电力系统潮流计算方法分析
- 格式:doc
- 大小:2.37 MB
- 文档页数:20
电力系统潮流分析潮流分析是电力系统中一种重要的计算方法,用于分析电力系统中各节点电压、功率和电流的分布情况。
通过潮流分析可以评估电力系统的稳定性和可靠性,为电力系统的规划、运行和控制提供参考依据。
本文将介绍电力系统潮流分析的基本原理、计算方法以及应用范围。
一、潮流分析的基本原理在电力系统中,各节点以母线表示,节点之间通过线路连接。
潮流分析基于以下几个基本原理:1. 电压平衡原理:电力系统中的节点电压必须满足节点处功率平衡方程,即节点出注入电流之和为零。
2. 潮流方程:潮流方程描述了电力系统中各节点之间电压、功率和电流之间的关系。
潮流方程是通过母线注入导纳矩阵、支路导纳和节点注入功率来表达。
3. 网络拓扑:电力系统中的节点和线路之间形成了复杂的拓扑结构,潮流分析需要考虑节点之间的相互连接关系。
二、潮流分析的计算方法潮流分析通常采用迭代法来计算各节点的电压、功率和电流。
常用的迭代法包括高斯-赛德尔迭代法和牛顿-拉夫逊迭代法。
1. 高斯-赛德尔迭代法:该方法是最简单的潮流计算方法之一。
它通过假设电力系统中所有节点电压的初始值,逐步迭代更新节点电压,直到满足收敛条件为止。
2. 牛顿-拉夫逊迭代法:该方法通过建立功率不平衡方程的雅可比矩阵,采用牛顿迭代和拉夫逊补偿的方法来求解节点电压。
牛顿-拉夫逊迭代法具有更快的收敛速度和更高的计算精度。
三、潮流分析的应用范围潮流分析在电力系统中有广泛的应用,包括但不限于以下几个方面:1. 系统规划:潮流分析可以用于电力系统的规划和设计,评估系统瓶颈、优化系统结构和参数配置。
2. 运行控制:潮流分析可以用于电力系统的运行控制,评估节点电压的合理范围、分析负荷变化对系统的影响。
3. 网络优化:潮流分析可以用于电力系统的网络优化,寻找最优输电线路和改善电力系统的供电可靠性。
4. 风电并网:潮流分析可以用于风电并网系统的规划和运行,评估并网系统的可靠性和电力系统与风电场的相互影响。
电力系统中的潮流计算与优化方法潮流计算是电力系统运行和规划中的重要环节,它用于计算电力系统中各节点的电压、相角、有功、无功功率以及线路、变压器等的潮流分布情况。
对电力系统进行潮流计算可以帮助电力系统运行人员了解系统的稳定性、可靠性以及容载能力,也可以为电力系统规划提供数据支持。
本文将介绍电力系统潮流计算的基本方法与优化技术。
一、潮流计算的基本方法1.1 普通潮流计算方法潮流计算的基本方法是牛顿-拉夫逊迭代法(Newton-Raphson Iteration Method)和高尔顿法(Gauss-Seidel Method)。
牛顿-拉夫逊迭代法主要是通过不断迭代求解雅可比矩阵的逆,直到迭代误差小于给定阀值时停止迭代;高尔顿法则是逐一更新所有节点的电压与相角,直至所有节点的迭代误差都小于给定阀值。
1.2 快速潮流计算方法在大型电力系统中,普通的潮流计算方法计算速度较慢。
因此,研究人员提出了一些针对快速潮流计算的方法,如快速牛顿-拉夫逊法(Fast Newton-Raphson Method)和DC潮流计算方法。
快速牛顿-拉夫逊法通过简化牛顿-拉夫逊法的迭代公式,减少计算量,提高计算速度;DC潮流计算方法则是将潮流计算问题转化为一个线性方程组的求解问题,进一步提升计算效率。
二、潮流计算的优化技术2.1 改进的潮流计算算法为了提高潮流计算的准确性和收敛速度,研究人员提出了一些改进的潮流计算算法。
其中,改进的牛顿-拉夫逊法(Improved Newton-Raphson Method)是一种结合牛顿-拉夫逊法和割线法的算法,通过混合使用这两种方法,实现在减小迭代误差的同时加快计算速度。
此外,基于粒子群优化算法(Particle Swarm Optimization)和遗传算法(Genetic Algorithm)的潮流计算算法也得到了广泛研究和应用。
2.2 潮流优化潮流计算不仅可以用于分析电力系统的工作状态,还可以作为优化问题的约束条件。
电 力 系 统 三 种 潮 流 计 算 方 法 的 比 较一、高斯 -赛德尔迭代法:以导纳矩阵为基础, 并应用高斯 -- 塞德尔迭代的算法是在电力系统中最早得到应用的潮流计算方法,目前高斯一塞德尔法已很少使用。
将所求方程 f ( x ) 0 改写为 x( x )不能直接得出方程的根,给一个猜测值x 0 得 x 1( x 0 )又可取 x1 为猜测值,进一步得:x 2 ( x 1 )反复猜测x k 1 迭代则方程的根( x k )优点:1. 原理简单,程序设计十分容易。
2. 导纳矩阵是一个对称且高度稀疏的矩阵,因此占用内存非常节省。
3. 就每次迭代所需的计算量而言,是各种潮流算法中最小的,并且和网络所包含的节点数成正比关系。
缺点:1. 收敛速度很慢。
2. 对病态条件系统,计算往往会发生收敛困难:如节点间相位角差很大的重负荷系统、包含有负电抗支路 (如某些三绕组变压器或线路串联电容等 )的系统、具有较长的辐射形线路的系统、长线路与短线路接在同一节点上,而且长短 线路的长度比值又很大的系统。
3. 平衡节点所在位置的不同选择,也会影响到收敛性能。
二、牛顿 -拉夫逊法: 求解 f ( x ) 0设 x x 0 x ,则 按牛顿二项式展开:当 △x 不大,则取线性化(仅取一次项) 则可得修正量对 得:作变量修正:x k 1xk x k ,求解修正方程 20 世纪 牛顿法是数学中求解非线性方程式的典型方法,有较好的收敛性。
自从60 年代中期采用了最佳顺序消去法以后,牛顿法在收敛性、内存要求、计算速度方面都超过了其他方法,成为直到目前仍被广泛采用的方法。
优点:1. 收敛速度快,若选择到一个较好的初值,算法将具有平方收敛特性,一般迭代 4—5 次便可以收敛到一个非常精确的解。
而且其迭代次数与所计算网络的规模基本无关。
2. 具有良好的收敛可靠性, 对于前面提到的对以节点导纳矩阵为基础的高斯一塞德尔法呈病态的系统,牛顿法均能可靠地收敛。
电力系统三种潮流计算方法的比较电力系统潮流计算是电力系统分析和运行控制中最重要的问题之一、它通过计算各节点电压和各支路电流的数值来确定电力系统各个节点和支路上的电力变量。
常见的潮流计算方法有直流潮流计算方法、高斯-赛德尔迭代法和牛顿-拉夫逊迭代法。
以下将对这三种方法进行比较。
首先,直流潮流计算方法是最简单和最快速的计算方法之一、它假设整个系统中的负载功率都是直流的,忽略了交流电力系统中的复杂性。
直流潮流计算方法非常适用于传输和配电系统,尤其是对于稳定的系统,其结果比较准确。
然而,该方法忽略了交流电力系统中的变压器的磁耦合和饱和效应,可能会导致对系统状态误判。
因此,直流潮流计算方法的适用范围有限。
其次,高斯-赛德尔迭代法是一种迭代方法,通过反复迭代计算来逼近系统的潮流分布。
该方法首先进行高斯潮流计算,然后根据计算结果更新节点电压,并再次进行计算,直到收敛为止。
高斯-赛德尔迭代法考虑了变压器的复杂性,计算结果比直流潮流计算方法更准确。
然而,该方法可能发生收敛问题,尤其是在系统变压器的串联较多或系统中存在不良条件时。
此外,该方法的计算速度较慢,尤其是对于大型电力系统而言。
最后,牛顿-拉夫逊迭代法是一种基于牛顿法的迭代方法,用于解决非线性潮流计算问题。
该方法通过线性化系统等式并迭代求解来逼近系统的潮流分布。
与高斯-赛德尔迭代法相比,牛顿-拉夫逊迭代法收敛速度更快,所需迭代次数更少。
此外,该方法可以处理系统中的不平衡和非线性元件,计算结果更准确。
然而,牛顿-拉夫逊迭代法需要建立和解算雅可比矩阵,计算量相对较大。
综上所述,电力系统潮流计算方法根据应用需求和系统特点选择合适的方法。
直流潮流计算方法适用于稳定的系统,计算简单、快速,但适用范围有限。
高斯-赛德尔迭代法适用于一般的交流电力系统,考虑了变压器复杂性,但可能存在收敛问题和计算速度较慢的缺点。
牛顿-拉夫逊迭代法适用于复杂的非线性系统,收敛速度快且计算结果准确,但需要较大的计算量。
电力系统潮流计算电力系统潮流计算是电力系统运行分析中的重要环节。
它通过对电力系统中各节点的电压、相角以及功率等参数进行计算和分析,从而得出电力系统的稳态运行状态。
本文将从潮流计算的基本原理、计算方法、应用及其发展等方面进行阐述。
一、潮流计算的基本原理电力系统潮流计算的基本原理是基于潮流方程建立的。
潮流方程是一组非线性的方程,描述了电力系统中各节点的电压、相角以及功率之间的关系。
潮流计算的目的就是求解这组非线性方程,以确定电力系统的电压幅值、相角及有功、无功功率的分布情况。
二、潮流计算的基本方法潮流计算的基本方法主要有直接法、迭代法以及牛顿-拉夫逊法。
直接法是通过直接求解潮流方程得到电力系统的潮流状况,但对于大规模复杂的电力系统来说,直接法计算复杂度高。
迭代法是通过对电力系统的节点逐个进行迭代计算,直到满足预设的收敛条件。
牛顿-拉夫逊法是一种较为高效的迭代法,它通过近似潮流方程的雅可比矩阵,实现了计算的高效和稳定。
三、潮流计算的应用潮流计算在电力系统运行与规划中起着重要作用。
首先,潮流计算可以用于电力系统的稳态分析,确定电力系统在各种工况下的电压、相角等参数,以判断电力系统是否存在潮流拥挤、电压失调等问题。
其次,潮流计算还可以用于电力系统的优化调度,通过调整电力系统的发电机出力、负荷组织等参数,以改善电力系统的经济性和可靠性。
此外,潮流计算还可以用于电力系统规划,通过对电力系统进行潮流计算,可以为新建电源、输电线路以及变电站等设备的规划和选择提供科学依据。
四、潮流计算的发展随着电力系统的规模不断扩大和复杂度的提高,潮流计算技术也得到了迅速的发展。
传统的潮流计算方法在计算效率和计算精度上存在一定的局限性。
因此,近年来研究者提出了基于改进的迭代方法、高精度的求解算法以及并行计算等技术,以提高潮流计算的速度和准确性。
此外,随着可再生能源的不断融入电力系统,潮流计算还需要考虑多种能源的互联互通问题,这对潮流计算提出了新的挑战,需要进一步的研究和改进。
电力系统潮流计算方法分析1.黎曼法是最简单和最直接的计算方法。
该方法直接利用电力系统的基本方程式,即功率平衡方程式和节点电压方程式来计算潮流分布。
然而,黎曼法需要利用复杂的矩阵方程式来解决系统中节点电压的计算,计算量大且计算速度较慢,对大型复杂系统不适用。
2.高斯-赛德尔法是一种迭代法,将电网中的节电清设置为未知数,并采用全局迭代求解。
该方法通过迭代计算不断逼近潮流分布,直到满足系统中所有节点的电压和功率平衡方程为止。
高斯-赛德尔法具有迭代次数多、耗时较长的缺点,但计算稳定可靠,对于小型系统具有较好的适用性。
3.牛顿-拉夫逊法是一种基于牛顿迭代思想的高效潮流计算方法。
该方法通过利用电力系统中的雅可比矩阵,将潮流计算问题转化为解非线性方程组的问题。
牛顿-拉夫逊法的迭代速度和稳定性较高,适用于大型复杂系统的潮流计算。
综上所述,电力系统潮流计算方法可以选择黎曼法、高斯-赛德尔法和牛顿-拉夫逊法等不同的算法进行计算。
选择合适的计算方法应根据系统的规模、复杂度以及计算时间要求来综合考虑。
实际应用中,通常会根据具体情况采用不同的方法进行潮流计算,以获得准确和高效的结果。
同时,随着电力系统的发展和智能化技术的应用,也出现了一些基于机器学习和深度学习的潮流计算方法。
这些方法利用大数据和智能算法,通过学习和分析系统历史数据,能够更好地预测和计算系统潮流分布,提高计算效率和准确性。
这些方法在未来的电力系统潮流计算中具有潜力和广阔的应用前景。
总结起来,电力系统潮流计算是电力系统分析和规划的重要工作,不同的计算方法有不同的优劣势,合理选择计算方法对于准确评估系统稳定性和可靠性至关重要。
随着技术的进步和应用的发展,电力系统潮流计算方法也在不断演化和改进,以满足电力系统智能化和可持续发展的需求。
电力系统潮流计算方法分析电力系统潮流计算是电力系统运行中的基础性分析方法之一,它用于求解电力系统中各个节点的电压、相角以及线路的功率、电流等变量。
潮流计算是电力系统规划、运行和控制等方面的重要工具。
本文将对电力系统潮流计算方法进行分析。
电力系统潮流计算方法主要有两种,即直接法和迭代法。
直接法又分为解析法和数值法,迭代法包括高斯赛德尔迭代法、牛顿-拉夫逊迭代法等。
解析法是通过电力系统各个节点之间的网络拓扑关系和节点电压平衡条件的方程式,直接求解节点电压和线路功率等参数。
解析法的优点是计算速度快,但其适用范围较窄,主要适用于小型简单电力系统,对于大型复杂电力系统的潮流计算会出现计算量庞大的问题。
数值法是通过将连续变量离散化,将微分方程转化为差分方程,并利用数值解法求解离散的方程组来得到电力系统潮流计算结果。
数值法的优点是适用范围广,能够处理大型复杂电力系统的潮流计算,但其缺点是计算速度相对较慢。
在迭代法中,高斯赛德尔迭代法是一种经典的迭代法,它通过先假设节点电压的初值,然后利用节点注入功率与节点电压之间的关系不断迭代计算,最终达到收敛条件为止。
高斯赛德尔迭代法的优点是收敛速度快,计算精度高,但其缺点是收敛性有时不易保证,并且计算速度会随着系统规模的增大而变慢。
牛顿-拉夫逊迭代法是一种基于牛顿迭代法的改进方法,它引入雅可比矩阵,通过牛顿迭代法的迭代过程来求解节点电压和线路功率等参数。
牛顿-拉夫逊迭代法的优点是收敛性好,计算速度快,但其缺点是在实际应用中需要预先计算雅可比矩阵,会增加计算的复杂度。
综上所述,电力系统潮流计算方法有直接法和迭代法两种,其中直接法包括解析法和数值法,迭代法包括高斯赛德尔迭代法和牛顿-拉夫逊迭代法。
在实际应用中,根据电力系统的规模和复杂程度选择合适的方法进行潮流计算,以得到准确可靠的计算结果。
此外,随着计算机技术的不断发展,还可以利用并行计算和分布式计算等方法来提高潮流计算的效率。
电力系统中的潮流计算方法及精度评估研究概述电力系统潮流计算是电力系统运行和规划的关键技术之一。
它用于计算电力系统中各节点的电压和功率流向,以评估系统的稳定性、安全性和经济性。
本文将介绍电力系统中常用的潮流计算方法,并探讨潮流计算结果的精度评估方法。
一、潮流计算方法1. 高斯-赛德尔迭代法高斯-赛德尔迭代法是最早应用于电力系统潮流计算的方法之一。
该方法通过迭代计算每个节点的电压值,直到满足潮流平衡方程。
然而,由于其收敛速度较慢,只适用于较小规模的电力系统。
2. 牛顿-拉夫逊迭代法牛顿-拉夫逊迭代法是目前应用较广的潮流计算方法。
该方法通过建立潮流计算的牛顿方程组,并迭代求解节点电压值。
相比高斯-赛德尔迭代法,牛顿-拉夫逊迭代法具有更快的收敛速度和更好的稳定性。
3. 直流潮流计算法直流潮流计算法是一种快速计算潮流的方法,主要用于大规模电力系统的运行和规划。
该方法基于直流潮流模型,忽略了交流系统中的谐波和动态特性,降低了计算的复杂性。
然而,由于其模型简化,直流潮流计算法在评估系统安全性和稳定性方面的准确性较低。
二、潮流计算结果的精度评估1. 误差分析法误差分析法是一种常用的潮流计算结果的精度评估方法。
它通过比较潮流计算结果与实际测量值之间的差异来评估计算结果的准确性。
误差分析法通常涉及计算误差、输入误差和观测误差等方面的考虑。
2. 灵敏度分析法灵敏度分析法是一种用于评估潮流计算结果的精度和稳定性的方法。
通过计算各个输入参数对潮流计算结果的影响程度,可以评估计算结果对输入参数变化的敏感度,并识别不确定性因素。
3. 置信区间分析法置信区间分析法是一种用于评估潮流计算结果的不确定性的方法。
它通过构建置信区间,表示潮流计算结果的可信程度。
置信区间分析法可以在统计学框架下对潮流计算结果进行准确的可信度评估。
三、研究展望1. 基于深度学习的潮流计算方法近年来,深度学习在电力系统领域取得了显著的应用成果。
基于深度学习的潮流计算方法能够利用大量的数据和高级模型进行潮流计算,提高计算效率和准确性。
简单电力系统分析潮流计算电力系统潮流计算是电力系统分析中的一项重要任务。
其目的是通过计算各个节点的电压、电流、有功功率、无功功率等参数,来确定系统中各个元件的运行状态和互相之间的相互影响。
本文将介绍电力系统潮流计算的基本原理、计算方法以及应用。
潮流计算的基本原理是基于电力系统的节点电压和支路功率之间的网络方程。
通过对节点电压进行迭代计算,直到满足所有支路功率平衡方程为止,得到系统的运行状态。
潮流计算的基本问题可以表示为以下方程组:P_i = V_i * (G_i * cos(θ_i - θ_j ) + B_i * sin(θ_i -θ_j )) - V_j * (G_i * cos(θ_i - θ_j ) - B_i * sin(θ_i -θ_j )) (1)Q_i = V_i * (G_i * sin(θ_i - θ_j ) - B_i * cos(θ_i -θ_j )) - V_j * (G_i * sin(θ_i - θ_j ) + B_i * cos(θ_i -θ_j )) (2)其中,P_i为节点i的有功功率注入;Q_i为节点i的无功功率注入;V_i和θ_i分别为节点i的电压幅值和相角;V_j和θ_j分别为节点j的电压幅值和相角;G_i和B_i分别为支路i的导纳的实部和虚部。
对于一个电力系统,如果知道了节点注入功率和线路的导纳,就可以通过潮流计算求解出各节点的电压和功率。
这是一种不断迭代的过程,直到系统达到平衡状态。
潮流计算的方法有多种,常见的有高斯-赛德尔迭代法、牛顿-拉夫逊迭代法等。
其中,高斯-赛德尔迭代法是最常用的一种方法。
高斯-赛德尔迭代法的思想是从已知节点开始,逐步更新其他节点的电压值,直到所有节点的电压值收敛为止。
具体步骤如下:1.初始化所有节点电压的初始值;2.根据已知节点的注入功率和节点电压,计算其他节点的电压值;3.判断节点电压是否收敛,如果收敛则结束计算,否则继续迭代;4.更新未收敛节点的电压值,返回步骤2高斯-赛德尔迭代法的优点是简单有效,但其收敛速度较慢。
电力系统潮流计算与分析电力系统是现代社会不可或缺的基础设施之一,它为我们提供了稳定可靠的电力供应。
而电力系统的潮流计算与分析则是电气工程中的重要研究领域之一。
本文将介绍电力系统潮流计算与分析的基本概念、方法和应用。
一、潮流计算的基本概念潮流计算是指对电力系统中各个节点的电压、电流、功率等参数进行计算和分析的过程。
它是电力系统规划、设计和运行中必不可少的工具。
潮流计算的目的是确定电力系统中各个节点的电压和相位角,以及各个支路的电流和功率。
通过潮流计算,可以评估电力系统的稳定性、负载能力和输电能力,为电力系统的规划和运行提供科学依据。
二、潮流计算的方法潮流计算的方法主要包括直流潮流计算和交流潮流计算两种。
直流潮流计算是一种简化的方法,适用于电力系统中负载变化较小的情况。
它假设电力系统中的所有元件都是直流元件,忽略了电抗元件的影响。
交流潮流计算则考虑了电力系统中的电抗元件对电流和功率的影响,是一种更为精确的计算方法。
在交流潮流计算中,常用的方法包括高斯-赛德尔法、牛顿-拉夫逊法和快速潮流法等。
高斯-赛德尔法是一种迭代法,通过反复迭代计算节点的电压和相位角,直到满足收敛条件。
牛顿-拉夫逊法则是一种迭代法,通过对节点电压的雅可比矩阵进行线性化,求解节点电压的增量,从而逐步逼近潮流计算的结果。
快速潮流法是一种基于分解和迭代的方法,通过将电力系统分解为多个子系统进行计算,从而提高计算的速度和效率。
三、潮流计算的应用潮流计算在电力系统的规划、设计和运行中有着广泛的应用。
首先,潮流计算可以用于电力系统的负荷分配和负载能力评估。
通过计算各个节点的电压和功率,可以确定电力系统中各个节点的负载水平,从而合理分配负荷,提高电力系统的供电能力。
其次,潮流计算可以用于电力系统的故障分析和稳定性评估。
通过模拟电力系统中的故障情况,可以评估电力系统的稳定性,为电力系统的运行和维护提供依据。
此外,潮流计算还可以用于电力系统的输电能力评估和优化。
电力系统分析潮流计算电力系统分析是对电力系统运行状态进行研究、分析和评估的一项重要工作。
其中,潮流计算是电力系统分析的一种重要方法,用于计算电力系统中各节点的电压、功率和电流等参数。
本文将详细介绍电力系统潮流计算的原理、方法和应用。
一、电力系统潮流计算的原理电力系统潮流计算是基于潮流方程的求解,潮流方程是描述电力系统各节点电压和相角之间的关系的一组非线性方程。
潮流方程的基本原理是基于电力系统的等效导纳矩阵和节点电压相位差的关系,通过潮流计算可以得到电力系统各节点的电压和功率等参数。
电力系统潮流方程的一般形式如下:\begin{align*}P_i &= \sum_{j=1}^{n}(V_iV_j(G_{ij}\cos(\theta_i-\theta_j)+B_{ij}\sin(\theta_i-\theta_j))) \\Q_i &= \sum_{j=1}^{n}(V_iV_j(G_{ij}\sin(\theta_i-\theta_j)-B_{ij}\cos(\theta_i-\theta_j)))\end{align*}其中,$n$为节点数,$P_i$和$Q_i$表示第i个节点的有功功率和无功功率。
$V_i$和$\theta_i$表示第i个节点的电压和相角。
$G_{ij}$和$B_{ij}$表示节点i和节点j之间的等效导纳。
二、电力系统潮流计算的方法电力系统潮流计算的方法主要包括直接法、迭代法和牛顿-拉夫逊法等。
1.直接法:直接法是一种适用于小规模电力系统的潮流计算方法,它通过直接求解潮流方程来计算电力系统的潮流。
直接法的计算速度快,但对系统规模有一定的限制。
2.迭代法:迭代法是一种常用的潮流计算方法,通常使用高尔顿法或牛顿法。
迭代法通过迭代求解潮流方程来计算电力系统的潮流。
迭代法相对于直接法来说,可以适用于大规模电力系统,但计算时间较长。
3.牛顿-拉夫逊法:牛顿-拉夫逊法是一种高效的潮流计算方法,它通过求解潮流方程的雅可比矩阵来进行迭代计算,可以有效地提高计算速度。
电力系统中的潮流计算和稳定分析电力系统是现代工业与生活的重要基础设施,通常由发电厂、变电站、输电线路、配电变压器等设备组成。
为保证电力系统的安全稳定运行,需要进行潮流计算和稳定分析。
一、潮流计算潮流计算是指在电力系统中计算各节点电压、功率、电流等电气量的过程。
其基本原理是基于欧姆定律和基尔霍夫电压定律和电流定律等基本定律,建立电力系统潮流方程。
该方程组由节点电压幅值、相角和电流幅值构成。
解出该方程组即可得到各节点的电压和电流。
潮流计算可以分为直流潮流和交流潮流。
1.直流潮流计算直流潮流计算是在电力系统中,将系统中所有的交流源、负荷以及网络元件都看作是直流模型,利用简化的欧姆定律和基尔霍夫电压定律和电流定律等基本定律,建立潮流方程组。
直流潮流计算的优点是计算简单、速度快、精度高。
适用于需要快速验证电力系统可行性的场合。
但由于采用了简化的电气模型,因此不能很好的反映交流系统中的非线性及复杂动态现象。
2.交流潮流计算交流潮流计算是在交流电力系统中,采用复数电气量相量分析方法,将系统中的所有元件,如发电机、负载、电容器、感性电抗器、变压器、输电线路等,以复数电气量的形式处理,并在此基础上建立方法或模型,有效地描述交流系统的各种非线性和动态现象。
交流潮流计算的优点是模型更为真实,能够考虑系统的非线性以及动态特性。
可以用于研究系统的稳定性,提高系统的稳定性和安全性。
二、稳定分析稳定分析是指电力系统在外界干扰下,研究系统动态特性的过程。
当外界干扰超出系统的承受能力时,系统会出现不稳定现象,也就是电力系统失去平衡,产生大的振荡或跳闸事故。
稳定分析主要包括暂态稳定分析和动态稳定分析。
1.暂态稳定分析暂态稳定分析是研究系统在突然的负荷变化、电力故障等外部因素的作用下,系统运动过程的过程。
包括了重大故障过后的电力系统恢复。
暂态稳定分析考虑了瞬态电压稳定和角稳定两方面,是评估电力系统在大干扰或重大故障后的稳定性,以及判断电力系统的灵敏程度。
电力系统的潮流计算电力系统的潮流计算是电力系统分析中的基础工作,主要用于计算电力系统中各节点的电压和功率流动情况。
通过潮流计算可以得到电力系统的电压、功率、功率因数等关键参数,为电力系统的运行和规划提供有效的参考依据。
本文将介绍电力系统潮流计算的基本原理、计算方法和应用。
一、电力系统潮流计算的基本原理电力系统潮流计算基于电力系统的能量守恒原理和基尔霍夫电流定律,通过建立电力系统的节点电压和功率平衡方程组来描述系统中各节点间的电压和功率流动关系。
潮流计算的基本原理可简述为以下三个步骤:1.建立节点电压方程:根据基尔霍夫电流定律,将电力系统中各节点的电流状况表达为节点电压和导纳矩阵之间的乘积关系。
2.建立功率平衡方程:根据能量守恒原理,将电力系统中各支路的功率流动表达为节点电压和导纳矩阵之间的乘积关系。
3.解算节点电压:通过求解节点电压方程组,得到系统中各节点的电压值。
二、电力系统潮流计算的常用方法电力系统潮流计算常用的方法有高斯-赛德尔迭代法、牛顿-拉夫逊迭代法和快速潮流法等。
其中,高斯-赛德尔迭代法是一种基于节点电压的迭代算法,通过在每一次迭代中更新节点电压值来逐步逼近系统潮流平衡状态。
牛顿-拉夫逊迭代法是一种基于节点电压和节点功率的迭代算法,通过在每一次迭代中同时更新节点电压和节点功率值来逼近系统潮流平衡状态。
快速潮流法则是一种通过行列式运算直接求解节点电压的方法,对于大规模复杂的电力系统具有较高的计算效率和精度。
三、电力系统潮流计算的应用电力系统潮流计算在电力系统的规划和运行中有广泛应用。
具体应用包括:1.电力系统规划:通过潮流计算可以预测系统中各节点的电压和功率流动情况,为电力系统的设计和扩建提供参考依据。
2.电力系统稳定性分析:潮流计算可以帮助分析系统中节点电压偏差、功率瓶颈等问题,为系统的稳态和暂态稳定性分析提供基础数据。
3.运行状态分析:潮流计算可以实时监测系统中各节点的电压和功率流动情况,为电力系统的运行调度提供参考。
电力系统潮流计算与分析概述:电力系统潮流计算与分析是电力系统运行中的重要步骤,它涉及到对电力系统的节点电压、线路潮流以及功率损耗等进行精确计算和分析的过程。
通过潮流计算和分析,电力系统运行人员可以获得关键的运行参数,从而保持电力系统的稳定运行。
本文将从潮流计算的基本原理、计算方法、影响因素以及潮流分析的实际应用等方面进行论述。
潮流计算的基本原理:潮流计算的基本原理是基于电力系统的节点电压和线路潮流之间的平衡关系进行计算。
在电力系统中,电源会向负载供电,而线路损耗会导致电压降低。
潮流计算就是要确定电力系统中各个节点的电压和线路潮流,以保持系统的稳定运行。
通过潮流计算,可以得到节点电压、线路潮流以及负荷功率等关键参数。
潮流计算的方法:潮流计算可以分为迭代法和直接法两种方法。
1. 迭代法:迭代法是潮流计算中最常用的方法,它基于电力系统的牛顿—拉夫逊法(Newton-Raphson method)来进行计算。
迭代法的基本步骤如下:a. 假设节点电压的初值;b. 根据节点电压初值和电力系统的潮流方程建立节点电流方程组;c. 利用牛顿—拉夫逊法迭代求解节点电压;d. 判断是否满足收敛条件,如果不满足,则返回第二步重新计算,直至满足收敛条件。
2. 直接法:直接法是潮流计算中的另一种方法,它基于电力系统的潮流松弛法(Gauss-Seidel method)来进行计算。
直接法的基本步骤如下:a. 假设节点电压的初值;b. 根据节点电压初值和电力系统的潮流方程,按照节点顺序逐步计算节点电压;c. 判断是否满足收敛条件,如果不满足,则返回第二步重新计算,直至满足收敛条件。
影响潮流计算的因素:1. 负荷:电力系统中的负荷是潮流计算中的重要因素之一,负荷的变化会导致节点电压和线路潮流的波动。
因此,在进行潮流计算时,需要准确地估计各个节点的负荷。
2. 发电机:发电机是电力系统的电源,它的输出功率和电压会影响潮流计算中的节点电压和线路潮流。
电力系统分析计算公式1.电力系统潮流计算电力系统潮流计算是一种用于确定电力系统各个节点电压和功率的方法。
常用的电力系统潮流计算公式包括:- 节点功率方程:P = V * I * cos(theta) + V * U * sin(theta) - 节点电流方程:I = V * I * sin(theta) - V * U * cos(theta)其中,P为节点有功功率,V为节点电压,I为节点电流,theta为节点相角,U为无功功率系数。
2.短路电流计算短路电流计算是用于评估电力系统短路故障时电流的大小和方向的方法。
常用的短路电流计算公式包括:- 对称短路电流公式:Isc = V / Zs其中,Isc为短路电流,V为电压,Zs为短路阻抗。
3.电力系统电压稳定性计算电力系统电压稳定性计算是为了评估电力系统节点电压的稳定性。
常用的电力系统电压稳定性计算公式包括:-V/Q稳定器灵敏度公式:dV/dQ=-Ry*dQ/dP+Xy*(dQ/dQ+dV/dV)其中,V为节点电压,Q为节点无功功率,P为节点有功功率,Ry为负荷灵敏度,Xy为发电机灵敏度。
4.功率系统频率计算功率系统频率计算是为了评估电力系统频率的稳定性。
常用的功率系统频率计算公式为:- 系统频率变化率公式:df/dt = (P - Pd) / (2 * H)其中,df/dt为频率变化率,P为实际功率,Pd为负荷功率,H为系统等效惯量。
5.电力系统稳定裕度计算电力系统稳定裕度计算是为了评估电力系统在各种故障情况下的稳定性。
常用的电力系统稳定裕度计算公式包括:- 稳定裕度指标公式:S ω = (δmax - δmin) / δfc其中,Sω为稳定裕度指标,δmax为最大转子转角,δm in为最小转子转角,δfc为临界转子转角。
以上是一些常用的电力系统分析计算公式,这些公式是电力系统工程师进行电力系统设计和运行评估的重要依据。
电力系统分析计算的结果可以帮助工程师评估电力系统的稳定性,指导运维工作,并制定相应的措施以确保电力系统的安全、可靠和高效运行。
电力行业的电力系统潮流计算与分析电力系统是一个复杂的能源交互网络,其潮流计算与分析对于电力行业的运营和规划至关重要。
本文将介绍电力系统潮流计算的基本原理、方法以及应用,并对一些常见的电力系统问题进行分析和解决。
一、电力系统潮流计算原理电力系统潮流计算是指通过建立和求解电力系统的节点电压和支路潮流等参数的方程组,来分析电力系统中各个节点和支路的电压、功率等参数。
其基本原理是基于电力系统中的潮流方程和节点电压平衡方程。
电力系统潮流方程是描述电力系统节点之间潮流传输关系的基本方程。
在潮流计算中,常用的潮流方程有M端潮流方程、PQ端潮流方程和PV端潮流方程。
这些方程反映了电力系统中不同类型节点的潮流传输特性,是潮流计算的基础。
节点电压平衡方程是电力系统潮流计算中的重要方程。
它根据电力系统的拓扑结构和能量守恒原理,描述了电力系统中各个节点的电压平衡关系。
通过求解节点电压平衡方程,可以得到电力系统中各个节点的电压值,从而确定电力系统的潮流分布情况。
二、电力系统潮流计算方法电力系统潮流计算方法包括迭代法、直接法和混合法等。
其中,迭代法是最常用和最经典的方法。
1. 迭代法迭代法是通过反复迭代计算来逼近电力系统的潮流计算结果。
常用的迭代法有高斯-赛德尔法、牛顿-拉夫逊法和快速潮流法等。
高斯-赛德尔法是一种基于节点顺序更新的迭代法,通过交替更新节点电压和支路潮流,逐渐逼近潮流计算结果。
牛顿-拉夫逊法是一种基于牛顿迭代法的改进方法,通过利用电压-节点功率雅可比矩阵的特性,加快了潮流计算的收敛速度。
快速潮流法是一种针对大规模电力系统的高效迭代法,通过合理的迭代策略和加速技术,提高了潮流计算的效率和准确性。
2. 直接法直接法是一种通过求解线性方程组来直接得到电力系统的潮流计算结果的方法。
常用的直接法有节点导纳矩阵法和母线导纳矩阵法等。
节点导纳矩阵法是一种基于电力系统拓扑结构的直接法,通过建立节点导纳矩阵和节点电流矩阵,求解节点电流和支路潮流。
电力系统潮流计算及网络分析方法研究概述:电力系统潮流计算是电力系统运行和规划中的关键问题之一。
对于确保电力系统的稳定运行和优化调度具有重要意义。
网络分析方法在电力系统潮流计算中发挥着至关重要的作用。
本文将对电力系统潮流计算及网络分析方法进行深入研究,分析研究结果,并探讨未来发展方向。
一、电力系统潮流计算方法1.传统潮流计算方法:传统的潮流计算方法主要是基于大量的代数和微分方程的求解,通过牛顿-拉夫逊法或高斯-赛德尔法进行迭代求解。
这些方法可以在计算精度方面得到很好的结果,但计算速度较慢,尤其对于大规模电力系统来说计算复杂度较高。
2.快速潮流计算方法:为解决传统潮流计算方法的计算速度问题,人们提出了一些快速潮流计算方法。
其中,直流潮流计算方法是最为常见和有效的一种。
直流潮流计算方法将交流潮流计算中的复杂计算转化为了线性方程组的求解,大大提高了计算速度。
此外,还有基于矩阵计算方法、灵敏度法等快速潮流计算方法也受到了广泛应用。
3.蒙特卡洛潮流计算方法:蒙特卡洛潮流计算方法是一种基于随机数的潮流计算方法。
通过引入随机扰动,模拟系统负荷的变化和不确定性,从而评估系统运行状态。
这种方法能够全面考虑电力系统各种不确定因素对系统运行状态的影响,提高潮流计算的可靠性。
二、电力系统网络分析方法1.拓扑分析方法:电力系统网络是由各种设备和线路组成的复杂且多变的网络结构。
拓扑分析方法主要针对系统的结构和连接进行分析,如系统的回路分析、连通分量分析等。
通过拓扑分析方法,可以了解电力系统的整体结构,明确系统中各个节点和线路的关系,为潮流计算提供基础信息。
2.灵敏度分析方法:灵敏度分析方法是通过分析系统响应的变化情况,研究系统各个参数对潮流计算结果的影响程度。
通过计算电力系统潮流计算结果对各个参数的偏导数,可以得到参数的灵敏度指标,进而评估电力系统的稳定性和灵活性。
3.可靠性分析方法:电力系统的可靠性是指系统在正常和异常条件下维持稳定运行的能力。
电力系统潮流计算算法及其效率分析现代社会已经越来越依赖电力,而电力系统的安全和稳定运行则是社会生产生活的重要保障。
电力系统潮流计算是电力系统运行分析的重要环节,可用于分析电力系统的电压、电流、功率等参数,及时发现和解决电力系统运行中的问题,确保电力系统稳定运行。
本文将介绍电力系统潮流计算的算法及其效率分析。
一、电力系统潮流计算算法电力系统潮流计算的算法可以分为直接潮流计算法和迭代潮流计算法。
1、直接潮流计算法直接潮流计算法又称为Gauss-Seidel法,是一种迭代计算法。
它的基本原理是:从任意起点开始,按照节点位于网络中的拓扑次序,依次计算每一个节点的电压幅值和相角,并将其作为下一个节点的计算依据,如此循环迭代,直到所有节点的电压幅值和相角的变化不再大于预设值为止。
这种算法的计算速度比较快,但由于其每个节点的计算都是基于其前后节点的计算结果,因此对于复杂的电力系统网络,可能存在网络收敛速度慢、计算精度不高等问题。
2、迭代潮流计算法迭代潮流计算法又称为Newton-Raphson法,是一种比较精确的算法。
它的基本原理是:通过对电力系统节点电压幅值和相角的偏导数进行求解,得到节点电压和相角的增量,并将其与原节点电压和相角相加,得到新的节点电压和相角。
这种算法的精度相对较高,适用于复杂电力系统网络,在收敛速度、迭代次数、计算精度等方面都有较好的表现。
但相对而言也计算耗时较长。
二、电力系统潮流计算算法效率分析电力系统潮流计算算法的效率包括计算速度、收敛速度、计算精度等方面。
1、计算速度计算速度是评估算法效率的一个重要指标。
直接潮流计算法的计算速度相对比较快,因其是一种基于迭代计算的算法,每个节点的计算都可同时进行,从而提高了算法的计算速度。
而迭代潮流计算法的计算速度相对比较慢,由于其涉及大量的矩阵运算和非线性迭代,计算时间长,可能会受到计算机内存、硬盘等计算资源的限制。
2、收敛速度收敛速度是评估算法有效性的重要指标。
电力系统潮流分析—基于牛拉法和保留非线性的随机潮流姓名:***学号:***1 潮流算法简介1.1 常规潮流计算常规的潮流计算是在确定的状态下.即:通过已知运行条件(比如节点功率或网络结构等)得到系统的运行状态(比如所有节点的电压值与相角、所有支路上的功率分布和损耗等)。
常规潮流算法中的一种普遍采用的方法是牛顿-拉夫逊法.当初始值和方程的精确解足够接近时,该方法可以在很短时间内收敛.下面简要介绍该方法。
1.1。
1牛顿拉夫逊方法原理对于非线性代数方程组式(1-1),在待求量x 初次的估计值(0)x 附近,用泰勒级数(忽略二阶和以上的高阶项)表示它,可获得如式(1-2)的线性化变换后的方程组,该方程组被称为修正方程组。
'()f x 是()f x 对于x 的一阶偏导数矩阵,这个矩阵便是重要的雅可比矩阵J 。
12(,,,)01,2,,i n f x x x i n ==(1-1)(0)'(0)(0)()()0f x f x x +∆=(1—2)由修正方程式可求出经过第一次迭代之后的修正量(0)x ∆,并用修正量(0)x ∆与估计值(0)x 之和,表示修正后的估计值(1)x ,表示如下(1—4).(0)'(0)1(0)[()]()x f x f x -∆=-(1—3)(1)(0)(0)x x x =+∆(1-4)重复上述步骤.第k 次的迭代公式为: '()()()()()k k k f x x f x ∆=-(1—5)(1)()()k k k x x x +=+∆(1-6)当采用直角坐标系解决潮流方程,此时待解电压和导纳如下式:i i i ij ij ijV e jf Y G jB =+=+ (1-7)假设系统的网络中一共设有n 个节点,平衡节点的电压是已知的,平衡节点表示如下.n n n V e jf =+(1-8)除了平衡节点以外的所有2(1)n -个节点是需要求解的量。
电力系统的潮流计算与分析引言电力是现代社会不可或缺的能源,电力系统的稳定运行和高效管理对整个社会经济发展起着重要作用。
而电力系统的潮流计算与分析是电力系统运行和管理的重要工具。
本文将探讨电力系统潮流计算与分析的原理、方法以及应用领域,旨在增进读者对该领域的了解。
一、电力系统潮流计算的原理电力系统潮流计算是指在给定电网拓扑结构、负荷需求和发电机输出等条件下,通过数学模型计算各节点的电压幅值和相位角,以获取电网各元件的电流分布和功率流向。
潮流计算的核心是建立电力系统的节点电压和传输功率的联立方程组,并通过求解方程组得到节点电压和功率流向的数值解。
潮流计算的基本原理是基于电力系统的各节点之间存在有功功率平衡和无功功率平衡,即电力系统各节点的有功功率和无功功率之和等于节点的负荷功率和发电机输出功率之和。
通过对电力系统进行潮流计算,可以得出各节点的电压、功率因数、功率损耗等参数,为电力系统的运行和管理提供依据。
二、电力系统潮流计算的方法1. 直流潮流计算方法直流潮流计算方法是一种较为简化的计算方法,适用于较小规模的电力系统以及初步的潮流计算。
该算法假设电力系统中各节点电压的相角都为零,即所有节点电压相位角均取0°,从而简化了潮流计算的计算量。
然而,直流潮流计算方法无法考虑电网的无功功率平衡,无法准确得到节点的功率因数和无功功率分布。
2. 迭代法潮流计算方法迭代法是一种常用的潮流计算方法,其基本思路是通过反复迭代计算节点电压和功率分布,直到达到收敛条件为止。
迭代法潮流计算方法常用的算法包括高斯-赛德尔迭代法和牛顿-拉夫逊迭代法。
迭代法潮流计算方法能较好地考虑电网的无功功率平衡,可以获得较为准确的节点电压和功率分布。
3. 双切迭代法潮流计算方法双切迭代法是一种相对较新的潮流计算方法,其基本思路是通过分析电力系统的分割区域,将电力系统划分为多个小区域进行潮流计算,并通过切割和迭代的方式逐步求解整个电力系统。
电力系统潮流分析—基于牛拉法和保留非线性的随机潮流,姓名:***学号:***1 潮流算法简介常规潮流计算常规的潮流计算是在确定的状态下。
即:通过已知运行条件(比如节点功率或网络结构等)得到系统的运行状态(比如所有节点的电压值与相角、所有支路上的功率分布和损耗等)。
常规潮流算法中的一种普遍采用的方法是牛顿-拉夫逊法。
当初始值和方程的精确解足够接近时,该方法可以在很短时间内收敛。
下面简要介绍该方法。
牛顿拉夫逊方法原理对于非线性代数方程组式(1-1),在待求量x 初次的估计值(0)x 附近,用泰勒级数(忽略二阶和以上的高阶项)表示它,可获得如式(1-2)的线性化变换后的方程组,该方程组被称为修正方程组。
'()f x 是()f x 对于x 的一阶偏导数矩阵,这个矩阵便是重要的雅可比矩阵J 。
12(,,,)01,2,,i n f x x x i n == (1-1)(0)'(0)(0)()()0f x f x x +∆=(1-2)'由修正方程式可求出经过第一次迭代之后的修正量(0)x ∆,并用修正量(0)x ∆与估计值(0)x 之和,表示修正后的估计值(1)x ,表示如下(1-4)。
(0)'(0)1(0)[()]()x f x f x -∆=-(1-3)(1)(0)(0)x x x =+∆(1-4)重复上述步骤。
第k 次的迭代公式为: '()()()()()k k k f x x f x ∆=-(1-5)(1)()()k k k x x x +=+∆(1-6)当采用直角坐标系解决潮流方程,此时待解电压和导纳如下式:i i i ij ij ijV e jf Y G jB =+=+ (1-7)假设系统的网络中一共设有n 个节点,平衡节点的电压是已知的,平衡节点表示如下。
n n n V e jf =+(1-8)}除了平衡节点以外的所有2(1)n -个节点是需要求解的量。
每个节点可列出两个方程式。
假定系统中前m 个节点为P-Q 节点,第1m +到1n -个节点为P-V 节点。
对于PQ 节点,i P 和i Q 的值是固定的,对于PV 节点,i P 和i V 的值是固定的。
()()01,2,,()()0i is ij ij i ij j ij j j j jj i j i ij ij ij j j ij j i is i j j j i j i i m f f f e G e G e P P B B Q Q f f f G e e G e B B ∈∈∈∈⎧∆=---+=⎪=⋅⋅⋅⎨∆=--++=⎪⎩∑∑∑∑ (1-9)2222()()01,2,,1()0i is ij ij i ij jijj ji jj i j ii is ii i m m n ff fe G e G e P P B Bf V V e ∈∈⎧∆=---+=⎪=++⋅⋅⋅-⎨⎪∆=-+=⎩∑∑(1-10)选定电压初始值,按泰勒级数展开,忽略,i i e f ∆∆二次方程及以后各项,得到修正方程如下:W J U ∆=-∆(1-11)其中:22111111T mmm m n n W P Q P Q P UP U++--⎡⎤∆=∆∆∆∆∆∆∆∆⎣⎦,[]11111Tm mm m n n U e fe f e f e f ++--∆=∆∆∆∆∆∆∆∆,11111111111111111111111111111111m m m m n n m m m m n n m m m m m m m m m m m n P P P P P P P P ef e f e f e f Q Q Q Q Q Q Q Q ef e f e f e f P P P P P P P e f e f e f e J ++--++--++-∂∆∂∆∂∆∂∆∂∆∂∆∂∆∂∆∂∂∂∂∂∂∂∂∂∆∂∆∂∆∂∆∂∆∂∆∂∆∂∆∂∂∂∂∂∂∂∂∂∆∂∆∂∆∂∆∂∆∂∆∂∆∂∂∂∂∂∂∂=1111111111111111111111222221111111m n m m m m m m m m m m m m n n m m m m m m m m mm m m n n m m m m m m m P f Q Q Q Q Q Q Q Q e f e f e f e f P P P P P P P P ef e f e f e f U U U U U ef e f e -++--++++++++++--+++++∂∆∂∂∆∂∆∂∆∂∆∂∆∂∆∂∆∂∆∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∆∂∆∂∆∂∆∂∆∂∂∂∂∂2221111111111111111111112222221111111111m m m m m n n n n n n n n n n m m m m n n n n n n n n mmm m U U U f e f P P P P P P P P e f e f e f e f U U U U U U ef e f e f +++++----------++--------++∂∆∂∆∂∆∂∂∂∂∆∂∆∂∆∂∆∂∆∂∆∂∆∂∆∂∂∂∂∂∂∂∂∂∆∂∆∂∆∂∆∂∆∂∆∂∆∂∂∂∂∂∂221111n n n n U U e f ----⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥∂∆⎢⎥⎢⎥∂∂⎣⎦雅克比矩阵J 各元素的计算公式如下:22()0ii ij i ij i jj i iij i ij i j j j j P Q G e B f e f P Q B e G f j i f e U U e f ⎧∂∆∂∆=-=-+⎪∂∆∂∆⎪⎪∂∆∂∆⎪==-≠⎨∂∆∂∆⎪⎪∂∆∂∆⎪==∂∂⎪⎩(1-12)【111122()()()()22n iij j ij j ii i ii j in iij j ij j ii i ii ii j jn iij j ij j ii i ii ij i ni ij j ij j ii i ii i j j iiji i iP G e B f G e B fe P Gf B e G f B e f Q G f B e G f B e e Q G e B f G e B f f U e e U f f ====∂∆⎧=----⎪∂⎪⎪∂∆=-+-+⎪∂⎪⎪∂∆⎪=+-+∂⎪⎨∂∆⎪=-∆-++⎪∂⎪∂∆⎪=-⎪∂⎪⎪∂∆=-∂⎩∑∑∑∑j i =⎪(1-13)一般雅克比矩阵表示为:()()()()()()()()()()ij i ij i i ij ij j ij j ii i ii i j j iij i ij i iij ij j ij j ii i ii i j j iij i ij i i ijij j ij j ii i ii i j j i G e B f j i P H G e B f G e B f j i eB e G f j i P N G f B e B e G f j i f B e G f Q M G f B e B e G f e ∈∈∈-+⎧≠∂∆⎪==⎨----=∂⎪⎩-⎧≠∂∆⎪==⎨-++-=∂⎪⎩-⎧∂∆⎪==⎨++-∂⎪⎩∑∑∑22()()()()()()0()2()0()2()ij i ij i i ijij j ij j ii i ii i j i j ii ij i j i iji j j i j i j iG e B f j i Q L G e B f G e B f j i f j i U R e j i e j i U S f j i f ∈⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪≠⎪⎪==⎨⎪⎪+⎧≠⎪∂∆⎪==⎨⎪--++=∂⎪⎪⎩⎪⎪≠⎧∂∆==⎪⎨-=∂⎩⎪⎪≠⎧∂∆⎪==⎨⎪-=∂⎩⎩∑ (1-14)牛顿拉夫逊方法求解框图如下:保留非线性法求解过程/图 牛顿拉夫逊潮流计算法求解框图与牛顿法的不同之处在于,第一是假设雅克比矩阵在迭代过程中不变,即取初值θ和U形成的雅克比矩阵来迭代;第二是计算出来的修正量一直是初始值的修正量。
由于保留非线性只对直角坐标形式的公式不存在截断误差,因此为了减小计算误差,本文以直角坐标形式的牛拉法为基础编写了保留非线性潮流计算方法的程序。
迭代公式为:∆x(k+1)=-J-1[y(x(0))-y s+y(∆x(k))] (1-14)迭代过程和牛拉法相类似,流程图如下所示:图保留非线性法求解框图蒙特卡罗模拟法蒙特卡罗模拟原理《蒙特卡罗模拟方法的思想是,是当求解问题是一不确定事件的平均值时,我们通过构建模型并采用某特定的“实验”,就可以实验中此事件发生的频率去估算概率。
蒙特卡罗模拟步骤1)根据不同新能源的特点建立新能源输出功率的样本,规模为N ;2)将得到的N 个样本值带入对应接入新能源的各节点,得到接入光伏后的各节点的值。
3)按照所述的牛顿拉夫逊法进行确定性潮流计算,得到N 组关于节点的电压,支路功率与网损的数据等。
4)运用数学上的统计原理,可以求出输出变量的分布情况。
拉丁超立方采样法拉丁超立方采样原理拉丁超立方采样由M. 、和在1979年提出,它通过分层采样使采样点能够覆盖到整个随机变量的分布范围。
该方法分成两步:1)采样:所有的输入变量可以通过分层采样,使得样本点更加准确均匀的分布;—2)排列:改变初次采样得到的样本数据的顺序,令变量数据之间的关联程度最小,或者通过排序达到指定的相关系数。
拉丁超立方采样优点1)可以使采样得到的数据较为全面地覆盖变量所分布的范围,同时分层使得采样时不会再采到一样或相似的数据,更准确地体现变量的总体情况,同时减小了样本规模。
一些文献证明了拉丁超立方采样与简单随机采样在采样规模同是M 时,两种方法抽取到的变量假设是独立的,那么它们的联合覆盖空间百分比平均值表示如下:221100%1100%1l m M P M M P M ⎧-⎡⎤=⨯⎪⎢⎥⎪⎣⎦⎨-⎪⎡⎤=⨯⎪⎢⎥+⎣⎦⎩(1-16)可以看出,当M 大于等于2时,一式大于二式,表明拉丁超立方采样比随机采样覆盖的范围大。
比如当M=20时,按式(1-16)计算得:90.25%l P =,81.86%m P =.2)拉丁超立方采样的稳健性好。
假设一输出随机变量Y 满足下式:1ni i i Y c X ==∑(1-17)i c 是常数,Y 是输入随机变量i X 的线性函数。
在相同采样规模下,进行一定次数的蒙特卡罗模拟,每一次都能获得一个关于Y 的分布情况。
由每个Y 的分布的期望值可以得到一个新的分布。
用方差Z σ表示这个分布的离散程度。
若Z σ越大,表明不同仿真间的差异越大,算法的稳健性越不好。