高农作物的产量和品质。
3.3 水资源管理遥感技术可以监测水体的面积、水质和蓄水量等信息,用于水资源的管理和保护。
通过遥感技术,可以实时监测水资源的使用情况,为水资源的合理分配提供数据支持。
遥感原理与应用遥感技术是一种利用航天器、飞机、无人机等载具获取地面信息的技术。
它通过获取地面的电磁辐射信息,进行数据处理和分析,从而实现对地表、大气、海洋等对象的观测和监测。
遥感技术在农业、环境保护、城市规划、资源勘查等领域有着广泛的应用。
遥感技术的原理主要是利用地物对电磁波的反射、辐射和散射特性,通过接收地物的电磁波信号,来获取地物的信息。
地球上的地物会对不同波长的电磁波有不同的反射、吸收和透射特性,因此可以通过接收不同波长的电磁波信号,来获取地物的特征信息。
遥感技术主要包括光学遥感、红外遥感、微波遥感等多种方式。
光学遥感是利用可见光和近红外光进行观测的遥感技术。
它可以获取地表的颜色、形状、纹理等信息,对于植被、土壤、水体等地物有着较好的识别能力。
而红外遥感则是利用地物对红外波段的反射和辐射特性进行观测,可以获取地表温度、植被生长状态等信息。
微波遥感则是利用微波波段进行地物观测,对于云层、大气、海洋等有着较好的透射能力,可以实现在不同天气条件下的观测。
遥感技术的应用非常广泛,其中包括农业领域。
农业遥感可以通过获取植被的生长状态、土壤水分情况等信息,来进行农作物的监测和预测。
通过遥感技术,可以实现对农田的精细化管理,提高农作物的产量和质量。
在环境保护领域,遥感技术可以用于监测大气污染、水体污染、森林砍伐等情况,为环境保护工作提供数据支持。
在城市规划和资源勘查方面,遥感技术可以用于城市用地规划、矿产资源勘查等工作,为城市建设和资源开发提供科学依据。
总的来说,遥感技术在各个领域都有着重要的应用价值。
随着遥感技术的不断发展和完善,相信它将会在更多领域发挥重要作用,为人类社会的可持续发展做出更大的贡献。