八年级上学期数学第一次月考试卷真题
- 格式:doc
- 大小:104.00 KB
- 文档页数:5
江苏省南京市秦淮区钟英中学2024-2025学年八年级上学期第一次月考数学试卷一、单选题1.下列图形中,不是轴对称图形的是( )A .B .C .D .2.如图,点D ,E 分别在线段AB ,AC 上,CD 与BE 相交于O 点,已知AB =AC ,现添加以下的哪个条件仍不能判定△ABE ≌△ACD 的是( )A .∠B =∠C B .AD =AE C .BD =CE D .BE =CD 3.如图,已知ABC A BC ''≌V V ,A C BC ''∥,∠C =25°,则ABA '∠的度数是( )A .15°B .20°C .25°D .30°4.如图,是一块三角形的草坪,现要在草坪上建一凉亭,要使凉亭到草坪三个顶点的距离相等,凉亭应选的位置是( )A .ABC V 的三条中线的交点B .ABC V 三条角平分线的交点 C .ABC V 三边的垂直平分线的交点D .ABC V 三条高所在直线的交点5.如图,ABC V 中,AB AC BC <<,使PA PB BC +=,那么符合要求的作图痕迹是( ) A . B .C .D .6.如图,在△ABC 中,AB=BC ,∠ACB=90°,点D 、E 在AB 上,将△ACD 、△BCE 分别沿CD 、CE 翻折,点A 、B 分别落在点A′、B′的位置,再将△A′CD 、△B′CE 分别沿A′C 、B′C 翻折,点D 与点E 恰好重合于点O ,则∠A′OB′的度数是( )A .90°B .120°C .135°D .150°二、填空题7.角是轴对称图形,是它的对称轴.8.如图所示的网格是正方形网格,图形的各个顶点均为格点,则∠1+∠2=.9.如图,射线AE 平分DAC ∠,点B 在射线AE 上,若使ABD ABC V V ≌,则需添加的一个条件是.(只填一个即可)10.如图,在Rt ABC △中,90C ∠=︒,以顶点A 为圆心,适当长为半径画弧,分别交边,AC AB于点M 、N ,再分别以M ,N 为圆心,大于12MN 长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若4,25CD AB ==,则ABD △的面积为.11.如图,把一张长方形纸片按如图方式折叠,使点B 和点D 重合,若70DFC ∠=︒,则DEF ∠=°.12.如图,在Rt ABC V 中,90ABC ∠=︒,D 是CB 延长线上的点,BD BA DE AC =⊥,于E ,若7.8DC =,3BF =,则AF 的长为.13.如图,BE AE ⊥,CF BE ⊥,垂足分别为E ,F ,D 是线段EF 的中点,CF BF =,若4AE =,3DE =,则ABC V 的面积是.14.如图,在22⨯的正方形网格中,有一个格点ABC V (阴影部分),则网格中所有与ABC V 成轴对称的格点三角形的个数是.15.两组邻边分别相等的四边形叫做“筝形”. 四边形ABCD 是一个筝形,其中AD CD =,AB CB =,AC 、BD 交于点O ,探究筝形的性质时,得到如下结论:①AC BD ⊥; ②12AO CO AC ==; ③ABD CBD ≌△△;④四边形ABCD 的面积AC BD =⋅.其中正确的结论有.16.如图,在V ABC 中,AB =AC =10,AD =8,AD 、BE 分别是V ABC 边BC 、AC 上的高,P 是AD 上的动点,则V CPE 周长的最小值是.三、解答题17.把一个大正方形分成9个相同的小方格,给图中的1个白色小方格画上斜线,使画斜线的部分成为一个轴对称图形18.已知图①、图②都是轴对称图形.仅用无刻度直尺.....,按要求完成下列作图(保留作图痕迹,不写作法):(1)在图①中,作出该图形的对称轴l;(2)在图②中,作出点P的对称点P .19.如图,正方形网格中每个小正方形边长都是1.A B C;(1)画出△ABC关于直线1对称的图形△111(2)在直线l上找一点P,使PB=PC;(要求在直线1上标出点P的位置)(3)在直线l上找一点Q,使点Q到点B与点C的距离之和最小.20.如图,电信部门要在S区修建一座发射塔.按照设计要求,发射塔到两个城镇A、B的距离必须相等,到两条高速公路m和n的距离也必须相等,发射塔应建在什么位置?在图上标出它的位置.(尺规作图)21.如图,在ABC V 中,点D 在边BC 上,CD AB =,DE AB P ,DCE A ∠=∠.若10DE =,8AB =,求BD 的长.22.如图,在ABC V 中,AB AC =,AD AE =,BD 、CE 相交于点O .连接AO ,求证AO BC ⊥23.将两个三角形纸板ABC V 和DBE V 按如图所示的方式摆放,连接DC .已知DBA CBE ∠=∠,BDE BAC ∠=∠,AC DE DC ==.(1)试说明ABC DBE ≌△△.(2)若72ACD ∠=︒,求BED ∠的度数.24.如图,在ABC V 中,AB 边的垂直平分线1l 交BC 于D ,AC 边的垂直平分线2l 交BC 于E ,1l 与2l 相交于点O ,ADE V 的周长为6cm .(1)求BC 的长;(2)若40DAE ∠=︒,DOE ∠= °,若DAE n ∠=︒,DOE ∠= .°25.如图,点D 是△ABC 中∠BAC 的平分线和边BC 的垂直平分线DE 的交点,DG ⊥AB 于点G ,DH ⊥AC 交AC 的延长线于点H ,求证:BG=CH .26.已知:ABC V 和A B C '''V ,D 、D ¢分别为BC 、B C ''中点,且AD A D ''=,AB A B ''=.(1)当BD B D ''=时,求证:ABC A B C '''△△≌.(2)当AC AC ''=时,求证:ABC A B C '''△△≌.。
山西省太原市晋源区晋祠镇多校2024—2025学年上学期第一次月考八年级数学试卷一、单选题1.下列各组线段能构成直角三角形的一组是()A .30,40,50B .7,12,13C .5,9,12D .3,4,62.在3.14,227π这四个数中,无理数有()A .1个B .2个C .3个D .4个3.下列各式中正确的是()A7=-B 3=±C .2(4=D =4.满足下列条件的,不是直角三角形的为()A .ABC ∠=∠-∠B .::1:1:2A B C ∠∠∠=C .222b ac =-D .::2:3:4a b c =5.如图,阴影部分是一个长方形,它的面积是()A .3cm 2B .4cm 2C .5cm 2D .6cm 26.如图,在Rt ABC △中,90C ∠=︒,若15AB =,则正方形ADEC 和正方形BCFG 的面积和为()A .150B .200C .225D .无法计算7a ,小数部分为b ,则a ﹣b 的值为()AB .6C .8D 68.如图,在ABC V 中,13AB AC ==,10BC =,点D 为BC 的中点,DE DE AB ⊥,垂足为点E ,则DE 等于()A .1013B .1513C .6013D .75139.设n 为正整数,且nn+1,则n 的值为()A .5B .6C .7D .810.如图,有一块直角三角形纸片,两直角边6cm AC =,8cm BC =.现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于()A .5cmB .4cmC .3cmD .2cm二、填空题11.=.12.的绝对值是.116的算术平方根是,的立方根是13.比较大小,填>或<,-14.已知a ,b ,c 是ABC V 的三边长,且满足关系式()22220a c b c b --+-=,则ABC V 的形状为.15.如图,是一种饮料的包装盒,长、宽、高分别为4cm ,3cm ,12cm ,现有一长为16cm 的吸管插入盒的底部,则吸管露在盒外部分的长度h 的取值范围为.三、解答题16.计算:3-(4)+(5)2+17.某消防部队进行消防演练.在模拟现场,有一建筑物发生了火灾,消防车到达后,发现离建筑物的水平距离最近为12m,如图,即AD=BC=12m,此时建筑物中距地面12.8m 高的P处有一被困人员需要救援.已知消防云梯车的车身高AB是3.8m,问此消防车的云梯至少应伸长多少米?V,若每个小方格的边长为1,请你根据所学的知识解18.如图,已知正方形网格中的ABC答下列问题.V的面积;(1)求ABC(2)判断ABC V 是什么形状?并说明理由.19.如图,四边形ABCD 是边长为a 的正方形,点E 在CD 上,DE b =,AE c =,延长CB 至点F ,使BF b =,连接AF ,试利用此图说明勾股定理.20.甲同学用如图所示的方法作出C在OAB △中,90,2,3OAB OA AB ∠=︒==,且点,,O A C 在同一数轴上,OB OC =.(1)请说明甲同学这样做的理由;(2)仿照甲同学的做法,在如图所示的数轴上描出表示F .21.阅读下面内容:111⨯=;1⨯=122⨯=.试求:;(n 为正整数)+。
2024—2025学年八年级数学第一次学科素养训练调查试卷一、选择题(共16分)1. 如图,四个图标分别是剑桥大学、北京大学、浙江大学和北京理工大学的校徽的重要组成部分,其中是轴对称图形的是()A. B.C. D.【答案】B【解析】【分析】根据轴对称图形的概念判断即可.本题考查的是轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.【详解】解:A、不是轴对称图形;B、是轴对称图形;C、不是轴对称图形;D、不是轴对称图形;故选:B.∠等于()2. 已知图中的两个三角形全等,则1A. 72°B. 60°C. 50°D. 58°【答案】D【解析】【分析】此题考查了全等三角形的性质,三角形内角和定理,根据全等三角形的性质和三角形内角和定理求解即可.【详解】∵图中的两个三角形全等,1∠是边a 和c 所夹的角∴1180507258∠=°−°−°=°. 故选:D .3. 下列条件中,不能判定两个直角三角形全等的是( )A. 两条直角边对应相等B. 斜边和一个锐角对应相等C. 斜边和一条直角边对应相等D. 一条直角边和一个锐角分别相等 【答案】D【解析】【分析】直角三角形全等的判定定理有SAS ,ASA ,AAS ,SSS ,HL ,根据定理逐个判断即可.【详解】解:A 、符合SAS 定理,根据SAS 可以推出两直角三角形全等,故本选项不符合题意; B 、符合AAS 定理,根据AAS 可以推出两直角三角形全等,故本选项不符合题意;C 、符合HL 定理,根据HL 可以推出两直角三角形全等,故本选项不符合题意;D 、当一边是两角的夹边,另一个三角形是一角的对边时,两直角三角形就不全等,故本选项符合题意; 故选D .【点睛】此题主要考查直角三角形的判定方法,解题的关键是熟知全等三角形的判定及直角三角形的全等判定.4. 如图, AD 是 ABC 的角平分线, DE AB ⊥ ,垂足为E , 9ABC S = , 2DE = , 5AB = ,则 AC 长为( )A. 5B. 4C. 3D. 2【答案】B【解析】 【分析】本题考查了角平分线的性质,三角形的面积,过点D 作DFAC ⊥于F ,然后利用ABC 的面积公式列式计算即可得解,熟练掌握角平分线的性质是解题的关键.【详解】如图,过点D 作DF AC ⊥于F ,∵AD 是ABC 的角平分线,DFAC ⊥,DE AB ⊥, ∴2DE DE ==,∵9ABC ABD ADC S S S =+= , ∴11922AB DE AC DF ×+×=, ∴11522922AC ××+×=, ∴4AC =,故选:B .5. 如图,直线l ,m 相交于点O .P 为这两直线外一点,且 2.8OP =.若点P 关于直线l ,m 的对称点分别是点1P ,2P ,则1P ,2P 之间的距离可能是( )A. 5B. 6C. 7D. 8【答案】A【解析】 【分析】连接 112212,,,,OP PP OP PP PP ,根据轴对称的性质和三角形三边关系可得结论. 【详解】解:如图,连接 112212,,,,OP PP OP PP PP ,∵ P 1是 P 关于直线 l 的对称点,∴ 直线 l 是 PP 1的垂直平分线,∴ 1= 2.8OP OP =,∵ P 2是 P 关于直线 m 的对称点,∴ 直线 m 是 PP 2的垂直平分线,∴ 2= 2.8OP OP =,当 P 1,O ,P 2不在同一条直线上时, 121212OP OP PP OP OP <<−+即 120 5.6PP <<,当 P 1,O ,P 2在同一条直线上时, 1212 5.6PP OP OP =+=,∴1P ,2P 之间的距离可能是5,故选:A .【点睛】此题主要考查了轴对称变换,熟练掌握轴对称变换的性质是解答此题的关键.6. 如图,在AOB 中,60AOB ∠=°,OA OB =,动点C 从点О出发,沿射线OB 方向移动,以AC 为边向右侧作等边ACD ,连接BD ,则下列结论不一定成立的是( )A. 120OBD ∠=°B. //OA BDC. CB BD AB +=D. AB 平分CAD ∠【答案】D【解析】 【分析】根据已知可得AOB 是等边三角形,再证明AOC ABD ≅ ,可得结论.【详解】解:∵60AOB ∠=°,OA OB =,∴AOB 是等边三角形,∴60OAB ABO ∠=∠=°,OA OB AB ==, ∵等边ACD ,∴60OAB CAD °∠=∠=,CA AD CD ==,∴OAC BAD ∠=∠,∴AOC ABD ≅ ,∴60ABD AOC ∠=∠=°,CO BD =,∴+=120ABD OBD ABO ∠∠∠=°,==CB BD CB OC OB AB +=+,∴+=180OBD AOB ∠∠°,∴//OA BD ;选项A 、B 、C 一定成立,D 不一定成立,故选:D .【点睛】本题考查了等边三角形的性质和全等三角形的判定与性质,解题关键是熟练运用全等三角形判定定理证明全等.7. 如图,AOB ADC △≌△(O ∠和D ∠是对应角),90O ∠= ,若OAD α∠=,ABO β∠=.当BC OA ∥时,α与β之间的数量关系为( )A. αβ=B. 2αβ=C. 90αβ+=D. 2180αβ+=【答案】B【解析】 【分析】本题考查了全等三角形的性质,等边对等角,平行线的性质,熟练掌握相关性质并准确识图理清图中各角度之间的关系是解题的关键.根据AOB ADC △≌△,90O ∠= ,ABO β∠=,可知AB AC =,90CAD OAB β∠=∠=°−,结合BC OA ∥和等腰三角形性质可得90CAD OAB ABC ACB β∠=∠=∠=∠=°−,180OAC ACB ∠+∠=°,将OAC ACB ∠+∠展开为OAD ACB CAD ∠+∠+求解,即可解题.【详解】解:AOB ADC △≌△(O ∠和D ∠对应角),90O ∠= ,AB AC ∴=,90CAD OAB β∠=∠=°−,ABC ACB ∴∠=∠,BC OA ∥,90CAD OAB ABC ACB β∴∠=∠=∠=∠=°−,180OAC ACB ∠+∠=°,()290180OAC ACB OAD ACB CAD αβ∴∠+∠=∠+∠+∠=+°−=°,2αβ∴=,故选:B .8. 如图,点P 为定角AOB ∠的平分线上的一个定点,且MPN ∠与AOB ∠互补,若MPN ∠在绕点P 旋转的过程中,其两边分别与OA OB ,交于点M N ,,则一下结论:①PM PN =恒成立;②OM ON +的值不变;③四边形PMON 的面积不变;④MN 的长不变;其中正确的个数为( )个A. 1B. 2C. 3D. 4【答案】C【解析】 【分析】根据角平分线的性质,作PE OA PF OB ⊥⊥,,可得PE PF OE OF MPE NPF == ,,≌,由此可判定①②③,连接EF ,根据三角形三边关系可判定④,由此即可求解.【详解】解:∵点P 在AOB ∠的角平分线上,∴AOP BOP ∠=∠,如图所示,过点P 作PE OA ⊥于点E ,作PF OB ⊥于点B ,是∴90PEO PFO ∠=∠=°,PE PF =,OE OF =,∴在四边形PEOF 中,180EOF EPF ∠+∠=°,∵180AOB MPN ∠+∠=°,∴MPN EPF ∠=∠,即MPE EON EON NOF ∠+∠=∠+∠,∴MPE NPF ∠=∠,∴()MPE NPF SAS ≌,∴PM PN =,故①正确;由①正确可得,ME NF =,∴22OM ON OE EM OF NF OE OF +=++−==,故②正确;由MPE NPF ≌可得MPE NPF S S = ,∴MPE EPO OPN EPO OPN NPF PMON PEOF S S S S S S S S ++=++== 四边形四边形,∴四边形PMON 的面积是定值,故③正确;如图所示,连接EF ,由上述结论可得,PM PN PE PF ==,,MPN EPF ∠=∠,PM PE >,PN PF >,∴MN CD ≠,即MN 的长度发生变化,故④错误;综上所述,正确的有①②③,共3个,故选:C .【点睛】本题考查了角平分线的性质,全等三角形的判定和性质,旋转的性质,四边形面积的计算方法等知识,掌握添加合理的辅助线,构造三角形全等是解题的关键.二、填空题(共20分)9. 等腰三角形的一个外角的度数是80°,则它底角的度数为___________°.【答案】40【解析】【分析】根据三角形的内角和定理以及等腰三角形的性质求解.【详解】解:∵等腰三角形的一个外角为80°,∴相邻角为18080100°−°=°,∵三角形的底角不能为钝角,∴100°角为顶角,∴底角为:(180100)240°−°÷=°. 故答案为:40.【点睛】本题考查三角形的内角和定理、等腰三角形的性质等知识,解题的关键是学会用分类讨论的思想思考问题.10. 如图,点E F 、在BC 上,BF CE A D =∠=∠,.请添加一个条件______,使ABF DCE ≌△△.【答案】B DEF ∠=∠(答案不唯一)【解析】【分析】本题考查了全等三角形的判定.根据已知条件中的一边一角,再添加一组对角相等即可.【详解】解:∵BF CE A D =∠=∠,,再添加B DEF ∠=∠,根据“角角边”就能证明ABF DCE ≌△△.故答案为:B DEF ∠=∠(答案不唯一). 11. 小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB ,另一把直尺压住射线OA 并且与第一把直尺交于点P ,小明说:“射线OP 就是∠BOA 的角平分线.”小明的做法,其理论依据是__【答案】在角的内部,到角两边距离相等的点在角的平分线上【解析】【分析】根据角平分线的性质即可证明.【详解】因为直尺的宽度一样,故点P 到AO 与BO 的距离相等,故可知PO 为角平行线.【点睛】此题主要考查角平行线的性质,解题的关键是熟知角平分线的性质.12. 如图,ABC 是等边三角形,D ,E 分别是AC BC ,上的点,若25AE AD CED =∠=°,,则BAE ∠=_____°.【答案】50【解析】【分析】利用等边三角形的性质可得60C BAC ∠=∠=°,从而利用三角形的外角性质可得85ADE ∠=°,然后利用等腰三角形的性质可得85AED ADE ∠=∠=°,从而利用三角形的内角和定理可得10DAE ∠=°,最后利用角的和差关系进行计算即可解答.【详解】解:∵ABC 是等边三角形,∴60C BAC ∠=∠=°,∵25CED ∠=°,∴85ADE CED C ∠=∠+∠=°,∵AE AD =,∴85AED ADE ∠=∠=°, ∴18010DAE AED ADE ∠=°−∠−∠=°,∴601050BAE BAC DAE ∠=∠−∠=°−°=°,故答案为:50.【点睛】本题考查了等边三角形的性质,三角形外角的性质,等腰三角形的性质,三角形内角和定理,熟练掌握等边三角形的性质是解题的关键.13. 如图,在△ABC 中,BD 平分∠ABC ,ED ∥BC ,AB =9,AD =6,则△AED 的周长为 ___.【答案】15【解析】【分析】由平行线的性质和角平分线的定义可求得BE=DE,则可求得答案.【详解】解:∵ED∥BC,∴∠EDB=∠CBD,∵BD平分∠ABC,∴∠CBD=∠ABD,∴∠EDB=∠ABD,∴DE=BE,∴AE+ED+AD=AE+BE+AD=AB+AD=9+6=15,即△AED的周长为15,故答案为:15.【点睛】本题主要考查了等腰三角形的判定和性质,证得DE=BE是解题的关键,注意角平分线、平行线的性质有应用.∠+∠=______度.14. 如图所示的网格是正方形网格,图形的各个顶点均为格点,则P O【答案】45【解析】∠=∠,结合正方形的对角线互相平分一组对角即可得到答案;【分析】根据图形得到P AQB【详解】解:由图像可得,在PCB 与QAB 中,CP AQ PCB QAB CB AB = ∠=∠ =∴(SAS)PCB QAB ≌ ,P AQB ∠=∠,∵AC 是正方形对角线,∴45AQC ∠=°, ∴45P BQC AQC ∠+∠=∠=°, 故答案为:45;【点睛】本题主要考查正方形的对角线平分一组对角,解题的关键是根据格点图形得到P AQB ∠=∠. 15. 在等腰ABC 中,8AB AC ==,点D ,E 分别是BC ,AC 边上的中点,那么DE =_____.【答案】4【解析】【分析】本题考查了三角形的中位线定理,三角形的中位线平行于第三边,且等于第三边的一半,根据三角形的中位线定理即可直接求解,理解定理是解题的关键.【详解】解:如图,∵点D,E分别是BC,AC边上的中点,∴DE是ABC的中位线,∴142DE AB==,故答案为:4.16.如图,∠BAC的平分线与BC的垂直平分线相交于点D,DE⊥AB,DF⊥AC,垂足分别为E,F,AB=11,AC =5,则BE=______________.【答案】3【解析】【详解】如图,连接CD,BD,已知AD是∠BAC的平分线,DE⊥AB,DF⊥AC,根据角平分线的性质可得DF=DE,∠F=∠DEB=90°,∠ADF=∠ADE,即可得AE=AF,又因DG是BC的垂直平分线,所以CD=BD,在Rt△CDF和Rt△BDE中,CD=BD,DF=DE,利用HL定理可判定Rt△CDF≌Rt△BDE,由全等三角形的性质可得BE=CF,所以AB=AE+BE=AF+BE=AC+CF+BE=AC+2BE,又因AB=11,AC=5,所以BE=3.点睛:此题考查了线段垂直平分线的性质、角平分线的性质以及全等三角形的判定与性质.此题难度适中,正确作出辅助线,利用数形结合思想是解决问题的关键.17. 如图,四边形ABCD中,AB=AD,AC=5,∠DAB=∠DCB=90°,则四边形ABCD的面积为_____.【答案】12.5【解析】【分析】过A 作AE ⊥AC ,交CB 的延长线于E ,判定△ACD ≌△AEB ,即可得到△ACE 是等腰直角三角形,四边形ABCD 的面积与△ACE 的面积相等,根据S △ACE =12×5×5=12.5,即可得出结论. 【详解】如图,过A 作AE ⊥AC ,交CB 的延长线于E ,∵∠DAB=∠DCB=90°,∴∠D+∠ABC=180°=∠ABE+∠ABC ,∴∠D=∠ABE ,又∵∠DAB=∠CAE=90°,∴∠CAD=∠EAB ,又∵AD=AB ,∴△ACD ≌△AEB (ASA ),∴AC=AE ,即△ACE 是等腰直角三角形,∴四边形ABCD 的面积与△ACE 的面积相等,∵S △ACE =12×5×5=12.5, ∴四边形ABCD 的面积为12.5,故答案为12.5.【点睛】本题主要考查了全等三角形的判定与性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题18. 如图,在ABC 中,10AB AC ==,12BC =,8AD =,AD 是BAC ∠的角平分线,若E ,F 分别是AD 和AC 上的动点,则EC EF +的最小值是______.【答案】485【解析】【分析】本题主要考查了等腰三角形的性质,轴对称−最短路线问题,三角形的面积,垂线段最短,作F 关于AD 的对称点F ′,由对称性可知,点F ′在AB 上,当CF AB ′⊥时,EC EF +的最小值为CF ′,再利用面积法求出CF ′的长即可,熟练掌握知识点的应用是解题的关键.【详解】解:作F 关于AD 的对称点F ′,∵AD 是BAC ∠的平分线,∴点F ′在AB 上,∴EF EF ′=,∴当CF AB ′⊥时,EC EF +的最小值为CF ′,∵AB AC =,AD 是BAC ∠的平分线,∴AD BC ⊥, ∴1122ABC S BC AD AB CF ′=×=× , ∴12810CF ′×=×, ∴485CF ′=, ∴EC EF +的最小值为485, 故答案为:485. 三、解答题(共64分)19. 如图,在由长度为1个单位长度的小正方形组成的网格中,ABC 的三个顶点A ,B ,C 都在格点上,分别按下列要求在网格中作图:(1)画出与ABC 关于直线l 成轴对称的111A B C △;(2)在直线l 上找出一点P ,使得||PA PC −的值最大;(保留作图痕迹,并标上字母P ) (3)在直线l 上找出一点Q ,使得1QA QC +的值最小.(保留作图痕迹,并标上字母Q ) 【答案】(1)见解析 (2)见解析 (3)见解析【解析】【分析】(1)根据轴对称的性质解答即可;(2)连接1AC 并延长,交直线l 于点P ,点P 即为所求;(3)直线AC 与直线l 的交点Q 即为所求.【详解】解:(1)如图,111A B C △即所求.(2)如图,连接1AC 并延长,交直线l 于点P ,点P 即为所求.∵点C 1点C 关于直线l 对称,∴||PA PC −=AC 1,∴连接1AC 并延长,交直线l 于点P ,点P 即为所求.(3)如图,直线AC 与直线l 的交点Q 即为所求,∵点C 1点C 关于直线l 对称,∴1QA QC +=QA+QC=AC ,∴直线AC 与直线l 交点Q.【点睛】此题考查轴对称图形的作图方法,轴对称图形的性质,线段和差的作图,正确理解轴对称图形的性质是解题的关键.20. 如图,已知DE ∥AB ,∠DAE =∠B ,DE =2,AE =4,C 为AE 中点.求证:△ABC ≌△EAD .为的的【答案】见解析【解析】【分析】根据中点的定义,再根据AAS 证明△ABC ≌△EAD 解答即可.【详解】证明:∵C 为AE 的中点,AE =4,DE =2,∴AC =12AE =2=DE , 又∵DE ∥AB ,∴∠BAC =∠E ,△ABC 和△EAD 中,B DAE BAC E AC DE ∠=∠ ∠=∠ =, ∴△ABC ≌△EAD (AAS ).【点睛】此题考查全等三角形的判定,关键是根据AAS 证明△ABC ≌△EAD 解答.21. 如图,E 在AB 上,A B ∠=∠,AD BE =,AE BC =,F 是CD 的中点.(1)求证:EF CD ⊥;(2)80CEA ∠=°,=60B ∠°,求ECD ∠的度数.【答案】(1)见解析 (2)40°【解析】【分析】(1)由AD BE =、A B ∠=∠,AE BC =,根据全等三角形的判定定理“SSS ”证明AED BCE ≅ ,得DE EC =,即可根据等腰三角形的“三线合一”证明EF CD ⊥;(2)由80CEA ∠=°,=60B ∠°,得20BCE CEA B ∠=∠−∠=°,则20AED BCE ∠=∠=°,在100CED ∠=°,根据“等边对等角”及三角形的内角和定理得180100402ECD EDC °−°∠=∠==°. 【小问1详解】证明:在AED △和BCE 中,AD BE A B AE BC = ∠=∠ =, ∴AED BCE SAS ≅ (), ∴DE EC =,∵F 是CD 的中点,∴EF CD ⊥.【小问2详解】解:∵80CEA ∠=°,=60B ∠°,∴806020BCE CEA B ∠=∠−∠=°−°=°,∵AED BCE ≅ ,∴20AED BCE ∠=∠=°, ∴8020100CED CEA AED ∠=∠+∠=°+°=°,∵DE EC =, ∴180100402ECD EDC °−°∠=∠==°, ∴ECD ∠的度数是40°.【点睛】此题重点考查全等三角形的判定与性质、等腰三角形的性质、三角形内角和定理及其推论等知识,证明AED BCE ≅ 是解题的关键.22. 已知:如图,A ,F ,E ,B 四点共线,AC CE ⊥,BD DF ⊥,=AF BE ,=AC BD .请问BC 和AD 有怎样的关系?说明理由【答案】=BC AD ,//BC AD ,理由见解析【解析】【分析】先根据“HL ”证明A C E B D F ≅ ,可得CE DF =,=A E C B FD ∠∠,进而得出=B E C A FD ∠∠,然后根据“SAS ”证明B C E A D F ≅ ,根据全等三角形的性质得出答案.【详解】∵A C C E ⊥,B D D F ⊥,∴90A C E B D F ∠=∠=°.∵AF BE =,∴A F E F B E E F +=+,即AE BF =.在Rt ACE 和R t B D F 中,AE BF AC BD = =∴()A C E B D F H L ≅ ,∴CE DF =,=A E C B FD ∠∠,∴E B C A FD ∠=∠.在BEC 和AFD △中,BE AF BEC AFD CE DF = ∠=∠ =∴()B C E A D F S A S ≅ ,∴BC AD =,CBE DAF ∠=∠.∴//BC AD【点睛】本题主要考查了全等三角形的性质和判定,灵活选择全等三角形的判定定理是解题的关键. 23. (1)如图1,在ABC 中,AB AC =,直线l 经过点A ,且与BC 平行,请在直线l 上作出所有的点Q ,使得12AQC ACB ∠=∠.(要求:用直尺和圆规作图,保留作图痕迹.)(2)如图2,已知四边形ABCD ,请用直尺和圆规在边BC 上求作一点P ,使APB CPD ∠=∠(要求:用直尺和圆规作图,保留作图痕迹.)【答案】(1)见解析;(2)见解析【解析】【分析】本题考查了尺规作图,等腰三角形的性质与判定,轴对称的性质;(1)以A 为圆心,AC 的长度为半径作弧,交l 于点1Q ,以C 为圆心1CQ 的长度为半径作弧,交l 于点2Q ,则12,Q Q 即为所求;(2)作A 关于BC 的对称点A ′,连接A D ′交BC 于点P ,连接AP ,则点P 即为所求.【详解】(1)解:如图所示,以为圆心,AC 的长度为半径作弧,交l 于点1Q ,以C 为圆心1CQ 的长度为半径作弧,交l 于点2Q ,则12,Q Q 即为所求;∵1AC AQ =∴11ACQ AQ C ∠=∠ 又∵BC l ∥∴11AQ C Q CB ∠=∠∴11ACQ Q CB ∠=∠,即112AQ C ACB ∠=∠; ∵12CQ CQ =,∴12AQ C AQ C ∠=∠, 又∵11AQ C Q CB ∠=∠ ∴212AQ C ACB ∠=∠ (2)解:如图所示,作A 关于BC 的对称点A ′,连接A D ′交BC 于点P ,连接AP ,则点P 即为所求.∵A ,A ′关于BC 对称,∴APB A PB ′∠=∠又∵DPC A PB ′∠=∠,∴APB CPD ∠=∠.24. 如图,ABC 中,AD 是高,CE 是中线,点G 是CE 的中点,DG CE ⊥,点G 为垂足.(1)求证:DC BE =;(2)若78AEC ∠=°,求BCE ∠的度数.【答案】(1)见解析 (2)26°【解析】【分析】(1)由G 是CE 的中点,DG CE ⊥得到DG 是CE 的垂直平分线,根据线段垂直平分线的性质得到DE DC =,由DE 是Rt ADB △的斜边AB 上的中线,根据直角三角形斜边上的中线等于斜边的一半得到12DE BE AB ==,即可得到DC BE =. (2)由DE DC =得到DEC BCE ∠=∠,由DE BE =得到B EDB ∠=∠,根据三角形外角性质得到2EDB DEC BCE BCE ∠=∠+∠=∠,则2B BCE ∠=∠, 由此根据外角的性质来求BCE ∠的度数. 【小问1详解】连接ED .∵G 是CE 的中点,DG CE ,∴DG 是CE 的垂直平分线,∴DE DC =.∵AD 是高,CE 是中线,∴DE 是Rt ADB △的斜边AB 上的中线, ∴12DE BE AB ==. ∴DC BE =;【小问2详解】DE BE AE DC === ,BCE DEC ∴∠=∠,BAD ADE ∠=∠,2EDB BCE ∴∠=∠,18018078102222AEC DEC BCE BCE ADE °−∠−∠°−°−∠°−∠∠===. AD 是高, 90EDB ADE ∴∠+∠=°,即1022902BCE BCE °−∠∠+=°. 378BCE ∴∠=°,26BCE ∴∠=°.【点睛】本题考查直角三角形斜边的中线的性质,线段垂直平分线的性质,三角形外角的性质以及等腰三角形的性质.正确的连接辅助线是解题关键.25. 已知命题“直角三角形斜边上的中线等于斜边的一半”,它的逆命题是个真命题(1)请写出逆命题和已知、求证逆命题:______.已知:______.求证:______.(2)用两种方法证明逆命题是真命题【答案】(1)如果三角形一边的中线等于这边的一半,那么这个三角形是直角三角形;已知:如图,ABC 中,CD 是中线,且12CD AB =,求证:90ACB ∠=° (2)见解析【解析】【分析】(1)把命题“直角三角形斜边上的中线等于斜边的一半”的条件和结论互换即可得到命题“直角三角形斜边上的中线等于斜边的一半”的逆命题;(2)根据命题的条件和结论,写出已知,求证,证法1:利用等腰三角形的性质与判定结合三角形内角和定理证明;证法2:如图乙,延长CCCC 至E ,使DE CD =、连接AE BE 、,证明()SAS ADE BDC ≌,进而推出AE BC ∥,EAC ACB ∠=∠,进而根据平行线的性质,可得90EAC ACB ∠=∠=°. 【小问1详解】如果三角形一边的中线等于这边的一半,那么这个三角形是直角三角形;已知:如图,ABC 中,CD 是中线,且12CD AB =, 求证:90ACB ∠=°; 【小问2详解】证法1:如图:∵ABC 中,CD 是中线,12AD BD AB ∴==, ∵12CD AB =, AD BD CD ∴==,DCA A ∴∠=∠,DCB B ∠=∠,180DCA A DCB B ∠+∠+∠+∠=° ,22180DCA DCB ∴∠+∠=° 即90DCA DCB∠+∠=°, ∴90ACB ∠=°;证法2:如图,延长CCCC 至E ,使DE CD =、连接AE BE 、,12AD BD AB == ,12CD AB =, AD BD CD ∴==,在ADE 与BDC 中,AD BD ADE BDC DE DC = ∠=∠ =()SAS ADE BDC ∴ ≌EAD CBD ∴∠=∠,AE BC ∴∥,180EAC ACB ∴∠+∠=°BD CD = ,DCB DBC ∴∠=∠,EAD DCB ∴∠=∠,AD CD = ,DAC DCA ∴∠=,EAD DAC DCB DCA ∴∠+∠=∠+,即EAC ACB ∠=∠又180EAC ACB ∴∠+∠=°,90EAC ACB ∴∠=∠=°.【点睛】本题主要考查了写出一个命题的逆命题,直角三角形斜边上的中线,等腰三角形的性质与判定,三角形内角和定理,全等三角形的性质与判定,灵活运用所学知识是解题的关键.26. 已知在ABC 中,AB AC =,点D 是边AB 上一点,BCD A ∠=∠.(1)如图1,试说明CD CB =的理由;(2)如图2,过点B 作BE AC ⊥,垂足为点E ,BE 与CD 相交于点F .①试说明2BCD CBE ∠=∠的理由;②如果BDF 是等腰三角形,求A ∠的度数.【答案】(1)见解析 (2)①见解析;②45°或36°【解析】【分析】本题考查等腰三角形的判定及性质,三角形的内角和定理及外角的性质,结合图形分情况讨论是解决问题的关键.(1)根据等腰三角形的性质可得A ABC CB =∠∠,再利用三角形的外角性质可得∠BDC A ACD =∠+∠,从而可得BDC ACB ∠=∠,然后根据等量代换可得D ABC B C ∠=∠.再根据等角对等边可得CD CB =,即可解答;(2)①根据垂直定义可得90BEC ∠=°,从而可得90CBE ACB ∠+∠=°,然后设CBE α∠=,则90ACB α∠=°−,利用(190ACB ABC BDC α∠=∠=∠=°−,最后利用三角形内角和定理可得2BCD α∠=,即可解答;②根据三角形的外角性质可得3BFD α∠=,然后分三种情况:当BD BF =时;当DB DF =时;当FB FD =时;分别进行计算即可解答.【小问1详解】解:∵AB AC =,∴A ABC CB =∠∠,∵BDC ∠是ADC △的一个外角,∴BDC A ACD ∠=∠+∠,∵ACB BCD ACD ∠=∠+∠,BCD A ∠=∠,∴BDC ACB ∠=∠,∴D ABC B C ∠=∠.∴CD CB =;【小问2详解】解:①∵BE AC ⊥,∴90BEC ∠=°,∴90CBE ACB ∠+∠=°,设CBE α∠=,则90ACB α∠=°−,∴90ACB ABC BDC α∠=∠=∠=°−,∴()()180********BCD BDC ABC ααα∠=°−∠−∠=°−°−−°−=, ∴2BCD CBE ∠=∠;②∵BFD ∠是CBF 的一个外角,∴23BFD CBE BCD ααα∠=∠+∠=+=,分三种情况:当BD BF =时,∴3BDC BFD α∠=∠=, ∵90ACB ABC BDC α∠=∠=∠=°−,∴903αα°−=,∴22.5α=°,∴245A BCD α∠=∠==°;当DB DF =时,∴3DBE BFD α∠=∠=, ∵90902DBE ABC CBE ααα∠=∠−∠=°−−=°−, ∴9023αα°−=,∴18α=°,∴236A BCD α∠=∠==°;当FB FD =时,∴DBE BDF ∠=∠,∵BDF ABC DBF ∠=∠>∠,∴不存在FB FD =,综上所述:如果BDF 是等腰三角形,A ∠的度数为45°或36°.。
陕西省咸阳市秦都区咸阳彩虹中学2024-2025学年八年级上学期第一次月考数学试卷一、单选题1.下列各数中,绝对值最小的数是( )A .5-B .12C .1-D 2.若6、8、a 为勾股数,则a 的值为( )A.B .10 C .12 D .3.下列各二次根式中,为最简二次根式的是( )A B C D 4.下列运算正确的是( )A 2=±B 5=C .(23=-D 5=±5.如图,数轴上A ,B 6.8,则在点A 和点B 之间表示整数的点共有( )A .7个B .6个C .5个D .4个 6.如图,在Rt ABC V 中,906ACB AB ∠=︒=,,若以AC 边和BC 边向外作等腰直角三角形AFC 和等腰直角三角形BEC .若BEC V 的面积为1S ,AFC V 的面积为2S ,则12S S +=( )A .4B .9C .18D .367.如图,将一根长24cm 的筷子,置于底面直径为5cm ,高为12cm 的圆柱形水杯中,设筷子露在杯子外面的长度为cm h ,则h 的取值范围是( )A .12cm 19cm h ≤≤B .12cm 17cm h ≤≤C .11cm 12cm h ≤≤D .5cm 12cm h ≤≤8.在证明勾股定理时,甲、乙两位同学分别设计了如下方案:如图,用四个全等的直角三角形拼成,其中四边形ABDE 和四边形CF 均是正方形,通过用两种方法表示正方形ABDE 的面积来进行证明.如图是两个全等的直角三角板ABC 和直角三角板DEF ,顶点F 在BC 边上,顶点C ,D 重合,通过用两种方法表示四边形ACBE 的面积来进行证明.对于甲、乙分别设计的两种方案,下列判断正确的是( )A .甲、乙均对B .甲对、乙不对C .甲不对,乙对D .甲、乙均不对二、填空题9.在下列实数中1-,2π,0 3.1415-227,)01.其中是无理数的有个. 10a 的取值范围是.11.如图,在四边形ABCD 中,连接AC ,DE AC ⊥于E ,15AB =,9BC DE ==,54DAC S =△,则ACB ∠的度数等于︒.12.如图,有一圆柱形油罐,底面周长为24m ,高为10m .从A 处环绕油罐建梯子,梯子的顶端点B 正好在点A 的正上方,梯子最短需要m .13.对角线互相垂直的四边形叫做“垂美”四边形,如图,“垂美”四边形ABCD ,对角线AC 、BD 交于点O .若3AD =,5BC =,22AB CD +=.三、解答题14.求下列各式中的x :(1)21431x -=;(2)()24181x +=15.一支铅笔斜放在圆柱体的笔筒中,如图所示,笔筒的内部底面直径是6cm ,内壁高8cm .若这支铅笔在笔筒外面部分长度是5cm ,求这支铅笔的长度是多少cm ?1617.计算:2.18.已知31a +的算术平方根是2,23a b -+的立方根是3-,(1)求a ,b 的值;(2)求8b a -的平方根.19.已知a ,b ,c 满足(a 2|c -=0.(1)求a ,b ,c 的值;(2)试判断以a ,b ,c 为边长能否构成直角三角形,并说明理由.20.如图,在ABC V 中,17AB AC ==,8BD =,求ABC V 的角平线AD 的长.21.已知实数a ,b ,c ,d ,e ,f ,且a ,b 互为倒数,c ,d 互为相反数,ef 的算术平方根是8,求12ab +5c d ++e 2 22.如图,正方形ABCD 的边长为a ,点E 在AB 边上,四边形EFGB 也是正方形,它的边长为b (a >b )连结AF 、CF 、AC ,若a +b =10,ab =20,求阴影部分的面积.23.如图,将长方形ABCD 沿着对角线BD 折叠,使点C 落在C '处,BC '交AD 于点E .此时BE DE =,若4AB =,8AD =,求BDE V 的面积.24.某村有如图所示的一笔直公路AB ,水源C 处与公路之间有小片沼泽地,为方便公路上的人用水,拟从C 处铺设水管到公路上.已知200AB =米,160AC =米,120BC =米.(1)求ACB ∠的大小;(2)求铺设水管的最小长度.25.如图是放在地面上的一个长方体盒子,其中9cm AB =,6cm BC =,5cm BF =,点M 在棱AB 上,且3cm AM =,点N 是FG 的中点,一只蚂蚁要沿着长方体盒子的外表面从点M 爬行到点N ,它需要爬行的最短路程是多少?(盒子底面蚂蚁无法到达)26.已知:如图所示,四边形ABCD 中,AD BC ∥,O 是CD 上一点,且AO 平分BAD ∠,BO 平分ABC ∠,(1)求证:AO BO⊥;(2)若3AO=,5AB=,求四边形ABCD的面积.。
广东省佛山市南海区平洲第二初级中学2024-2025学年八年级上学期第一次月考数学试卷一、单选题1.在5π,3.14,2,6-+ 这些数中,无理数的个数为()A .2B .3C .4D .52.下列计算正确的是()A4=±B 2=-C 1=D .3=-3.在平面直角坐标系中,点()2,3P -关于x 轴对称点P '的坐标是()A .()2,3--B .()3,2--C .()3,2-D .()23,4.下列二次根式是最简二次根式的是()AB CD 5的运算结果应在()A .4到5之间B .5到6之间C .6到7之间D .7到8之间6.在下列函数解析式中,①y kx b =+;②3y x =;③23y x =;④2(2)y x x x =-+;⑤4y x =-+,一定是一次函数的有()A .4个B .3个C .2个D .1个7.下面平面直角坐标系中的曲线不表示y 是x 的函数的是()A .B .C .D .8.两个函数y kx b =+和y bx k =+,它们在同一个坐标系中的图像不可能是()A .B .C .D .9.如图,一个无盖的半圆柱形容器,它的高为6cm ,底面半圆直径AC 为4cm ,点A 处有一只蚂蚁沿如图所示路线爬行,它想吃到上底面圆心B 处的食物,则爬行的最短路程是多少(π取3)()A .B .8C .D .1010.如图,在Rt ABC △中,AB AC =,90BAC ∠=︒,点D 、E 为BC 上两点,45DAE =︒∠,点F 为ABC V 外一点,且FB BC ⊥,FA AE ⊥,则下列结论:①CE BF =;②222BD CE DE +=;③14ADE S AD EF =⋅△;④2222CE BE EF +=,其中正确的是()A .①②③B .①②③④C .①③④D .②③二、填空题11的平方根是.12.比较大小:(填“>,<或=”).13.点(),3P a -在直线23y x =上,则a =.14.在平面直角坐标系xOy 中,若点A 的坐标为()3,3-,点B 的坐标为()2,1,存在x 轴一点P ,使AP BP +最小,则AP BP +最小值是.15.如图,某数学兴趣小组在课后一起复习数学知识,首先他们在纸上画出Rt ABC △,然后分别以这个三角形的三边为直角边画出三个等腰直角三角形,最后把这个图形剪下来,并折成下图的样子,DF 分别与AE EC 、交于G 、H ,若,,ADG EGH CFH △△△的面积分别为4,9,16,则ABC S = .三、解答题16117.现有一张利用平面直角坐标系画出来的某公园景区地图,如图所示,已知游乐园D 的坐标为()2,1-,体育馆的坐标为0,1.(1)请按题意建立平面直角坐标系;(2)写出其他各景点对应的点的坐标.18.如图所示,已知2OA OB BC ==,.(1)说出数轴上点A 所表示的数为______;(2)比较点A 所表示的数与 3.5-的大小:______;(3)对应的点.(保留作图痕迹)19.科学家实验发现,声音在不同气温下传播的速度不同,声音在空气中的传播速度随气温的变化而有规律的变化.某科学社团通过查阅资料发现,声音在空气中传播的速度和气温的变化存在如下的关系:(1)在这个变化过程中,______是自变量;(填汉字)(2)声音在空气中的传播速度()m /s v 与气温℃的关系式可以表示为______;(不要求写t 的取值范围)(3)某日的气温为20℃,小乐看到烟花燃放4s 后才听到声响,那么小乐与燃放烟花所在地大约相距多远?20.在“欢乐周末·非遗市集”活动现场,诸多非遗项目集中亮相,让过往游客市民看花了眼、“迷”住了心.小明买了一个年画风筝,并进行了试放,为了解决一些问题,他设计了如下的方案:先测得放飞点与风筝的水平距离BD 为15m ;根据手中余线长度,计算出AC 的长度为17m ;牵线放风筝的手到地面的距离AB 为1.5m .已知点A ,B ,C ,D 在同一平面内.(1)求风筝离地面的垂直高度CD ;(2)在余线仅剩9m 的情况下,若想要风筝沿射线DC 方向再上升12m ,请问能否成功?请运用数学知识说明.21.已知:如图,已知ABC V ,ABC V 的顶点(0,2)A -,(2,4)-B ,(4,1)C -均在正方形网格的格点上.(1)画出与ABC V 关于x 轴对称的图形111A B C △并写出点1A 的坐标;(2)求ABC V 的面积;(3)求点B 到AC 的距离.22.在Rt ABC △中,90C ∠=︒,点M 为边AB 的中点,点D 在边BC 上.(1)如图1,若6AC =,8BC =,则BM =__________;(2)在(1)的条件下,若MD AB ⊥,求MD 的长;(3)如图2,过点M 作ME MD ⊥与边AC 交于点E ,试探究:线段AE 、ED 、DB 三者之间的数量关系,并说明理由.23.如图,在平面直角坐标系中,点B 坐标为(-3,0),点A 是y 轴正半轴上一点,且AB=5,点P 是x 轴上位于点B 右侧的一个动点,设点P 的坐标为(m ,0)(1)点A 的坐标为()(2)当△ABP是等腰三角形时,求P点的坐标;(3)如图2,过点P作PE⊥AB交线段AB于点E,连接OE.若点A关于直线OE的对称点为A',当点A'恰好落在直线PE上时,BE=________(直接写出答案)。
2024-2025学年度第一学期学业质量阶段性检测八年级数学试题(A 卷)(满分分值:150分 考试时间:100分钟)一、选择题(本大题共8小题,每小题3分,共24分。
在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填写在答题卡相应位置上)1.《国语・楚语》记载:“夫美也者,上下、内外、大小、远近皆无害焉,故曰美.”这一记载充分表明传统美的本质特征在于对称和谐。
下列四个图案中,是轴对称图形的是( )A. B. C. D.2.下列说法中正确的是( )A.面积相等的两个图形是全等图形B.周长相等的两个图形是全等图形C.所有正方形都是全等图形D.能够完全重合的两个图形是全等图形3.有下列说法:(1)线段是轴对称图形;(2)成轴对称的两个图形中,对应点的连线被对称轴垂直平分;(3)成轴对称的两个图形一定全等;(4)轴对称图形的对称点一定在对称轴的两侧。
其中正确的有( )A.1个B.2个C.3个D.44.如图,已知,那么添加下列一个条件后,不能判定的是( )A. B. C. D.5.如图,若,四个点B 、E 、C 、F 在同一直线上,,,则CF 的长是( )A.2 B.3 C.5 D.76.如图,两个三角形是全等三角形,x 的值是( )A.30B.45C.50D.857.如图,在中,,平分交边BC 于点,若,,则的面积是()AB AD =ABC ADC ≅△△CB CD=BAC DAC ∠=∠BCA DCA ∠=∠90B D ︒∠=∠=ABC DEF ≅△△7BC =5EC =ABC △90C ∠=︒AD BAC ∠D 3CD =8AB =ABD △A.36B.24C.12D.108.如图,已知,为的平分线,、、…为的平分线上的若干点.如图1,连接BD 、CD ,图中有1对全等三角形;如图2,连BD 、CD 、BE 、CE ,图中有3对全等三角形;如图3,连接BD 、CD 、BE 、CE 、BF ,CF ,图中有6对全等三角形,依此规律,第2025个图形中全等三角形的对数是( )图1 图2 图3A.2049300 B.2051325 C.2068224 D.2084520二、填空题(本大题共8小题,每小题3分,共24分.不需要写出解答过程,只需把答案直接填写在答题卡相应位置上)9.如图,,则AD 的对应边是________。
广东省揭西县上砂中学2024-2025学年八年级上学期第一次月考数学试题一、单选题1.下列各数是无理数的是( )A B .3.1415926 C D .562.下列计算中,正确的是( )A =B 6=C .25=D .1+-=- 3.下列说法正确的是( )A .4的算术平方根是2±B .3的平方根是31-C .27的立方根是3±D 2± 4.下列各组数是勾股数的是( )A .13,14,15B .4,5,6C .0.30.40.5,,D .9,40,4153的乘积是有理数的是( )A 3B 3C .3D6.若1a a <<+,则22a -的值为( )A .3B .7C .8D .97.若()2210x z -+=,则xyz 的值是( )A .10B .10-C .3D .3-8.勾股定理是人类数学文化的一颗璀璨明珠,是用代数思想解决几何问题最重要的工具,也是数形结合的纽带之一.如图,当秋千静止时,踏板B 离地的垂直高度0.7m BE =,将它往前推3m 至C 处时(即水平距离3m CD =),踏板离地的垂直高度 2.5m CF =,它的绳索始终拉直,则绳索AC 的长是( )A .3.4mB .5mC .4mD .5.5m9.如图,点C 所表示的数是( )AB C .1 D 10.如图,已知矩形ABCD 中,3AB =,9AD =,将此矩形折叠,使点B 与点D 重合,折痕为EF ,则AE 的长为( )AB .4C .D .二、填空题11x 的取值范围是.12=. 13.中国清代学者华衡芳和英国人傅兰雅合译英国瓦里斯的《代数学》,卷首有“代数之法,无论何数,皆可以任何记号代之”,说明了所谓“代数”,就是用符号来代表数的一种方法,若一个正数的平方根分别是23a -和5a -,则a 的值是.14.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,连接AB 、BC ,则ABC ∠的度数为 .15.若一个直角三角形的周长为56,斜边长为25,则该直角三角形的面积为. 16.如图1,四个全等的直角三角形围成一个大正方形,中间是一个小正方形,这个图形是我国汉代赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”,若图1中的直角三角形的长直角边为5,大正方形的面积为29,连接图2中四条线段得到如图3的新图案,求图3中阴影部分的面积三、解答题17.计算:(1)0(2023)1|π-+(2)+ 18.一个正数x 的两个不同的平方根分别是32m +与49m -.(1)求x 和m 的值;(2)求11x m +的平方根.19.如图,在ABC V 中,D 是边BC 上的一点,且DE BC ⊥,若BD CD =,2222EA AC BD DE +=+,求证:ABC V 是直角三角形.20.如图,是一个数值转换器,原理如图所示.(1)当输入的x 值为16时,求输出的y 值;(2)是否存在输入的x 值后,始终输不出y 值?如果存在,请直接写出所有满足要求的x 值;如果不存在,请说明理由.(3)输入一个两位数x ,恰好经过两次取算术平方根才能输出无理数,则x =.21.根据平方差公式:21)11-=-=1,由此我们可以得到下面的规律,请根据规律解答后面的问题:第11=,第2=,第3=第4=⋯ (1)根据规律填空:第5=______________; (2)8+鬃?=,求n 的值; 22.为进一步落实立德树人的根本任务,培养德智体美劳全面发展的社会主义接班人,某校开展劳动教育课程,并取得了丰硕成果.如图是该校开垦的一块作为学生劳动实践基地的四边形荒地.经测量,13m AB AD ==,8m BC =,6m CD =,且10m BD =.该校计划在此空地(阴影部分)上种植花卉,(1)求证:BCD △是直角三角形.(2)若每种植21m 花卉需要花费100元,则此块空地全部种植花卉共需花费多少元?23.分我们不可能全部的写出来,即2,2,2 结合以上材料,回答下列问题:______,4____;(2)a b ,求a b +(3)已知20x y =+,其中x 是整数,且01y <<,请直接写出3x y -的平方根. 24.综合与实践【背景介绍】勾股定理是几何学中的明珠,充满着魅力.如图1是著名的赵爽弦图,由四个全等的直角三角形拼成,用它可以证明勾股定理,思路是大正方形的面积有两种求法,一种是等于2c ,另一种是等于四个直角三角形与一个小正方形的面积之和,即()2142ab b a ⨯+-,从而得到等式()22142c ab b a =⨯+-,化简便得结论222a b c +=.这里用两种求法来表示同一个量从而得到等式或方程的方法,我们称之为“双求法”.【方法运用】千百年来,人们对勾股定理的证明趋之若鹜,其中有著名的数学家,也有业余数学爱好者.向常春在2010年构造发现了一个新的证法:把两个全等的直角三角形ABC V 和DEA △如图2放置,其三边长分别为a ,b ,c ,90BAC DEA ︒∠=∠=,显然BC AD ⊥.(1)请用a ,b ,c 分别表示出四边形ABDC ,梯形AEDC ,EBD △的面积,再探究这三个图形面积之间的关系,证明勾股定理222a b c +=.(2)【方法迁移】请利用“双求法”解决下面的问题:如图3,小正方形边长为1,连接小正方形的三个顶点,可得ABC V ,则AB 边上的高为______.(3)如图4,在ABC V 中,AD 是BC 边上的高,4AB =,5AC =,6BC =,设BD x =,求x 的值.。
重庆市巴蜀中学2024-2025学年八年级上学期第一次月考数学试卷一、单选题1.下列图形中,是轴对称图形的是()A .B .C .D .2.如图,12350∠=∠=∠=︒,则4∠的度数为()A .100︒B .110︒C .120︒D .130︒3.下列计算正确的是()A .3412a a a ⋅=B .842a a a ÷=C .()437a a =D .()3236928a b a b =4.平面直角坐标系中,若点()21,3A x -与点()1,1B y --关于y 轴对称,则x y +的值为()A .3-B .3C .5D .5-5.如图,等腰Rt ABC △中,90ACB ∠=︒,AC BC =,D 为AB 上一点,AD AC =,连接CD ,则BCD ∠等于()A .15︒B .20︒C .22.5︒D .30︒6.若3x a =,2y a =,则23x y a -的值为()A .1B .94C .98D .897.学校组织劳技社会实践活动,甲乙两班同时参加了陶艺制作项目.活动结束后,两个班统计了制作陶艺品的总数,结果发现甲乙两班陶艺品的总数比为5:4,甲班制作的陶艺品总数的2倍比乙班陶艺品的总数3倍少30个.设甲、乙两班的陶艺品的总数分别为x 个和y 个,根据题意所列的方程组应为()A .542330x y x y =⎧⎨=-⎩B .542330x y x y =⎧⎨=+⎩C .452303x y x y =⎧⎨+=⎩D .452330x y x y =⎧⎨=+⎩8.如图,在ABC V 中,CAB ∠的角平分线AD 与CBA ∠的角平分线BD 交于点D ,过D 点作AB 的平行线分别交AC 、BC 于点M 、N ,若ABC V 与CMN 的周长分别24、15,则AB的长为()A .7.5B .12C .10D .99.若多项式()224125x k xy y --+是关于x 、y 的完全平方式,则k 的值为()A .21B .19C .21或19-D .21-或1910.杨辉三角是中国古代数学杰出的研究成果之一.如图所示是一种变异的“杨辉三角”,按箭头方向依次记为:11a =,24a =,33a =,48a =,57a =,616a =,715a = ,则20262027a a +等于()A .101421-B .101421+C .101521-D .101521+11.在学习完《整式乘法》后,数学兴趣小组探究了这样一个问题:如图,现有甲、乙两张正方形纸片.小勇将甲正方形移至乙正方形的左上角按方式一摆放,小伟将甲、乙正方形并列放置在一个更大的正方形中按方式二摆放.若按方式一摆放时阴影小正方形部分的面积为2,按方式二摆放时阴影部分的面积为8,则甲、乙两张正方形纸片的面积之和为()A .12B .10C .8D .612.在整式224A m m =-+,2241B m m =+-,2415C m =+的前面添加“+”或“-”.先求和,再求和的绝对值的操作,称为“和绝对”操作,将操作后的化简结果记为Q .例如:()()()2222242414154814m m m m m m m --+-+--+=---,则24814Q m m =---,下列说法正确的个数为()①把A 、B 、C 进行“和绝对”操作所得结果化简,共有8种不同的结果;②把A 、B 、C 进行“和绝对”操作所得结果化简,将每次操作化简结果的最小值记为M ,则M 的最小值为10;③把A B 、、C 进行“和绝对”操作所得结果化简,将第一次操作得到的不同化简结果再次进行“和绝对”操作,此时至少存在一种操作使得化简的结果为0A .0B .1C .2D .3二、填空题13.计算:)01=.14.如图,将ABC V 沿BC 向右平移至DEF ,若14BF =,8EC =,则BC 的长为.15.如图,在ABC V 中,114BAC ∠=o ,点D 在BC 上,连接AD ,若BA BD =,DA DC =则B ∠的度数为.16.若()()23x a x x b ---的结果不含关于x 的一次项和二次项,则a b -的值为.17.如图,AD 是ABC V 的中线,且AB AD =,20BC =,E 为BD 的中点,P 为AD 的垂直平分线GF 上一点,若ABC V 的面积为100,则DEP 周长的最小值为.18.若关于x 的不等式组()311221x x x x a -⎧<+⎪⎨⎪+≥-+⎩有且仅有4个整数解,且关于x 、y 的方程组125x ay x y -=⎧⎨+=⎩的解为整数,则所有满足条件的整数a 的值之和为.19.如图,等边ABC V 中,12.6AB =,点D 、E 分别在BC 、AC 上,且CD AE =,连接AD 、BE 交于点F ,连接CF ,若90BFC ∠=︒,则BD 的长为.20.对于一个任意的四位数M ,若M 的千位数字和百位数字之和为4的倍数,十位数字和个位数字之和为8的倍数,我们称这样的四位数为“扩张数”.例如:四位数3197,因为314+=,9716+=,所以3197是“扩张数”;四位数6238,因为628+=,3811+=,11不是8的倍数,所以6238不是“扩张数”.若2000331310020N x y m n =++++是“扩张数”,其中13x ≤≤,05y ≤≤,09m ≤≤,06n ≤≤,且x 、y 、m 、n 都是整数,记()23P N m n =++,()2296Q N x y =--;若()()P N Q N 是5的倍数,则满足条件的N 的最大值为.三、解答题21.计算:(1)()232222x y xy x xy x y ⋅-+;(2)()()()225a b a b b a -++-.22.先化简,再求值:()()()22a b a b b a b a ⎡⎤+---÷⎣⎦,其中a 、b 满足方程组1329a b a b ⎧+=⎪⎨⎪-=⎩.23.如图,在平面直角坐标系中,()3,4A -,()4,3B -,()2,1C -.(1)将ABC V 向下平移4个单位,得到111A B C △,请在图中作出111A B C △关于y 轴对称的222A B C △,并写出点2A 、2B 、2C 的坐标;(2)请求出2ACA 的面积.24.今年夏天,重庆市持续高温,市场上各品牌空调销售火爆,某商场就A 、B 、C 三种品牌的空调在7、8月的销售情况做了统计,并绘制出以下统计图,若该商场8月的空调销售总量比7月销售总量增加了25%,其中B 品牌8月的销量比7月增加了15台,请回答下面的问题:(1)该商场8月份一共销售了________台空调;(2)请补全条形统计图;(3)若在7、8月期间,重庆市共销售了30000台空调,请你估计A 品牌空调在全市一共销售了多少台?25.如图,直角ACB △中,90ACB ∠= .(1)请在AC 边上截取线段CD ,使得CD BC =,过点D 作直线AB 的垂线,垂足为点E ,交BC 的延长线于点F (要求:使用尺规作图,保留作图痕迹,不写作法);(2)若 2.5cm BC =,3cm AD =,求BF 的长.26.暑假期间,小巴和小蜀同学参加社会实践活动,在某糕点店制作了一批甜点进行售卖,其中“花生酥”和“纸杯蛋糕”的制作成本分别是每个2.5元和4元,每个“纸杯蛋糕”的售价比“花生酥”多1.5元,某天上午,他们一共售卖出30个“花生酥”和50个“纸杯蛋糕”,共盈利120元.(1)求“花生酥”和“纸杯蛋糕”的售价单价:(2)当天下午,小巴和小蜀又将制作的“花生酥”和“纸杯蛋糕”两种甜点共200个进行售卖、为了促销,他们还用50元钱租借了一个棉花糖机,制作一个棉花糖需要0.5元钱的成本,每销售一个“纸杯蛋糕”就赠送一个棉花糖.由于天气炎热销售过程中“纸杯蛋糕”有15%的损坏(无法售卖),且两种甜点的售价都保持不变,当天下午除损坏的“纸杯蛋糕”外,其余的“花生酥”和“纸杯蛋糕”全部售完.若要保证全天的总利润不低于300元,则“花生酥”全天的销量最少为多少个?27.如图,ABC V 为等边三角形,直线BD 与AC 边交于点D ,ABD α∠=,E 为直线BD 上一动点,连接AE ,将线段AE 绕A 点逆时针旋转120︒得AF ,连接EF .(1)如图1,若30α=︒,EF 与AC 交于点G ,且EF AB ∥,6AB =,求GF 的长度;(2)如图2,若EF 与AC 交于点G ,且G 为AC 中点,猜想线段BE 、EG 、GF 之间存在的数量关系,并证明你的猜想;(3)如图3,若030α︒<<︒,连接CF ,当CF 最短时,在直线CF 和线段AC 上分别取点P 和点Q ,且CP AQ =,连接BP 、BQ ,直接写出(或者表示出)当BP BQ +取得最小值时PBQ ∠的度数.。
江西省吉安市2024-2025学年八年级上学期第一次月考数学试卷一、单选题1.若下列各组数值代表三根木棒的长度,则不能用它们摆成三角形的是( ) A .3cm,4cm,5cm B .8cm,8cm,14cm C .6cm,7cm,11cmD .1cm,2cm,4cm2.如图,过BAF ∠的边AF 上一点E 作CD AB ∥.若,40BE AF BED ⊥∠=︒,则A ∠的度数是( )A .45︒B .50︒C .80︒D .60︒3.如图,在四边形ABCD 中,A D α∠+∠=,ABC ∠的平分线与BCD ∠的平分线相交于点P ,则P ∠的度数是( )A .12αB .902πα︒−C .1902α︒+D .180α︒−4.如图,ABC V 中,8AB =,10AC =,点D 是BC 边上的中点,连接AD ,若ACD 的周长为20,则ABD △的周长是( )A .16B .18C .20D .225.如图,已知MB=ND ,∠MBA=∠NDC ,下列条件中不能判定△ABM ≌△CDN 的是( )A .M N ∠=∠B .A NCD ∠=∠C .AM CN =D .AM//CN6.如图,CAB DAB ∠=∠,那么添加下列一个条件后,仍无法判定ABC ABD △≌△的是( )A .ABC ABD ∠=∠B .BC BD = C .C D∠=∠D .AC AD =二、填空题7.如图,从数学的角度看房屋顶部支撑架,它运用了三角形的 性.8.两个完全相同的正五边形都有一边在直线l 上,且有一个公共顶点O ,其摆放方式如图所示,则∠AOB 等于 度9.已知等腰三角形的两条边长分别是2和4,则它的周长是 .10.正五边形ABCDE 与等边三角形EMN 如图放置,C ,M ,D ,N 在同一直线上,则MED∠度数为 .11.如图,在四边形ABCD 中,∠A =90°,AD =3,BC =5,对角线BD 平分∠ABC ,则BCD 的面积为 .三、解答题12.如图,点D 是ABC V 的边BC 上任意一点,求证:2AB BC AC AD ++>.13.若一个多边形的内角和与它的外角和相等,求这个多边形边数.14.如图,在直角△ABC 中,∠C =90°,∠CAB 的平分线AD 交BC 于D ,若DE 垂直平分AB ,求∠B 的度数.15.为了进一步探究三角形中线的作用,数学兴趣小组合作交流时,小丽在组内做了如下尝试:如图,在ABC V 中,AD 是BC 边上的中线,延长AD 到点E ,使DE AD =,连接BE .【探究发现】(1)图中AC 与BE 的数量关系是 ,位置关系是 .【初步应用】(2)若5AB =,3AC =,求AD 的取值范围.16.如图所示,已知AC BD ∥,AE 、BE 分别平分CAB ∠和DBA ∠,点E 在CD 上,求证:AB AC BD =+.17.如图,在ABC V 中,D 为AB 上一点,E 为AC 中点,连接DE 并延长至点F ,使得EF ED =,连接CF .(1)求证:CF AB ∥(2)若50ABC ∠=︒,连接BE ,BE 平分ABC ∠,AC 平分BCF ∠,求A ∠的度数. 18.如图,B 处在A 处的南偏西40︒方向,C 处在A 处的南偏东10︒方向,C 处在B 处的北偏东85︒方向,求ABC ∠和ACB ∠的度数.19.如图,在ABC V 中,=60B ∠︒,AD 平分BAC ∠,CE 平分BCA ∠,AD CE 、交于点F ,CD CG =,连接FG .(1)求证:FD FG =;(2)线段FG 与FE 之间有怎样的数量关系,请说明理由;(3)若60B ∠≠︒,其他条件不变,则(2)中的结论是否仍然成立?请直接写出判断结果,不必说明理由.20.如图AB AC =,AD AE =,BAC DAE ∠=∠,125∠=︒,230∠=︒.求3∠的度数.21.认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题. (1)探究1:如图1,在ABC 中,O 是ABC ∠与ACB ∠的平分线BO 和CO 的交点,猜想BOC ∠与A ∠之间存在怎样的数量关系?并说明你的猜想.(2)探究2:如图2中,O 是ABC ∠与外角ACD ∠的平分线BO 和CO 的交点,试分析BOC ∠与A ∠有怎样的关系?请说明理由.(3)探究3:如图3中,O 是外角DBC ∠与外角ECB ∠的平分线BO 和CO 的交点,则BOC ∠与A ∠有怎样的关系?请说明理由.22.如图,AB BC =,90ABC ∠=︒,点P 在射线AB 上,且90CEP ∠=︒,点F 在EP 上且EF EC =,连接AF ,取AF 的中点G ,连接EG 并延长至H ,使GH GE =,连接AH .(1)如图1,当点P 在线段AB 上时. ①用等式表示AH 与CE 的数量关系;②连接BH,BE,直接写出BH,BE的数量关系和位置关系;(2)如图2,当点P在线段AB的延长线上时,依题意补全图形2,猜想②中的结论是否还成立,并证明.。
八年级上学期第一次月考综合测试卷时间:100分钟 满分:120分 考试范围:北师大版八年级上册第一章~第二章一、选择题(每小题3分,共30分)1.下列是无理数的是( )A.-13B.4C.3.141 592 6D.-π2.下列几组数中,是勾股数的是( )A.1,2,3B.0.3,0.4,0.5C.15,8,17D.35,45,13.下列各式中正确的是( )A.16=±4B.3-27=-9C.(-3)2=-3D.94=324.已知下列各式:23,0.1,35,12,6,其中不是最简二次根式的有( )A.2个B.3个C.4个D.5个5.在如图所示的数轴上,表示数3-7的点应在( )A.A ,O 之间B.O ,B 之间C.B ,C 之间D.C ,D 之间6.国庆假期中,小华与同学去玩探宝游戏,按照探宝图,他们从门口A 处出发先往东走8 km,又往北走2 km,遇到障碍后又往西走3 km,再向北走到6km 处往东拐,仅走了1 km,就找到了宝藏,则门口A 到藏宝点B 的直线距离是( )A.20 kmB.14 kmC.11 kmD.10 km7.如图,一场暴雨过后,垂直于地面的一棵大树在距地面5米的C 处折断,树尖B 恰好碰到地面,经测量树尖B 与树桩A 相距12米,则大树折断前高为( )A.13米 B.17米 C.18米 D.22米8.如图,是一种筷子的收纳盒,长、宽、高分别为4 cm,3 cm,12 cm,现有一长为16 cm 的筷子插入到盒的底部,则筷子露在盒外的部分h (cm)的取值范围( )A.3<h<4 B.3≤h ≤4 C.2≤h ≤4 D.5≤h ≤69.把两块同样大小的含45°角的直角三角尺按如图所示放置,其中一块的锐角顶点与另一块的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上,若AC=22,则CD的长是( )A.3B.5C.25+2D.23+210.如图,有一根高为2.1 m的木柱,它的底面周长为40 cm,在准备元旦联欢晚会时,为了营造喜庆的氛围,小明将一根彩带从柱底向柱顶均匀地缠绕7圈,一直缠到起点的正上方为止,小明需要准备的这根彩带的长至少为( ) A.1 400 cm B.350 cm C.840 cm D.300 cm二、填空题(每小题3分,共15分)11. 写出一个在3和4之间的无理数:12.如图,每个小正方形的边长为1,可通过“剪一剪”“拼一拼”,将五个小正方形拼成一个面积一样的大正方形,则这个大正方形的边长是 .13.若m,n为实数,且m=1―n+n-1+8,则mn的立方根为 .14 .如图,有一块一边长为24 m的长方形绿地,在绿地旁边B处有健身器材.由于居住在A处的居民践踏了绿地,小颖想在A处立一个标牌“少走 步,踏草何忍”,但小颖不知应填什么数,请你帮她填上.(假设2步为1 m)15.有一个边长为1的正方形,经过一次“生长”后,在它的左右肩上生出两个小正方形,且这3个正方形所围成的三角形是直角三角形.再经过一次“生长”后,变成了如图,如果继续“生长”下去,它将变得“枝繁叶茂”.请你算出“生长”了2 021次后形成的图形中所有的正方形的面积和是 .三、解答题(共8小题,共75分)16.(8分)把下列各数填入相应的集合内:227,π5,0,3.14,-5,0.313 131…,38,-64,7.151 551…(相邻两个1之间5的个数逐次加1).有理数集合{ …};无理数集合{ …};正数集合{ …};负数集合{ …}.17.(每小题3分,共12分)解答下列各题.(1)(x+5)2=16(2)8(x-1)3=-1258(3)48-27+13 (4)(-2+6)(-2-6)-(3-13)2.18.(8分)如图,一个梯子AB,顶端A 靠在墙AC 上,这时梯子的顶端距地面的垂直高度为24米,若梯子的顶端下滑4米到E 点,底端则水平滑动8米到D 点,求滑动前梯子底端与墙的距离CB 是多少.19.(8分)如图,在四边形ABDC中,∠A=90°,AB=6,AC=8,BD=5,CD2=125.(1)连接BC,求BC的长;(2)求△BCD的面积.20.(8分)已知a-2的平方根是±2,a-3b-3的立方根是3,整数c满足c<12<c+1.(1)求a,b,c的值;(2)求a2+b2+c3+17的算术平方根.21.(10分)为了积极响应国家新农村建设,某镇政府采用了移动宣讲的广播形式进行宣传.如图,笔直公路MN的一侧有一报亭A,报亭A到公路MN的距离AB 为600米,且宣讲车P周围1 000米以内能听到广播宣传,宣讲车P在公路MN 上沿PN方向行驶.(1)请问报亭的人能否听到广播宣传,并说明理由;(2)如果能听到广播宣传,已知宣讲车的速度是200米/分,那么报亭的人总共能听到多长时间的广播宣传?22.(10分)八年级某班开展了手工制作比赛,每个同学都在规定时间内完成一件手工作品.陈莉同学制作手工作品的前两个步骤如下:①如图,先裁下一张长20 cm,宽16 cm 的长方形纸片ABCD;②将纸片沿着AE 所在的直线折叠,点D 恰好落在BC 边上的F 处.请你根据①②步骤分别计算FC,EC 的长.23.(11分)小明在解决问题:已知a=12+3,求2a 2-8a+1的值.他是这样分析与解答的:因为a=12+3=2―3(2+3)(2-3)=2-3,所以a-2=-3.所以(a-2)2=3,即a 2-4a+4=3.所以a 2-4a=-1.所以2a 2-8a+1=2(a 2-4a)+1=2×(-1)+1=-1.请你根据小明的分析过程,解决如下问题:(1)计算:12+1= .(2)计算:12+1+13+2+14+3+…+1100+99.(3)若a=12-1,求4a 2-8a+1的值.参考答案12345678910DCDBBDCB DB11.1112.513.214.1615.2022解析:6.D 如图,过点B 作BC⊥AC ,垂足为C,过点N 作NM⊥AC ,垂足为M.由题意可知AC=AF-MF+MC=8-3+1=6(km),BC=2+6=8(km),在Rt△ACB中,AB=AC 2+BC 2=62+82=10(km).解析:9.D 如图,作AF⊥BC 于点F,∵△AED 和△ACB 是一样的等腰直角三角形,AC=22,∴BC=AD=4,∴AF=12BC=2,BF=CF=2,∴DF=AD 2-AF 2=42-22=23,∴CD=DF+CF=23+2.三、解答题16.有理数集合{227,0,3.14,0.313 131…,38,-64,…};无理数集合{π5,-5,7.151 551…(相邻两个1之间5的个数逐次加1),…};正数集合{227,π5,3.14,0.313 131…,38,7.151 551…(相邻两个1之间5的个数逐次加1),…};负数集合{-5,-64,…}.17.(1)x=-1或x=-9.(2)因为8(x-1)3=-1258,所以(x-1)3=-12564,所以x-1=-54,所以x=1-54,所以x=-14(3)原式=43-33+33=433.(4)原式=4-6-(3-2+13)=-2-43=-103.18.∵AC⊥BC ,∴AC 2+CB 2=AB 2,CE 2+CD 2=DE 2,由题意知AB=DE ,AC=24米,AE=4米,BD=8米,∴CE=24-4=20(米),CD=CB+8,∴242+CB 2=202+(CB+8)2,解得CB=7(米).答:滑动前梯子底端与墙的距离CB 是7米.19.(1)∵在△ABC 中,∠A=90°,AB=6,AC=8,∴BC 2=AB 2+AC 2=100,∴BC=10.(2)在△BCD 中,BC=10,BD=5,CD 2=125,∵BC 2+BD 2=102+52=125=CD 2,∴△BCD 是直角三角形,且∠CBD=90°,∴△BCD 的面积为12BD·BC=12×5×10=25. 20.(1)根据题意,得a-2=4,a-3b-3=27,所以a=6,b=-8.12=23≈3.46,所以3<12<4,所以c=3.(2)由(1)知a=6,b=-8,c=3,所以a 2+b 2+c 3+17=62+(-8)2+33+17=144.因为122=144,所以a 2+b 2+c 3+17的算术平方根为12.21.(1)报亭的人能听到广播宣传.理由:∵600米<1 000米,∴报亭的人能听到广播宣传.(2)如图,假设当宣讲车P 行驶到P 1点时,报亭的人开始听到广播宣传,当宣讲车P 行驶过P 2点时,报亭的人开始听不到广播宣传,连接AP 1,AP 2.易知AP 1=AP 2=1 000米,AB=600米,AB ⊥MN ,∴BP 1=BP 2=1 0002-6002=800(米),∴P 1P 2=1 600米.∵1 600÷200=8(分),∴报亭的人总共能听到8分钟的广播宣传.22.∵ 将纸片沿着AE 所在的直线折叠,点D 恰好落在BC 边上的F 处,∴DE=FE ,AF=AD.在Rt△ABF 中,由勾股定理,得BF 2=AF 2-AB 2=202-162=144,∴BF=12 cm .∴FC=20-12=8(cm).设CE=x cm,则EF=DE=(16-x )cm .在Rt△CEF 中,由勾股定理,得EF 2=FC 2+CE 2,即(16-x )2=82+x 2,解得x=6,∴EC=6 cm .23.(1)2-1 解法提示:12+1=2-1(2+1)(2-1)=2-1.(2)原式=(2-1)+(3-2)+(4-3)+…+(100-99)=100-1=10-1=9.(3)因为a=12-1=2+1(2-1)(2+1)=2+1,所以a-1=2.所以(a-1)2=2,即a 2-2a +1=2.所以a 2-2a=1.所以4a 2-8a +1=4(a 2-2a )+1=4×1+1=5.。
江西省2024-2025学年八年级上学期第一次月考数学试题一、单选题1. 在ABC 中,已知3AC =,4BC =,则AB 的取值范围是( )A. 68AB <<B. 17AB <<C. 214AB <<D. 114AB <<【答案】B【解析】【分析】根据三角形三边关系求解.【详解】解: 在ABC 中,3AC =,4BC =, ∴BC AC AB BC AC −<<+,∴4343AB −<<+,即17AB <<.故选B .【点睛】本题考查三角形三边关系的应用,解题的关键是掌握三角形两边之和大于第三边,两边之差小于第三边.2. 如图,△ABC ≌△ABD ,若∠ABC =30°,∠ADB =100°,则∠BAC 的度数是( ).A. 30°B. 100°C. 50°D. 80°【答案】C【解析】 【分析】根据全等三角形的性质得到∠C 的度数,然后利用三角形内角和定理计算即可.【详解】解:∵△ABC ≌△ABD ,∴∠C =∠ADB =100°,∴∠BAC =180°-100°-30°=50°,故选C.【点睛】本题考查了全等三角形的性质和三角形内角和定理,熟知全等三角形的对应边相等,对应角相等是解题关键.3. 如图,在ABC 中,AB AC =,AE AF =,AD BC ⊥,垂足为D .则全等三角形有( )A. 2组B. 3组C. 4组D. 5组【答案】C【解析】 【分析】本题主要考查了全等三角形的性质和判定,先根据HL 证明Rt ADE ≌Rt ADF ,可得DE DF =,进而得出Rt ABD △≌Rt ACD △,可得BD CD =,即可得出BE CF =,再根据SSS 证明ABE ≌ACF △,ACE △≌ABF △,可得答案.【详解】∵AE AF =,AD AD =,∴Rt ADE ≌Rt ADF ,∴DE DF =.∵AB AC =,AD AD =,∴Rt ADB △≌Rt ADC ,∴BD CD =,∴B D D E C D D F −=−,即BE CF =.∵AB AC =,AE AF =,∴ABE ≌ACF △.∵B D D F C D D E +=+,即BF CE =.∵AB AC =,AE AF =,∴ABF △≌ACE △.全等三角形有4组.故选:C .4. 如图,在ABC 中,,ABC ACB ∠∠的平分线交于点O ,连接AO ,过点O 作,,OD BC OE AB ABC ⊥⊥△的面积是16,周长是8,则OD 的长是( )A. 1B. 2C. 3D. 4【答案】D【解析】 【分析】本题主要考查了角平分线的性质,先过点O 作OF AC ⊥于点F ,然后根据角平分线的性质,证明OE OF OD ==,然后根据ABC 的面积AOB =△的面积BOC +△的面积AOC +△的面积,求出答案即可.【详解】如图所示:过点O 作OF AC ⊥于点F ,OB ,OC 分别是ABC ∠和ACB ∠角平分线,OD BC ⊥,OE AB ⊥,OF AC ⊥,OE OD OF ∴==,16ABC AOB BOC AOC S S S S =++= , ∴11116222AB OE BC OD AC OF ⋅+⋅+⋅=, 11116222AB OD BC OD AC OD ⋅+⋅+⋅=, 1()162OD AB BC AC ++=, 8++= AB BC AC ,4OD ∴=,故选:D .5. 如图,ABC ∆中,AB BC =,点D 在AC 上,BD BC ⊥.设BDC α∠=,ABD β∠=,则( )的A. 3180αβ+°B. 2180αβ+°C. 390αβ−=°D. 290αβ−=°【答案】D【解析】 【分析】根据三角形外角等于不相邻两个内角的和,直角三角形两锐互余解答【详解】解:AB BC = ,A C ∴∠=∠,A αβ−∠= ,90C α+∠=°,290αβ∴=°+,290αβ∴−=°,故选:D .【点睛】本题考查了三角形外角,直角三角形,熟练掌握三角形外角性质,直角三角形两锐角性质,是解决此类问题的关键6. 下列条件,不能判定两个直角三角形全等的是( )A. 两个锐角对应相等B. 一个锐角和斜边对应相等C. 两条直角边对应相等D. 一条直角边和斜边对应相等【答案】A【解析】【分析】本题主要考查全等的判定方法,熟练掌握判定方法是解题的关键.根据判定方法依次进行判断即可.【详解】解:A 、两个锐角对应相等,不能判定两个直角三角形全等,故A 符合题意;B 、一个锐角和斜边对应相等,利用AAS 可以判定两个直角三角形全等,故B 不符合题意;C 、两条直角边对应相等,利用SAS 可以判定两个直角三角形全等,故C 不符合题意;D 、一条直角边和斜边对应相等,利用HL 可以判定两个直角三角形全等,故D 不符合题意;故选:A .7. 如图,在ACD 和BCE 中,,,,,AC BC AD BE CD CE ACE m BCD n ===∠=∠= ,AD 与BE 相交于点P ,则BPA ∠的度数为( )A. n m −B. 2n m −C. 12n m −D. 1()2n m − 【答案】D【解析】 【分析】由条件可证明△ACD ≌△BCE ,根据全等三角形的性质得到∠ACB 的度数,利用三角形内角和可求得∠APB=∠ACB ,即可解答.【详解】在△ACD 和△BCE 中AC BC AD BE CD CE===∴△ACD ≌△BCE (SSS ),∴∠ACD=∠BCE ,∠A=∠B ,∴∠BCA+∠ACE=∠ACE+∠ECD ,∴∠ACB=∠ECD=12(∠BCD-∠ACE )=12×(n-m ) ∵∠B+∠ACB=∠A+∠BPA ,∴BPA ∠=∠ACB=1()2n m −. 故选D .【点睛】此题考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.8. 如图,EB 交AC 于M ,交FC 于D ,AB 交FC 于N ,90E F ∠=∠=°,B C ∠=∠,AE AF =,给出下列结论:①12∠=∠;②BE CF =;③ACN ABM ≌;④CD DN =.其中正确的结论有( )A. 4个B. 3个C. 2个D. 1个【答案】B【解析】 【分析】根据90E F ∠=∠=°,B C ∠=∠,AE AF =,可得ABE ACF ≌,三角形全等的性质BE CF =;BAE CAF ∠=∠可得①12∠=∠;由ASA 可得ACN ABM ≌,④CD DN =不成立.【详解】解:∵90E F ∠=∠=°,B C ∠=∠,AE AF =,∴ABE ACF ≌,∴BE CF =;BAE CAF ∠=∠,故②符合题意;∵BAE BAC CAF BAC ∠−∠=∠−∠,∴12∠=∠;故①符合题意;∵ABE ACF ≌∴B C ∠=∠,AB AC =,又∵BAC CAB ∠=∠∴ACN ABM ≌,故③符合题意;∴AM AN =,∴MC BN =,∵,B C MDC BDN ∠=∠∠=∠, ∴MDC NDB ≌,∴CD DB =,∴CD DN =不能证明成立,故④不符合题意.故选:B .【点睛】本题考查三角形全等的判定方法和三角形全等的性质,难度适中.9. 已知AOB ∠,下面是“作一个角等于已知角,即作A O B AOB ′′′=∠∠”的尺规作图痕迹.该尺规作图的依据是( )A. SASB. SSSC. AASD. ASA【答案】B【解析】 【分析】本题主要考查了尺规作图作一个角等于已知角、全等三角形判定等知识点,掌握尺规作图作一个角等于已知角的作法成为解题的关键.根据“作一个角等于已知角,即作A O B AOB ′′′=∠∠”的尺规作图痕迹,结合全等三角形的判定定理即可解答.【详解】解:由题意可知,“作一个角等于已知角,即作A O B AOB ′′′=∠∠”的尺规作图的依据是SSS .故选:B .10. 如图,在四边形ABCD 中,对角线AC 平分BAD ∠,AB AC >,下列结论正确的是( )A. AB AD CB CD −>−B. AB AD CB CD −=−C. AB AD CB CD −<−D. AB AD −与CB CD −的大小关系不确定【答案】A【解析】 【分析】先通过在AB 上截取AE =AD ,得到一对全等三角形,利用全等三角形的性质得到对应边相等,再利用三角形的三边关系和等量代换即可得到A 选项正确.【详解】解:如图,在AB 上取AE AD =,对角线AC 平分BAD ∠,BAC DAC ∴∠=∠,在ACD ∆和ACE ∆中,的AD AE BAC DAC AC AC = ∠=∠ =, ()ACD ACE SAS ∴∆≅∆,CD CE ∴=,BE CB CE >− ,AB AD CB CD ∴−>−.故选:A .【点睛】本题考查了全等三角形的判定与性质、角平分线的定义和三角形的三边关系,要求学生能根据已知条件做出辅助线构造全等三角形,并能根据全等三角形的性质得到不同线段之间的关系,利用三角形三边关系判断大小,解决本题的关键是牢记概念和公式,正确作辅助线构造全等三角形等.二、填空题11. 若正多边形的一个外角为60°,则这个正多边形的边数是______.【答案】六##6【解析】【分析】本题考查了多边形的外角和,熟练掌握任意多边形的外角和都是360度是解答本题的关键.根据任意多边形的外角和都是360度求解即可.【详解】解:360606°÷°=.故答案为:六.12. 四条长度分别为2cm ,5cm ,8cm ,9cm 的线段,任选三条组成一个三角形,可以组成的三角形的个数是___________个.【答案】2【解析】【分析】从4条线段里任取3条线段组合,可有4种情况,看哪种情况不符合三角形三边关系,舍去即可.【详解】解:四条木棒的所有组合:2,5,8和2,5,9和5,8,9和2,8,9;∵2+5=7<8,∴2,5,8不能组成三角形;∵2+5=7<9,∴2,5,9不能组成三角形;∵5+8=13>9,∴5,8,9能组成三角形;∵2+8=10>9,∴2,8,9能组成三角形.∴ 5,8,9和2,8,9能组成三角形.只有2个三角形.故答案是:2.【点睛】此题主要考查了三角形三边关系,三角形的三边关系:任意两边之和>第三边,任意两边之差<第三边;注意情况的多解和取舍.13. 如图,在ABC 中,AD BC ⊥,AE 平分BAC ∠,若140∠=°,230∠=°,则B ∠=______.【答案】40°##40度【解析】【分析】本题考查了三角形的角平分线,高线的定义;由AE 平分BAC ∠,可得角相等,由140∠=°,230∠=°,可求得EAD ∠的度数,在直角三角形ABD 在利用两锐角互余可求得答案.【详解】解:AE 平分BAC ∠12EAD ∴∠=∠+∠,12403010EAD ∴∠=∠−∠=°−°=°,Rt ABD 中,9090401040BBAD ∠=°−∠=°−°−°=°. 故答案为:40°.14. 如图,BE 平分∠ABC ,CE 平分外角∠ACD ,若∠A =52°,则∠E 的度数为_____.【答案】26°【解析】【分析】根据三角形的外角等于和它不相邻的两个内角的和即可得答案.【详解】∵BE 平分∠ABC ,CE 平分外角∠ACD ,∴∠EBC =12∠ABC ,∠ECD =12∠ACD , ∴∠E =∠ECD ﹣∠EBC =12(∠ACD ﹣∠ABC ) ∵∠ACD-∠ABC=∠A ,∴∠E =12∠A =12×52°=26° 故答案为26°【点睛】本题考查三角形外角性质,三角形的一个外角,等于和它不相邻的两个内角的和;熟练掌握外角性质是解题关键.15. 如图1,123456∠+∠+∠+∠+∠+∠为m 度,如图2,123456∠+∠+∠+∠+∠+∠为n 度,则m n −=__________.【答案】0【解析】【分析】将图1原六边形分成两个三角形和一个四边形可得到m 的值,将图2原六边形分成四个三角形可得到n 的值,从而得到答案.【详解】解:如图1,将原六边形分成两个三角形和一个四边形,,1234562180360720m ∴°=∠+∠+∠+∠+∠+∠=×°+°=°,如图2,将原六边形分成四个三角形,,∴°=∠+∠+∠+∠+∠+∠=×°=°,1234564180720n∴==,m n720∴−=,m n故答案为:0.【点睛】本题考查了多边形的内角和,此类问题通常连接多边形的顶点,将多边形分割成四边形和三角形,通过计算四边形和三角形的内角和,求得多边形的内角和.16. 如图,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③ ACN≌ ABM;④CD=DN.其中符合题意结论的序号是_____.【答案】①②③【解析】【分析】此题考查的是全等三角形的判定和性质的应用,只要先找出图中的全等三角形就可判断题中结论是否正确.【详解】∵∠E=∠F=90°,∠B=∠C,AE=AF,∴△ABE≌△ACF(AAS),∴AC=AB,BE=CF,即结论②正确;∵AC=AB,∠B=∠C,∠CAN=∠BAM,∴△ACN≌△ABM(ASA),即结论③正确;∵∠BAE=∠CAF,∵∠1=∠BAE-∠BAC,∠2=∠CAF-∠BAC,∴∠1=∠2,即结论①正确;∴△AEM ≌△AFN (ASA ),∴AM =AN ,∴CM =BN ,∵∠CDM =∠BDN ,∠C =∠B ,∴△CDM ≌△BDN ,∴CD =BD ,无法判断CD =DN ,故④错误,∴题中正确的结论应该是①②③.故答案为:①②③.【点睛】此题考查了三角形全等的判定和性质;对图中的全等三角形作出正确判断是正确解答本题的关键.三、解答题17. 如图,已知点D ,E 分别AB ,AC 上,B C ∠=∠,DC BE =,求证:ABE ACD △△≌.【答案】见解析【解析】【分析】本题考查了全等三角形的判定,根据已知条件选择恰当的判定方法是解题的关键.【详解】解:在ABE 和ACD 中,B C A A BE DC ∠=∠ ∠=∠ =, ∴()AAS ABE ACD ≌.18. 如图,请你仅用无刻度直尺作图.在(1)在图①中,画出三角形AB 边上的中线CD ;(2)在图②中,找一格点D ,使得ABC CDA △△≌.【答案】(1)见解析 (2)见解析【解析】【分析】(1)如图,连接CD 即可;(2)按如图所示,找到点D ,连接AD CD ,即可.【小问1详解】【小问2详解】如图,CDA 即为所求;【点睛】本题考查了作图,三角形中线的性质、全等三角形的判定方法,掌握中线的性质及全等三角形判定的方法是关键.19. (1)在ABC 中,ABC ∠的角平分线和ACB ∠的角平分线交于点P ,如图1,试猜想P ∠与A ∠的关系,直接写出结论___________:(不必写过程)(2)在ABC 中,一个外角ACE ∠的角平分线和一个内角ABC ∠的角平分线交于点P ,如图2,试猜想P ∠与A ∠的关系,直接写出结论____________;(不必写过程) (3)在ABC 中,两个外角EBC ∠的角平分线和FCB ∠的角平分线交于点P ,如图3,试猜想P ∠与A ∠的关系,直接写出结论_________,并予以证明.【答案】(1)1902P A∠=°+∠;(2)12P A∠=∠;(3)1902P A∠=°−∠【解析】【分析】(1)根据三角形的内角和定理表示出∠ABC+∠ACB,再根据角平分线的定义求出∠PBC+∠PCB,然后根据三角形的内角和定理列式整理即可;(2)根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACE=∠A+∠ABC,∠PCE=∠P+∠PBC,再根据角平分线的定义可得∠PBC=12∠ABC,∠PCE=12∠ACE,然后整理即可得证;(3)根据三角形的一个外角等于与它不相邻的两个内角的和与角平分线的定义表示出∠PBC+∠PCB,然后利用三角形的内角和定理列式整理即可得解.【详解】解:(1)1902P A ∠=°+∠;理由:在△ABC中,∠ABC+∠ACB=180°-∠A,∵点P为角平分线的交点,∴1=2PBC ABC∠∠,1=2PCB ACB∠∠,∴∠PBC+∠PCB=12(∠ABC+∠ACB)=12(180°-∠A)=90°-12∠A,在△PBC中,∠P=180°-(90°-12∠A)=90°+12∠A;故答案为:1902P A ∠=°+∠;(2)12P A ∠=∠.理由:由三角形的外角性质得,∠ACE=∠A+∠ABC,∠PCE=∠P+∠PBC,∵外角∠ACE的角平分线和内角∠ABC的角平分线交于点P,∴∠PBC=12∠ABC,∠PCE=12∠ACE,∴12(∠A+∠ABC)=∠P+12∠ABC,∴∠P=12∠A;(3)1902P A ∠=°−∠; 证明: 外角EBC ∠的角平分线和FCB ∠的角平分线交于点P ,11()()22PBC PCB A ACB A ABC ∴∠+∠=∠+∠+∠+∠ 111()90222A A ABC ACB A =∠+∠+∠+∠=∠+° 在PBC ∆中,11180909022P A A ∠=°−∠+°=°−∠. 故答案为:1902P A ∠=°−∠; 【点睛】本题考查的是三角形内角和定理,角平分线的定义和三角形外角的性质,熟记性质与概念是解题的关键,要注意整体思想的利用.20. 如图,在ABC 中,AE 为边BC 上的高,点D 为边BC 上的一点,连接AD .(1)当AD 为边BC 上的中线时,若6AE =,ABC 的面积为30,求CD 的长;(2)当AD 为BAC ∠的角平分线时,若6636C B ∠=°∠=°,,求DAE ∠的度数.【答案】(1)5 (2)15°【解析】【分析】本题考查了用三角形中线求三角形面积、三角形外角性质、直角三角形性质.(1)利用三角形中线定义及三角形面积求出CD 长;(2)利用三角形内角和先求BAC ∠,再用外角性质和直角三角形性质求出DAE ∠.【小问1详解】∵AD 为边BC 上的中线, ∴1152ADC ABC S S == , ∵AE 为边BC 上的高, ∴1152DC AE ××=, ∴5CD =.【小问2详解】∵6636C B ∠=°∠=°,∴18078BAC B C =°−−=°∠∠∠,∵AD 为BAC ∠的角平分线,∴39BAD DAC ∠=∠=°,∴393675ADC BAD B ∠=∠+∠=°+°=°,∵AE BC ⊥,∴90AED ∠=°,∴9015DAE ADC ∠=°−∠=°21. 如图,点A ,D ,B ,E 在同一直线上,AC =DF ,AD =BE ,BC =EF .求证:AC ∥DF .【答案】详见解析【解析】【分析】根据等式的性质得出AB =DE ,利用SSS 证明△ABC 与△DEF 全等,进而解答即可.【详解】证明:∵AD =BE ,∴AD +DB =BE +DB ,∴AB =DE ,在△ABC 与△DEF 中,AB DE AC DF BC EF = = =,∴△ABC ≌△DEF (SSS ),∴∠A =∠FDE ,∴AC ∥DF .【点睛】此题主要考查了平行线的性质和判定,全等三角形的判定和性质,做题的关键是找出证三角形全等的条件.22. 如图,在ACB △中,90ACB ∠=°,CD AB ⊥于D .(1)求证:ACD B ∠=∠;(2)若AF 平分CAB ∠分别交CD 、BC 于E 、F ,求证:CEF CFE ∠=∠.【答案】(1)见解析 (2)见解析【解析】【分析】本题考查了直角三角形的性质,三角形角平分线的定义,对顶角的性质,余角的性质,难度适中. (1)由于ACD ∠与B ∠都是BCD ∠的余角,根据同角的余角相等即可得证;(2)根据直角三角形两锐角互余得出9090CFA CAF AED DAE ∠=°−∠∠=°−∠,,再根据角平分线的定义得出CAF DAE ∠=∠,然后由对顶角相等的性质,等量代换即可证明CEF CFE ∠=∠.【小问1详解】证明:90ACB ∠=° ,CD AB ⊥于D ,90ACD BCD ∴∠+∠=°,90B BCD ∠+∠=°,ACD B ∴∠=∠;【小问2详解】证明:在Rt AFC △中,90CFA CAF ∠=°−∠,同理Rt AED △中,90AED DAE ∠=°−∠.又AF 平分CAB ∠,CAF DAE ∴∠=∠,AED CFE ∴∠=∠,又CEF AED ∠=∠ ,CEF CFE ∴∠=∠.23. 如图,AC ,BD 相交于点O ,OB OD =,A C ∠=∠,求证:△≌△AOB COD .在【答案】见解答【解析】【分析】本题主要考查全等三角形的判定,熟练掌握判定方法是解题的关键.根据全等三角形的判定方法证明即可.【详解】证明:AOB 和COD △中,A C AOB COD OB OD∠=∠ ∠=∠ = , (AAS)AOB COD ∴≌△△.24. 材料阅读:如图①所示的图形,像我们常见的学习用品—— 圆规.我们不妨把这样图形叫做 “规形图 ”.解决问题:(1)观察“规形图 ”,试探究BDC 与A B C ∠∠∠,,之间的数量关系,并说明理由;(2)请你直接利用以上结论,解决以下两个问题:Ⅰ.如图② ,把一块三角尺 DEF 放置在ABC 上,使三角尺的两条直角边DE DF ,恰好经过点B C ,,若40A ∠=°,则ABD ACD +=∠∠ ° . Ⅱ.如图③ ,BD 平分ABP CD ∠,平分ACP ∠,若40130A BPC ∠=°∠=°,,求BDC ∠的度数.【答案】(1) BDC A B C ∠=∠+∠+∠,理由见解析(2)Ⅰ.50;Ⅱ. 85°【解析】【分析】本题考查的是三角形内角和定理,三角形外角性质以及角平分线的定义得运用.根据题意连接AD 并延长至点 F ,利用三角形外角性质即可得出答案.Ⅰ.由(1)可知BDC A B C ∠=∠+∠+∠,因为40A ∠=°,90D ∠=︒,所以904050ABD ACD ∠+∠=°−°=°;Ⅱ.由(1)的已知条件,由于BD 平分ABP CD ∠,平分ACP ∠,即可得出在1452ABD ACD ABP ACP ∠+∠=∠+∠=°(),因此4540=85BDC ∠=°+°°. 【小问1详解】 解:如图连接AD 并延长至点 F , 根据外角的性质,可得 BDF BAD B ∠=∠+∠, CDF C CAD ∠=∠+∠, 又∵BDC BDF CDF BAC BAD CAD ∠=∠+∠∠=∠+∠,, ∴BDC BAC B C ∠=∠+∠+∠;【小问2详解】解:Ⅰ. 由(1)可得,BDC ABD ACD A ∠=∠+∠+∠; 又∵4090A D ∠=°∠=°,, ∴9040=50ABD ACD ∠+∠=°−°°, 故答案为:50; Ⅱ.由(1),可得BPC ABP ACP BDC BAC ABD ACD ∠=∠+∠+∠∠=∠+∠+∠,, ∴1304090ABP ACP BPC BAC ∠+∠=∠−∠=°−°=°, 又∵BD 平分ABP CD ∠,平分ACP ∠, ∴1452ABD ACD ABP ACP ∠+∠=∠+∠=°(), ∴4540=85BDC ∠=°+°°.。
安徽省阜阳市多校2024-2025学年上学期第一次月考八年级数学试卷一、单选题1.在平面直角坐标系中,点()2024,1A -在( )A .第一象限B .第二象限C .第三象限D .第四象限 2.在函数142y x =-中,自变量x 的取值范围是( ) A .2x ≠ B .2x ≥ C .2x ≠- D .2x ≤- 3.已知一个长方形的面积为6,它的长为x ,宽为y ,下列说法正确的是( ) A .常量为x ,y ,变量为6B .常量为6,x ,变量为yC .常量为6,y ,变量为xD .常量为6,变量为x ,y4.把点()3,4A -向左平移3个单位,所得的点的坐标为( )A .()6,4-B .()0,4-C .()3,1-D .()3,7- 5.若函数()21m y m x =+是正比例函数,则m 的值是( )A .1-B .0C .1D .1±6.如图是中国象棋棋局的一部分,如果“帅”的位置用坐标 0,1 表示,“卒”的位置坐标为()2,2表示,那么“马”的位置所表示的坐标为( )A . −2,3B .()2,3--C .()2,2-D .()2,2- 7.已知一个一次函数的图象与直线2y x =-平行,且与函数3y x =+的图象交y 轴上于同一点,那么这个一次函数的表达式是( )A .23y x =+B .23y x =-C .23y x =-+D .23y x =-- 8.如图,在平面直角坐标系中,四边形ABCD 的顶点都在网格点上,将四边形ABCD 平移使得点B 与点D 重合,则点A 的对应点的坐标为( )A .()0,0B .()2,2-C . 2,3D .()2,4-9.某次航展中,歼20模型飞机在某60s 内飞行的高度()m h 与时间()s t 之间的关系大致如图所示.下列结论错误的是( )A .在060t ≤≤范围内,飞机高度有两次180mB .在3041t <≤范围内,飞机高度在不断下降C .在3060t <≤范围内,飞机高度有四次600mD .在060t ≤≤范围内,飞机有二次连续攀升10.一次函数y ax b =+和y bx a =+(a ,b 为常数且a b ≠)在同一直角坐标系中的图象可能是( )A .B .C .D .二、填空题11.在平面直角坐标系中,直线23y x =-+经过点(),a b ,则代数式2a b +=.12.若点()12,A y 和点()23,B y -都在直线5y x =-+上,则1y 2y (选填“>”“=”或“<”). 13.某水果店销售某种新鲜水果,出售量()x kg 与销售额y (元)之间的函数关系如图所示.若小强同学在该家水果店一次购买30kg 该种水果,需要付款元.14.明明和亮亮家住在同一栋楼,星期天相约到新华书店看书.明明步行一段时间后,亮亮骑自行车沿相同路线行进,两人均匀速前行.他们的路程差()m s 与明明出发时间()min t 之间的函数关系如图所示.(1)明明步行的速度为m/min ;(2)图中a 的值为.三、解答题15.已知y 与1x +成正比例,当2x =时,6y =.(1)求y 与x 之间的函数表达式;(2)试判断点()4,4是否在该函数的图像上.16.如图,将ABC V 先向右平移6个单位长度,再向上平移2个单位长度得到111A B C △.(1)画出111A B C △,直接写出点1C 的坐标为______;(2)111A B C △的面积为______.17.在平面直角坐标系中,有()2,A m -,()2,4B m -两点.(1)当点B 在y 轴上时,求点A 的坐标;(2)当AB x ∥轴时,求A ,B 两点间的距离.四、填空题18.如图,在平面直角坐标系中,点P 从原点O 出发,按1234,,,,,n A A A A A L 的方向运动,每运动1个单位长度会改变一次方向.(1)直接写出下列坐标:17A ______,19A ______,2023A ______;(2)点P 第2000次运动的方向是______.(选填“向上”“向右”或“向下”)五、解答题19.已知一次函数的图像经过(2,3)A --,(2,5)B 两点.(1)求这个一次函数的表达式;(2)求此函数与x 轴、y 轴围成的三角形的面积.20.在“生活中的函数”活动中,某学习小组设计了一个问题情境:小明从家跑步去体育场,在那里锻炼了一阵后又走到文具店买圆规,然后散步回家.小明离家的距离()km y 与他所用的时间()min x 的关系如图所示.(1)小明从家跑步去体育场用了______min ,体育馆距离家有______km .(2)文具店离体育馆多远?小明在文具店停留了多久?(3)小明从家到文具店的平均速度是多少?21.探索一个新函数的图象与性质时,在经历“列表、描点、连线”后,通过观察函数图象来归纳函数的性质.下面运用这样的方法探索23y x =--+函数的性质.(1)①完成下面列表:②根据列表在下列平面直角坐标系中先描点,再连线;(2)①函数y 的最大值为______;当y 随x 的增大而减小时,x 的取值范围是______; ②当0y >时,x 的取值范围是______.22.某县教育局在开学期间准备给当地的中小学添加A ,B 两种型号的打印机,已知3台A 型打印机和2台B 型打印机共需要3400元,1台A 型打印机和3台B 型打印机共需要3000元.求:(1)A 、B 型号的打印机每台各多少元;(2)若该教育局需购买这两种型号的打印机共200台,且需要A 型打印机不少于120台,B 型打印机不少于60台,平均每台打印机的运输费用为10元.设购买A 型打印机x 台,总费用为y 元.①求y 与x 之间的函数关系式,并写出x 的取值范围:②求出总费用最少的购买方案.23.如图,在平面直角坐标系中,点M 的坐标为()3,3,一次函数y x b =-+经过点M ,分别交x 轴于点A ,交y 轴于点B .x 轴上有一点P ,其横坐标为()3t t >.过点P 作x 轴的垂线交射线OM 于点C ,交一次函数y x b =-+的图象于点D .(1)求点A 的坐标;(2)若PD CD =,求t 的值;(3)若3CP PD =,求t 的值.。
八年级上册第一次月考数学试卷一、选择题(每题3分,共30分)1. 下列长度的三条线段能组成三角形的是()A. 3,4,8.B. 5,6,11.C. 1,2,3.D. 5,6,10.2. 一个三角形的两边长分别为3和7,且第三边长为整数,这样的三角形的周长最小值是()A. 14.B. 15.C. 16.D. 17.3. 三角形的一个外角小于与它相邻的内角,则这个三角形是()A. 直角三角形。
B. 锐角三角形。
C. 钝角三角形。
D. 无法确定。
4. 等腰三角形的一边长为3cm,周长为19cm,则该三角形的腰长为()B. 8cm.C. 3cm或8cm。
D. 以上答案均不对。
5. 如图,在△ABC中,∠A = 50°,∠C = 70°,则外角∠ABD的度数是()A. 110°.B. 120°.C. 130°.D. 140°.6. 正多边形的一个内角是135°,则这个正多边形的边数是()A. 6.B. 7.C. 8.D. 9.7. 下列图形中具有稳定性的是()A. 正方形。
B. 长方形。
C. 直角三角形。
D. 平行四边形。
8. 若一个多边形的内角和是1080°,则这个多边形的边数是()B. 7.C. 8.D. 9.9. 在△ABC中,∠A=∠B = 2∠C,则∠C等于()A. 36°.B. 45°.C. 90°.D. 180°.10. 如图,已知AD是△ABC的中线,CE是△ACD的中线,若△ACE的面积是1,则△ABC的面积是()A. 2.B. 3.C. 4.D. 5.二、填空题(每题3分,共18分)11. 三角形的三个内角之比为1:3:5,则最大内角的度数为______。
12. 若等腰三角形的顶角为80°,则它的底角为______。
13. 一个多边形的每一个外角都等于36°,则这个多边形的边数是______。
云南省曲靖市麒麟区第四中学2024-2025学年八年级上学期10月第一次月考数学试卷八年级 数学(人教版) 试卷范围:八上11.1~12.2(全卷三个大题,共27个小题,共8页;满分100分,考试用时120分钟)注意事项:1.本卷为试题卷.答题前请在答题卡指定位置填写学校、班级、姓名等信息。
答案书写在答题卡相应位置上,答在试题卷或草稿纸上的答案无效。
2.考试结束后,请将试题卷和答题卡一并交回。
一、选择题(本大题共15小题,每个小题只有一个正确选项,每小题2分,共30分)1.下列长度的三条线段能组成三角形的是( )A.3,8,4B.5,10,6C.4,4,8D.3,7,112.下列各组图形中,两个图形属于全等图形的是( )A. B. C. D.3.直角三角形的一个锐角是,则它的另一个锐角是( )A. B. C. D.或4.下列说法正确的是( )A.三角形的外角和为 B.面积相等的两个三角形全等C.周长相等的两个三角形全等D.两条边及其一角相等的两个三角形全等5.如图,为了使自行车稳定停放,停放时常常放下它的脚架,这里所运用的几何原理是( )A.两点之间,线段最短B.三角形具有稳定性C.两点确定一条直线D.垂线段最短6.已知图中的两个三角形全等,则等于()60︒30︒60︒120︒30︒60︒360︒1∠A. B. C. D.7.如图,在中,,,则( )A. B. C. D.8.如图,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形.他的依据是( )A.SASB.ASAC.AASD.SSS9.如图,的边上的高是( )A.线段B.线段C.线段D.线段10.如图,如果,那么下列结论不正确的是( )A. B. C. D.11.小刚要将一块如图所示的三角形纸板分成面积相同的两部分,则图中他所作的线段应该是的()50︒58︒60︒72︒ABC △55B ︒∠=40C ︒∠=DAC ∠=75︒85︒95︒100︒ABC △BC AF BD BF BEABC FED △≌△BD EC =//AB EF //AC FD BD DF=AD ABC△A.高线B.中线C.角平分线D.以上都不是12.如图,已知,下列所给条件不能证明的是( )A. B. C. D.13.多边形的每个内角均为,则这个多边形是( )A.四边形B.五边形C.六边形D.八边形14.下列尺规作图的语句正确的是( )A.残长射线到点B.延长线段至点,使得C.作直线D.以为圆心,任意长为半径画弧15.如图,是的角平分线,,交于点,,交于点,若,则的度数为( )A. B. C. D.二、填空题(本大题共4小题,每小题2分,共8分)16.一个七边形的内角和度数为________.17.已知的三条边长均为整数,其中两边长分别是2和5,第三边长为奇数,则此三角形的周长为________.18.如图,,,若,则的度数为________.ABC DCB ∠=∠ABC DCB △≌△A D ∠=∠AB DC =AC DB =ACB DBC∠=∠120︒AB C AB C AC BC =3cmAB =O AD ABC △//DE AC AB E //DF AB AC F 150︒∠=2∠40︒45︒50︒60︒ABC △AB AC =BD CD =70B ︒∠=DAC ∠19.如图,先将两个全等的直角三角形、重叠在一起,再将三角形沿方向平移,、相交于点.若,,则阴影部分的面积为________.三、解答题(本大题共8小题,共62分)20.(6分)一个多边形的内角和是外角和的3倍,求这个多边形的边数.21.(6分)如图,,,求证:.22.(7分)如图,在与中,点、、、在一条直线上,,,.(1)求证::(2)若,,求线段的长.23.(7分)为了测量一栋6层楼的高度,在旗杆与楼之间选定一点,测得旗杆顶的视线与地面的夹角,测得楼顶的视线与地面的夹角,测各点到楼底的距离与旗仠的高度都等于12米,测得旗杆与楼之间的距离米.求这栋6层楼的高度.ABC DEF DEF CA 2cm AB EF G 8cm BC =3cm GE =2cm 90B D ︒∠=∠=AB AD =ABC ADC △≌△ABC △DEF △B E C F //AC DF AC DF =A D ∠=∠ABC DEF △≌△7BF =3CE =BE CD P C PC 33DPC ︒∠=A PA 57APB ︒∠=P PB CD 30BD =24.(8分)如图,是的高,、是的角平分线,且.(1)求的度数;(2)若,求的度数.25.(8分)如图,在中,,点是的中点,点在上.(1)找出图中所有全等的三角形:(2)任选一组你写出的全等三角形进行证明.26.(8分)如图,点是的平分线与的平分线的交点.(1)若,,则________;(2)探究与的数量关系,并说明理由.27.(12分)如图,与相交于点,,,,点从点出发,沿方向以的速度运动,点同时从点出发,沿方向以的速度运动,当点到达点时,、两点同时停止运动,设点的运动时间为.AD ABC △AE BF ABC △30CBF ︒∠=BAD ∠70AFB ︒∠=DAE ∠ABC △AB AC =D BC E AD D CBE ∠CAB ∠60BAC ︒∠=40D ︒∠=DBE ∠=︒C ∠D ∠AE BD C AC EC =BC DC =8cm AB =P A A B A →→2cm /s Q D D E →1cm /s P A P Q P s t(1)当点在运动时,________;(用含的代数式表示)(2)求证:;(3)当,,三点共线时,求的值.P A B →BP =t AB ED =P Q C t2点·教学评——质量跟踪练习题(一)八年级 数学(人教版) 参考答案一、选择题(本大题共15小题,每小题2分,共30分)题号123456789101112131415答案BDAABACBADBCCDC二、填空题(本大题共4小题,每小题2分,共8分)16.17.1218.19.13三、解答题(本大题共8小题,共62分)20.(6分)解:设这个多边形的边数为,则,解得:,这个多边形的边数是8....................................................................................................6分21.(6分)证明:,和都是直角三角形,在和中,,.........................................................................................6分22.(7分)(1)证明:,在和中,,;...........................................................................................4分(2),,,,,,...................................................................................................................7分23.(7分)解:由题意可得:,,,900︒20︒n (2)1803603n ︒︒-+=⨯8n =∴90B D ︒∠=∠= ABC ∴△ADC △Rt ABC ∴△Rt ADC △AB ADAC AC =⎧⎨=⎩Rt Rt (HL)ABC ADC ∴△≌△//AC DF ACB F∴∠=∠ABC △DEF △A DAC DF ACB F ∠=∠⎧⎪=⎨⎪∠=∠⎩(ASA)ABC DEF ∴△≌△ABC DEF △≌△BC EF ∴=BE CE CF CE ∴+=+BE CF ∴=7BF = 3CE =2BE CF ∴==90CDP PBA ︒∠=∠⇒57APB ︒∠= 33PAB ︒∴∠=,米,米,米,在和中,,,米,这栋6层楼高18米.........................................................................................................7分24.(8分)解:(1)平分,,,是的高,,,...........................................................................................4分(2),,,,平分,,..............................................................8分25.(8分)解:(1),,;....3分(2),点是的中点,,在和中,,,,33PAB CPD ︒∴∠=∠=30BD = 12PB =18DP BD PB ∴=-=BAP △DPC △CDP PBA PAB CPD CD PB ∠=∠⎧⎪∠=∠⎨⎪=⎩(AAS)BAP DPC ∴△≌△18AB DP ∴==∴BF ABC ∠30CBF ︒∠=260ABC CBF ︒∴∠=∠=AD ABC △90ADB ︒∴∠=906030BAD ︒︒︒∴∠=-=AFB FBC C ∠=∠+∠ 70AFB ︒∠=703040C ︒︒︒∴∠=-=18080BAC ABC C ︒︒∴∠=-∠-∠=AE BAC ∠40BAE ︒∴∠=403010DAE BAE BAD ︒︒︒∴∠=∠-∠=-=ABE ACE △≌△BDE CDE △≌△ABD ACD △≌△AB AC = D BC BD CD ∴=ABD △ACD △AB AC AD AD BD CD =⎧⎪=⎨⎪=⎩(SSS)ABD ACD ∴△≌△BDE CDE ∴∠=∠在和中,,,,在和中,,.................................................................................................8分(答案不唯一,推理正确即可得分)26.(8分)解:(1)70;..................................................................................................3分(2),理由如下:,平分,平分,,,,,,......................................................................................................................8分27.(12分)解:(1);........................................................................................3分(2)在和中,,,;.....................................................................................................................7分(2)根据题意得:,,则,,,在和中,BDE △CDE △BD CD BDE CDE DE DE =⎧⎪∠=∠⎨⎪=⎩(SAS)BDE CDE ∴△≌△BE CE ∴=ABE △ACE △AB AC AE AE BE CE =⎧⎪=⎨⎪=⎩(SSS)ABE ACE ∴△≌△2C D ∠=∠CBE CAB C ∠=∠+∠ AD CAB ∠BD CBE ∠12CBD CBF ∴∠=∠12CAD CAB ∠=∠12CBD CAD C ∴∠=∠+∠CBD D CAD C ∠+∠=∠+∠ 12CAD C D CAD C ∴∠+∠+∠=∠+∠2C D ∴∠=∠82t -ABC △EDC △AC EC ACB ECD BC DC =⎧⎪∠=∠⎨⎪=⎩(SAS)ABC EDC ∴△≌△AB ED ∴=DQ t =2AP t =8EQ t =-ABC EDC △≌△A E ∴∠=∠8cmDE AB ==ACP △ECQ △,,,当时,,解得:,当时,,,解得:,综上所述,当、、三点共线时,的值为或.......................................12分A E AC ECACP ECQ ∠=∠⎧⎪=⎨⎪∠=∠⎩(ASA)ACP ECQ ∴△≌△AP EQ ∴=∴04t ……28t t =-83t =48t <…162AP t =-1628t t ∴-=-8t =∴P C Q t 8s 8s 3。
湖南省长沙市麓山国际实验学校2024-2025学年八年级上学期第一次月考数学试卷一、单选题1.下列各种著名的数学曲线中,不是轴对称图形的是( )A .B .C .D . 2.在下列图形中,正确画出AC 边上的高的是( )A .B .C .D .3.一个多边形的每个内角均为120°,则这个多边形是( )A .五边形B .六边形C .七边形D .八边形. 4.如图,△ABC ≌△DEC ,B 、C 、D 在同一直线上,且CE =5,AC =7,则BD 长()A .12B .7C .2D .145.根据下列已知条件,能画出唯一的ABC V 的是( )A . 347AB BC AC ===,, B .4330AB BC A ==∠=︒,,C .60454A B AC ∠=︒∠=︒=,,D .6A B AB ∠=∠=,6.下列条件中,不能得到等边三角形的是( )A .有两个外角相等的等腰三角形B .三边都相等的三角形C .有一个角是60︒的等腰三角形D .有两个内角是60︒的三角形7.一个三角形的两边长为12和7,第三边长为整数,则第三边长的最小值是( ) A .5 B .6 C .7 D .88.如图,是一块三角形的草坪,现要在草坪上建一凉亭,要使凉亭到草坪三个顶点的距离相等,凉亭应选的位置是( )A .ABC V 的三条中线的交点B .ABC V 三条角平分线的交点 C .ABC V 三边的垂直平分线的交点D .ABC V 三条高所在直线的交点9.如图,在ABC V 中, 90,BAC AD ∠=︒是高, BE 是中线, CF 是角平分线, CF 交AD 于点G ,交BE 于点H ,下面说法正确的是( )①ABE V 的面积BCE =△的面积 ②AFG AGF ∠=∠; ③2FAG ACF ∠=∠ ④AF FB =. A .①②③④ B .①②④ C .①②③ D .③④10.如图,先将正方形纸片对着,折痕为MN ,再把B 点折叠在折痕MN 上,折痕为AE ,点B 在MN 上的对应点为H ,沿AH 和DH 剪下得到△ADH ,则下列选项正确的个数为( ) ①AE 垂直平分HB ;②∠HBN =15°;③DH =DC ;④△ADH 是一个等边三角形.A .1个B .2个C .3个D .4个二、填空题11.点(1,2)P -关于y 轴对称的点的坐标为.12.在Rt ABC △中,=90C ∠︒,30A ∠=︒,6cm AB =,则BC =.13.如图,ACD ∠是ABC V 的外角,若35A ∠=︒,40B ∠=︒,则1∠的度数为︒.14.如图,三角形纸片中,8cm AB =,6cm BC =,5cm AC =.沿过点B 的直线折叠这个三角形,使点C 落在AB 边上的点E 处,折痕为BD ,ADE V 的周长为cm .15.如图,ABC V 的边BC AC ,的垂直平分线12l l ,相交于点O .若110A ∠=︒,则B O C ∠=°.16.若等腰三角形的两条高所在直线形成的角中有一个为45︒,则其顶角的度数为.三、解答题17.计算:2024012(3)π---18.如图,网格中的ABC V 和DEF V 是轴对称图形.(1)利用网格线,作出ABC V 和DEF V 的对称轴l ;(2)如果每个小正方形的边长为1,则ABC V 的面积为__________.19.如图,点E 、F 在BC 上,BE =CF ,AB =DC ,∠B =∠C .求证:∠A =∠D .20.用一条长为20cm 的细绳围成一个等腰三角形.(1)若腰长比底边长短2cm ,求它的三边长;(2)能围成有一边的长是4cm 的等腰三角形吗﹖若能,请求出它的另两边,若不能,请说明理由.21.如图,AB AC =,AD BC =,AB 的垂直平分线MN 交AC 于点D ,求DBC ∠的度数.22.如图,过等边△ABC 的顶点A ,B ,C 依次作AB ,BC ,CA 的垂线MG ,MN ,NG ,三条垂线围成△MNG .求证:△MNG 是等边三角形.23.(1)如图1,在ABC V 中,AB AC =,90BAC ∠=︒,CD 平分ACB ∠,BE CD ⊥,垂足为E ,试探究线段BE 和CD 之间的数量关系,并写出你的理由.(2)如图2,把条件改为:“在ABC V 中,AB AC =,90BAC ∠=︒,点D 在BC 上,12EDB C ∠=∠,BE ED ⊥,DE 与AB 相交于F 点,则线段BE 和FD 之间的数量关系如何?并证明你的结论.”24.如图,点A a ,0 ,()0,B b ,满足()21220a b -+-=,若点P 为射线OA 上异于原点O 和点A 的一个动点.(1)如图1,①直接写出点A 的坐标为,点B 的坐标为;②当点P 位于点O 与点A 之间时,连接PB ,以线段PB 为边作等腰直角BPE V (P 为直角顶点,B ,P ,E 按逆时针方向排列),连接AE .求证:AB AE ⊥;(2)点D 是直线AB 上异于点A 与点B 的一点,使得BPO APD ∠∠=,过点D 作DF BP ⊥交y 轴于点F ,探究BP ,DP ,DF 之间的数量关系,并证明.25.(1)如图1,学习了等腰三角形,我们知道:在一个三角形中,等边所对的角相等;反过来,等角所对的边也相等.如果在一个三角形中,两个角不等,那么它们所对的边有什么大小关系呢?猜想:在ABC V 中,如果AB AC >,则C ∠B ∠(填写“>”“<”或“=”),请证明你的猜想;(2)如图2,在ABC V 中()AB BC >,BP 平分ABC ∠交AC 于点D ,连接AP ,CP .判断AB BC -与PC PA -的大小关系,并证明;(3)如图3,在ABC V 中,60A ∠=︒,ABC V 的角平分线BF ,CE 交于点D ,若57DE CD =,则BDCD.。
安徽省合肥市庐阳中学2024-2025学年八年级上学期第一次月考数学试卷一、单选题1.在平面直角坐标系中,下列各点在第四象限的是( )A .()3,2B .()3,2-C .()3,2--D .()3,2- 2.在函数42y x =-+中,自变量x 的取值范围是( ) A .4x > B .2x >- C .2x ≠- D .2x <- 3.在平面直角坐标系中,把直线21y x =+沿y 轴向下平移2个单位长度后,得到的直线的函数表达式为( )A .21y x =-B .23y x =-C .23y x =+D .25y x =+ 4.在平面直角坐标系中,点()5,12A -,B 是y 轴上的任意一点,则线段AB 的最小值是( ) A .5 B .7 C .12 D .175.某烤鸭店在确定烤鸭的烤制时间时 ,主要依据的是下表中的数据:设鸭的质量为x 千克,烤制时间为t 分钟.当 3.5x =千克时,t 的值为( ) A .130 B .140 C .150 D .1606.如图,直线y kx b =+与坐标轴的交点坐标分别为()2,0A ,()0,3B -,则不等式0kx b +<的解集为( )A .3x >-B .2x <C .2x >D .3x <- 7.如图,这是某蓄水池的横断面示意图,若以固定的水流量把这个空水池注满.则能大致表示水池内水的深度h 和进水时间t 之间的关系的图象是()A .B .C .D .8.如图,这是围棋棋盘的一部分,若建立平面直角坐标系后,黑棋①的坐标是()1,4-,白棋③的坐标是()2,5--,则黑棋②的坐标是( )A .()3,1--B .()3,2--C .()4,1--D .()4,2--9.下列关于一次函数22y x =-+的结论,错误的是( )A .图象经过点()1,4-B .函数值随x 的增大而减小C .图象与y 轴交于点()0,2D .图象经过第二、三、四象限10.已知一次函数1y mx n =+与一次函数2y px p =+,且m ,n ,p 满足0mnp <,则这两个一次函数在同一平面直角坐标系中的图象可能是( )A .B .C .D .二、填空题11.在平面直角坐标系中,A ,B 两点的坐标分别为()5,1-,()5,2,则A ,B 两点间的距离为.12.将点P 先向左平移5个单位长度,再向上平移4个单位长度后与点()0,1Q 重合,则点P 的坐标是.13.1—6个月的婴儿生长发育得很快,如果一个婴儿出生时的体重为3300克,那么他的体重y (克)和月龄x (月)之间的关系可以近似用3300700y x =+来表示.当y 的值为7500时,自变量x 的值为.14.如图(1),在物理实验课上,小明做“小球反弹实验”已知桌面AB 的长为1600cm ,小球P 与木块Q (大小厚度忽略不计)同时从点A 出发,向点B 做匀速直线运动,速度较快的小球P 到达B 处的挡板l 后被弹回(忽略转向时间),沿原来的路径和速度返回,遇到木块Q 后又被反弹回挡板l ,如此反复,直到木块Q 到达l ,小球P 和木块Q 同时停止运动.设小球P 的运动时间为s x ,木块Q 与小球P 之间的距离为ycm ,图(2)是y 与x 的部分图象.(1)小球P 的运动速度为cm /s .(2)t 的值为.三、解答题15.如图,在平面直角坐标系中,每个小正方形网格的边长均为1.(1)点A 的坐标为______,点B 的坐标为______.(2)在图中描出点()1,2C .(3)在(2)的条件下,D 为x 轴上方的一点,且BC AD ∥,BC AD =,则点D 的坐标为_____. 16.已知点()3,26M m m +-.(1)若点M 在x 轴上,求点M 的坐标.(2)若点M 在第四象限,求m 的取值范围.17.如图,在平面直角坐标系中,ABC V 三个顶点的坐标分别为()2,3A -,()3,1B -,()0,2C -.(1)将ABC V 先向右平移4个单位长度,再向下平移2个单位长度得到111A B C △,请画出111A B C △.(2)求ABC V 的面积.18.已知一次函数24y x =+.(1)将下列表格补充完整 ,并在平面直角坐标系中画出这个函数的图象.(2)当函数值y 为10时,自变量x 的值为______.19.已知关于x 的函数()124y k x k =-++.(1)当k =______时,该函数是正比例函数;(2)当k 满足什么条件时,y 随x 的增大而减小?(3)当3k =时,函数图象交y 轴于点A ,交x 轴于点B ,求AOB V 的面积.20.某市自来水公司为了鼓励市民节约用水,水费按分段收费标准收取.居民每月应交水费y (元)与用水量x (吨)之间的函数关系如图所示.请你观察函数图象,回答下列相关问题.(1)若用水不超过10吨,水费为______元/吨.(2)当用水超过10吨时,求该函数图象对应的一次函数的表达式.(3)若某户居民8月共交水费65元,求该户居民8月共用水多少吨?21.在平面直角坐标系中,给出如下定义:点P 到x 轴、y 轴的距离的较小值称为点P 的“短距”;当点Q 到x 轴、y 轴的距离相等时,则称点Q 为“完美点”.(1)点()3,2A -的“短距”为______.(2)若点()31,5B a -是“完美点”,求a 的值.(3)若点()92,5C b --是“完美点”,求点()6,21D b --的“短距”.22.如图,这是某种产品30天的销售图象.图1是产品日销售量y (件)与时间t (天)之间的函数关系图象,图2是一件产品的销售利润z(元)与时间t(天)之间的函数关系图象.已知日销售利润=日销售量⨯一件产品的销售利润.(1)第24天的日销售量为______件.(2)求第10天销售一件产品的利润是多少元?(3)求第12天的日销售利润是多少元?23.已知甲、乙两地相距480km,一辆出租车从甲地出发往返于甲、乙两地,一辆货车沿同一条公路从乙地前往甲地,两车同时出发,货车途经服务区时,停下来装货物后,发现此时与出租车相距120km,货车改变速度继续出发2h3后,与出租车相遇,出租车到达乙地后立即按原路返回,结果比货车早15分钟到达甲地,如图,这是两车距各自出发地的距离()kmy与货车行驶时间()hx之间的函数关系图象.(1)求a的值.(2)求出租车从乙地返回甲地的速度.(3)在出租车返回的过程中,货车出发多长时间与出租车相距12km?。
山东省威海市古寨中学2024—-2025学年上学期第一次月考八年级数学试卷一、单选题1.在下列各组图形中,是全等图形的是( )A .B .C .D .2.若长度分别为a 、3、5的三条线段能组成一个三角形,则a 的值可以是( ) A .2 B .3 C .8 D .93.如图,CM 是ABC V 的中线,8cm BC =,若BCM V 的周长比ACM △的周长大3cm ,则AC 的长为( )A .3cmB .4cmC .5cmD .6cm 4.将一副三角板按如图所示的位置摆放在直尺上,则1∠的度数为( )A .70°B .75°C .80°D .85°5.如图,ABC ADE △△≌,则下列结论正确的个数是( )①AB AD =;②E C ∠=∠;③若120BAE ∠=︒,40BAD ∠=︒,则80BAC ∠=︒;④BC DE =.A .1B .2C .3D .46.已知一个三角形三边长为a 、b 、c ,则|a -b -c |-|a +b -c |=( )A .﹣2a +2cB .﹣2b +2cC .2aD .﹣2c7.如图,用直尺和圆规作AOB ∠的平分线的原理是证明POC QOC ∆≅∆,那么证明POC QOC ∆≅∆的依据是( )A .SASB .ASAC .AASD .SSS8.若等腰三角形的两边长分别为3cm 和6cm ,则该等腰三角形的周长是( ) A .9cm B .12cm C .12cm 或15cm D .15cm9.等腰三角形的一个内角是40︒,它的另外两个角的度数是( )A .40︒和100︒或55︒和55︒B .70︒和70︒或40︒和100︒C .80︒和60︒或 40︒和100︒D .60︒和80︒或 70︒和70︒10.AD 是ABC V 的高,若6040BAD CAD ∠=︒∠=︒,,则BAC ∠的度数是( )A .100︒B .20︒C .50︒或110︒D .20︒或100︒ 11.如图,ABC ADE V V ≌,已知点C 和点E 是对应点,BC 的延长线分别交AD DE ,于点FG ,,且10DAC ∠=︒,25B D ∠∠=︒=,120EAB ∠=︒,则DGB ∠的度数是( )A .70︒B .75︒C .60°D .65︒12.如图,已知在△ABC 中,CD 是AB 边上的高线,BE 平分∠ABC ,交CD 于点E ,BC =5,DE =2,则△BCE 的面积等于( )A .10B .7C .5D .4二、填空题13.在△ABC 中,∠A -∠B =30°、∠C =4∠B ,则∠C =.14.若一个三角形三条高的交点在这个三角形的顶点上,则这个三角形是 三角形. 15.如图,ACD CBE V V ≌,且点D 在边CE 上,若24AD =,10BE =,则DE 的长为.16.如图△ABC 中,AD 是BC 上的中线,BE 是△ABD 中AD 边上的中线,若△ABC 的面积是12,则△ABE 的面积是.17.如图,已知∠ACB =90°,OA 平分∠BAC ,OB 平分∠ABC ,则∠AOB =°.18.如图,CA BC ⊥,垂足为C ,2cm 6cm AC BC ==,,射线BM BQ ⊥,垂足为B ,动点P 从C 点出发以1cm /s 的速度沿射线CQ 运动,点N 为射线BM 上一动点,满足PN AB =,随着P 点运动而运动,当点P 运动秒时,BCA V 与点P 、N 、B 为顶点的三角形全等.三、解答题19.已知△ABC 的三边长分别为a ,b ,c .(1)若a ,b ,c 满足(a ﹣b )2+(b ﹣c )2=0,试判断△ABC 的形状;(2)若a =5,b =2,且c 为整数,求△ABC 的周长的最大值及最小值.20.如图,在△ABC 中,AD 是BC 边上的高,AE 是∠BAC 的平分线,∠B =42°,∠DAE =18°,求∠C 的度数.21.如图所示,在ABC V 中,AB AC =,D ,E 是AB ,AC 的中点,求证:ABE ACD △△≌.22.尺规作图:如图,已知点M 在射线ON 上,α,β.求作点K ,使KOM α∠=,KMO β∠=.(要求:不写作法,保留作图痕迹)23.如图,△ABO ≌△CDO ,点E 、F 在线段AC 上,且AF =CE .试说明FD 与BE 的关系,并说明理由.24.如图,Rt ACB △中,90ACB ∠=︒,ABC V 的角平分线AD 、BE 相交于点P ,过P 作PF AD ⊥交BC 的延长线于点F ,交AC 于点H .(1)求APB ∠的度数;(2)求证:ABP FBP △△≌;(3)求证:AH BD AB +=.。
2024-2025八年级上册第一次月考模拟试卷一、填空题(本题满分30分,每小题3分)1. 在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是( )A. B. C. D. 2. 若一个等腰三角形的两边长分别为2,4,则第三边的长为( )A. 2B. 3C. 4D. 2或43. 已知一个等腰三角形有一个角为50o ,则顶角是 ( )A. 50oB. 80oC. 50o 或80oD. 不能确定 4. 若三角形的两条边的长度是4cm 和9cm ,则第三条边的长度可能是( )A. 4 cmB. 5 cmC. 9cmD. 13cm5. 一个多边形的内角和是900°,则这个多边形的边数为 ( )A. 6B. 7C. 8D. 96. 下列长度的各种线段,可以组成三角形的是( )A. 1,2,3B. 1,3,5C. 3,3,6D. 4,5,6 7. 如图,AB 与CD 相交于点E ,EA EC =,DE BE =,若使AED CEB ≌,则( )A. 应补充条件A C ∠=∠B. 应补充条件B D ∠=∠C. 不用补充D. 以上说法都不正确8. 已知△ABC 和△DEF ,下列条件中,不能保证△ABC ≌△DEF 的是( )A. AB =DE ,AC =DF ,BC =EFB. ∠A =∠D , ∠B =∠E ,AC =DFC. AB =DE ,AC =DF ,∠A =∠DD. AB =DE ,BC =EF , ∠C =∠F9. 如图,点P 为∠AOB 内一点,分别作出点P 关于OA 、OB 对称点1P 、2P ,连接1P 2P 交OA 于M ,交OB 于N ,若12PP =6,则△PMN 的周长为( )的A. 4B. 5C. 6D. 710. 如图,直线AB CD ∥,70A ∠=°,40C ∠=°,则E ∠的度数为( )A. 30°B. 40°C. 50°D. 60°11. 如图,在ABC 中,AD BC ⊥于点D ,48C ∠=°.则DAC ∠的度数为( )A. 52°B. 42°C. 32°D. 28°12. 如图,在ΔΔΔΔΔΔΔΔ中,AD 平分BAC ∠交BC 于点D ,30B ∠= ,70ADC ∠=,则C ∠的度数是( )A. 50B. 60C. 70D. 80二. 填空题(本题满分24分,每小题3分)13. BD 是ABC 的中线,53AB BC ABD ==,, 和BCD △的周长的差是____.14. 若一个多边形从一个顶点可以引8条对角线,则这个多边形的内角和是______.15. Rt ABC 中,∠C=90°,∠B=2∠A ,BC=3cm , AB=____cm .16. 如图,Rt ABC ∆中,∠B =90 ,AB =3cm ,AC =5cm ,将ΔΔΔΔΔΔΔΔ折叠,使点C 与点A 重合,折痕为DE ,则CE =____cm .17. 若一个n 边形的内角都相等,且内角的度数与和它相邻的外角的度数比为3:1,那么,这个多边形的边数为________.18. 如下图,在ABC 中,AB AC =,BE CD =,BD CF =,若50B ∠=°,则EDF ∠的度数是____度.三.解答题(本大题满分62分)19 如图,DF ⊥AC 于F ,BE ⊥AC 于E ,AB =CD ,DF =BE .;求证:AF =CE .20. 如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD .求△ABC 各角的度数..21. 如图,点D E ,分别AB AC ,上,CD 交BE 于点O ,且AD AE =,AB AC =.求证:(1)B C ∠=∠;(2)OB OC =.22. 如图,两人从路段ΔΔΔΔ上一点C 同时出发,以相同速度分别沿两条直线行走,并同时到达D E ,两地.且DA AB ⊥,EB AB ⊥.若线段DA EB =相等,则点C 是路段ΔΔΔΔ的中点吗?为什么?23. 在ABC 中,AB AC =,AB 的垂直平分线MN 交AC 于点D ,交AB 于点E .(1)求证:ABD △是等腰三角形;(2)①若40A ∠=°,求DBC ∠的度数为 ;②若6AE =,CBD △的周长为20,求ABC 的周长.在的24. 如图,在ABC 中,AB AC =,P 是边BC 的中点,PD AB PE AC ⊥⊥,,垂足分别为D ,E .求证:PD PE =.25. 如图,∠B =∠C =90°,M 是BC 上一点,且DM 平分∠ADC ,AM 平分∠DAB ,求证:AD =CD +AB .26. 如图,∠ABC =90°,D 、E 分别在BC 、AC 上,AD ⊥DE ,且AD =DE ,点F 是AE 中点,FD 与AB 相交于点M .(1)求证:∠FMC =∠FCM ;(2)AD 与MC 垂直吗?并说明理由.的2024-2025八年级上册第一次月考模拟试卷一、填空题(本题满分30分,每小题3分)1. 在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是( )A. B. C. D.【答案】B【解析】【分析】根据轴对称图形的概念,如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】A 、不是轴对称图形,不符合题意;B 、是轴对称图形,符合题意;C 、不是轴对称图形,不符合题意;D 、不是轴对称图形,不符合题意.故选:B .【点睛】本题考查了轴对称图形识别,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 2. 若一个等腰三角形的两边长分别为2,4,则第三边的长为( )A. 2B. 3C. 4D. 2或4【答案】C【解析】【分析】分4是腰长与底边两种情况,再根据三角形任意两边之和大于第三边讨论求解即可.【详解】①4是腰长时,三角形的三边分别为4、4、2,能组成三角形,所以,第三边4;②4是底边时,三角形的三边分别为2、2、4, 224+= ,∴不能组成三角形,综上所述,第三边为4.故选C .【点睛】本题考查了等腰三角形的性质,三角形的三边关系,难点在于要分情况讨论.3. 已知一个等腰三角形有一个角为50o ,则顶角是 ( )为.A50o B. 80o C. 50o或80o D. 不能确定【答案】C【解析】【分析】已知中没有明确该角为顶角还是底角,所以应分两种情况进行分析.【详解】分两种情况:若该角为底角,则顶角为180°−2×50°=80°;若该角为顶角,则顶角为50°.∴顶角是50°或80°.故选C.【点睛】此题考查等腰三角形的性质,解题关键在于分情况讨论.4. 若三角形的两条边的长度是4cm和9cm,则第三条边的长度可能是( )A. 4 cmB. 5 cmC. 9cmD. 13cm【答案】C【解析】【分析】根据三角形的特性:两边之和大于第三边,三角形的两边的差一定小于第三边,进行解答即可.【详解】由题可得:9﹣4<第三边<9+4,所以5<第三边<13,即第三边在5 cm~13 cm之间(不包括5 cm 和13 cm),结合选项可知:9 cm符合题意.故选C.角形的两边的差一定小于第三边.5. 一个多边形的内角和是900°,则这个多边形的边数为()A. 6B. 7C. 8D. 9【答案】B【解析】【分析】本题根据多边形的内角和定理和多边形的内角和等于900°,列出方程,解出即可.【详解】解:设这个多边形的边数为n,则有(n-2)180°=900°,解得:n=7,∴这个多边形的边数为7.故选B.【点睛】本题考查了多边形内角和,熟练掌握内角和公式是解题的关键.6. 下列长度的各种线段,可以组成三角形的是( )A. 1,2,3B. 1,3,5C. 3,3,6D. 4,5,6【答案】D【解析】【分析】根据三角形的三边关系逐一判断即可得答案.【详解】A .∵1+2=3,故不能组成三角形,不符合题意,B .∵1+3<5,故不能组成三角形,不符合题意,C .∵3+3=6,故不能组成三角形,不符合题意,D .∵4+5>6;5-4<6,故能组成三角形,符合题意,.故选:D .【点睛】本题考查三角形的三边关系,任意三角形的两边之和大于第三边,两边之差小于第三边,熟练掌握三角形的三边关系是解题关键.7 如图,AB 与CD 相交于点E ,EA EC =,DE BE =,若使AED CEB ≌,则( )A. 应补充条件A C ∠=∠B. 应补充条件B D ∠=∠C. 不用补充D. 以上说法都不正确【答案】C【解析】 【分析】本题要判定AED CEB ≌,已知EA EC =,DE BE =,具备了两组边对应相等,由于对顶角相等可得AED CEB ∠=∠,可根据SAS 能判定AED CEB ≌.【详解】解:在AED 与CEB 中,EA EC AED CEB DE BE = ∠=∠ =,(SAS)AED CEB ∴ ≌,∴不用补充条件即可证明AED CEB ≌,.故选:C .【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8. 已知△ABC 和△DEF ,下列条件中,不能保证△ABC ≌△DEF 的是( )A. AB =DE ,AC =DF ,BC =EFB. ∠A =∠D , ∠B =∠E ,AC =DFC. AB =DE ,AC =DF ,∠A =∠DD. AB =DE ,BC =EF , ∠C =∠F【答案】D【解析】【分析】三角形全等的判定定理中,常见的不能判定三角形全等的条件为SSA ,AAA ,通过对条件的对比很容易得出结论.【详解】A 选项对应判定定理中的SSS ,故正确;B 选项对应判定定理中的AAS ,故正确;C 选项对应判定定理中的ASA ,故正确;D 选项则为SSA ,两边加对角是不能判定三角形全等的,故错误.故选D .【点睛】本题考查三角形全等判定定理,能熟记并掌握判定定理是解题关键.9. 如图,点P 为∠AOB 内一点,分别作出点P 关于OA 、OB 的对称点1P 、2P ,连接1P 2P 交OA 于M ,交OB 于N ,若12PP =6,则△PMN 的周长为( )A. 4B. 5C. 6D. 7【答案】C【解析】【分析】根据题意易得1PM PM =,2P N PN =,然后根据三角形的周长及线段的数量关系可求解. 【详解】解:由轴对称的性质可得:OA 垂直平分1PP ,OB 垂直平分2P P ,∴1PM PM =,2P N PN =, ∵1212PMN C PM PN MN PM P N MN PP =++=++=△,12PP =6,∴6PMN C = ;故选C .【点睛】本题主要考查轴对称的性质及线段垂直平分线的性质定理,熟练掌握轴对称的性质及线段垂直平分线的性质定理是解题的关键.10. 如图,直线AB CD ∥,70A ∠=°,40C ∠=°,则E ∠的度数为( )A. 30°B. 40°C. 50°D. 60°【答案】A【解析】 【分析】此题考查了平行线的性质,三角形外角的性质,首先根据AB CD ∥得到170A ∠=∠=°,然后利用三角形外角的性质求解即可.解题的关键是熟练掌握三角形外角的性质:三角形的外角等于与它不相邻的两个内角的和.【详解】如图所示,∵AB CD ∥,70A ∠=°,∴170A ∠=∠=°,∵40C ∠=°∴1704030E C ∠=∠−∠=°−°=°.故选A .11. 如图,在ABC 中,AD BC ⊥于点D ,48C ∠=°.则DAC ∠的度数为( )A. 52°B. 42°C. 32°D. 28°【答案】B【解析】 【分析】根据垂直的定义,直角三角形的两个锐角互余,即可求解.【详解】解:∵AD BC ⊥,48C ∠=°,∴90ADC ∠=°,∵48C ∠=°,∴904842DAC ∠=°−°=°,故选:B .【点睛】本题考查了垂直的定义,直角三角形的两个锐角互余,求得90ADC ∠=°是解题的关键. 12. 如图,在ΔΔΔΔΔΔΔΔ中,AD 平分∠交BC 于点D ,30B ∠= ,70ADC ∠=,则C ∠的度数是( )A. 50B. 60C. 70D. 80【答案】C【解析】 【分析】由30B ∠= ,70ADC ∠= ,利用外角的性质求出BAD ∠,再利用AD 平分BAC ∠,求出BAC ∠,再利用三角形的内角和,即可求出C ∠的度数.【详解】∵30B ∠= ,70ADC ∠=, ∴703040BAD ADC B ∠=∠−∠=−= ,∵AD 平分BAC ∠,∴280BAC BAD ∠=∠= ,∴180180308070C B BAC ∠=−∠−∠=−−= .故选C .【点睛】本题考查了三角形的外角性质定理,角平分线的定义以及三角形的内角和定理,熟练掌握相关性质和定理是解题关键.二. 填空题(本题满分24分,每小题3分)13. BD 是ABC 的中线,53AB BC ABD ==,, 和BCD △的周长的差是____.【答案】2【解析】【分析】由中线定义,得AD CD =,根据周长定义,进行线段的和差计算求解.【详解】∵BD 是ABC 的中线,∴AD CD =,∴ABD △和BCD △的周长的差()()AB BD AD BC BD CD AB BC =++−++=−,∵53AB BC ==,, ∴ABD △和BCD △的周长的差532=−=.故答案为:2.【点睛】本题考查中线的定义;由中线得到线段相等是解题的关键.14. 若一个多边形从一个顶点可以引8条对角线,则这个多边形的内角和是______.【答案】1620°【解析】【分析】设多边形边数为n ,根据n 边形从一个顶点出发可引出(n−3)条对角线可得n−3=8,计算出n 的值,再根据多边形内角和(n−2)•180 (n ≥3)且n 为整数)可得答案.【详解】解:设多边形边数为n ,由题意得:n−3=8,n=11,内角和:180°×(11−2)=1620°.故答案为1620°.【点睛】本题主要考查了多边形的对角线,以及多边形内角和,关键是掌握n边形从一个顶点出发可引出(n−3)条对角线,多边形内角和公式(n−2)•180 (n≥3)且n为整数).中,∠C=90°,∠B=2∠A,BC=3cm,AB=____cm.15. Rt ABC【答案】6【解析】【详解】试题分析:根据直角三角形的性质即可解答.解:如图:∵Rt△ABC中,∠C=90°,∠B=2∠A∴∠A+∠B=90°∴∠A=30°,∠B=60°∴=,∵BC=3cm,∴AB=2×3=6cm.故答案为6.考点:直角三角形的性质.∆中,∠B=90 ,AB=3cm,AC=5cm,将ΔΔΔΔΔΔΔΔ折叠,使点C与点A重合,折痕为DE,16. 如图,Rt ABC则CE=____cm.【答案】258【解析】 【分析】在Rt △ABC 中,由勾股定理可得BC4= cm ,设AE =x cm ,由折叠的性质可得CE =x cm ,BE = (4)x −cm ,从而由勾股定理可得:2223(4)x x =+−,即可求解.【详解】解:∵在Rt △ABC 中,∠B =90°,AB =3cm ,AC =5cm ,∴由勾股定理可得:BC4=cm ,设AE =x cm ,则由折叠的性质可得:CE =x cm ,BE =BC -CE =(4)x −cm ,∴在Rt △ABE 中,由勾股定理可得:2223(4)x x =+−,解得:258x =(cm ). 即CE 的长为258cm . 故答案是:258. 【点睛】本题考查了折叠性质以及勾股定理的应用,熟练掌握勾股定理的内容是解题的关键. 17. 若一个n 边形的内角都相等,且内角的度数与和它相邻的外角的度数比为3:1,那么,这个多边形的边数为________.【答案】8##八【解析】【分析】本题考查的是多边形的内角和,以及多边形的外角和,解答本题的关键是熟练掌握任意多边形的外角和是360°,与边数无关. 先根据内角的度数与和它相邻的外角的度数比为3:1,求得每一个外角的度数,再根据任意多边形的外角和是360°,即可求得结果.【详解】解:设每一个外角的度数为x ,则每一个内角的度数3x ,则3180x x +=°,解得45x =°,∴每一个外角的度数为45°,∴这个多边形的边数为360458°÷°=,故答案为:8.18. 如下图,在ABC 中,AB AC =,BE CD =,BD CF =,若50B ∠=°,则EDF ∠的度数是____度. 的【答案】50【解析】【分析】本题考查了等腰三角形的性质,全等三角形的判定和性质,三角形内角和定理,由等腰三角形的性质可得B C ∠=∠,进而可证明()SAS BDE CFD ≌,得到BED CDF ∠=∠,即可得130BDE CDF BDE BED ∠+∠=∠+∠=°,最后根据平角的定义即可求解,掌握等腰三角形的性质及全等三角形的判定和性质是解题的关键.【详解】解:∵AB AC =,∴B C ∠=∠,又∵BE CD =,BD CF =,∴()SAS BDE CFD ≌,∴BED CDF ∠=∠,∵50B ∠=°,∴18050130BDE BED ∠+∠=°−°=°,∴130BDE CDF ∠+∠=°,∴()18018013050EDF BDE CDF ∠=°−∠+∠=°−°=°, 故答案为:50.三.解答题(本大题满分62分)19. 如图,DF ⊥AC 于F ,BE ⊥AC 于E ,AB =CD ,DF =BE .;求证:AF =CE .【答案】证明见解析.【解析】【分析】由HL 证明Rt △ABE ≌Rt △CDF ,得出对应边相等AE =CF ,由AE ﹣EF =CF =EF ,即可得出结论.详解】∵DF ⊥AC ,BE ⊥AC ,∴∠CFD =∠AEB =90°,在Rt △ABE 和Rt △CDF 中,{AB CD BE DF==, ∴Rt △ABE ≌Rt △CDF (HL ),∴AE =CF ,∴AE ﹣EF =CF =EF ,∴AF =CE .【点睛】本题考查了全等三角形的判定与性质.掌握全等三角形的判定方法是解题的关键.20. 如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD .求△ABC 各角的度数.【答案】∠A=36°,∠ABC=∠C=72°【解析】【分析】设∠A=x ,根据等腰三角形的性质和三角形的外角性质、三角形的内角和定理即可求得各个角的度数.【详解】解:设∠A=x ,∵AD=BD ,∴∠ABD=∠A=x ,∴∠BDC=∠ABD+∠A=2x ,∵BD=BC ,∴∠C=∠BDC=2x ,∵AB=AC ,∴∠ABC=∠C=2x ,∴在△ABC 中,x+2x+2x=180°,∴x=36°,2x=72°,【即∠A=36°,∠ABC=∠C=72°.【点睛】本题考查了等腰三角形的性质、三角形的外角性质、三角形内角和定理,熟练掌握等腰三角形的性质和外角性质是解答的关键.21. 如图,点D E ,分别在AB AC ,上,CD 交BE 于点O ,且AD AE =,AB AC =.求证:(1)B C ∠=∠;(2)OB OC =.【答案】(1)证明见解析(2)证明见解析【解析】【分析】本题考查三角形全等的判定与性质,熟记三角形全等的判定定理:SSS SAS ASA AAS 、、、是解决问题的关键.(1(2)根据三角形全等的判定定理找条件证明即可得证.【小问1详解】证明:在ABE 和ACD 中,AD AE A A AB AC = ∠=∠ =()SAS ABE ACD ∴≌ ,∴B C ∠=∠;【小问2详解】证明: AD AE =,AB AC =,BD CE ∴=,由(1)知,B C ∠=∠,在BOD 和COE 中,BOD COE B C DB EC ∠=∠ ∠=∠ =()AAS ≌BOD COE ∴△△,∴OB OC =.22. 如图,两人从路段ΔΔΔΔ上一点C 同时出发,以相同的速度分别沿两条直线行走,并同时到达D E ,两地.且DA AB ⊥,EB AB ⊥.若线段DA EB =相等,则点C 是路段ΔΔΔΔ的中点吗?为什么?【答案】点C 是路段ΔΔΔΔ的中点,理由见解析.【解析】【分析】本题考查了全等三角形的判定和性质,利用HL 证明Rt Rt ACD BCE ≌得到AC BC =即可求解,掌握全等三角形的判定和性质是解题的关键.【详解】解:点C 是路段ΔΔΔΔ的中点,理由如下:∵两人从点C 同时出发,以相同的速度同时到达D E ,两地,∴CD CE =,∵DA AB ⊥,EB AB ⊥,∴90A B ∠=∠=°,又∵DA EB =,∴()Rt Rt HL ACD BCE ≌, ∴AC BC =,∴点C 是路段ΔΔΔΔ的中点.23. 在ABC 中,AB AC =,AB 的垂直平分线MN 交AC 于点D ,交AB 于点E .(1)求证:ABD △是等腰三角形;(2)①若40A ∠=°,求DBC ∠的度数为 ;②若6AE =,CBD △的周长为20,求ABC 的周长.【答案】(1)见解析 (2)①;②32【解析】【分析】(1)根据线段的垂直平分线到线段两端点的距离相等即可得证;(2)①由在ABC 中,AB AC =,40A ∠=°,利用等腰三角形的性质,即可求得ABC ∠的度数,利用等边对等角求得DBA ∠的度数,则可求得DBC ∠的度数;②将ABC 的周长转化为AB AC BC ++的长即可求得.【小问1详解】解:∵AB 的垂直平分线MN 交AC 于点D ,∴DB DA =,∴ABD △是等腰三角形;【小问2详解】解:①在ABC 中,∵AB AC =,40A ∠=°, ∴180180407022AABC C −∠°−∠=∠=°==°°, 由(1)得DA DB =,40DBA A ∠=∠=︒,∴704030DBC ABC DBA ∠=∠−∠=°−°=°;故答案为:30°;②∵AB 的垂直平分线MN 交AC 于点D ,6AE =,∴212AB AE ==,∵CBD △的周长为20,∴20BD CD BC AD CD BC AC BC ++=++=+=,∴ABC 的周长122032AB AC BC =++=+=. 【点睛】此题考查了线段的垂直平分线的性质及等腰三角形的判定与性质,解题的关键是熟练掌握以上知识的应用.24. 如图,在ABC 中,AB AC =,P 是边BC 的中点,PD AB PE AC ⊥⊥,,垂足分别为D ,E .求证:PD PE =.【答案】见解析【解析】【分析】利用AAS 证明PBD PCE ≌即可.本题考查了三角形全等的判定和性质,熟练掌握三角形全等的判定是解题的关键.【详解】证明:∵PD AB PE AC ⊥⊥,,∴90PDB PEC ∠=∠=°,∵AB AC =,∴B C ∠=∠,∵P 是边BC 的中点,∴PB PC =,∵PDB PEC B C PB PC ∠=∠ ∠=∠ =,∴PBD PCE ≌,∴PD PE =.25. 如图,∠B =∠C =90°,M 是BC 上一点,且DM 平分∠ADC ,AM 平分∠DAB ,求证:AD =CD +AB .【答案】证明见解析【解析】【分析】过M作ME⊥AD于E,根据垂直定义和角平分线性质得出∠C=∠DEM=90°,∠B=∠AEM=90°,∠CDM=∠EDM,CM=EM,∠EAM=∠BAM,BM=ME,根据全等三角形性质,推导得△MCD≌△MED,根据全等得出CD=DE,同理得AE=AB,即可得出答案.【详解】如图,过M作ME⊥AD于E,∵∠B=∠C=90°,DM平分∠ADC,AM平分∠DAB,∴∠C=∠DEM=90°,∠B=∠AEM=90°,∠CDM=∠EDM,CM=EM,∠EAM=∠BAM,BM=EM,∴CDM EDMC DEMCM EM∠=∠∠=∠=,∴△MCD≌△MED(AAS),∴CD=DE,∵BAM EAMB AEMBM EM∠=∠∠=∠=∴△ABM≌△AEM(AAS),∴AE=AB,∴AD=AE+DE=CD+AB.【点睛】本题考查了角平分线、全等三角形的知识;解题的关键是熟练掌握角平分线、全等三角形的性质,从而完成求解.26. 如图,∠ABC=90°,D、E分别在BC、AC上,AD⊥DE,且AD=DE,点F是AE的中点,FD与AB相交于点M.(1)求证:∠FMC=∠FCM;(2)AD与MC垂直吗?并说明理由.【答案】(1)见解析;(2)AD ⊥MC ,理由见解析【解析】【分析】(1)由已知可以证得△DFC ≌△AFM ,从而得到CF =MF ,最后得到∠FMC =∠FCM ; (2)由(1)可以证得DE ∥CM ,再根据AD ⊥DE 可得AD ⊥MC .【详解】解:(1)证明:∵△ADE 是等腰直角三角形,F 是AE 中点,∴DF ⊥AE ,DF =AF =EF ,又∵∠ABC =90°,∠DCF ,∠AMF 都与∠MAC 互余,∴∠DCF =∠AMF ,在△DFC 和△AFM 中,DCF AMF CFD MFA DF AF∠=∠ ∠=∠ = , ∴△DFC ≌△AFM (AAS ),∴CF =MF ,∴∠FMC =∠FCM ;(2)AD ⊥MC ,理由:由(1)知,∠MFC =90°,FD =FA =FE ,FM =FC ,∴∠FDE =∠FMC =45°,∴DE ∥CM ,∴AD ⊥MC .【点睛】本题考查全等三角形的综合运用,熟练掌握三角形全等的判定和性质、等腰三角形的性质、同角余角相等的性质、平行线的判定与性质、垂直的判定并灵活运用是解题关键.。
广东省广州市白云区2024-2025学年上学期八年级数学第一次月考试卷一、单选题1.生活中处处有数学,用数学的眼光观察世界,在生活实践中发现数学的奥秘.下列图形中,不是运用三角形的稳定性的是( )A .B .C .D .2.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是( )A .4 cm ,6 cm ,10 cmB .4cm ,5cm ,6cmC .3 cm ,5 cm ,9 cmD .2cm ,5 cm ,8 cm 3.如图,在ABC V 中,70B ∠=︒,点D 在BC 的延长线上,150ACD ∠=︒,则A ∠是( )A .70︒B .80︒C .30︒D .100︒4.下列说法中错误的是( )A .三角形的中线、角平分线、高都是线段B .三角形的三条角平分线交于一点C .任意三角形的外角和都是360°D .三角形的一个外角大于任何一个内角5.如图,点B 、C 、D 在同一直线上,若ABC CDE △≌△,4DE =,13BD =,则AB 等于( )A .7B .8C .9D .106.根据下列已知条件,能画出唯一的ABC V 的是( )A .90A ∠=︒,30B ∠=︒B .3AB =,4BC = C .20A ∠=︒,120B ∠=︒,40C ∠=︒D .30A ∠=︒,45B ∠=︒,3AB =7.如图,已知AB AD BAD CAE =∠=∠,,以下条件中,不能..推出E ABC AD ≅∆∆的是( )A .AE AC =B .B D ∠=∠C .C E ∠=∠D .BC DE =8.如图,OD AB ⊥于D ,OP AC ⊥于P ,且OD OP =,则AOD V 与AOP V 全等的理由是( )A .SSSB .ASAC .SSAD .HL9.如图,ABC V 中,26B ∠=︒,110C ∠=︒,A ∠沿DE 折叠后,点A 落在ABC V 的内部点A '的位置,则12∠+∠=( )A .108︒B .46︒C .114︒D .88︒10.如图,AD 是ABC V 的中线,E ,F 分别是AD 和AD 延长线上的点,且DE DF =,连接BF ,CE ,下列说法:①ABD △和ACD V 的面积相等;②BAD CAD ∠=∠;③BF CE ∥;④CE AE =.其中说法正确的有( )A .1个B .2个C .3个D .4个二、填空题11.已知一个多边形每一个外角都是40︒,则它是边形.12.如图,直线12l l ∥,且分别与ABC V 的两边AB AC 、相交,若45165A ∠=︒∠=︒,,则2∠的度数为.13.如图,△ABC ≌△DEC ,∠A =70°,∠ACB =60°,则∠E 的度数为14.如图,在正六边形ABCDEF 中,连接AC 、BF 交于点O ,则∠AOF =.15.如图,在平面直角坐标系中,已知点A (0,3),B (9,0),且∠ACB =90°,CA =CB ,则点C 的坐标为.16.如图,在Rt ACB △中,90ACB ∠=︒,ABC V 的角平分线AD ,BE 相交于点P ,过P 作PF AD ⊥交BC 的延长线于点F ,交AC 于点H ,则下列结论①135APB ∠=︒;②PF PA =;③30F ∠=︒;④AH BD AB +=;⑤2ABP ABDE S S =四边形V ,正确的序号是.三、解答题17.如图所示,已知AD 是ABC V 的边BC 上的中线.(1)作出ABD △的边BD 上的高AE .(2)若ABD △的面积为6,求ABC V 的面积.18.如图,已知点E 、C 在线段BF 上,BE CF =,AB DE =,AB DE ∥.求证:ABC DEF ≌△△.19.已知,如图,点A ,D ,B ,E 在同一条直线上,,,AC EF AD EB A E ==∠=∠,BC 与DF 交于点G .(1)求证:ABC EDF △≌△;(2)当110CGD ∠=︒时,求GBD ∠的度数.20.如图,D 是ABC V 的边AB 上一点.CF AB ∥,DF 交AC 于点E ,=DE EF .(1)求证:ADE CFE V V ≌.(2)若10AB =,7CF =,求BD 的长.21.如图,在ABC V 中,AB AC =,AD BC ⊥于点D ,BE AC ⊥于点E ,AD ,BE 相交于点H ,AE BE =.(1)求证:AEH BEC ≌V V ;(2)若4AH =,求BD 的长.22.在Rt ABC △中,90,ACB AC BC ∠=︒=,点E 为AC 上一动点,过点A 作AD BE ⊥于D ,连接CD .(1)【观察发现】如图①DAC ∠与DBC ∠的数量关系是_________;(2)【尝试探究】点E 在运动过程中,CDB ∠的大小是否改变,若改变,请说明理由,若不变,求CDB ∠的度数.23.如图1,在ABC V 中,AD 平分BAC ∠,DE AB ⊥于E ,DF AC ⊥于F ,6AB =,4AC =,(1)求证:ADE ADF V V ≌.(2)若ABD △的面积为9,求ACD V 的面积.(3)爱动脑筋的小明同学,发现一个有趣的结论:三角形内角平分线分对边成两线段,两线段之比等于相应邻边的比(三角形角平分线定理),即AB BD AC DC=. 小明的证明如下:请填空补全证明过程如图2,过点A 作AG BC ⊥于点G ,由(1)得:ADE ADF ≌△△,∴DE DF =, ∵1212ABDADC AB DE S S AC DF ⨯==⨯△△,又 ABD ADC S S =△△. ∴AB BD AC DC=. 24.在ABC V 中,AC BC =,90ACB ∠=︒,点D 在BC 的延长线上,M 是BD 的中点,E 是射线CA 上一动点,且CE CD =,连接AD ,作DF AD ⊥,DF 交EM 延长线于点F .(1)如图1,当点E 在CA 上时,求证:AD DF =.(2)如图2,当点E 在CA 的延长线上时,请根据题意将图形补全,判断AD 与DF 的数量关系并证明.25.如图1,在平面直角坐标系中,AB BC =,90ABC ∠=︒,直线AB 交坐标轴于()0,A a和(),0B b .(1)若a 和b 满足()2310a b -++=,则点A 的坐标为,点B 的坐标为,点C 坐标为.(2)如图2,点()0,A a ,点(),0B b 分别在y 轴正半轴和x 轴负半轴上运动,其中a ,b 满足2a b +=,点C 在第四象限,过点C 作CP x ⊥轴于点P ,试判断BP CP -是否为定值?若是,请求出该定值,若不是,请说明理由.(3)如图3,若y 轴恰好平分BAC ∠,BC 与y 轴交于点D ,过点C 作CE y ⊥轴于点E ,问AD 与CE 有怎样的数量关系?请说明理由.。
八年级上学期数学第一次月考试卷
一、选择题
1. 以下列各组数据中,能构成直角三角形的是()
A . 2,3,4
B . 3,4,7
C . 5,12,13
D . 1,2,3
2. 在,0,,这四个数中,为无理数的是
A .
B . 0
C .
D . -3
3. 下列是最简二次根式的为()
A .
B .
C .
D . (a>0)
4. 在平面直角坐标系中,点所在的象限是
A . 第一象限
B . 第二象限
C . 第三象限
D . 第四象限
5. 3+ 的结果在下列哪两个整数之间()
A .6和7
B . 5和6
C . 4和5
D . 3和4
6. 函数中,自变量x的取值范围是
A .
B .
C .
D .
7. 点P在直角坐标系的y轴上,则点P的坐标为
A .
B .
C .
D .
8. 下列运算正确的是
A .
B .
C .
D .
9. 如图,一只蚂蚁从长、宽都是4,高是6的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是()
A . 9
B . 10
C . 4
D . 2
10. 已知实数a,b,c所对应的点在数轴上的位置如图所示.求
=()
A . a
B . -a
C . a+b
D . b-a+c
二、填空题
11. -2的相反数是________.
12. 满足的三个正整数,称为勾股数,写出你比较熟悉的一组勾股数:________.
13. 若+|3﹣y|=0,则x﹣y的值是________.
14. 一个数的平方根为,则这个数为________.
15. 64的立方根是________. 的算术平方根是________.
16. 点M(-5,-3)到x轴的距离是________,到y轴的距离是________ .
17. 最简二次根式与是同类二次根式,则a=________.
18. 如图,有一个边长为cm的正方形,在内部挖去一个边长为cm的正方形,则剩余部分的面积________cm2
三、解答题
19. 将下列各数的序号填在相应的集合里:① ,②2π, ③3.1415926,
④-0.86, ⑤3.030030003…(相邻两个3之间0的个数逐渐多1) ⑥ ,⑦ ,⑧
有理数集合:{ }
无理数集合:{ }
负实数集合:{ }
20. 计算
(1)
(2)
(3)
(4)
21. 解方程
(1)
(2)
22. 已知5a﹣1的算术平方根是3,3a+b﹣1的立方根为2.
(1)求a与b的值;
(2)求2a+4b的平方根.
23. 如图,每个小正方形的边长是1
(1)小正方形的顶点称为格点,请以格点为端点,画出一条线段在图①中画出一条线段AB,使得AB= ,画一个面积为2的直角三角形(2)在图②中画出一个面积是2的正方形.
24. 如图,在⊿ 中,,
于, .
(1)求的长;
(2)求的长.
25. 阅读材料
,像上述解题过程中,和相乘的积不含二次根式,我们可以将这两个式子称为互为有理化因式,上述解题过程也称为分母有理化。
(1)化简
① ;
② (n为整数);
(2)化简:。