光电图像处理 第六章 图像恢复
- 格式:pdf
- 大小:2.69 MB
- 文档页数:51
图像处理中的图像复原算法综述与比较图像复原是图像处理中一个重要的领域,主要目标是通过一系列的数学和算法方法来恢复损坏、模糊、噪声干扰等情况下的图像。
图像复原算法旨在提高图像质量,使图像在视觉上更加清晰、可辨识。
本文将综述图像处理中的图像复原算法,并对这些算法进行比较。
1. 经典算法1.1 均值滤波均值滤波是一种最简单的图像复原算法,其基本原理是用一个滑动窗口在图像上进行平均值计算,然后用平均值代替原像素值。
均值滤波的优点是简单易实现,但对于噪声较多的图像效果较差。
1.2 中值滤波中值滤波是一种非线性滤波算法,常用于去除椒盐噪声。
其基本原理是用滑动窗口中像素的中值代替原像素值。
中值滤波适用于去除随机噪声,但对于模糊图像的复原效果不佳。
1.3 Sobel算子Sobel算子是基于图像边缘检测的算法,常用于图像增强。
Sobel算子通过计算像素点的梯度值来检测边缘。
边缘检测可以使图像的边缘更加清晰,但对于图像的整体复原效果有限。
2. 基于模型的方法2.1 傅里叶变换傅里叶变换是一种基于频域的图像处理方法,将图像从空间域转换到频域,通过频域滤波降低噪声。
傅里叶变换适用于周期性噪声的去除,但对于非周期性噪声和复杂噪声的去除效果有限。
2.2 小波变换小波变换是一种多尺度分析方法,将图像分解为不同尺度的频率成分。
通过舍弃高频噪声成分,然后将分解后的图像重构,实现图像复原。
小波变换适用于复杂噪声的去除,但对于图像的细节保留较差。
2.3 倒谱法倒谱法是一种基于线性预测的图像复原算法,通过分析图像的高阶统计特性实现噪声的去除。
倒谱法适用于高斯噪声的去噪,但对于非高斯噪声的复原效果有限。
3. 基于深度学习的方法3.1 卷积神经网络(CNN)卷积神经网络是一种广泛应用于图像处理的深度学习方法,通过多层卷积和池化操作提取图像的特征,进而实现图像的复原和增强。
CNN适用于各种噪声和模糊情况下的图像复原,但需要大量的训练数据和计算资源。
图像处理中的图像压缩与恢复方法图像压缩是在图像处理领域中非常重要的一项技术。
在计算机视觉、数字通信以及存储等领域中,图像压缩可以大幅减少图像数据的大小,从而提高数据传输速度和存储效率。
同时,图像恢复则是在压缩后的图像还原以及修复中起到重要作用的技术。
在本文中,我们将介绍一些常见的图像压缩与恢复方法。
一. 图像压缩方法1. 无损压缩方法无损压缩方法是一种能够通过压缩图像数据,但不会导致图像失真的技术。
其中,最常见的无损压缩方法为预测编码和霍夫曼编码。
预测编码基于图像中像素之间的冗余性,通过预测后续像素的值,然后用预测值与实际值之间的差值进行编码。
其中,最著名的预测编码算法包括差分编码和游程编码。
霍夫曼编码是一种变长编码方式,利用出现频率较高的像素值分配较短的编码,而较低频率的像素值分配较长的编码。
通过统计每个像素值出现的频率,并根据频率构建霍夫曼树,可以实现对图像数据进行无损压缩。
2. 有损压缩方法有损压缩方法是一种能够通过压缩图像数据,但会导致图像失真的技术。
其中,最常见的有损压缩方法为离散余弦变换(DCT)和小波变换。
DCT是一种将图像从空间域转换到频域的方法,它能够将图像中的冗余信息集中在低频分量中,而将高频细节信息消除或减少。
通过对DCT系数进行量化和编码,可以实现对图像数据进行有损压缩。
小波变换是一种将图像分解成多个不同分辨率的频带的方法,通过对每个不同分辨率的频带进行量化和编码,可以实现对图像数据的有损压缩。
与DCT相比,小波变换可以更好地保留图像的局部细节。
二. 图像恢复方法1. 重建滤波器方法重建滤波器方法是在压缩图像恢复时常用的一种技术。
它是通过在图像的压缩域对被量化或编码的数据进行逆操作,将压缩后的图像数据恢复到原始图像。
常用的重建滤波器方法包括最近邻插值、双线性插值和双立方插值。
最近邻插值是一种简单的插值方法,它通过选择离目标位置最近的像素值来进行插值。
虽然该方法计算速度较快,但会导致图像失真。
光电图像处理答案Chapter01 绪论1.光电成像技术可以从哪⼏个⽅⾯拓展⼈的视觉能⼒?请每个⽅⾯各举⼀例。
可以开拓⼈眼对不可见辐射的接收能⼒;变像管、红外夜视仪可以扩展⼈眼对微弱光图像的探测能⼒;像增强器可以捕捉⼈眼⽆法分辨的细节;电⼦显微镜可以将超快速现象存储下来;数码摄像机2.为什么CMOS 图像传感器的像素⼀致性要⽐CCD 差?CCD 的每个像元都通过同⼀个放⼤器及电荷/电压转换器进⾏处理,⽽CMOS 图像传感器的每个像元都有独⽴的放⼤器和转换器,由于⼯艺差别,导致像素⼀致性降低。
3.图像处理技术有哪些⽤途?为每种⽤途举出⼀个应⽤实例。
通过增强技术和变换技术来改善图像的视觉效果。
⼴告与平⾯设计;数码照⽚处理对图像进⾏分析以便从图像中⾃动提取信息。
红外成像制导;医学图像分析对图像进⾏编码、压缩、加密等处理,便于图像的存储、传输和使⽤。
图像⽔印4.举出⽣活中使⽤微显⽰技术的例⼦。
家⽤背投电视;商⽤投影仪;近眼显⽰器Chapter02 光度学与⾊度学1.⽇常⽣活中⼈们说40W 的⽇光灯⽐40W 的⽩炽灯亮,是否指⽇光灯的光亮度⽐⽩炽灯的光亮度⾼?解释此处“亮”的含义。
不是。
⼈们所说的“亮”,并⾮指光度学中的物理量-亮度,⽽是指光通量。
在相同的供电功率条件下,⽇光灯由于发光效率较⾼,发出的光通量⽐⽩炽灯要⼤,照明效果更好,主观上认为更“亮”。
2.设有⼀个光通量为2000lm 的点光源,在距点光源1m 的地⽅有⼀个半径为2cm 的圆平⾯,点光源发出的经过圆平⾯中⼼的光线与圆法线夹⾓为60 度,求圆平⾯表⾯的平均照度。
由于圆平⾯的直径远⼩于到点光源的距离,因此可作近似计算。
照度E=(φ*ω/4π)/S,其中ω=(0.02*π^2cos60)/(1^2)。
3.设有⼀台60 英⼨的投影机,幅⾯⽐为16:9,投影屏幕的反射率为80%。
已知投影光源(⾼压汞灯)向屏幕发出的总光通量为1000lm,试求屏幕亮度。
图像处理技术的图像恢复与修复方法分享图像恢复与修复是图像处理技术中非常重要的一个环节。
在数字图像的采集、传输以及存储过程中,由于种种原因,图像可能会受到噪声、失真、模糊等问题的影响,从而影响图像的质量和可视化效果。
因此,研究如何使图像恢复和修复成为了图像处理技术中的一个热门话题。
本文将分享几种常见的图像恢复与修复方法,包括滤波、插值以及深度学习技术等。
滤波是一种常用的图像恢复和降噪方法。
滤波的目标是抑制或减小图像中的噪声,并尽可能地保留原始图像中的细节。
常见的滤波方法有均值滤波、中值滤波和高斯滤波等。
均值滤波是将每个像素的灰度值替换为该像素周围邻域像素的平均值,可以有效地去除椒盐噪声。
中值滤波则是将每个像素的灰度值替换为邻域像素的中值,对于椒盐噪声和脉冲噪声都有良好的去噪效果。
高斯滤波是通过对图像进行卷积运算,使得图像的高频部分被抑制,从而达到降噪的效果。
插值方法是一种常见的图像修复和放大方法。
当图像由于采样不足或者压缩等原因出现像素丢失时,插值方法可以通过对已有像素的估计来恢复丢失的像素。
最常见的插值方法有最邻近插值、双线性插值和双三次插值等。
最邻近插值将目标像素的值设为最接近的已知像素的值,适用于放大图像或者处理实时图像。
双线性插值则是根据目标像素周围的4个已知像素计算插值结果,具有较好的图像平滑效果。
双三次插值则是根据目标像素周围的16个已知像素计算插值结果,提供了更好的图像细节保持能力。
深度学习技术在图像恢复与修复中也有广泛的应用。
深度学习模型通过大量的训练数据和神经网络结构的设计,可以在图像恢复和修复过程中自动学习有效的特征表示。
例如,基于生成对抗网络(GANs)的图像修复方法可以通过对原始图像进行损坏和恢复的循环训练来提高修复效果。
基于变分自动编码器(VAE)的图像修复方法可以通过学习输入图像的潜在分布来对图像进行修复。
综上所述,图像恢复与修复是图像处理技术中的重要环节。
滤波、插值和深度学习技术都是常用的图像恢复与修复方法。
图像复原1.背景介绍图像复原是图像处理的一个重要课题。
图像复原也称图像恢复,是图像处理的一个技术。
它主要目的是改善给定的图像质量。
当给定一幅退化了的或是受到噪声污染的图像后,利用退化现象的某种先验知识来重建或恢复原有图像是复原处理的基本过程。
可能的退化有光学系统中的衍射,传感器非线性畸变,光学系统的像差,摄影胶片的非线性,打气湍流的扰动效应,图像运动造成的模糊及集合畸变等等。
噪声干扰可以有电子成像系统传感器、信号传输过程或者是胶片颗粒性造成。
各种退化图像的复原可归结为一种过程,具体地说就是把退化模型化,并且采用相反的过程进行处理,以便恢复出原图像。
文章介绍图像退化的原因,直方图均衡化及几种常见的图像滤波复原技术,以及用MATLAB实现图像复原的方法。
2.实验工具及其介绍2.1实验工具MATLAB R2016a2.2工具介绍MATLAB语言是基于最为流行的C++语言基础上的,因此语法特征与C++语言极为相似,而且更加简单,更加符合科技人员对数学表达式的书写格式。
使之更利于非计算机专业的科技人员使用。
而且这种语言可移植性好、可拓展性极强。
MATLAB具有方便的数据可视化功能,以将向量和矩阵用图形表现出来,并且可以对图形进行标注和打印。
高层次的作图包括二维和三维的可视化、图象处理、动画和表达式作图。
新版本的MATLAB对整个图形处理功能作了很大的改进和完善,使它不仅在一般数据可视化软件都具有的功能(例如二维曲线和三维曲面的绘制和处理等)方面更加完善,而且对于一些其他软件所没有的功能(例如图形的光照处理、色度处理以及四维数据的表现等),MATLAB 同样表现了出色的处理能力。
同时对一些特殊的可视化要求,例如图形对话等,MATLAB也有相应的功能函数,保证了用户不同层次的要求。
3.图像复原法3.1含义图像复原也称图像恢复,是图像处理中的一大类技术。
所谓图像复原,是指去除或减在获取数字图像过程中发生的图像质量下降(退化)这些退化包括由光学系统、运动等等造成图像的模糊,以及源自电路和光度学因素的噪声。
图像处理中的图像恢复技术图像处理技术早在几十年前就开始出现了。
随着计算机技术的飞速发展,图像处理技术也得到了很大的发展。
其中一个比较重要的分支就是图像恢复技术。
什么是图像恢复技术呢?就是利用图像处理技术,对损坏的图像进行修复,使其恢复到原来的状态。
图像恢复技术主要面对的是以下几种情况:1. 历史文物的恢复。
例如在考古发现中,很多文物已经被时间的风化所损坏,这时候就需要图像恢复技术对其进行修复。
2. 噪声图像的恢复。
在很多图像处理中,由于各种因素的干扰,产生了很多噪声,这时候就需要图像恢复技术对其进行修复。
3. 压缩图像的恢复。
例如在很多视频传输中,由于带宽受限,不得不对图像进行压缩,这时候就需要图像恢复技术对其进行还原。
4. 模糊图像的恢复。
由于拍摄的时候相机的晃动或者被拍摄物体的运动等因素,会使得拍摄出来的图像显得模糊不清,这时候就需要图像恢复技术对模糊的图像进行修复。
针对上述情况,图像恢复技术主要有以下几种方法:1. 基于插值法的图像恢复。
这种方法就是通过对已知信息点的数据进行插值,来拟合出未知信息点的数据。
一般采用双线性插值、双三次插值等方法。
这种方法的缺点是容易产生锯齿、虚影等问题。
2. 基于滤波法的图像恢复。
这种方法就是对图像进行低通滤波来消除噪声、锐化图像等,然后再进行高通滤波来增强图片轮廓。
在这个过程中也可以使用基于小波分析的变换来实现滤波。
3. 基于反演法的图像恢复。
这种方法就是根据已知条件以及设定的模型,来解释损坏图像的原始信息。
一般采用最大似然估计、最小二乘法等方法。
这种方法需要较高的数学水平及对复杂问题有一定的理论基础。
4. 基于机器学习的图像恢复。
这种方法就是利用神经网络来学习图像的特征,并预测缺失信息,然后再对预测结果进行修复。
这种方法需要大量的数据样本及对神经网络等机器学习模型有一定的理论基础。
总之,图像恢复技术在现在的生活中越来越重要,它可以帮助我们还原损坏的图像,使得我们能够更加清晰地观察和研究。
数字图像处理实验——图像恢复班级:信息10—1姓名:张慧学号:36实验四、图像复原一、实验目的1了解图像退化原因与复原技术分类化的数学模型;2熟悉图像复原的经典与现代方法;3热练掌握图像复原的应用;4、通过本实验掌握利用MATLAB编程实现数字图像的图像复原。
二、实验原理:图像复原处理是建立在图像退化的数学模型基础上的,这个退化数学模型能够反映图像退化的原因。
图像的退化过程可以理解为施加于原图像上的运算和噪声两者联合作用的结果,图像退化模型如图1所示,可以表示为:g ( x, y ) H [ f ( x, y )] n( x, y ) f ( x, y )h( x, y ) n( x, y) (1)图1 图像退化模型(1)在测试图像上产生高斯噪声lena图-需能指定均值和方差;并用滤波器(自选)恢复图像;噪声是最常见的退化因素之一,也是图像恢复中重点研究的内容,图像中的噪声可定义为图像中不希望有的部分。
噪声是一种随机过程,它的波形和瞬时振幅以及相位都随时间无规则变化,因此无法精确测量,所以不能当做具体的处理对象,而只能用概率统计的理论和方法进行分析和处理。
本文中研究高斯噪声对图像的影响及其去噪过程。
①高斯噪声的产生:所谓高斯噪声是指它的概率密度函数服从高斯分布(即正态分布)的一类噪声。
一个高斯随机变量z的PDF可表示为:P(z)()22x pz u2σ-⎡⎤-⎢⎥⎣⎦(2)其中z代表灰度,u是z的均值,σ是z的标准差。
高斯噪声的灰度值多集中在均值附近。
图2 高斯函数可以通过不同的算法用matlab 来产生高斯噪声。
②高斯噪声对信号的影响噪声影响图像处理的输入、采集、处理的各个环节以及输出结果的全过程,在图像中加高斯噪声通常会使图像变得模糊并且会出现细小的斑点,使图像变得不清晰。
③去除高斯噪声的一些方法去除高斯噪声的方法有直方图变换,低通滤波,高通滤波,逆滤波,维纳滤波,中值滤波等。
本文应用高斯平滑滤波进行去噪处理。
光学成像实验技术的图像处理与图像恢复方法在现代科学技术发展中,光学成像实验技术扮演着重要的角色。
它可以帮助我们研究微观领域中的物质结构和相互作用,甚至拓展到宇宙的观测和生物医学等领域。
然而,由于各种影响因素的存在,光学成像实验中获得的图像往往不够清晰,需要进行进一步的图像处理与图像恢复。
光学成像实验中的图像处理可以视为一个信号处理的过程,目的是增强图像质量,提取有用信息,并消除噪声和畸变。
常用的图像处理方法包括图像滤波、增强、恢复和分割等。
图像滤波是一种消除图像噪声的常用方法。
在光学成像实验中,由于光线散射和系统误差等原因,图像中会出现的噪声。
为了减少这种噪声对图像质量的影响,可以通过卷积运算的方式对图像进行滤波。
其中,常用的滤波方法包括均值滤波、中值滤波和最小二乘法滤波等。
这些方法可以有效地去除不同类型的噪声,使得图像更加清晰。
图像增强是提高图像质量的重要手段。
通过对图像进行亮度调整、对比度增强、直方图均衡等操作,可以使得图像更加鲜明、细节更加清晰。
此外,还可以利用图像增强算法改善图像的分辨率,使得图像中的目标物体更加清晰可见。
当图像由于乘以一个光栅等形成畸变时,图像恢复便尤为重要。
图片恢复算法可以通过建立模型和优化算法等方法,对图像进行去畸变处理。
常用的图像恢复方法包括退卷积、去模糊和超分辨等。
这些方法可以显著提高图像质量,使得光学成像实验获得的图像更加真实可靠。
图像分割是将图像划分为若干个区域的过程,其主要目的是提取感兴趣的目标区域。
在光学成像实验中,图像分割可以帮助我们定位感兴趣的物体、提取关键信息和进行目标跟踪等。
常用的图像分割方法包括基于阈值分割、基于边缘检测和基于区域生长等。
这些方法可以根据图像的特征和目标进行自适应的分割,提高图像处理的效果。
总之,光学成像实验技术的图像处理与图像恢复方法对于提高图像质量、提取有用信息和减少噪声等方面具有重要意义。
通过图像滤波、增强、恢复和分割等方法的综合应用,可以使光学成像实验得到更加准确和可靠的结果。
如何使用图像处理技术进行图像重建与恢复图像处理技术在现代科学和技术领域扮演着重要的角色,其中图像重建与恢复是其中一个应用领域。
图像重建与恢复涉及到利用各种图像处理算法和技术来对损坏、模糊或低质量的图像进行恢复和增强。
本文将介绍如何使用图像处理技术进行图像重建与恢复。
图像重建与恢复的第一步是图像预处理。
在进行任何图像恢复操作之前,我们需要对输入图像进行预处理。
预处理的目的是去除噪声、平滑图像和增强边缘。
常用的预处理技术包括噪声滤波、平滑滤波和边缘增强。
图像重建与恢复的关键是选择合适的恢复算法。
有许多图像恢复算法可供选择,例如插值法、逆滤波、最小二乘法等。
插值法是一种简单但常用的方法,通过对丢失的像素进行估计来重建图像。
逆滤波则是一种通过逆滤波器来减少图像模糊的方法。
最小二乘法是一种通过最小化残差来恢复图像的方法。
根据实际情况和需求,选择合适的恢复算法非常重要。
第三,利用图像重建与恢复算法进行图像恢复。
一旦选择了合适的恢复算法,我们可以将其应用于损坏、模糊或低质量的图像上。
这个过程可以通过使用图像处理软件来实现。
根据所选择的算法,我们可以调整算法的参数,以达到最佳的图像恢复效果。
在此过程中,我们应该对结果进行实时监控,以便进行调整和优化。
评估和验证图像的恢复质量。
一旦恢复过程完成,我们需要对恢复的图像进行评估和验证。
常用的评估指标包括峰值信噪比(PSNR)、均方误差(MSE)和结构相似度指数(SSIM)。
这些指标可以帮助我们衡量恢复图像与原始图像之间的差异。
根据评估结果,我们可以进行调整和改进恢复算法,以进一步提高图像恢复质量。
总结起来,图像重建与恢复是利用图像处理技术恢复和增强损坏、模糊或低质量的图像的过程。
通过预处理、选择适当的恢复算法、应用算法进行图像恢复,并评估和验证恢复结果,我们可以有效地进行图像重建与恢复。
图像处理技术在这个过程中起着关键的作用,同时提供了许多工具和算法来帮助我们实现最佳的图像恢复效果。
一.实验名称:图像退化与复原二.实验目的1.了解光电图像的退化原因;2.掌握和理解基本的噪声模型,并能对图像进行加噪处理;3.了解点扩展函数(PSF)与光学传递函数(OTF)的关系,熟悉几种经典的退化模型的模拟试验和 OTF 估计方法;4.熟悉和掌握几种经典的图像复原方法与其基本原理;5.能熟练利用 MATLAB 或 C/C++工具进行图像的各种退化处理,并能编程实现退化图像的复原。
三.实验原理光电成像系统出现图像退化的过程是复杂多变的,为了研究的需要,通常情况下都把退化简化为化为一个线性移不变过程,见下图 1 所示。
图 1 光电图像退化与复原原理图因此,在空域中退化过程可以表示如下:g f h(1)(x,y)(x,y)(x,y)(x,y)只有加性噪声不存在情况下,退化过程可以模型化如下表达式:g f(2)(x,y)(x,y)(x,y)其频域表达式为:u (3)v v=(,)+(),)G,(F u v N u针对这种退化图像的复原,除了周期噪声以外,通常都可以采用空间域滤波的方法进行图像复原,此时图像复原与图像增强几乎是没有区别的。
常见的空间域滤波方法有均值滤波器和统计排序滤波器。
当退化图像存在线性移不变退化时,图像的复原不能采用简单空间域滤波器来实现,要实现线性移不变退化图像的复原,必须知道退化系统的退化函数,即点扩展函数(x,y)h 。
在点扩展函数已知的情况下,常见图像复原方法有逆滤波和维纳滤波两种。
在考虑噪声的情况下,逆滤波的原理可以表示如下:()()()()()()G u,v N u,v F u,v F u,v H u,v H u,v(4)通常情况下,()N u,v 是未知的,因此即使知道退化模型也不能复原图像。
此外,当,H u v 的任何元素为零或者值很小时,,/,N u v H u v 的比值决定着复原的结果,从而导致图像复原结果出现畸变。
对于这种情况,通常采用限制滤波频率使其难以接近原点值,从而减少遇到零值的可能性。