2020年整理勾股定理基础训练题.doc
- 格式:doc
- 大小:163.00 KB
- 文档页数:5
勾股定理基础练习题一、选择题1. 在直角三角形中,若一条直角边的长度为3,另一条直角边的长度为4,则斜边的长度为()。
A. 5B. 6C. 7D. 82. 已知直角三角形的斜边长度为10,一条直角边长度为6,则另一条直角边的长度为()。
A. 8B. 9C. 10D. 113. 下列选项中,符合勾股定理的是()。
A. 三角形三边长度分别为3、4、6B. 三角形三边长度分别为5、12、13C. 三角形三边长度分别为6、8、10D. 三角形三边长度分别为7、24、25二、填空题1. 在直角三角形ABC中,∠C为直角,AC=3,BC=4,则AB=______。
2. 已知直角三角形的斜边长度为13,一条直角边长度为5,则另一条直角边的长度为______。
3. 若直角三角形的两条直角边长度分别为a和b,斜边长度为c,则勾股定理可表示为:______。
三、解答题1. 在直角三角形DEF中,∠F为直角,DE=5,EF=12,求DF的长度。
2. 已知直角三角形的一条直角边长度为8,斜边长度为10,求另一条直角边的长度。
3. 判断下列各组长度是否能构成直角三角形,并说明理由:(1)7、24、25(2)9、12、15(3)10、16、204. 在直角三角形ABC中,∠C为直角,AC=6,BC=8,求∠A的正弦值。
5. 已知直角三角形的斜边长度为15,一条直角边长度为9,求该直角三角形的面积。
四、判断题1. 在直角三角形中,斜边长度总是大于任意一条直角边的长度。
()2. 如果一个三角形的三边长度分别为a、b、c,并且满足a^2 +b^2 = c^2,那么这个三角形一定是直角三角形。
()3. 在直角三角形中,斜边上的中线等于斜边的一半。
()五、应用题1. 一个直角三角形的一条直角边长为8厘米,斜边长为10厘米,求这个三角形的周长。
2. 在一个直角三角形中,斜边的长度是直角边长度的2倍,求斜边与较短直角边的长度比。
3. 一块直角三角形的土地,两条直角边的长度分别为60米和80米,求这块土地的面积。
勾股定理基础练习题(含答案与解析)勾股定理勾股定理基础练习题(含答案与解析)第Ⅰ卷(选择题)请点击修改第I卷的文字说明一.选择题(共15小题)1.在直角三角形中,有两边分别为3和4,则第三边是()A.1 B.5 C.D.5或2.直角三角形有一条直角边为6,另两条边长是连续偶数,则该三角形周长为()A.20 B.22 C.24 D.263.如图,两个较大正方形的面积分别为225,289,则字母A所代表的正方形的面积为()A.4 B.8 C.16 D.644.Rt△ABC中,斜边BC=2,则AB2+AC2+BC2的值为()A.8 B.4 C.6 D.无法计算5.如图,在△ABC中,AD⊥BC于D,AB=17,BD=15,DC=6,则AC的长为()A.11 B.10 C.9 D.86.若等腰三角形的腰长为10,底边长为12,则底边上的高为()A.6 B.7 C.8 D.97.一直角三角形的一直角边长为6,斜边长比另一直角边长大2,则斜边的长为()A.4 B.6 C.8 D.108.如图所示:是一段楼梯,高BC是3m,斜边AC是5m,如果在楼梯上铺地毯,那么至少需要地毯()勾股定理基础练习题(含答案与解析)A.5m B.6m C.7m D.8m9.如图,已知,CD是Rt△ABC斜边上的高,∠ACB=90°,AC=4m,BC=3m,则线段CD的长为()A.5m B.C.D.10.若等边△ABC的边长为2cm,那么△ABC的面积为()A.cm2B.2cm2 C.3cm2 D.4cm211.直角三角形的一直角边长是12,斜边长是15,则另一直角边是()A.8 B.9 C.10 D.1112.如图,2×2的方格中,小正方形的边长是1,点A、B、C都在格点上,则AB边上的高长为()A.B.C.D.13.用下列各组线段为边,能构成直角三角形的是()A.1cm,2cm,3cm B.cm,cm,cm C.1cm,2cm,cm D.2cm,3cm,4cm14.将一个直角三角形的三边扩大3倍,得到的三角形是()A.直角三角形 B.锐角三角形 C.钝角三角形 D.不能确定15.下列条件中,不能判断△ABC为直角三角形的是()A.a=1.5,b=2,c=2.5 B.a:b:c=3:4:5C.∠A+∠B=∠C D.∠A:∠B:∠C=3:4:5勾股定理基础练习题(含答案与解析)第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明评卷人得分二.填空题(共13小题)16.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A,B,C,D的面积和是49cm2,则其中最大的正方形S 的边长为cm.17.如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为.18.如图:5米长的滑梯AB开始在B点距墙面水平距离3米,当向后移动1米,A点也随着向下滑一段距离,则下滑的距离(大于,小于或等于)1米.19.如图,长方体长、宽、高分别为4cm,3cm,12cm,则BD′=.勾股定理基础练习题(含答案与解析)20.如图,由4个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形面积是9,小正方形面积是1,直角三角形较长直角边为a,较短直角边为b,则ab的值是.21.2002年8月在北京召开的国际数学大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图),如果大正方形的面积是25,小正方形的面积是1,直角三角形较短的直角边为a,较长的直角边为b,那么(a+b)2的值为.22.把两个全等的直角三角形拼成如图图形,那么图中三角形面积之和与梯形面积之间的关系用式子可表示为,整理后即为.23.如图,正方形网格中的△ABC,若小方格边长都为1,则△ABC是:三角形.勾股定理基础练习题(含答案与解析)24.如图,四边形ABCD中,∠B=90°,AB=4cm,BC=3cm,AD=13cm,CD=12cm,则四边形ABCD的面积cm2.25.如图,AD=8,CD=6,∠ADC=90°,AB=26,BC=24,该图形的面积等于.26.已知:如图,△ABC是边长3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止当t=时,△PBQ是直角三角形.27.如图,圆柱形容器高为18cm,底面周长为24cm,在杯内壁离杯底4cm 的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到达内壁B处的最短距离为cm.勾股定理基础练习题(含答案与解析)28.一个圆桶儿,底面直径为16cm,高为18cm,有一只小虫从底部点A处爬到上底B处,则小虫所爬的最短路径长是(π取3).评卷人得分三.解答题(共5小题)29.如图,已知一架竹梯AB斜靠在墙角MON处,竹梯AB=13m,梯子底端离墙角的距离BO=5m.(1)求这个梯子顶端A距地面有多高;(2)如果梯子的顶端A下滑4m到点C,那么梯子的底部B在水平方向上滑动的距离BD=4m吗?为什么?30.如图,一个直径为10cm的杯子,在它的正中间竖直放一根筷子,筷子露出杯子外1cm,当筷子倒向杯壁时(筷子底端不动),筷子顶端刚好触到杯口,求筷子长度和杯子的高度.勾股定理基础练习题(含答案与解析)31.在甲村至乙村的公路有一块山地正在开发,现有一C处需要爆破.已知点C与公路上的停靠站A的距离为300米,与公路上的另一停靠站B的距离为400米,且CA⊥CB,如图所示.为了安全起见,爆破点C周围半径250米范围内不得进入,问在进行爆破时,公路AB段是否有危险而需要暂时封锁?请通过计算进行说明.32.如图,一只蜘蛛在一块长方体木块的一个顶点A处,一只苍蝇在这个长方体的对角顶点G处,若AB=3cm,BC=5cm,BF=6cm,问蜘蛛要沿着怎样的路线爬行,才能最快抓到苍蝇?这时蜘蛛走过的路程是多少厘米?33.有两棵树,一棵高10米,另一棵高4米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行多什么米?勾股定理基础练习题(含答案与解析)本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
勾股定理基础测试题一、 选择题 考点:(1)勾股定理 (2)互逆命题与互逆定理(3)勾股定理的逆定理(4)勾股数 (5(n 为大于1的整数)的线段 1.下列各组数中,能构成直角三角形的是( )A :4,5,6B :1,1:6,8,11 D :5,12,23 2.在平面直角坐标系中,已知点P 的坐标是(3,4),则OP 的长为( )A :3B :4C :5D :73.在Rt △ABC 中,∠C =90°,∠B =45°,c =10,则a 的长为( ) A :5 B :10 C :25 D :54.已知一个Rt △的两边长分别为3和4,则第三边长是( )55.下面是直角三角形具备的几条性质: ①两个较小的内角之和等于较大的内角;②三个内角的和等于180°; ③面积等于较短的两边的乘积的一半;④有斜边和一条直角边相等的两个直角三角形全等。
其中一般三角形不具备的有 ( )A.4条B.3条C.2条D.1条6.△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,AB =8,BC =15,CA =17,则下列结论不正确的是( )A :△ABC 是直角三角形,且AC 为斜边B :△ABC 是直角三角形,且∠ABC =90° C :△ABC 的面积是60D :△ABC 是直角三角形,且∠A =60°7.如图,有一块直角三角形纸片,两直角边AC =6cm ,BC =8cm ,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于 ( )A.2cmB.3 cmC.4 cmD.5 cm8.如图,在△ABC 中,∠ACB=90°,AC=12,BC=5,AM=AC ,BN=BC ,则MN 的长为 ( )A 、2B 、2.6C 、3D 、4第9题9.如图,直角三角形三边上的半圆的面积依次从小到大记作S 1、S 2、S 3,则S 1、S 2、S 3之间的关系是( ) (A )S 1+S 2>S 3 (B )S 1+S 2<S 3 (C )S 1+S 2=S 3 (D )S 12+S 22=S 3210.放学后,斌斌先去同学小华家玩了一回,再回到家里。
2020年八年级数学下册《勾股定理》基础练习题一、选择题1.下列各组数,可以作为直角三角形的三边长的是( )A.2,3,4B.7,24,25C.8,12,20D.5,13,15.2.在下列四组数中,不是勾股数的一组数是( )A.a=15,b=8,c=17B.a=9,b=12,c=15C.a=7,b=24,c=25D.a=3,b=5,c=73.一直角三角形的两直角边长为12和16,则斜边上中线长为()A.20B.10C.18D.254.如图,在一个高为3米,长为5米的楼梯表面铺地毯,则地毯长度为()米A.4米B.5米C.7米D.8米5.如图所示,在数轴上点A所表示的数为a,则a的值为()A.﹣1﹣ B.1﹣ C.﹣ D.﹣1+6.如图,在方格纸中,假设每个小正方形的面积为2,则图中的四条线段中长度是有理数的有()条.A.1B.2C.3D.47.如图,正方形网格中,每个小正方形的边长为1,则网格上的三角形ABC中,边长为无理数的边数是()A.0B.1C.2D.38.在一个直角三角形中,若斜边的长是13,一条直角边的长为12,那么这个直角三角形的面积是( )A.30B.40C.50D.609.若等腰三角形的腰长为5cm,底长为8cm,那么腰上的高为( )A.12cmB.10cmC.4.8cmD.6cm10.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A.48B.60C.74D.8011.如图所示,AB=BC=CD=DE=1,AB⊥BC,AC⊥CD,AD⊥DE,则AE=()A.1B.C.D.212.已知直角三角形两边的长为3和4,则此三角形的周长为().A.12B.7+C.12或7+ D.以上都不对二、填空题13.在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c.(1)若a=2,b=4,则c=__________;(2)若a=2,c=4,则b=__________;(3)若c=26,a︰b=5︰12,则a=__________,b=__________.14.如图,则小正方形的面积S= .15.直角三角形的两边长为5和7,则第三边长为.16.如图,已知OA=OB,那么数轴上点A所表示的数是____________.17.若三角形三边之比为3:4:5,周长为24,则三角形面积.18.一个正方形的面积是5,那么这个正方形的对角线的长度为.三、解答题19.写出如图格点△ABC各顶点的坐标,求出此三角形的周长。
勾股定理课时练(1)1.在直角三角形ABC中,斜边AB=1,则AB222ACBC++的值是()A.2B.4C.6D.82.如图18-2-4所示,有一个形状为直角梯形的零件ABCD,AD∥BC,斜腰DC的长为10 cm,∠D=120°,则该零件另一腰AB的长是______ cm(结果不取近似值).3.直角三角形两直角边长分别为5和12,则它斜边上的高为_______.4.一根旗杆于离地面12m处断裂,犹如装有铰链那样倒向地面,旗杆顶落于离旗杆地步16m,旗杆在断裂之前高多少m?5.如图,如下图,今年的冰雪灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是米.6.飞机在空中水平飞行,某一时刻刚好飞到一个男孩子头顶正上方4000米处,过了20秒,飞机距离这个男孩头顶5000米,求飞机每小时飞行多少千米?7.如图所示,无盖玻璃容器,高18cm,底面周长为60cm,在外侧距下底1cm的点C处有一蜘蛛,与蜘蛛相对的容器的上口外侧距开口1cm的F处有一苍蝇,试求急于扑货苍蝇充饥的蜘蛛,所走的最短路线的长度. 8.一个零件的形状如图所示,已知AC=3cm,AB=4cm,BD=12cm。
求CD的长.9.如图,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,BC=2,CD=3,求AB的长.10.如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北7km处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?11如图,某会展中心在会展期间准备将高5m,长13m,宽2m的楼道上铺地毯,已知地毯平方米18元,请你帮助计算一下,铺完这个楼道至少需要多少元钱?12.甲、乙两位探险者到沙漠进行探险,没有了水,需要寻找水源.为了不致于走散,他们用两部对话机联系,已知对话机的有效距离为15千米.早晨8:00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:00,甲、乙二人相距多远?还能保持联系吗?第一课时答案:1.A ,提示:根据勾股定理得122=+AC BC,所以AB 222AC BC ++=1+1=2;2.4,提示:由勾股定理可得斜边的长为5m ,而3+4-5=2m ,所以他们少走了4步.3.1360 ,提示:设斜边的高为x ,根据勾股定理求斜边为1316951222==+ ,再利用面积法得,1360,132112521=⨯⨯=⨯⨯x x ;4. 解:依题意,AB=16m ,AC=12m ,在直角三角形ABC 中,由勾股定理,222222201216=+=+=AC AB BC ,所以BC=20m ,20+12=32(m ), 故旗杆在断裂之前有32m 高. 5.86. 解:如图,由题意得,AC=4000米,∠C=90°,AB=5000米,由勾股定理得BC=30004000500022=-(米),所以飞机飞行的速度为5403600203=(千米/小时) 7. 解:将曲线沿AB 展开,如图所示,过点C 作CE ⊥AB 于E. 在R 90,=∠∆CEF CEF t ,EF=18-1-1=16(cm ),CE=)(3060.21cm =⨯,由勾股定理,得CF=)(3416302222cm EF CE =+=+8.解:在直角三角形ABC 中,根据勾股定理,得254322222=+=+=AB AC BC在直角三角形CBD 中,根据勾股定理,得CD 2=BC 2+BD 2=25+122=169,所以CD=13.9. 解:延长BC 、AD 交于点E.(如图所示)∵∠B=90°,∠A=60°,∴∠E=30°又∵CD=3,∴CE=6,∴BE=8, 设AB=x ,则AE=2x ,由勾股定理。
勾股定理基础题1.已知一直角三角形的木板,三边的平方和为1800cm 2,则斜边长为( ).(A )80cm (B)30cm (C )90cm (D120cm 。
2。
直角三角形中,以直角边为边长的两个正方形的面积分别为36和64,那么以斜边为边长的正方形的面积是( )A 。
54 B.100 C 。
72 D.1203、有两棵树,一棵高6米,另一棵高2米,两树相距5米.一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了米.A.4 B 。
5 C 。
3 D.414、直角三角形两条直角边的长分别为8和6,则斜边上的高为( )(A )2.4 (B )4。
8 (C )1.2 (D )105、直角三角形的三边上的半圆面积之间的关系是( )A 、321S S S >+B 、321S S S <+C 、321S S S =+D 、无法判断6、如图字母A 所代表的正方形的面积是 ( )A 。
、20 B. 24 C 、30 D 。
747、如图,一圆柱高8cm ,底面半径2cm ,一只蚂蚁从点A 爬到点B 处吃食,要爬行的最短路程(π取3)是( )A.20cm B 。
10cm C 。
14cm D 。
无法确定.8、一个等腰三角形的腰长为13cm,底边长为10cm,则底边上的高为________cm .9、现有一长5米的梯子,架靠在建筑物的墙上,它们的底部在地面的水平距离是3米,则梯子可以到达建筑物的高度是___________米.10.一个直角三角形,有两边长分别为6和8,下列说法正确的是( )A. 第三边一定为10 B 。
三角形的周长为25C. 三角形的面积为48D. 第三边可能为1011.直角三角形的斜边为20cm ,两条直角边之比为3∶4,那么这个直角三角形的周长为( )A 。
27cmB 。
30cmC 。
40cmD 。
48cmS 3S 2S 157A12.若△ABC 的三边a 、b 、c 满足(a —b )(a 2+b 2—c 2)=0,则△ABC 是 ( )A.等腰三角形B. 等边三角形C 。
勾股定理测试题及答案一、选择题(每题2分,共10分)1. 勾股定理适用于哪种三角形?A. 等边三角形B. 直角三角形C. 等腰三角形D. 钝角三角形答案:B2. 如果直角三角形的两条直角边长分别为3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 8答案:A3. 一个直角三角形的斜边长度为13,一条直角边为5,另一条直角边的长度是多少?A. 12B. 10C. 8D. 6答案:A4. 勾股定理的公式是什么?A. a + b = cB. a * b = cC. a^2 + b^2 = c^2D. a^2 - b^2 = c^2答案:C5. 如果一个三角形的三边长分别为7、24和25,那么这个三角形是直角三角形吗?A. 是B. 不是答案:A二、填空题(每题2分,共10分)6. 直角三角形中,如果一条直角边长为x,另一条直角边长为y,斜边长为z,根据勾股定理,我们有________。
答案:x^2 + y^2 = z^27. 如果一个直角三角形的两条直角边长分别为6和8,那么斜边的长度是________。
答案:108. 在一个直角三角形中,如果斜边的长度是20,一条直角边长为15,另一条直角边的长度是________。
答案:5√3 或25√3/39. 勾股定理的发现归功于古希腊数学家________。
答案:毕达哥拉斯10. 勾股定理在数学中也被称为________定理。
答案:毕达哥拉斯定理三、解答题(每题5分,共20分)11. 一个直角三角形的斜边长度为17,一条直角边长为8,求另一条直角边的长度。
答案:根据勾股定理,另一条直角边的长度为√(17^2 - 8^2) =√(289 - 64) = √225 = 15。
12. 如果一个直角三角形的两条直角边长分别为9和12,求斜边的长度。
答案:根据勾股定理,斜边的长度为√(9^2 + 12^2) = √(81 + 144) = √225 = 15。
13. 一个直角三角形的斜边长度为25,一条直角边长为15,求另一条直角边的长度。
勾股定理课时练(1)1. 在直角三角形ABC 中,斜边AB=1,则AB 222AC BC ++的值是( ) A.2 B.4 C.6 D.82.如图18-2-4所示,有一个形状为直角梯形的零件ABCD ,AD ∥BC ,斜腰DC 的长为10 cm ,∠D=120°,则该零件另一腰AB 的长是______ cm (结果不取近似值).3. 直角三角形两直角边长分别为5和12,则它斜边上的高为_______.4.一根旗杆于离地面12m 处断裂,犹如装有铰链那样倒向地面,旗杆顶落于离旗杆地步16m ,旗杆在断裂之前高多少m ?5.如图,如下图,今年的冰雪灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是米.6. 飞机在空中水平飞行,某一时刻刚好飞到一个男孩子头顶正上方4000米处,过了20秒,飞机距离这个男孩头顶5000米,求飞机每小时飞行多少千米?7. 如图所示,无盖玻璃容器,高18cm ,底面周长为60cm ,在外侧距下底1cm 的点C 处有一蜘蛛,与蜘蛛相对的容器的上口外侧距开口1cm 的F 处有一苍蝇,试求急于扑货苍蝇充饥的蜘蛛,所走的最短路线的长度.8. 一个零件的形状如图所示,已知AC=3cm ,AB=4cm ,BD=12cm9. 如图,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,BC=2,CD=3,求AB 的长. 10. 如图,一个牧童在小河的南4km 的A 处牧马,而他正位于他的小屋B 的西8km 北7km 处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?11如图,某会展中心在会展期间准备将高5m ,长13m ,宽2m 的楼道上铺地毯,已知地毯平方米18元,请你帮助计算一下,铺完这个楼道至少需要多少元钱?12. 甲、乙两位探险者到沙漠进行探险,没有了水,需要寻找水源.为了不致于走散,他们用两部对话机联系,已知对话机的有效距离为15千米.早晨8:00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:00,甲、乙二人相距多远?还能保持联系吗?勾股定理的逆定理(2)一、 选择题1.下列各组数据中,不能作为直角三角形三边长的是( ) A.9,12,15 B.43,1,45C.0.2,0.3,0.4D.40,41,92.满足下列条件的三角形中,不是直角三角形的是( ) A.三个内角比为1∶2∶1 B.三边之比为1∶2∶5C.三边之比为3∶2∶5 D. 三个内角比为1∶2∶33.已知三角形两边长为2和6,要使这个三角形为直角三角形,则第三边的长为( ) A.2 B.102 C.10224或 D.以上都不对4. 五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )724252071520242572520247202415(A)(B)(C)(D)A B C D二、填空题5. △ABC 的三边分别是7、24、25,则三角形的最大内角的度数是 .6.三边为9、12、15的三角形,其面积为 .7.已知三角形ABC 的三边长为c b a ,,满足18,10==+ab b a ,8=c,则此三角形为 三角形.8.在三角形ABC 中,AB=12cm ,AC=5cm ,BC=13cm ,则BC 边上的高为AD= cm . 三、解答题9. 如图,已知四边形ABCD 中,∠B =90°,AB =3,BC =4,CD =12,AD =13,求四边形ABCD 的面积.10. 如图,E 、F 分别是正方形ABCD 中BC 和CD 边上的点,且AB =4,CE =41BC ,F 为CD 的中点,连接AF 、AE ,问△AEF 是什么三角形?请说明理由.11. 如图,AB 为一棵大树,在树上距地面10m 的D 处有两只猴子,它们同时发现地面上的C 处有一筐水果,一只猴子从D 处上爬到树顶A 处,利用拉在A 处的滑绳AC ,滑到C 处,另一只猴子从D 处滑到地面B ,再由B 跑到C ,已知两猴子所经路程都是15m ,求树高AB .12.如图,为修通铁路凿通隧道AC ,量出∠A=40°∠B =50°,AB =5公里,BC =4公里,若每天凿隧道0.3公里,问几天才能把隧道AB 凿通?勾股定理的逆定理 (3)一、基础·巩固1.满足下列条件的三角形中,不是直角三角形的是( )A.三内角之比为1∶2∶3B.三边长的平方之比为1∶2∶3C.三边长之比为3∶4∶5D.三内角之比为3∶4∶52.如图18-2-4所示,有一个形状为直角梯形的零件ABCD ,AD ∥BC ,斜腰DC 的长为10 cm ,∠D=120°,则该零件另一腰AB 的长是________ cm (结果不取近似值).图18 图18-2-5 图18-2-63.如图18-2-5,以Rt △ABC 的三边为边向外作正方形,其面积分别为S 1、S 2、S 3,且S 1=4,S 2=8,则AB 的长为_________.4.如图18-2-6,已知正方形ABCD 的边长为4,E 为AB 中点,F 为AD 上的一点,且AF=41AD ,试判断△EFC 的形状.5.一个零件的形状如图18-2-7,按规定这个零件中∠A 与∠BDC 都应为直角,工人师傅量得零件各边尺寸:AD=4,AB=3,BD=5,DC=12 , BC=13,这个零件符合要求吗?图18-2-76.已知△ABC 的三边分别为k 2-1,2k ,k 2+1(k >1),求证:△ABC 是直角三角形.二、综合·应用7.已知a 、b 、c 是Rt △ABC 的三边长,△A 1B 1C 1的三边长分别是2a 、2b 、2c ,那么△A 1B 1C 1是直角三角形吗?为什么?8.已知:如图18-2-8,在△ABC 中,CD 是AB 边上的高,且CD 2=AD·BD.求证:△ABC 是直角三角形.图18-2-89.如图18-2-9所示,在平面直角坐标系中,点A 、B 的坐标分别为A (3,1),B (2,4),△OAB 是直角三角形吗?借助于网格,证明你的结论. 图18-2-910.已知:在△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,满足a 2+b 2+c 2+338=10a+24b+26c.试判断△ABC 的形状.12.已知:如图18-2-10,四边形ABCD ,AD ∥BC ,AB=4,BC=6,CD=5,AD=3. 求:四边形ABCD 的面积.CAD图18-2-10勾股定理的应用(4)1.三个半圆的面积分别为S 1=4.5π,S 2=8π,S 3=12.5π,把三个半圆拼成如图所示的图形,则△ABC 一定是直角三角形吗?说明理由。
勾股定理练习题及答案勾股定理是数学中的一条基本定理,被广泛应用于几何学和物理学等领域。
它的形式简单,但是应用广泛,可以解决很多实际问题。
在这篇文章中,我们将通过一些练习题来巩固和应用勾股定理。
练习题一:已知直角三角形的斜边长为10,一条直角边长为6,请计算另一条直角边的长度。
解答一:根据勾股定理,直角边的平方和等于斜边的平方。
设另一条直角边的长度为x,则有:x^2 + 6^2 = 10^2化简得:x^2 = 100 - 36x^2 = 64x = 8练习题二:已知一个直角三角形的两条直角边分别为3和4,请计算斜边的长度。
解答二:同样地,根据勾股定理,斜边的平方等于直角边的平方和。
设斜边的长度为y,则有:y^2 = 3^2 + 4^2y^2 = 9 + 16y = 5练习题三:已知一个直角三角形的斜边长为13,一条直角边长为5,请计算另一条直角边的长度。
解答三:同样地,根据勾股定理,直角边的平方和等于斜边的平方。
设另一条直角边的长度为z,则有:z^2 + 5^2 = 13^2z^2 + 25 = 169z^2 = 144z = 12通过以上的练习题,我们可以看到勾股定理在解决直角三角形问题时的应用。
它通过简单的数学关系,将三角形的边长联系起来,帮助我们求解未知边长。
这在实际生活中也有广泛的应用,比如测量建筑物的高度、计算斜坡的倾斜度等等。
除了直角三角形,勾股定理还可以应用于其他几何图形。
例如,我们可以利用勾股定理计算矩形的对角线长度。
设矩形的长为a,宽为b,则对角线的长度d 可以通过以下公式计算:d^2 = a^2 + b^2此外,勾股定理还可以用于解决一些物理问题。
例如,当我们知道一个物体在斜面上的高度差和斜面的倾斜角度时,可以利用勾股定理计算物体在斜面上的总之,勾股定理是一条简单而重要的数学定理,它的应用范围广泛,可以解决很多实际问题。
通过练习题的实践,我们可以更好地理解和应用这一定理。
希望本文对你有所帮助!。
勾股定理练习题及答案一、选择题1、直角三角形的两直角边分别为 5 厘米、12 厘米,则斜边长是()A 13 厘米B 14 厘米C 15 厘米D 16 厘米答案:A解析:根据勾股定理,直角三角形的两直角边的平方和等于斜边的平方。
所以斜边的平方= 5²+ 12²= 25 + 144 = 169,斜边长为 13 厘米。
2、以下列各组数为边长,能组成直角三角形的是()A 3,4,6B 5,12,13C 5,11,12D 2,3,4答案:B解析:对于选项 A,3²+ 4²= 9 + 16 = 25,6²= 36,因为25 ≠ 36,所以不能组成直角三角形;对于选项 B,5²+ 12²= 25 + 144 =169,13²= 169,因为 169 = 169,所以能组成直角三角形;对于选项C,5²+ 11²= 25 + 121 = 146,12²= 144,因为146 ≠ 144,所以不能组成直角三角形;对于选项 D,2²+ 3²= 4 + 9 = 13,4²= 16,因为13 ≠ 16,所以不能组成直角三角形。
3、一个直角三角形的三边长分别为 2,3,x,则 x 的值为()A √13B √5C √13 或√5D 无法确定答案:C解析:当 x 为斜边时,x =√(2²+ 3²) =√13;当 3 为斜边时,x =√(3² 2²) =√5。
所以 x 的值为√13 或√5 。
4、已知直角三角形的两条边长分别是 5 和 12,则第三边的长为()A 13B √119C 13 或√119D 不能确定答案:C解析:当 12 为斜边时,第三边的长为√(12² 5²) =√119;当 5 和12 为直角边时,第三边的长为√(5²+ 12²) = 13。
勾股定理课时练(1)的值是()1.在直角三角形ABC中,斜边AB=1,则AB2+眈2€AC2A.2B.4C.6D.82•有一个形状为直角梯形的零件ABCD,AD〃BC,斜腰DC的长为10cm,Z D=120°,则该零件另一腰AB的长是cm(结果不取近似值).3.__________________________________________________ 直角三角形两直角边长分别为5和12,则它斜边上的高为•4•一根旗杆于离地面12m处断裂,犹如装有铰链那样倒向地面,旗杆顶落于离旗杆地步16m,旗杆在断裂之前高多少m?5•如图,如下图,今年的冰雪灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是米.第5题图6.飞机在空中水平飞行,某一时刻刚好飞到一个男孩子头顶正上方4000米处,过了20秒,飞机距离这个男孩头顶5000米,求飞机每小时飞行多少千米?7.如图所示,无盖玻璃容器,高18cm,底面周长为60cm,在外侧距下底1cm的点C处有一蜘蛛,与蜘蛛相对的容器的上口外侧距开口1cm的F处有一苍蝇,试求急于扑货苍蝇充饥的蜘蛛,所走的最短路线的长度.第7题图8.一个零件的形状如图所示,已知AC=3cm,AB=4cm,BD=12cm。
求CD的长.第8题图9.如图,在四边形ABCD中,ZA=60°,ZB=ZD=90°,BC=2,CD=3,求AB的长.n第9题图10.如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北7km处,他想把他的马牵到小河边去饮水,然后回家•他要完成这件事情所走的最短路程是多少?11如图,某会展中心在会展期间准备将高5m,长13m,宽2m的楼道上铺地毯,已知地毯平方米18元请你帮助计算一下,铺完这个楼道至少需要多少元钱?5m12.甲、乙两位探险者到沙漠进行探险,没有了水,需要寻找水源.为了不致于走散,他们用两部对话机联系,已知对话机的有效距离为15千米.早晨8:00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:00,甲、乙二人相距多远?还能保持联系吗?、选择题1•下列各组数据中,不能作为直角三角形三边长的是(2•满足下列条件的三角形中,不是直角三角形的是()C.三边之比为訂:2:驀D.三个内角比为1:2:33•已知三角形两边长为2和6,要使这个三角形为直角三角形,则第三边的长为()A 迈B.^10C.4-込或2颅D.以上都不对4. 五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是()CD25,则三角形的最大内角的度数是.其面积为. 7•已知三角形ABC 的三边长为a ,b ,c 满足.「,c=8,则此三角形为三角形.a +b 二10,ab=188. 在三角形ABC 中,AB=12cm ,AC=5cm ,BC=13cm ,则BC 边上的高为AD=cm . 三、解答题9. 如图,已知四边形ABCD 中,Z B =90°,AB =3,BC =4,CD =12,AD =13,求四边形ABCD 的面积.第9题图勾股定理的逆定理(2)A.9,12,15B.C.0.2,0.3,0.4D.40,41,9A.三个内角比为1:2:1B.三边之比为1:2:A B二、填空题5.△ABC 的三边分别是7、24、6•三边为9、12、15的三角(A)(B)(C)25 (D)110.如图,E、F分别是正方形ABCD中BC和CD边上的点,且AB=4,CE=4BC,F为CD的中点,连接AF、AE,问A AEF是什么三角形?请说明理由.11.如图,AB为一棵大树,在树上距地面10m的D处有两只猴子,它们同时发现地面上的C处有一筐水果,一只猴子从D处上爬到树顶A处,利用拉在A处的滑绳AC,滑到C处,另一只猴子从D处滑到地面B,再由B跑到C,已知两猴子所经路程都是15m,求树高AB.12.如图,为修通铁路凿通隧道AC,量出ZA=40°ZB=50°,AB=5公里,BC=4公里,若每天凿隧道0.3公里,问几天才能把隧道AB凿通?勾股定理的逆定理(3)一、基础•巩固1•满足下列条件的三角形中,不是直角三角形的是()A.三内角之比为1:2:3B.三边长的平方之比为1:2:3C.三边长之比为3:4:5D.三内角之比为3:4:5二、综合•应用9.如图18—2—9所示,在平面直角坐标系中,点A、B的坐标分别为A(3,1),B(2,4),△OAB是直角三角形吗?借助于网格,证明你的结论12.已知:如图18—2—10,四边形ABCD,AD〃BC,AB=4,BC=6,CD=5,AD=3.求:四边形ABCD勾股定理的应用(4)2.求知中学有一块四边形的空地ABCD,如下图所示,学校计划在空地上种植草皮,经测量ZA=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200天,问学校需要投入多少资金买草皮?3..(12分)如图所示,折叠矩形的一边AD,使点D落在BC边上的点F处,已知AB=8cm,BC=10cm,求EC的长。
勾股定理练习题(打印版)### 勾股定理练习题#### 一、基础应用题1. 直角三角形边长问题已知直角三角形的两条直角边分别为3厘米和4厘米,求斜边的长度。
2. 梯形问题一个梯形的两底边长度分别为5厘米和10厘米,高为4厘米,求梯形的对角线长度。
3. 实际测量问题一座建筑物的高为30米,从地面到建筑物顶部的水平距离为40米,求建筑物顶部到地面的直线距离。
4. 井深问题一根绳子从井口垂下,绳子的长度比井深多5米,如果绳子的长度是17米,求井的深度。
5. 道路设计问题设计一条道路,使其从A点到B点的距离最短。
已知A点到C点的水平距离为100米,C点到B点的垂直距离为50米,求A点到B点的最短距离。
#### 二、进阶应用题1. 三角形面积问题一个直角三角形的两条直角边分别为a和b,求该三角形的面积。
2. 三角形相似问题两个直角三角形的对应边长比例为2:3,如果较小三角形的斜边长度为10厘米,求较大三角形的斜边长度。
3. 建筑施工问题在建筑施工中,需要确定一个直角三角形的斜边长度,已知斜边上的高为20米,斜边到高的水平距离为50米,求斜边的长度。
4. 航海问题一艘船从港口出发,以20海里/小时的速度向北航行了2小时,然后以相同的速度向东航行了3小时,求船现在与港口的直线距离。
5. 几何证明问题证明在一个直角三角形中,如果斜边的中点到任一顶点的距离等于斜边长度的一半。
#### 三、综合应用题1. 公园设计问题一个公园的设计中需要一个矩形花坛,其对角线长度为20米,求花坛的长和宽。
2. 桥梁建设问题一座桥梁的两个支撑点之间的水平距离为150米,垂直高度为50米,求桥梁的主梁长度。
3. 卫星轨道问题一颗卫星绕地球运行,其轨道是一个以地球中心为圆心的圆,卫星到地球中心的距离为36000公里,求卫星的轨道半径。
4. 古代建筑问题一座古代建筑的基座是一个正方形,其对角线长度为10米,求基座的边长。
5. 数学竞赛问题在一个数学竞赛中,给出一个直角三角形的两条直角边长度分别为5厘米和12厘米,求斜边的长度,并证明勾股定理。
勾股定理基础训练2一.选择题(共25小题)1.如图,已知S1,S2和S3分别是Rt△ABC的斜边AB及直角边BC和AC为直径的半圆的面积,则S1,S2和S3满足的关系式为()A.S1<S2+S3B.S1=S2+S3C.S1>S2+S3D.S1=S2•S32.已知Rt△ABC中,∠C=90°,若a+b=10cm,c=8cm,则Rt△ABC的面积为()A.9cm2B.18cm2C.24cm2D.36cm23.如图,在△ABC中,∠BAC=90°,AB=8,AC=6,则斜边BC上的高AD的长是()A.4.8B.5C.4D.64.两个边长分别为a,b,c的直角三角形和一个两条直角边都是c的直角三角形拼成如图所示的图形,用两种不同的计算方法计算这个图形的面积,则可得等式为()A.(a+b)2=c2B.(a﹣b)2=c2C.a2﹣b2=c2D.a2+b2=c2 5.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若ab=8,小正方形的面积为9,则大正方形的边长为()A.9B.6C.5D.46.已知△ABC中,AB=17,AC=10,BC边上的高AH=8,则BC的长是()A.21B.15C.6D.21或97.如图,以Rt△ABC的三边为边,分别向外作正方形,它们的面积分别为S1、S2、S3,若S1+S2+S3=16,则S1的值为()A.7B.8C.9D.108.在Rt△ABC中,∠C=90°,AB=13,AC=12,则△ABC的面积为()A.5B.60C.45D.309.以直角三角形的三边为边向外作正方形,其中两个正方形的面积如图所示,则正方形A 的面积为()A.6B.36C.64D.810.如图,用4个相同的直角三角形与一个小正方形拼成的大正方形,若图中直角三角形较短的直角边长是5,小正方形的边长是7,则大正方形的面积是()A.121B.144C.169D.19611.已知一个直角三角形三边的平方和是50,则斜边长为()A.4B.5C.10D.2512.在Rt△ABC中,两直角边的长度分别为3和4,那么△ABC的周长为()A.11B.12C.13D.1413.若直角三角形两直角边长分别为5和12,则斜边的长为()A.17B.7C.14D.1314.若等腰三角形的腰长为13,底边长为10,则底边上的高为()A.6B.7C.9D.1215.已知直角三角形的两直角边长分别为3和4,则斜边上的高为()A.5B.3C.1.2D.2.416.如图,两个较大正方形的面积分别为225、289,则字母A所代表的正方形的面积为()A.4B.8C.16D.6417.在Rt△ABC中,若斜边AB=3,则AC2+BC2等于()A.6B.9C.12D.1818.如图,以Rt△ABC的三边为边分别作正方形Ⅰ、Ⅱ、Ⅲ,已知正方形Ⅰ与正方形Ⅱ的面积分别为25和9,则正方形Ⅲ的面积为()A.4B.8C.16D.3419.一个直角三角形的两条直角边分别是5和12,则斜边是()A.13B.12C.15D.1020.历史上对勾股定理的一种证法采用了下列图形:其中两个全等的直角三角形边AE、EB 在一条直线上.证明中用到的面积相等关系是()A.S△EDA=S△CEBB.S△EDA+S△CEB=S△CDEC.S四边形CDAE=S四边形CDEBD.S△EDA+S△CDE+S△CEB=S四边形ABCD21.如图是我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形、如果大正方形的面积13,小正方形的面积是1,直角三角形的短直角边为a,较长的直角边为b,那么(a+b)2的值为()A.169B.25C.19D.1322.已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是()A.24cm2B.36cm2C.48cm2D.60cm223.直角三角形的周长为24,斜边长为10,则其面积为()A.96B.49C.24D.4824.如图,在△ABC中∠A=90°,则三条边长a,b,c之间数量关系满足()A.a+b=c B.b+c=a C.b2+c2=a2D.a2+b2=c225.将面积为2π的半圆与两个正方形A和正方形B拼接如图所示,这两个正方形面积的和为()A.4B.8C.2πD.16勾股定理基础训练2参考答案与试题解析一.选择题(共25小题)1.解:∵S1,S2和S3分别是以Rt△ABC的斜边AB及直角边BC和AC为斜边向外作的等腰直角三角形的面积,∴S1=π()2,S2=π()2,S3=π()2,∵AC2+BC2=AB2,∴S1=S2+S3.故选:B.2.解:∵a+b=10cm,a2+b2=c2=64cm2,∴(a+b)2=100,∴2ab=100﹣(a2+b2)=100﹣64=36,∴ab=9(cm2),故选:A.3.解:∵∠BAC=90°,AB=8,AC=6,∴BC==10,∵AD⊥BC,∴S△ABC=6×8=AD×10,解得:AD=4.8.故选:A.4.解:根据题意得:S=(a+b)(a+b),S=ab+ab+c2,(a+b)(a+b)=ab+ab+c2,即(a+b)(a+b)=ab+ab+c2,整理得:a2+b2=c2.故选:D.5.解:由题意可知:中间小正方形的边长为:a﹣b,∵每一个直角三角形的面积为:ab=×8=4,∴大正方形的面积为:4×ab+(a﹣b)2=16+9=25,∴大正方形的边长为5.故选:C.6.解:如图所示,在Rt△ABH中,∵AB=17,AH=8,∴BH==15;在Rt△ACH中,∵AC=10,AH=8,∴CH==6,∴当AH在三角形的内部时,如图1,BC=15+6=21;当AH在三角形的外部时,如图2,BC=15﹣6=9.∴BC的长是21或9.故选:D.7.解:∵由勾股定理得:AC2+BC2=AB2,∴S3+S2=S1,∵S1+S2+S3=16,∴2S1=16,∴S1=8,故选:B.8.解:∵AB=13,AC=12,∠C=90°,∴BC==5.∴△ABC的面积=×12×5=30,故选:D.9.解:如图,∵∠CBD=90°,CD2=14,BC2=8,∴BD2=CD2﹣BC2=6,∴正方形A的面积为6,故选:A.10.解:∵直角三角形较短的直角边长是5,小正方形的边长是7,∴直角三角形的较长直角边=5+7=12,∴直角三角形斜边长=13,∴大正方形的边长是13,∴大正方形的面积是13×13=169.故选:C.11.解:设直角三角形的两直角边分别为a,b,斜边为c,根据勾股定理得:a2+b2=c2,∵a2+b2+c2=50,∴2c2=50,∴c2=25,∴c==5;故选:B.12.解:在Rt△ABC中,两直角边的长度分别为3和4,所以斜边长=,△ABC的周长=3+4+5=12,故选:B.13.解:由勾股定理可得:斜边=,故选:D.14.解:如图:AB=AC=13,BC=10.△ABC中,AB=AC,AD⊥BC;∴BD=DC=BC=5;Rt△ABD中,AB=13,BD=5;由勾股定理,得:AD===12.故选:D.15.解:设斜边上的高为h,由勾股定理得,三角形的斜边长==5,则×3×4=×5×h,解得,h=2.4,故选:D.16.解:∵正方形PQED的面积等于225,∴即PQ2=225,∵正方形PRGF的面积为289,∴PR2=289,又△PQR为直角三角形,根据勾股定理得:PR2=PQ2+QR2,∴QR2=PR2﹣PQ2=289﹣225=64,则正方形QMNR的面积为64.故选:D.17.解:∵Rt△ABC中,AB为斜边,∴AC2+BC2=AB2,∴AB2+AC2=AB2=32=9.故选:B.18.解:设Rt△ABC的三边分别为a、b、c,∴正方形Ⅲ的面积=a2,正方形Ⅱ的面积=b2=9,正方形Ⅰ的面积=c2=25,∵△ABC是直角三角形,∴a2=c2﹣b2,∴正方形Ⅲ的面积=25﹣9=16.故选:C.19.解;由一个直角三角形的两条直角边分别是5和12,利用勾股定理得斜边长为=13.故选:A.20.解:∵由S△EDA+S△CDE+S△CEB=S四边形ABCD.可知ab+c2+ab=(a+b)2,∴c2+2ab=a2+2ab+b2,整理得a2+b2=c2,∴证明中用到的面积相等关系是:S△EDA+S△CDE+S△CEB=S四边形ABCD.故选:D.21.解:∵大正方形的面积13,小正方形的面积是1,∴四个直角三角形的面积和是13﹣1=12,即4×ab=12,即2ab=12,a2+b2=13,∴(a+b)2=13+12=25.故选:B.22.解:∵a+b=14∴(a+b)2=196∴2ab=196﹣(a2+b2)=96∴ab=24.故选:A.23.解:直角三角形的周长为24,斜边长为10,则两直角边的和为24﹣10=14,设一直角边为x,则另一边14﹣x,根据勾股定理可知:x2+(14﹣x)2=100,解得x=6或8,所以面积为6×8÷2=24.故选:C.24.解:∵在△ABC中∠A=90°,∴b2+c2=a2,故选:C.25.解:已知半圆的面积为2π,所以半圆的直径为:2•=4,即如图直角三角形的斜边为:4,设两个正方形的边长分别为:x,y,则根据勾股定理得:x2+y2=42=16,即两个正方形面积的和为16.故选:D.第1页(共1页)。
可编辑修改精选全文完整版第一章《勾股定理》练习题一、选择题(8×3′=24′) 1、在Rt △ABC 中,∠C=90°,三边长分别为a 、b 、c ,则下列结论中恒成立的是( ) A 、2ab<c 2 B 、2ab ≥c 2 C 、2ab>c 2 D 、2ab ≤c 22、已知x 、y 为正数,且│x 2-4│+(y 2-3)2=0,如果以x 、y 的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为( ) A 、5 B 、25 C 、7 D 、153、直角三角形的一直角边长为12,另外两边之长为自然数,则满足要求的直角三角形共有( ) A 、4个 B 、5个 C 、6个 D 、8个4、下列命题①如果a 、b 、c 为一组勾股数,那么4a 、4b 、4c 仍是勾股数;②如果直角三角形的两边是3、4,那么斜边必是5;③如果一个三角形的三边是12、25、21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a 、b 、c ,(a>b=c ),那么a 2∶b 2∶c 2=2∶1∶1。
其中正确的是( ) A 、①② B 、①③ C 、①④ D 、②④5、若△ABC 的三边a 、b 、c 满足a 2+b 2+c 2+338=10a+24b+26c ,则此△为( ) A 、锐角三角形 B 、钝角三角形 C 、直角三角形 D 、不能确定6、已知等腰三角形的腰长为10,一腰上的高为6,则以底边为边长的正方形的面积为( ) A 、40 B 、80 C 、40或360 D 、80或3607、如图,在Rt △ABC 中,∠C=90°,D 为AC 上一点,且DA=DB=5,又△DAB 的面积为10,那么DC 的长是( ) A 、4 B 、3 C 、5 D 、4.58、如图,一块直角三角形的纸片,两直角边AC=6㎝,BC=8㎝。
现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( ) A 、2㎝ B 、3㎝ C 、4㎝ D 、5㎝ 二、填空题(12×3′=36′)9、在△ABC 中,点D 为BC 的中点,BD=3,AD=4,AB=5,则AC=___________。
第18章《勾股定理》基础测试题(-)班级: ____________ 姓名: ____________ 得分:一、选择题(共6小题,每小题4分,满分24分)1、下列各组数为勾股数的是() A 、6, 12, 13 B 、 3, 4, 7 C 、 15, 17, 8 D 、8, 15, 16 2、 要登上某建筑物,靠墙有一架梯子,底端离建筑物5///,顶端离地面12///,则梯子的长度为( ) A 、12/?7 B 、\3ni C 、14m D 、15m3、直角三角形的两条直角边长分别为&加和&加,则连接这两条直角边中点线段的长为( )A 、3cmB 、4cmC 、5cmD 、12cm4、 一艘小船早晨8: 00出发,以8海里/时的速度向东航行,1小时后,另一艘小船以12海里/时 的速度向南航行,上午10: 00两小船相距( )海里.A 、15B 、12C 、13D 、20 5、一直角三角形的斜边长比一直角边长大2,另一直角边长为6,则斜边长为( )二. 填空题(共6小题,每小题4分,满分24分) B 、8 C 、106、在△ABC 中, Z4CB 二90。
,AC=\2, BC=5, AM=AC, BN 二BC 、 则MN 的长为( 4、2 B 、2.6A 、4 笫6ACB第11题7.已知在Rt/\ABC中,ZC=90°. ____ (1)若。
=3, b=4,则;(2)若°=6,尸10,则b= ____________ .8、已知甲乙在同一地点出发,甲往东走了4千米,乙往南走了3千米,这时甲、乙两人相距千米.9、如图所示,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路=他们仅仅少走了__________ 步路(假设2步为1米),却踩伤了花草.10.某养殖厂有一个长2米.宽1.5米的矩形栅栏,现在要在相对角的顶点间加固一条木板,则木板的长应取米.11、如图,隔湖有两点A、B,为了测得A、B两点间的距离,从与AB方向成直角的BC方向上任取一点C,若测得CA=50m, CB=40m,那么A、B两点间的距离是__________________ m •12、如果直角三角形的斜边与一条直角边的长分别是13c税和5c/77,那么这个直角三角形的面积是2cm .三、解答题(共4小题,满分52分)塑料薄膜,试求需要多少平方米塑料薄膜?13、如图,要修建一个育苗棚,棚高肛1.8加,棚宽a=2.4 m,棚的长为12加,现要在棚顶上覆盖a14、如图,铁路上A、B两点相距25如?,C、D为两村庄,DA丄AB于A, CB丄AB于B,己知DA=\5km f CB二\0血,现在要在铁路AB上建一个土特产品收购站E,使得C、D两村到E站的距离相等,则E站应建在多少千米处?15、在△ABC 中,ZC=90°, AC=2A cm. BC=2.S cm.(1)求这个三角形的斜边AB的长和斜边上的高CD的长;(2〉求斜边被分成的两部分4D和BD的长.16、在两千多年前我国古算术上记载有“勾三股四弦五”,你知道它的意思吗?它的意思是说:如果一个直角三角形的两条直角边长分别为3和4个长度单位,那么它的斜边的长一定是5个长度单位,而且3、4、5这三个数有这样的关系:32+42=52.(1〉请你动动脑筋,能否验证这个事实呢?该如何考虑呢?(2)请你观察下列图形,直角三角形ABC的两条直角边的长分别为AC=7, BC=4,请你研究参考答案与评分标准一、选择题(共6小题,每小题4分,满分24分)1、下列各组数为勾股数的是()A、6, 12, 13B、 3, 4, 7C、15, 17, 8D、 8, 15, 16考点:勾股定理的逆定理;勾股数。
《勾股定理》练习题及答案测试1 勾股定理(一)学习要求掌握勾股定理的内容及证明方法,能够熟练地运用勾股定理由已知直角三角形中的两条边长求出第三条边长.课堂学习检测一、填空题1.如果直角三角形的两直角边长分别为a、b,斜边长为c,那么______=c2;这一定理在我国被称为______.2.△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边.(1)若a=5,b=12,则c=______;(2)若c=41,a=40,则b=______;(3)若∠A=30°,a=1,则c=______,b=______;(4)若∠A=45°,a=1,则b=______,c=______.3.如图是由边长为1m的正方形地砖铺设的地面示意图,小明沿图中所示的折线从A→B→C 所走的路程为______.4.等腰直角三角形的斜边为10,则腰长为______,斜边上的高为______.5.在直角三角形中,一条直角边为11cm,另两边是两个连续自然数,则此直角三角形的周长为______.二、选择题6.Rt△ABC中,斜边BC=2,则AB2+AC2+BC2的值为( ).(A)8 (B)4 (C)6 (D)无法计算7.如图,△ABC中,AB=AC=10,BD是AC边上的高线,DC=2,则BD等于( ).2(A)4 (B)6 (C)8 (D)108.如图,Rt△ABC中,∠C=90°,若AB=15cm,则正方形ADEC和正方形BCFG的面积和为( ).(A)150cm2 (B)200cm2 (C)225cm2 (D)无法计算三、解答题9.在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c.(1)若a∶b=3∶4,c=75cm,求a、b; (2)若a∶c=15∶17,b=24,求△ABC的面积;(3)若c-a=4,b=16,求a、c; (4)若∠A=30°,c=24,求c边上的高h c;(5)若a、b、c为连续整数,求a+b+c.综合、运用、诊断一、选择题10.若直角三角形的三边长分别为2,4,x,则x的值可能有( ).(A)1个(B)2个 (C)3 (D)4个二、填空题11.如图,直线l经过正方形ABCD的顶点B,点A、C到直线l的距离分别是1、2,则正方形的边长是______.12.在直线上依次摆着7个正方形(如图),已知倾斜放置的3个正方形的面积分别为1,2,3,水平放置的4个正方形的面积是S1,S2,S3,S4,则S1+S2+S3+S4=______.三、解答题13.如图,Rt△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线,AD=20,求BC的长.拓展、探究、思考14.如图,△ABC中,∠C=90°.(1)以直角三角形的三边为边向形外作等边三角形,探究S1+S2与S3的关系;图①(2)以直角三角形的三边为斜边向形外作等腰直角三角形,探究S1+S2与S3的关系;(3)以直角三角形的三边为直径向形外作半圆(如图③),探究S 1+S 2与S 3的关系.测试2 勾股定理(二)学习要求掌握勾股定理,能够运用勾股定理解决简单的实际问题,会运用方程思想解决问题.课堂学习检测一、填空题1.若一个直角三角形的两边长分别为12和5,则此三角形的第三边长为______.2.甲、乙两人同时从同一地点出发,已知甲往东走了4km ,乙往南走了3km ,此时甲、乙两人相距______km . 3.如图,有一块长方形花圃,有少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了______m 路,却踩伤了花草.4.如图,有两棵树,一棵高8m ,另一棵高2m ,两树相距8m ,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少要飞______m . 二、选择题5.如图,一棵大树被台风刮断,若树在离地面3m 处折断,树顶端落在离树底部4m 处,则树折断之前高( ). (A)5m(B)7m(C)8m(D)10m6.如图,从台阶的下端点B 到上端点A 的直线距离为( ). (A)212 (B)310 (C)56(D)58三、解答题7.在一棵树的10米高B 处有两只猴子,一只猴子爬下树走到离树20米处的池塘的A 处;另一只爬到树顶D 后直接跃到A 处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高多少米?8.在平静的湖面上,有一支红莲,高出水面1米,一阵风吹来,红莲移到一边,花朵齐及水面,已知红莲移动的水平距离为2米,求这里的水深是多少米?综合、运用、诊断一、填空题9.如图,一电线杆AB的高为10米,当太阳光线与地面的夹角为60°时,其影长AC为______米.10.如图,有一个圆柱体,它的高为20,底面半径为5.如果一只蚂蚁要从圆柱体下底面的A点,沿圆柱表面爬到与A相对的上底面B点,则蚂蚁爬的最短路线长约为______(取3)二、解答题:11.长为4 m的梯子搭在墙上与地面成45°角,作业时调整为60°角(如图所示),则梯子的顶端沿墙面升高了______m.12.如图,在高为3米,斜坡长为5米的楼梯表面铺地毯,则地毯的长度至少需要多少米?若楼梯宽2米,地毯每平方米30元,那么这块地毯需花多少元?9 10 11 12拓展、探究、思考13.如图,两个村庄A、B在河CD的同侧,A、B两村到河的距离分别为AC=1千米,BD =3千米,CD=3千米.现要在河边CD上建造一水厂,向A、B两村送自来水.铺设水管的工程费用为每千米20000元,请你在CD上选择水厂位置O,使铺设水管的费用最省,并求出铺设水管的总费用W.测试3 勾股定理(三)学习要求熟练应用勾股定理解决直角三角形中的问题,进一步运用方程思想解决问题.课堂学习检测一、填空题1.在△ABC中,若∠A+∠B=90°,AC=5,BC=3,则AB=______,AB边上的高CE=______.2.在△ABC中,若AB=AC=20,BC=24,则BC边上的高AD=______,AC边上的高BE=______.3.在△ABC中,若AC=BC,∠ACB=90°,AB=10,则AC=______,AB边上的高CD=______.4.在△ABC 中,若AB =BC =CA =a ,则△ABC 的面积为______.5.在△ABC 中,若∠ACB =120°,AC =BC ,AB 边上的高CD =3,则AC =______,AB =______,BC 边上的高AE =______. 二、选择题6.已知直角三角形的周长为62+,斜边为2,则该三角形的面积是( ).(A)41 (B)43 (C)21 (D)17.若等腰三角形两边长分别为4和6,则底边上的高等于( ). (A)7 (B)7或41(C)24(D)24或7三、解答题8.如图,在Rt △ABC 中,∠C =90°,D 、E 分别为BC 和AC 的中点,AD =5,BE =102求AB 的长.9.在数轴上画出表示10-及13的点.综合、运用、诊断10.如图,△ABC 中,∠A =90°,AC =20,AB =10,延长AB 到D ,使CD +DB =AC +AB ,求BD 的长.11.如图,将矩形ABCD 沿EF 折叠,使点D 与点B 重合,已知AB =3,AD =9,求BE 的长.12.如图,折叠矩形的一边AD ,使点D 落在BC 边的点F 处,已知AB =8cm ,BC =10cm ,求EC 的长.13.已知:如图,△ABC中,∠C=90°,D为AB的中点,E、F分别在AC、BC上,且DE⊥DF.求证:AE2+BF2=EF2.拓展、探究、思考14.如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为2,l2,l3之间的距离为3,求AC的长是多少?15.如图,如果以正方形ABCD的对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去,……已知正方形ABCD的面积S1为1,按上述方法所作的正方形的面积依次为S2,S3,…,S n(n为正整数),那么第8个正方形的面积S8=______,第n个正方形的面积S n=______.测试4 勾股定理的逆定理学习要求掌握勾股定理的逆定理及其应用.理解原命题与其逆命题,原定理与其逆定理的概念及它们之间的关系.课堂学习检测一、填空题1.如果三角形的三边长a、b、c满足a2+b2=c2,那么这个三角形是______三角形,我们把这个定理叫做勾股定理的______.2.在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一个命题的结论是第二个命题的题设,那么这两个命题叫做____________;如果把其中一个命题叫做原命题,那么另一个命题叫做它的____________.3.分别以下列四组数为一个三角形的边长:(1)6、8、10,(2)5、12、13,(3)8、15、17,(4)4、5、6,其中能构成直角三角形的有____________.(填序号)4.在△ABC中,a、b、c分别是∠A、∠B、∠C的对边,①若a 2+b 2>c 2,则∠c 为____________; ②若a 2+b 2=c 2,则∠c 为____________; ③若a 2+b 2<c 2,则∠c 为____________.5.若△ABC 中,(b -a )(b +a )=c 2,则∠B =____________;6.如图,正方形网格中,每个小正方形的边长为1,则网格上的△ABC 是______三角形. 7.若一个三角形的三边长分别为1、a 、8(其中a 为正整数),则以a -2、a 、a +2为边的三角形的面积为______.8.△ABC 的两边a ,b 分别为5,12,另一边c 为奇数,且a +b +c 是3的倍数,则c 应为______,此三角形为______. 二、选择题9.下列线段不能组成直角三角形的是( ). (A)a =6,b =8,c =10 (B)3,2,1===c b a (C)43,1,45===c b a (D)6,3,2===c b a10.下面各选项给出的是三角形中各边的长度的平方比,其中不是直角三角形的是( ).(A)1∶1∶2(B)1∶3∶4 (C)9∶25∶26(D)25∶144∶16911.已知三角形的三边长为n 、n +1、m (其中m 2=2n +1),则此三角形( ).(A)一定是等边三角形 (B)一定是等腰三角形 (C)一定是直角三角形(D)形状无法确定综合、运用、诊断一、解答题12.如图,在△ABC 中,D 为BC 边上的一点,已知AB =13,AD =12,AC =15,BD =5,求CD 的长.13.已知:如图,四边形ABCD 中,AB ⊥BC ,AB =1,BC =2,CD =2,AD =3,求四边形ABCD 的面积.14.已知:如图,在正方形ABCD 中,F 为DC 的中点,E 为CB 的四等分点且CE =CB 41,求证:AF ⊥FE .15.在B港有甲、乙两艘渔船,若甲船沿北偏东60°方向以每小时8海里的速度前进,乙船沿南偏东某个角度以每小时15海里的速度前进,2小时后,甲船到M岛,乙船到P岛,两岛相距34海里,你知道乙船是沿哪个方向航行的吗?拓展、探究、思考16.已知△ABC中,a2+b2+c2=10a+24b+26c-338,试判定△ABC的形状,并说明你的理由.17.已知a、b、c是△ABC的三边,且a2c2-b2c2=a4-b4,试判断三角形的形状.18.观察下列各式:32+42=52,82+62=102,152+82=172,242+102=262,…,你有没有发现其中的规律?请用含n的代数式表示此规律并证明,再根据规律写出接下来的式子.参考答案 第十八章 勾股定理 测试1 勾股定理(一)1.a 2+b 2,勾股定理. 2.(1)13; (2)9; (3)2,3; (4)1,2.3.52. 4.52,5. 5.132cm . 6.A . 7.B . 8.C . 9.(1)a =45cm .b =60cm ; (2)540; (3)a =30,c =34; (4)63; (5)12.10.B . 11..5 12.4. 13..310 14.(1)S 1+S 2=S 3;(2)S 1+S 2=S 3;(3)S 1+S 2=S 3.测试2 勾股定理(二)1.13或.119 2.5. 3.2. 4.10. 5.C . 6.A . 7.15米. 8.23米. 9.⋅3310 10.25. 11..2232- 12.7米,420元. 13.10万元.提示:作A 点关于CD 的对称点A ′,连结A ′B ,与CD 交点为O .测试3 勾股定理(三)1.;343415,34 2.16,19.2. 3.52,5. 4..432a 5.6,36,33. 6.C . 7.D8..132 提示:设BD =DC =m ,CE =EA =k ,则k 2+4m 2=40,4k 2+m 2=25.AB =.1324422=+k m9.,3213,31102222+=+=图略.10.BD =5.提示:设BD =x ,则CD =30-x .在Rt △ACD 中根据勾股定理列出(30-x )2=(x +10)2+202,解得x =5.11.BE =5.提示:设BE =x ,则DE =BE =x ,AE =AD -DE =9-x .在Rt △ABE 中,AB 2+AE 2=BE 2,∴32+(9-x )2=x 2.解得x =5.12.EC =3cm .提示:设EC =x ,则DE =EF =8-x ,AF =AD =10,BF =622=-AB AF ,CF =4.在Rt △CEF中(8-x )2=x 2+42,解得x =3.13.提示:延长FD 到M 使DM =DF ,连结AM ,EM .14.提示:过A ,C 分别作l 3的垂线,垂足分别为M ,N ,则易得△AMB ≌△BNC ,则.172,34=∴=AC AB 15.128,2n -1.测试4 勾股定理的逆定理1.直角,逆定理. 2.互逆命题,逆命题. 3.(1)(2)(3). 4.①锐角;②直角;③钝角. 5.90°. 6.直角.7.24.提示:7<a <9,∴a =8. 8.13,直角三角形.提示:7<c <17. 9.D . 10.C . 11.C . 12.CD =9. 13..51+14.提示:连结AE ,设正方形的边长为4a ,计算得出AF ,EF ,AE 的长,由AF 2+EF 2=AE 2得结论. 15.南偏东30°.16.直角三角形.提示:原式变为(a -5)2+(b -12)2+(c -13)2=0.17.等腰三角形或直角三角形.提示:原式可变形为(a 2-b 2)(a 2+b 2-c 2)=0. 18.352+122=372,[(n +1)2-1]2+[2(n +1)]2=[(n +1)2+1]2.(n ≥1且n 为整数)。
勾股定理同步练习题1.已知直角三角形中30°角所对的直角边长是32cm ,则另一条直角边的长是( ) A. 4cm B . 34cm C . 6cm D . 36cm2.△ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为( )A .42B .32C .42 或 32D .37 或 333.一架25分米长的梯子,斜立在一竖直的墙上,这时梯足距离墙底端7分米.如果梯子的顶端沿墙下滑4分米,那么梯足将滑动( )A . 9分米B . 15分米C . 5分米D . 8分米4. 如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了 步路(假设2步为1米),却踩伤了花草. 5. 在△ABC 中,∠C =90°,(1)已知 a =2.4,b =3.2,则c= ;(2)已知c =17,b =15,则△ABC 面积等于 ;(3)已知∠A =45°,c =18,则a = .6. 一个矩形的抽斗长为24cm ,宽为7cm ,在里面放一根铁条,那么铁条最长可以是 .7. 在Rt △ABC 中,∠C =90°,BC =12cm ,S △ABC =30cm 2,则AB = .8. 等腰△ABC 的腰长AB =10cm ,底BC 为16cm ,则底边上的高为 ,面积为 .9. 一个直角三角形的三边为三个连续偶数,则它的三边长分别为 .10.一天,小明买了一张底面是边长为260cm 的正方形,厚30cm 的床垫回家.到了家门口,才发现门口只有242cm 高,宽100cm .你认为小明能拿进屋吗? .11.如图,你能计算出各直角三角形中未知边的长吗?12.如图,某会展中心在会展期间准备将高5m ,长13m ,宽2m 的楼道上铺地毯,已知地毯每平方米18元,请你帮助计算一下,铺完这个楼道至少需要多少元钱?5m 13m “路”4m3m 第4题图13.有一只小鸟在一棵高4m 的小树梢上捉虫子,它的伙伴在离该树12m ,高20m 的一棵大树的树梢上发出友好的叫声,它立刻以4m/s 的速度飞向大树树梢,那么这只小鸟至少几秒才可能到达大树和伙伴在一起?14.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km /h .如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方30m 处,过了2s 后,测得小汽车与车速检测仪间距离为50m ,这辆小汽车超速了吗?15.将穿好彩旗的旗杆垂直插在操场上,旗杆从旗顶到地面的高度为320cm , 在无风的天气里,彩旗自然下垂,如右图. 求彩旗下垂时最低处离地面的最小高度h .彩旗完全展平时的尺寸如左图的长方形(单位:cm ).A 小汽车 小汽车BC 观测点 120 90勾股定理同步练习题答案1.C2.C3.D4.105.4; 60; 36.25cm7.13cm8.6cm, 24cm29.6, 8, 10 10.能 11.5; 4; 3 12.612元 13.5s 14.BC=72km,这辆小汽车超速了 15. h=170cm。
勾股定理基础题1.已知一直角三角形的木板,三边的平方和为1800cm 2,则斜边长为( ).(A )80cm (B)30cm (C)90cm (D120cm.2.直角三角形中,以直角边为边长的两个正方形的面积分别为36和64,那么以斜边为边长的正方形的面积是( )A.54B.100C.72D.1203、有两棵树,一棵高6米,另一棵高2米,两树相距5米.一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了 米. A.4 B.5 C.3 D.414、直角三角形两条直角边的长分别为8和6,则斜边上的高为( )(A )2.4 (B )4.8 (C )1.2 (D )105、直角三角形的三边上的半圆面积之间的关系是( )A 、321S S S >+B 、321S S S <+C 、321S S S =+D 、无法判断6、如图字母A 所代表的正方形的面积是 ( )A.、20B. 24 C 、30 D. 747、如图,一圆柱高8cm,底面半径2cm,一只蚂蚁从点A 爬到点B 处吃食,要爬行的最短路程(π取3)是( )A.20cmB.10cmC.14cmD.无法确定.8、一个等腰三角形的腰长为13cm ,底边长为10cm ,则底边上的高为________cm .9、现有一长5米的梯子,架靠在建筑物的墙上,它们的底部在地面的水平距离是3米,则梯子可以到达建筑物的高度是___________米。
10.一个直角三角形,有两边长分别为6和8,下列说法正确的是( )A. 第三边一定为10B. 三角形的周长为25C. 三角形的面积为48D. 第三边可能为1011.直角三角形的斜边为20cm ,两条直角边之比为3∶4,那么这个直角三角形的周长为( )A . 27cm B. 30cm C. 40cm D. 48cmS 3S 2S 17A12.若△ABC 的三边a 、b 、c 满足(a-b)(a 2+b 2-c 2)=0,则△ABC 是 ( )A. 等腰三角形B. 等边三角形C. 等腰直角三角形D. 等腰三角形或直角三角形13.将直角三角形的三边扩大相同的倍数后,得到的三角形是( )A 直角三角形B 锐角三角形C 钝角三角形D 不能14、等腰三角形的周长是20c m,底边长是6c m,则底边上的高是____________15.下列说法正确的是( )A 、若 a 、b 、c 是△ABC 的三边,则a 2+b 2=c 2;B 、若 a 、b 、c 是Rt △ABC 的三边,则a 2+b 2=c 2;C 、若 a 、b 、c 是Rt △ABC 的三边, 90=∠A ,则a 2+b 2=c 2;D 、若 a 、b 、c 是Rt △ABC 的三边, 90=∠C ,则a 2+b 2=c 2.16.△ABC 的三条边长分别是a 、b 、c ,则下列各式成立的是( )A .c b a =+ B. c b a >+ C. c b a <+ D. 222c b a =+17.斜边的边长为cm 17,一条直角边长为cm 8的直角三角形的面积是 .18.一个三角形三边之比是6:8:10,则按角分类它是 三角形.19.等腰三角形ABC 的面积为12㎝2,底上的高AD =3㎝,则它的周长为 。
20.分别以下列四组为一个三角形的三边的长:①6、8、10;②5、12、13;③8、15、17;④7、8、9,其中能构成直角三角形的有( ).A.4组B.3组C.2组D.1组21.要从电杆离地面5m 处向地面拉一条长为13m 的电缆,则地面电缆固定点与电线杆底部的距离应为( ).A.10mB.11mC.12mD.13m22.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为7cm ,则正方形A ,B ,C ,D 的面积之和为___________cm 2。
23、如果梯子的底端离建筑物 5米,13米长的梯子可以达到该建筑物的高度是( )A .12米 B.13米 C.14米 D.15米24、下列各组数中,以a ,b ,c 为边的三角形不是直角三角形的是( )A. a=1.5,b=2, c=3B. a=7,b=24,c=25C. a=6,b=8,c=10D. a=3,b=4,c=525、若线段a ,b ,c 是直角三角形的三边,则它们的比可以是( )A. 2∶3∶4B. 3∶4∶5C. 4∶5∶6D. 4∶6∶726、三角形的三边长满足(a+b )2=c 2+2ab,则这个三角形是( )A. 等边三角形B. 钝角三角形C. 直角三角形D. 锐角三角形.27、在Rt △ABC 中,∠C=90°,①若a=5,b=12,则c=___________;②若a=15,c=25,则b=___________;③若a ∶b=3∶4,c=10则S Rt△ABC =________。
28、已知直角三角形两条直角边的长分别是5c m 和12c m,则斜边上的高的长是1.下列结论错误的是( )A 、三个角度之比为1∶2∶3的三角形是直角三角形;B 、三条边长之比为3∶4∶5的三角形是直角三角形;C 、三条边长之比为8∶16∶17的三角形是直角三角形;D 、三个角度之比为1∶1∶2的三角形是直角三角形。
2.下列各组线段中的三个长度①9、12、15;②7、24、25;③32、42、52;④3a 、4a 、5a (a>0); ⑤m 2-n 2、2mn 、m 2+n 2(m 、n 为正整数,且m>n )其中可以构成直角三角形的有( )A 、5组;B 、4组;C 、3组;D 、2组3.适合下列条件的△ABC 中, 直角三角形的个数为( ) ①;51,41,31===c b a ②,6=a ∠A=450; ③∠A=320,∠B=580; ④;25,24,7===c b a ⑤.4,2,2===c b aA 、2个B 、3个C 、4个D 、5个4.如果三条线段首尾顺次连接组成直角三角形,那么这三条线段长的比不可能是( )A .1:2:3B .3:4:5C .8:15:17D . 5:3:45.若△ABC 的三边abc ,满足222()()0a b a b c -+-=,则△ABC 是( )A .等腰三角形;B .直角三角形;C .等腰三角形或直角三角形;D .等腰直角三角形。
6.已知三条线段长分别是8,15,17,那么这三条线段能围成一个( )A 、直角三角形B 、锐角三角形C 、 钝角三角形D 、无法确定7.下列各组数为股数的是( )A 、7、12、13B 、3、4、7C 、8、15、17D 、15、20、258.在△ABC 中,AB=15,AC=13,高AD=12,则△ABC 的周长为( )A 、42B 、32C 、42或32D 、37或339.三角形的三个内角比为1:2:3,最小的边长为1,则最大的边长为( )A 、3B 、2C 、3D 、210.△ABC 的三边分别为a=1.2cm, b=1.6cm, c=2cm 则∠C 是( )A 、锐角B 、直角C 、钝角D 、以上三种都有可能11.直角三角形斜边的平方等于两直角边乘积的2倍,这个三角形有一个锐角是( )A 、15°B 、30°C 、45°D 、75°12.若直角三角形中,有两边长是12和5,则第三边长的平方为( )A 、132B 、132或119 C 、13或15 D 、1513.三角形的三边分别是m 2+1,2m,m 2-1(m >1),则这个三角形是( )A 、锐角三角形B 、直角三角形C 、钝角三角形D 、不能确定14.已知x 、y 为正数,且2224(3)0x y -+-=,如果以x 、y 的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为( )A 、5B 、25C 、7D 、15 15.一直角三角形的斜边长比一直角边长大2,另一直角边长为6,则斜边长为( )A 、4B 、8C 、10D 、1219.一等腰三角形底边长为10cm ,腰长为13cm ,则腰上的高为 ( )A. 12cmB.C.D.20.若等边△ABC 的边长为2cm ,那么△ABC 的面积为( ).A 32B .32C .3cm 2D .4cm2 21.如图,在Rt △ABC 中,∠C=90°,CD ⊥AB ,垂足为D ,AD=8,BD=2,则CD 长为( )A .4B .16C .25D .4522.直角三角形的两直角边长为5、12,则其斜边上的高为( )A .6B .8C .1380 D .136025.如图所示,△ABC 中,AB=AC=10cm ,BD ⊥AC 于D ,CD=2,则BC 等于 ( )A .210B .6C .8D .526.如图,一圆柱高8cm,底面半径2cm,一只蚂蚁从点A 爬到点B 处吃食,要爬行最短路程(π取3)是( )A.20cm;B.10cm;C.14cm;D.无法确定.BA第21题图第25题图第26题图37.在Rt△ABC中,∠C=90°,①若a=5,b=12,则c=___________;②若a=15,c=25,则b=___________;③若c=61,b=60,则a=__________;④若a∶b=3∶4,c=10则S Rt△ABC=________。
51.把一根长为10㎝的铁丝弯成一个直角三角形的两条直角边,如果要使三角形的面积是9㎝2,那么还要准备一根长为____的铁丝才能把三角形做好。
36.已知直角三角形斜边长为12㎝,周长为30㎝,则此三角形的面积为____。
35.已知直角三角形的三边长为6、8、x,则以x为边的正方形的面积为_____。
38.已知两条线段的长为5c m和12c m,当第三条线段的长为c m时,这三条线段能组成一个直角三角形.。