当前位置:文档之家› 第九章--红外光谱法习题[1]教学提纲

第九章--红外光谱法习题[1]教学提纲

第九章--红外光谱法习题[1]教学提纲
第九章--红外光谱法习题[1]教学提纲

第九章--红外光谱法

习题[1]

第九章红外光谱法

基本要求:了解红外吸收光谱和吸收峰特征的表达,

掌握红外吸收光谱产生的条件,影响吸收峰位置、峰数和强度的因素,

掌握主要的IR谱区域以及在这些区域里引起吸收的键振动的类型,

掌握常见基团的特征吸收频率,利用IR谱鉴别构造异构体并能够解析简单化合物

的结构,了解红外吸收光谱的实验技术,了解拉曼光谱的原理及应用。

重点:IR光谱产生的条件,影响吸收峰位置,峰数和强度的因素,常见基团的特征吸收频率。

难点:键振动的类型,IR谱解析,FT-IR的原理和特点。

部分习题解答

1.产生红外吸收的条件是什么?是否所有的分子振动都会产生红外吸收光谱?为什么?

条件:(1)分子的振动或转动必须伴随偶极矩的变化;(2)红外辐射应具有能满足分子产生振动跃迁

所需的能量(红外辐射频率等于振动量子数差值和振动频率的乘积)

不是所有的分子振动都会产生红外吸收光谱。只有满足上述两个条件的分子振动才会产生红外吸收光谱。例如,同核双原子分子(O2、N2、Cl2)等的振动没有红外活性。

5. 计算CO2和H2O的分子振动自由度,它们分别有几种振动形式,在红外吸收光谱中能看到几个吸收普带?数目是否相符?为什么?

CO2:线性分子振动自由度3N-5=3*3-5=4 四种振动形式两个吸收带数目不符对称伸缩振动无偶极矩变化,无红外活性,无吸收峰;面内弯曲和面外弯曲振动简并,只显示一个吸收峰。

H2O:非线性分子振动自由度3N-6=3*3-6=3 三种振动形式三个吸收带数目相符

6.判断正误。

(1)对 (2)错 (3)错 (4)对 (5)错 (6)错

7、下列同分异构体将出现哪些不同的特征吸收带?

(1)CH 3

2H —

(2)C 2

H 3COCH 3

CH 3CH 2CH

2CHO

(3

)解:(1)CH 3— —COH 在3300~2500cm -1处有v O

—H ,

其v C=O 位于1746~1700cm -1

3 无v OH 吸收,其v C=O 位于1750~1735cm -1

(2)C 2H 5CCH 3 其v C=O 位于1720~1715cm -1

CH 3CH 2CH 2CH 其2820cm -1及2720cm -1有醛基费米共振双峰。

v C=O 位于1740~1720cm -1

(3v C=O 吸收频率小于v C=O 吸收频率

8、下列化合物在红外光谱中哪一段有吸收?各由什么类型振动引起?

HO —3—CO 2CH 2C≡CH

(A ) (B )

解:(A )C-H : v OH 3700~3200cm -1

δOH 1300~1165cm -1

v CH(O) 2820~2720cm -1双峰

O O

O

O

v C=O 1740~1720cm -1

苯骨架振动: 1650~1450 cm -1

苯对位取代: 860~800 cm -1

v =CH 3100~3000cm -1

(B )CH

3—COCH 2C≡CH :

v C=O 1750~1735cm -1

v C —O —C 1300~1000cm -1

v C≡C 2300~2100cm -1

v ≡CH 3300~3200cm -1

v as C —H 2962±10cm -1、2926±5cm -1

v s C —H 2872±10cm -1、2853±10cm -1

δas C —H 1450±20cm -1、1465±20cm -1

δs C —H 1380~1370cm -1

9、红外光谱(图10-28)表示分子式为C 8H 9O 2N 的一种化合物,其结构与下列结构式哪一个符合?

(A ) (B ) (C )

(D ) (E )

解:(A )结构含—OH ,而图中无v OH 峰,排除

NHCOCH 3 OH NH 2 CO 2CH 3 COCH 2 OCH 3

NHCH 3 CO 2H CH 2NH 2 CO 2H

O

(C )结构中含—CNH 2,伯酰胺,而图中无1650、1640cm -1的肩峰,排除。

(D )与(E )结构中有-COOH ,而图中无3000cm -1大坡峰,排除。

(B )图中3600cm -1,3300cm -1为v Ar —N

1680cm -1,为v C=O

1600~1400cm -1为苯骨架振动

1300~1000cm -1表示有C-O-C

所以应为(B )。

10、化合物C 4H 5N ,红外吸收峰:3080, 2960, 2260, 1647, 990和935cm -1,其中1865为弱带,推导结构。

解:Ω= 4 + 1 + )2

5-1( = 3 CH 2 = CHCH 2C≡N

3080cm -1为v =C-H ;

2960cm -1、2260cm -1为v C-H ;

1647 cm -1为v C≡N ;

1418cm -1为δC-H ;

990cm -1和935cm -1为烯烃—取代δ=C-H

11、分子式为C 7H 5OCl 的化合物,红外吸收峰:3080,2810,2720,1705,1593,1573,1470,1438,1383,1279,1196,1070,900及817cm -1,试推结构。

解:Ω= 7 + 1 – 5/2 = 5

Cl C-H

3080cm -1为v =C-H ;

2810 cm -1、2720 cm -1为v CH (O )费米共振双峰;

1705 cm -1为v C=O ;

O

O

1593、1573、1470、1438 cm -1为苯骨架振动v C=C ; 1383、1279、1196、1070 cm -1为苯对位取代倍频和组频; 900及817cm -1为苯对位取代δC-H 。

12、芳香化合物C 7H 8O ,红外吸收峰为3380、3040、2940、1460、1010、690和740cm -1,试推导结构并确定各峰归属。

解:Ω= 7 + 1 – 8/2 = 4

3380cm -1表明有-OH

3040cm -1表明为不饱和H

690与740cm -1表明苯单取代

3380cm -1为v OH ;

2940cm -1为CH 2的v C-H ;

3040cm -1为v =C-H ;

1460cm -1为苯骨架振动;

1010cm -1,为v C-O ;

690与740cm -1为苯单取代δC-H

14、由红外光谱图10-29推导化合物结构。

解:Ω= 4 + 1 + )2

11-1( = 0 CH 2OH

3450cm -1与3300cm -1为v N —H ;

2960cm -1为CH 3的v C —H ;

1620cm -1为δN —H ;

1468 cm -1为—CH 2—的v C —H ; 1385cm -1与1370cm -1峰高比约为1:1

,表明有—CH

所以为 CH —CH 2—NH 2 15、化合物分子式为C 6H 12O 2,据图10-30的IR 谱推导结构。

解:Ω= 6 + 1 -

212 = 1 1397cm -1与1370cm -1峰高比约为1:2,表明有CH 3—C —CH 3

1184cm -1与1150cm -1为v sC —O —C ;

1280cm -1为v asC —O —C ;

1720cm -1为v C=O ;

2960cm -1为v C —H ;

所以可为 CH 3—C COCH 3 或 CH 3—C —O —C —CH 3 其中之一。若需确证,还需有其它信息。

16、化合物分子式为C 4H 9NO ,据图10-31的IR 谱推导结构。

CH CH CH CH

CH CH O CH CH O CH

解:Ω= 4 + 1 + )2

9-1( = 1 3350cm -1、3170cm -1为v N —H ;

2960cm -1为CH 3的v C —H ;

1640cm -1峰在1650cm -1处有高峰,表明为伯酰胺—CNH 2 ; 1465cm -1峰在1425cm -1为v N —H 与δN —H 混和峰;

1370cm -1与1355cm -1峰高比约为1:1,表明有

CH

所以 CH C —NH 2

CH CH O CH CH O

红外吸收光谱法试题和答案解析

红外吸收光谱法 一、选择题 1. CH 3—CH 3的哪种振动形式是非红外活性的(1) (1)υC-C (2)υC-H (3)δasCH (4)δsCH 2. 化合物中只有一个羰基.却在1773cm -1和1736 cm -1处出现两个吸收峰.这是因 为(3) (1)诱导效应 (2)共轭效应 (3)费米共振 (4)空间位阻 3. 一种能作为色散型红外光谱仪的色散元件材料为(4) (1)玻璃 (2)石英 (3)红宝石 (4)卤化物晶体 4. 预测H 2S 分子的基频峰数为(2) ~ (1)4 (2)3 (3)2 (4)1 5. 下列官能团在红外光谱中吸收峰频率最高的是(4) (1) (2)—C ≡C — (3) (4)—O —H 二、解答及解析题 1. 把质量相同的球相连接到两个不同的弹簧上。弹簧B 的力常数是弹簧A 的力常数的两倍.每个球从静止位置伸长1cm.哪一个体系有较大的势能。 答:M h hv E k 2π= = ;所以B 体系有较大的势能。 2. 红外吸收光谱分析的基本原理、仪器.同紫外可见分光光度法有哪些相似和不同之处 答: 红外 \ 紫外 基本原理 当物质分子吸收一定波长的光能.能引起分子振动和转动的能及跃迁.产生的吸收光谱一般在中红外区.称为红外光谱 当物质分子吸收一定波长的光能.分子外层电子或分子轨道电子由基态跃迁到激发态.产生的吸收光谱一般在紫外-可见光区。 仪器 傅立叶变换红外光谱仪 紫外可见光分光光度计 相同:红外光谱和紫外光谱都是分子吸收光谱。 不同:紫外光谱是由外层电子跃迁引起的。电子能级间隔一般约为1~20eV; 而红外光谱是分子的振动能级跃迁引起的.同时伴随转动能级跃迁.一般振动能级间隔约为

红外光谱法习题[1]

第九章红外光谱法 基本要求:了解红外吸收光谱和吸收峰特征的表达, 掌握红外吸收光谱产生的条件,影响吸收峰位置、峰数和强度的因素, 掌握主要的IR谱区域以及在这些区域里引起吸收的键振动的类型, 掌握常见基团的特征吸收频率,利用IR谱鉴别构造异构体并能够解析简单化合物的结构,了解红外 吸收光谱的实验技术,了解拉曼光谱的原理及应用。 重点:IR光谱产生的条件,影响吸收峰位置,峰数和强度的因素,常见基团的特征吸收频率。 难点:键振动的类型,IR谱解析,FT-IR的原理和特点。 部分习题解答 1.产生红外吸收的条件是什么?是否所有的分子振动都会产生红外吸收光谱?为什么? 条件:(1)分子的振动或转动必须伴随偶极矩的变化;(2)红外辐射应具有能满足分子产生振动跃迁所需的能量(红外辐射频率等于振动量子数差值和振动频率的乘积) 不是所有的分子振动都会产生红外吸收光谱。只有满足上述两个条件的分子振动才会产生红外吸收光谱。例如,同核双原子分子(O2、N2、Cl2)等的振动没有红外活性。 5. 计算CO2和H2O的分子振动自由度,它们分别有几种振动形式,在红外吸收光谱中能看到几个吸收普带?数目是否相符?为什么? CO2:线性分子振动自由度3N-5=3*3-5=4 四种振动形式两个吸收带数目不符对称伸缩振动无偶极矩变化,无红外活性,无吸收峰;面内弯曲和面外弯曲振动简并,只显示一个吸收峰。 H2O:非线性分子振动自由度3N-6=3*3-6=3 三种振动形式三个吸收带数目相符 6.判断正误。 (1)对(2)错(3)错(4)对(5)错(6)错 7、下列同分异构体将出现哪些不同的特征吸收带? (1)CH3 CO2H CO2CH3 (2)C2H3COCH3CH3CH2CH2CHO (3) 解:(1)CH3——COH 在3300~2500cm-1处有v O—H, 其v C=O位于1746~1700cm-1 COCH3无v OH吸收,其v C=O位于1750~1735cm-1(2)C2H5CCH3其v C=O位于1720~1715cm-1 CH3CH2CH2CH 其2820cm-1及2720cm-1有醛基费米共振双峰。 O O O

红外光谱法基本原理

红外光谱法基本原理 红外光谱是反映分子的振动情况。当用一定频率的红外光照射某物质分子时,若该物质的分子中某基团的振动频率与它相同,则此物质就能吸收这种红外光,使分子由振动基态跃迁到激发态。因此,若用不同频率的红外光依次通过测定分子时,就会出现不同强弱的吸收现象。用T%-λ作图就得到其红外光吸收光谱。红外光谱具有很高的特征性,每种化合物都具有特征的红外光谱。用它可进行物质的结构分析和定量测定。 气相色谱法基本原理 气相色谱法是以气体(此气体称为载气)为流动相的柱色谱分离技术。在填充柱气相色谱法中,柱内的固定相有两类:一类是涂布在惰性载体上的有机化合物,它们和沸点较高,在柱温下可呈液态,或本身就是液体,采用这类固定相的方法称为气液色谱法;另一类是活性吸附剂,如硅胶、分子筛等,采用这类固定相的方法称为气固色谱法。它的应用远没有气液色普法广泛。气固色谱法只适用于气体及低沸点烃类的分析。在毛细管气相色谱法中,色谱柱内径小于lmm,分为填充型和开管型两大类。填充型毛细管与一般填充柱相同,只是径细、柱长,使用的固定相颗粒在几十到几百微米之间。开管型固定相则通过化学键组合或物理的方法直接固定在管壁上,因此这种色谱柱又称开管理柱,它的应用日益普遍。原则上,在填充柱中能够使用的固定液,在毛细管柱中也能使用,但毛细管柱比普通填充柱柱效更高,分离能力更强。气相色谱法的应用面十分广泛,原则上讲,不具腐蚀性气体或只要在仪器所能承受的气化温度下能够气化,且自身又不分解的化合物都可用气相色谱法分析。 当样品加到固定相上之后,流动相就要携带样品在柱内移动。流动相在固定相上的溶解或吸附能力要比样品中的组分弱得多。组分进柱后,就要在固定相和流动相之间进行分配。组分性质不同,在固定相上的溶解或吸附能力不同,即它们的分配系数大小不同。分配系数大

仪器分析红外吸收光谱法习题及答案

红外吸收光谱法 一.填空题 1.一般将多原子分子的振动类型分为伸缩振动和变形振动,前者又可分为对称伸缩振动和反对称伸缩振动,后者可分为面内剪式振动(δ)、面内摇摆振动(ρ) 和面外摇摆振动(ω)、面外扭曲振动(τ) 。2.红外光区在可见光区和微波光区之间,习惯上又将其分为三个区: 远红外区,中红外区和近红外区 ,其中中红外区的应用最广。 3.红外光谱法主要研究振动中有偶极矩变化的化合物,因此,除了单原子和同核分子等外,几乎所有的化合物在红外光区均有吸收。 4.在红外光谱中,将基团在振动过程中有偶极矩变化的称为红外活性 ,相反则 称为红外非活性的。一般来说,前者在红外光谱图上出现吸收峰。5.红外分光光度计的光源主要有能斯特灯和硅碳棒。 6.基团一OH、一NH;==CH的一CH的伸缩振动频率范围分别出现在 3750—3000 cm-1, 3300—3000 cm-1, 3000—2700 cm-1。 7.基团一C≡C、一C≡N ;—C==O;一C=N,一C=C—的伸缩振动频率范围分别出现在 2400—2100 cm-1, 1900—1650 cm-1, 1650—1500 cm-1。 8.4000—1300 cm-1 区域的峰是由伸缩振动产生的,基团的特征吸收一般位于此范围,它是鉴最有价值的区域,称为官能团区;1300—600 cm-1 区域中,当分子结构稍有不同时,该区的吸收就有细微的不同,犹如人的指纹一样,故称为指纹区。 二、选择题 1.二氧化碳分子的平动、转动和振动自由度的数目分别(A) A. 3,2,4 B. 2,3,4 C. 3,4,2 D. 4,2,3 2.乙炔分子的平动、转动和振动自由度的数目分别为(C) A. 2,3,3 B. 3,2,8 C. 3,2,7 D. 2,3,7 4.下列数据中,哪一组数据所涉及的红外光谱区能够包括CH 3CH 2 COH的吸收 带?(D) A. 3000—2700cm-1,1675—1500cm-1,1475—1300cm一1。 B. 3300—3010cm-1,1675—1500cm-1, 1475—1300cm-1。 C. 3300—3010cm-1, 1900—1650cm-l,1000——650cm-1。 D. 3000—2700cm-1, 1900—1650cm-1, 1475——1300cm-1。 1900—1650cm-1为 C==O伸缩振动,3000—2700cm-1为饱和碳氢C—H伸缩振动(不饱和的其频率高于3000 cm-1),1475——1300cm-1为C—H变形振动(如—CH 3 约在1380—1460cm-1)。

红外光谱法习题参考答案

第十二章 红外吸收光谱法 思考题和习题 8.如何利用红外吸收光谱区别烷烃、烯烃及炔烃? 烷烃主要特征峰为2 33,,,CH s CH as CH H C δδδν-,其中νC-H 峰位一般接近3000cm -1又低于3000cm -1。 烯烃主要特征峰为H C C C H C -==-=γνν ,,,其中ν=C-H 峰位一般接近3000cm -1又高于3000cm -1。 νC=C 峰位约在1650 cm -1。H C -=γ是烯烃最具特征的峰,其位置约为1000-650 cm -1。 炔烃主要特征峰为H C C C H C -≡≡-≡γ νν ,,,其中H C -≡ν 峰位在3333-3267cm -1。C C ≡ν 峰位在 2260-2100cm -1,是炔烃的高度特征峰。 9.如何在谱图上区别异丙基及叔丁基? 当两个或三个甲基连接在同一个C 上时,则吸收峰s CH 3 δ 分裂为双峰。如果是异丙基,双峰分别 位于1385 cm -1和1375 cm -1左右,其峰强基本相等。如果是叔丁基,双峰分别位于1365 cm -1和1395 cm -1左右,且1365 cm -1峰的强度约为1395 cm -1的两倍。 10.如何利用红外吸收光谱确定芳香烃类化合物? 利用芳香烃类化合物的主要特征峰来确定: 芳氢伸缩振动(ν=C-H ),3100~3000cm -1 (通常有几个峰) 泛频峰2000~1667cm -1 苯环骨架振动(νc=c ),1650-1430 cm -1,~1600cm -1及~1500cm -1 芳氢面内弯曲振动(β=C-H ),1250~1000 cm -1 芳氢面外弯曲振动(γ =C-H ),910~665cm -1 14.试用红外吸收光谱区别羧酸、酯、酸酐。 羧酸的特征吸收峰为v OH 、v C=O 及γOH 峰。v OH (单体)~3550 cm -1 (尖锐),v OH (二聚体)3400~2500(宽而散),v C=O (单体)1760 cm -1 (S),v as C=O (二聚体)1710~1700 cm -1 (S)。羧酸的γOH 峰位在955~915 cm -1范围内为一宽谱带,其形状较独特。 酯的特征吸收峰为v C=O 、v c-o-c 峰,具体峰位值是:v C=O ~1735cm -1 (S);v c-o-c 1300~1000cm -1 (S)。v as c-o-c 峰的强度大而宽是其特征。 酸酐的特征吸收峰为v as C=O 、v s C=O 双峰。具体峰位值是:v as C=O 1850~1800 cm -1(s)、v s C=O 1780~1740 cm -1 (s),两峰之间相距约60 cm -1,这是酸酐区别其它含羰基化合物主要标志。 7.某物质分子式为C 10H 10O 。测得红外吸收光谱如图。试确定其结构。

红外吸附光谱法

红外吸附光谱法的学习 吸附研究方法多种多样,经典的方法有吸热法,比表面积,吸附等温线等。近代研究方法增加了红外光谱法,表面电压法,紫外光电子能谱等多个新研究方法技术。我主要对红外吸附光谱法进行了学习。 红外吸附法可提供吸附质及吸附剂—固体键的资料。通过吸附质在吸附前后红外吸收光谱地位移,考察表面吸附情况。不同的振动频率代表了吸附分子中不同的原子和表面成键。该方法有助于区别物理吸附和化学吸附。物理吸附靠范德华力,一般只能观察到谱带位移,不产生新谱带;而化学吸附形成新的化学键,能出现新谱带。该方法还能确定化学吸附分子的构型,如采用红外光谱测定CO在Pd上的吸附构型,表明覆盖率增加直线式结构增强。下面将具体介绍利用红外光谱仪测定CO在Pd/ Al 2O3 催化剂及载体上的吸附性能。 实验用催化剂系将一定浓度的含活性组分的混合溶液,浸渍于载体,然后经干燥、还原和活化而成。在红外测定前,将样品充分还原后,研磨成小颗粒,置于可用于吸附态测定的漫反射池中。采用 NaCl 做吸收池窗片。首先在高纯氮气吹扫下以 2 ℃ / mi n 的升温速率升至 180 ℃脱气,跟踪记录样品表面脱附情况 , 直至观测到的红外光谱图基本不变化。降至室温后切换为 CO 吸附气,并开始跟踪记录红外光谱图的变化。为防止催化剂表面吸附的物质对下次实验造成影响,每次实验均更换为新鲜催化剂。 首先是CO在载体Al2O3上吸附的红外光谱。众所周知 ,载体的作用不仅是稀释、支撑、分散金属活性组分 ,而且也具有明显的吸附剂特征。图 1 为 120 ℃时 CO 在载体Al2O3上吸附的红外-光谱图。从图 1 中可以看出 , CO 在Al2O3表面上有 HCOO-的形成 ( 1600 cm-1、 1383 cm-1) ,这是由于在Al2O3表面上存在不同的表面OH-可与-吸附在载体上的 CO 生成羧基等表面吸附态 , 即CO + O H-→ HCOO-。另外 , 在Al2O3上不可避免地会吸附少量的水 , 也可促进 HCOO-的生成。从图1还可发现 , 在Al2O3上有少量吸附态HCO3-的生成( 1465 cm-1,1254 cm-1)。 比较不同温度下 CO 在Al2O3上吸附的红外光谱 , 如图 2 所示 , 在室温时 , 可以发现少量的HCO3-吸收峰 ( 1656 cm-1、 1465 cm-1和1254cm-1 ,随着温度升高 , HCO3-吸收峰强度逐-渐减弱。温度至 100 ℃时 ,在 1600 cm-1处出现了一个新峰 , 且随温度的升高而逐渐增强。同时 ,1383 cm-1峰附近的 1349 cm-1处峰也随温度升-高逐渐增大 , 到100 ℃时强度已明显超出 1383cm-1处峰。 1600 cm-1和 1383 cm-1峰分别对应于HCOO-的不对称和对称伸缩振动 , 这说明HCO3-在升温过程中转变为 HCOO-, 至 120 ℃-时催化剂表面只有少量的HCO3-吸附态。 其次是CO 在催化剂Pd表面上吸附的红外光谱研究。图 3 为反应温度 120 ℃时 CO 在 Pd/ Al2O3催-化剂表面上吸附的红外光谱图。图 3 中的 2176cm-1、 2116 cm-1-处峰为

(完整版)12红外吸收光谱法习题参考答案

红外吸收光谱法 思考题和习题 红外光谱仪与紫外-可见分光光度计在主要部件上的不同。 3.简述红外吸收光谱产生的条件。 (1)辐射应具有使物质产生振动跃迁所需的能量,即必须服从νL= △V·ν (2)辐射与物质间有相互偶合作用,偶极矩必须发生变化,即振动过程△μ≠0; 4.何为红外非活性振动? 有对称结构分子中,有些振动过程中分子的偶极矩变化等于零,不显示红外吸收,称为红外非活性振动。 5、何为振动自由度?为何基本振动吸收峰数有时会少于振动自由度? 振动自由度是分子基本振动的数目,即分子的独立振动数。对于非直线型分子,分子基本振动数为3n-6。而对于直线型分子,分子基本振动数为3n-5。 振动吸收峰数有时会少于振动自由度其原因可能为: 分子对称,振动过程无偶极矩变化的红外非活性活性。 两个或多个振动的能量相同时,产生简并。 吸收强度很低时无法检测。 振动能对应的吸收波长不在中红外区。

6.基频峰的分布规律有哪些? (1)折合质量越小,伸缩振动频率越高 (2)折合质量相同的基团,伸缩力常数越大,伸缩振动基频峰的频率越高。 (3)同一基团,一般ν> β > γ 7、举例说明为何共轭效应的存在常使一些基团的振动频率降低。 共轭效应的存在,常使吸收峰向低频方向移动。由于羰基与苯环共轭,其π电子的离域增大,使羰基的双键性减弱,伸缩力常数减小,故羰基伸缩振动频率降低,其吸收峰向低波数方向移动。 以脂肪酮与芳香酮比较便可说明。 8.如何利用红外吸收光谱区别烷烃、烯烃及炔烃? 烷烃主要特征峰为2 3 3 ,,,CH s CH as CH H C δδδν-,其中νC-H 峰位一般接近3000cm -1又低于3000cm -1。 烯烃主要特征峰为H C C C H C -==-=γνν,,,其中ν=C-H 峰位一般接近3000cm -1又高于3000cm -1。νC=C 峰位约在1650 cm -1。H C -=γ是烯烃最具特征的峰,其位置约为1000-650 cm -1。 炔烃主要特征峰为H C C C H C -≡≡-≡γνν,,,其中H C -≡ν峰位在3333-3267cm -1。C C ≡ν峰位在2260-2100cm -1 , 是炔烃的高度特征峰。 9.如何在谱图上区别异丙基及叔丁基? 当两个或三个甲基连接在同一个C 上时,则吸收峰s CH 3 δ分裂为双峰。如果是异丙基,双峰分别位于 1385 cm -1和1375 cm -1左右,其峰强基本相等。如果是叔丁基,双峰分别位于1365 cm -1和1395 cm -1左 右,且1365 cm -1峰的强度约为1395 cm -1的两倍。 10.如何利用红外吸收光谱确定芳香烃类化合物? 利用芳香烃类化合物的主要特征峰来确定: 芳氢伸缩振动(ν=C-H ),3100~3000cm -1 (通常有几个峰) 泛频峰2000~1667cm -1 苯环骨架振动(νc=c ),1650-1430 cm -1,~1600cm -1及~1500cm -1 芳氢面内弯曲振动(β=C-H ),1250~1000 cm -1 芳氢面外弯曲振动(γ =C-H ),910~665cm -1 11.简述傅立叶变换红外光谱仪的工作原理及傅立叶变换红外光谱法的主要特点。 傅里叶变换红外光谱仪是通过测量干涉图和对干涉图进行快速Fourier 变换的方法得到红外光谱。它主要由光源、干涉仪、检测器、计算机和记录系统组成。同色散型红外光谱仪比较,在单色器和检测器部件上有很大的不同。由光源发射出红外光经准直系统变为一束平行光束后进人干涉仪系统,经干涉仪调制得到一束干涉光,干涉光通过样品后成为带有样品信息的干涉光到达检测器,检测器将干涉光讯号变为电讯号,但这种带有光谱信息的干涉信号难以进行光谱解析。将它通过模/数转换器(A/D)送入计算机,由计

红外吸收光谱法习题与答案解析

六、红外吸收光谱法(193题) 一、选择题 ( 共61题 ) 1. 2 分 (1009) 在红外光谱分析中,用 KBr制作为试样池,这是因为: ( ) (1) KBr 晶体在 4000~400cm-1范围内不会散射红外光 (2) KBr 在 4000~400 cm-1范围内有良好的红外光吸收特性 (3) KBr 在 4000~400 cm-1范围内无红外光吸收 (4) 在 4000~400 cm-1范围内,KBr 对红外无反射 2. 2 分 (1022) 下面给出的是某物质的红外光谱(如图),已知可能为结构Ⅰ、Ⅱ或Ⅲ,试问哪 一结构与光谱是一致的?为什么? ( ) 3. 2 分 (1023) 下面给出某物质的部分红外光谱(如图),已知结构Ⅰ、Ⅱ或Ⅲ,试问哪一结构 与光谱是一致的,为什么? 4. 2 分 (1068) 一化合物出现下面的红外吸收谱图,可能具有结构Ⅰ、Ⅱ、Ⅲ或Ⅳ,哪一结构与 光谱最近于一致? 5. 2 分 (1072) 1072 羰基化合物中, C = O 伸缩振动 频率出现最低者为 ( ) (1) I (2) II (3) III (4) IV 6. 2 分 (1075) 一种能作为色散型红外光谱仪色散元件的材料为 ( ) (1) 玻璃 (2) 石英 (3) 卤化物晶体 (4) 有机玻璃 7. 2 分 (1088) 并不是所有的分子振动形式其相应的红外谱带都能被观察到,这是因为 ( ) (1) 分子既有振动运动,又有转动运动,太复杂 (2) 分子中有些振动能量是简并的 (3) 因为分子中有 C、H、O 以外的原子存在 (4) 分子某些振动能量相互抵消了 8. 2 分 (1097) 下列四组数据中,哪一组数据所涉及的红外光谱区能够包括CH3- CH2-CH = O的吸收带( ) 9. 2 分 (1104) 请回答下列化合物中哪个吸收峰的频率最高? ( ) 10. 2 分 (1114) 在下列不同溶剂中,测定羧酸的红外光谱时,C=O 伸缩振动频率出现最高者为( ) (1) 气体 (2) 正构烷烃 (3) 乙醚 (4) 乙醇 11. 2 分 (1179) 水分子有几个红外谱带,波数最高的谱带对应于何种振动 ? ( ) (1) 2 个,不对称伸缩 (2) 4 个,弯曲 (3) 3 个,不对称伸缩 (4) 2 个,对称伸缩 12. 2 分 (1180) CO2的如下振动中,何种属于非红外活性振动 ? ( ) (1) ←→ (2) →←→ (3)↑↑ (4 )

十二章 红外吸收光谱法△

1、红外光区是如何划分的?写出相应的能级跃迁类型。 红外线(或红外辐射)是波长长于可见光而短于微波的电磁波(0.76~1000μm)。习惯上按红外线波长的不同,将红外线划分为三个区域,0.76~2.5μm称为近红外区(低于1000nm 为分子价电子,1000~2500nm为分子基团振动),2.5~25μm为中红外区(振动能级跃迁),25μm以上为远红外区(转动能级跃迁)。 2、红外吸收光谱法与紫外-可见吸收光谱法有何不同? 红外吸收光谱法,即根据样品(中)红外吸收光谱进行定性、定量及测定分子结构的方法。因为红外线的照射能量较低,只能引起分子振动能级的跃迁。而紫外-可见吸收光谱法紫外-可见光区为200~800nm,属于电子光谱,作用于具有共轭结构有机分子外层电子和有色无机物价电子,是由电子跃迁引起的光谱。 3、简述红外吸收光谱产生的条件。 满足两个条件: ①红外辐射的能量必须与分子的振动能级差相等,即E L=△V·hν或νL=△V·ν 即分子(或基团)的振动频率与振动量子数之差△V之积等于红外辐射的照射频率。 ②分子振动过程中其偶极矩必须发生变化,即△μ≠0,只有红外活性振动才能产生吸收峰。 4、何为红外非活性振动? 红外非活性振动是不能引起偶极矩变化,不吸收红外线的振动。(补充:红外活性振动就是能引起偶极矩变化而吸收红外线的振动,简并是振动形式不同但是振动频率相同而合并的现象。) 5、何为振动自由度?为何基本振动吸收峰数有时会少于振动自由度? 振动自由度是分子基本振动的数目,即分子的独立振动数。 原因:①首要原因:简并。②只有在真的过程中偶极矩发生变化的振动才能吸收能量相当的红外辐射,而在红外吸收光谱上才能观测到吸收峰。即红外非活性振动是又一原因。 6、基频峰的分布规律有哪些? ①折合相对原子质量越小,基团的伸缩振动频率越高。所有含氢基团折合相对原子质量较小,因此其伸缩振动的基频峰,一般都会出现在中红外吸收光谱高波数区(左端)。 ②折合相对原子质量相同的基团,其化学键力常数越大,伸缩振动基频峰的频率越高。 ③折合相对原子质量相同的基团,一般ν(伸缩振动)>β(面内弯曲振动)>γ(面外弯曲振动)。 7、举例说明为何共轭效应的存在常使一些基团的振动频率降低。 比如脂肪酮和芳香酮。前者频率1715㎝-1,后者频率1685㎝-1。由于羰基与苯环共轭,其π电子的离域增大,使羰基的双键性减弱,伸缩力常数减小,故羰基伸缩振动频率降低,其吸收峰向低波数方向移动。 8、如何利用红外吸收光谱区别烷烃、烯烃及炔烃? P242,脂肪烃类。 9、如何在谱图上区别异丙基及叔丁基? 当2个或3个甲基连接在同一碳原子上时,则δs CH3吸收峰分裂为双峰。如果是异丙基,双峰分别位于1385㎝-1和1375cm-1左右,其峰强基本相等;如果是叔丁基,双峰分别位于1365㎝-1和1395㎝-1附近,且1365㎝-1峰的强度约为1395㎝-1的两倍。 10、如何利用红外吸收光谱确定芳香烃类化合物? P244 11、简述傅里叶变换红外光谱仪的工作原理及傅里叶变换红外光谱法的主要特点? 工作原理:它主要由光源、干涉仪、检测器、计算机和记录系统组成。由光源发射出红

红外吸收光谱法

红外吸收光谱法 第六章红外吸收光谱法 一、选择题 1.在含羰基的分子中,增加羰基的极性会使分子中该键的红外吸收带 ( ) (1) 向高波数方向移动 (2) 向低波数方向移动 (3) 不移动 (4) 稍有振动 2. 红外吸收光谱的产生是由于 ( ) (1) 分子外层电子、振动、转动能级的跃迁 (2) 原子外层电子、振动、转动能级的跃迁 (3) 分子振动-转动能级的跃迁 (4) 分子外层电子的能级跃迁 3. 色散型红外分光光度计检测器多用 ( ) (1) 电子倍增器 (2) 光电倍增管 (3) 高真空热电偶 (4) 无线电线圈 4.一种能作为色散型红外光谱仪色散元件的材料为 ( ) (1) 玻璃 (2) 石英 (3) 卤化物晶体 (4) 有机玻璃 -15.一个含氧化合物的红外光谱图在3600,3200cm有吸收峰, 下列化合物最可能 的是 ( ) (1) CH,CHO (2) CH,CO-CH 333 (3) CH,CHOH-CH (4) CH,O-CH-CH 33 323 6. Cl分子在红外光谱图上基频吸收峰的数目为 ( ) 2

(1) 0 (2) 1 (3) 2 (4) 3 7. 下列关于分子振动的红外活性的叙述中正确的是 ( ) (1)凡极性分子的各种振动都是红外活性的, 非极性分子的各种振动都不是红外活性的 (2) 极性键的伸缩和变形振动都是红外活性的 (3) 分子的偶极矩在振动时周期地变化, 即为红外活性振动 (4) 分子的偶极矩的大小在振动时周期地变化, 必为红外活性振动, 反之则不是 8. 羰基化合物中, C=O伸缩振动频率最高者为 ( ) O RC) R(1 O C) R F(2 O C) R Cl(3 O C) R Br(4 9.用红外吸收光谱法测定有机物结构时, 试样应该是 ( ) (1) 单质 (2) 纯物质 (3) 混合物 (4) 任何试样 10 以下四种气体不吸收红外光的是 ( ) (1)HO (2)CO (3)HCl (4)N 222 11. 红外光谱法, 试样状态可以是 ( ) (1) 气体状态 (2) 固体状态

红外吸收光谱解析

红外吸收光谱法 第一节概述 一、红外光谱测定的优点 20世纪50年代初期,红外光谱仪问世,揭开了有机物结构鉴定的新篇章。到了50年代末期,已经积累了大量的红外光谱数据,到70年代中期,红外光谱法成为了有机结构鉴定的重要方法。红外光谱测定的优点: 1、任何气态、液态、固态样品都可以进行红外光谱的测定,这是核磁、质谱、紫外等仪器所不及的。 2、每种化合物均有红外吸收,又有机化合物的红外光谱可以获得丰富的信息。 3、常规红外光谱仪价格低廉,易于购置。 4、样品用量小。 二、红外波段的划分 σ=104/λ(λnm σcm-1) 红外波段范围又可以进一步分为远红外、中红外、近红外 波段波长nm 波数cm-1 近红外0.75~2.5 13300~4000 中红外 2.5~15.4 4000~650 远红外15.4~830 650~12 三、红外光谱的表示方法 红外光谱图多以波长λ(nm)或波数σ(cm-1)为横坐标,表示吸收峰的位置,多以透光率T%为纵坐标,表示吸收强度,此时图谱中的吸收“峰”,其实是向下的“谷”。一般吸收峰的强弱均以很强(ε大于200)、强(ε在75-200)、中(ε在25-75)、弱(ε在5-25)、很弱(ε小于5),这里的ε为表观摩尔吸收系数 红外光谱中吸收峰的强度可以用吸光度(A)或透过率T%表示。峰的强度遵守朗伯-比耳定律。吸光度与透过率关系为 A=lg( ) T1 所以在红外光谱中“谷”越深(T%小),吸光度越大,吸收强度越强。第二节红外吸收光谱的基本原理

一、分子的振动与红外吸收 任何物质的分子都是由原子通过化学键联结起来而组成的。分子中的原 子与化学键都处于不断的运动中。它们的运动,除了原子外层价电子跃迁以 外,还有分子中原子的振动和分子本身的转动。这些运动形式都可能吸收外 界能量而引起能级的跃迁,每一个振动能级常包含有很多转动分能级,因此 在分子发生振动能级跃迁时,不可避免的发生转动能级的跃迁,因此无法测 得纯振动光谱,故通常所测得的光谱实际上是振动-转动光谱,简称振转光谱。 1、双原子分子的振动 分子的振动运动可近似地看成一些用弹簧连接着的小球的运动。以双原子 分子为例,若把两原子间的化学键看成质量可以忽略不计的弹簧,长度为r (键 长),两个原子分子量为m 1、m 2。如果把两个原子看成两个小球,则它们之 间的伸缩振动可以近似的看成沿轴线方向的简谐振动,如图3—2。因此可以 把双原子分子称为谐振子。这个体系的振动频率υ(以波数表示),由经典力 学(虎克定律)可导出: C ——光速(3×108 m/s ) υ= K ——化学键的力常数(N/m ) μ——折合质量(kg ) μ= 如果力常数以N/m 为单位,折合质量μ以原子质量为单位,则上式可简 化为 υ=130.2 双原子分子的振动频率取决于化学键的力常数和原子的质量,化学键越强,相对原子质量越小,振动频率越高。 H-Cl 2892.4 cm -1 C=C 1683 cm -1 C-H 2911.4 cm -1 C-C 1190 cm -1 同类原子组成的化学键(折合质量相同),力常数大的,基本振动频率就 大。由于氢的原子质量最小,故含氢原子单键的基本振动频率都出现在中红 外的高频率区。 2、多原子分子的振动 (1)、基本振动的类型 1πμ2c K m 1m 2m 1m2+ K μ

红外光谱分析法模拟试题及答案解析

红外光谱分析法模拟试题及答案解析 (1/29)单项选择题 第1题 一种能作为色散型红外光谱仪色散元件的材料为( )。 A.玻璃 B.石英 C.卤化物晶体 D.有机玻璃 下一题 (2/29)单项选择题 第2题 醇羟基的红外光谱特征吸收峰为( )。 A.1000cm-1 B.2000~2500cm-1 C.2000cm-1 D.3600~3650cm-1 上一题下一题 (3/29)单项选择题 第3题 红外吸收光谱的产生是由于( )。 A.分子外层电子、振动、转动能级的跃迁 B.原子外层电子、振动、转动能级的跃迁 C.分子振动、转动能级的跃迁 D.分子外层电子的能级跃迁 上一题下一题 (4/29)单项选择题 第4题 红外吸收峰的强度,根据( )大小可粗略分为五级。 A.吸光度A B.透射比t C.波长λ D.波数ν 上一题下一题 (5/29)单项选择题 第5题 用红外吸收光谱法测定有机物结构时,试样应该是( )。 A.单质 B.纯物质 C.混合物 D.任何试样 上一题下一题 (6/29)单项选择题 第6题 一个含氧化合物的红外光谱图在3600~3200cm-1有吸收峰,下列化合物最可能的是( )。

A.CH3—CHO B.CH3—CO—CH3 C.CH3—CHOH—CH3 D.CH3—O—CH2—CH3 上一题下一题 (7/29)单项选择题 第7题 对高聚物多用( )法制样后再进行红外吸收光谱测定。 A.薄膜 B.糊状 C.压片 D.混合 上一题下一题 (8/29)单项选择题 第8题 一般来说,( )具有拉曼活性。 A.分子的非对称性振动 B.分子的对称性振动 C.极性基团的振动 D.非极性基团的振动 上一题下一题 (9/29)单项选择题 第9题 在红外光谱的光源中,下列( )波长是氩离子激光器最常用的激发线的波长。 A.285.2nm B.422.7nm C.488.0nm D.534.5nm 上一题下一题 (10/29)单项选择题 第10题 若样品在空气中不稳定,在高温下容易升华,则红外样品的制备宜选用( )。 A.压片法 B.石蜡糊法 C.熔融成膜法 D.漫反射法 上一题下一题 (11/29)单项选择题 第11题 液体池的间隔片常由( )材料制成,起着固定液体样品的作用。 A.氯化钠 B.溴化钾 C.聚四氟乙烯 D.金属制品

第十二章-红外吸收光谱法

第十二章 红外吸收光谱法 一、选择题 1.中红外区的特征区是指( )cm -1范围内的波数。 A 、4000~200 B 、4000~1250 C 、1250~200 D 、10 000~10 2.已知CO 2的结构式为O=C=O ,请推测其红外光谱中,基本振动数为( )。 A 、4个 B 、3个 C 、2个 D 、1个 3.红外光谱中,不是分子的所有振动形式的相应红外谱带都能被观察到,这是因为( ) A 、分子中既有振动运动,又有转动运动 B 、分子中有些振动能量是简并的 C 、因为分子中有C 、H 、O 以外的原子存在 D 、分子中有些振动能量相互抵消 4.关于红外光谱的吸收峰,下列叙述不正确的是( ) A 、共轭效应使红外吸收峰向低波数方向移动 B 、诱导效应使红外吸收峰向高波数方向移动 C 、氢键使红外吸收峰向低波数方向移动 D 、氢键使红外吸收峰向高波数方向移动 5.若 O —H 键的键力常数 K = 7.12N /cm ,则它的振动波数( cm -1)为( ) A 、3584 B 、3370 C 、3474 D 、3500 6.欲获得红外活性振动,吸收红外线发生能级跃迁,必须满足( )条件。 A 、△μ>0或△μ<0 B 、△μ≠0并服从νL=v△V C 、△μ=0及vL=△Vv D 、△μ≠0 7.CO 2的下列振动中,属于红外非活性振动的是( )。 8.下列三种物质:甲R-CO-CH 2CH 3、乙R-CO-CH=C (CH 3)2、、丙R-COCl ,问其V C=O 波数大小次序为( )。 A 、甲>乙>丙 B 、乙>甲>丙 C 、丙>乙>甲 D 、丙>甲>乙 9.三种振动νc=o ,νc=N 及νc=C 的频率大小次序为( )。(电负性:C 为2.6,N 为3.0,O 为3.5) A 、νc=o >νc=N >νc=C B 、νc= C >νc=N >νc=o C 、νc=N >νc=C >νc=o D 、νc=N >νc=o >νc=C 10.同一分子中的某基团,其各振动形式的频率大小顺序为( )。 A 、γ>β>ν B 、 ν>β>γ

红外光谱法答案详解

习题 1、下列两个化合物,C=O的伸缩振动吸收带出现在较高的波数区的是哪个为什么 答案: a(共轭效应)>b(空间位阻效应让共轭效应减小)。 2、下图为不同条件下,丁二烯(1,3)均聚物的红外光谱图, 试指出它们的键结构。 3、有一化合物C7H8O,它出现以下位置的吸收峰:3040;3380;2940;1460;690;740;不出现以下位置吸收峰:1736;2720;1380;1182.试推断其结构式 作业 1、试述分子产生红外吸收的条件。 2、何谓基团频率影响基团频率位移的因素有哪些 3、仅考虑C=O受到的电子效应,在酸、醛、酯、酰卤和酰胺类化合物中,出现C=O伸缩振动频率的大小顺序应是怎样 4、从以下红外特征数据鉴别特定的苯取代衍生物C8H10: ①化合物A:吸收带在约790和695cm-1处。 ②化合物B:吸收带在约795cm-1处。 ③化合物C:吸收带在约740和690cm-1处。 ④化合物D:吸收带在约750cm-1处。 5、分别在95%乙醇和正已烷中测定2-戊酮的红外光谱,试预测C=O的伸缩振动吸收峰在哪种溶剂中出现的较高为什么 8. 某化合物的化学式为C6H10O,红外光谱如下图所示,

试推断其结构式。 答案: μ=1+6-5=2说明可能是不饱和烃 3000以上无小尖峰,说明双键不在端碳上 1680-羰基1715连接双键导致共轭移到低波位 1618-碳碳双键 1461-CH- 1380、1360-分裂说明异丙基存在 1215、1175-双峰强度相仿验证双甲基在端碳 816-三取代呈链状 。 9. 某化合物的化学式为C8H14O3,红外光谱如下图所示,试推断其结构式。 答案: μ=1+8-7=2 3000以上无小尖峰,1370峰没分裂,说明没有cc双键

红外吸收光谱法教案

第六章红外吸收光谱法 基本要点: 1.红外光谱分析基本原理; 2.红外光谱与有机化合物结构; 3.各类化合物的特征基团频率; 4.红外光谱的应用; 5.红外光谱仪. 学时安排:3学时 第一节概述 分子的振动能量比转动能量大,当发生振动能级跃迁时,不 可避免地伴随有转动能级的跃迁,所以无法测量纯粹的振动光谱,而只能得到分子的振动-转动光谱,这种光谱称为红外吸收光谱。 红外吸收光谱也是一种分子吸收光谱。 当样品受到频率连续变化的红外光照射时,分子吸收了某些频率的辐射,并由其振动或转动运动引起偶极矩的净变化,产生分子振动和转动能级从基态到激发态的跃迁,使相应于这些吸收区域 的透射光强度减弱。记录红外光的百分透射比与波数或波长关系曲线,就得到红外光谱。 一、红外光区的划分 红外光谱在可见光区和微波光区之间,波长范围约为0.75 ~ 1000μm,根据仪器技术和应用不同,习惯上又将红外光区分为三个区:近红外光区(0.75 ~ 2.5μm),中红外光区(2.5 ~ 25μm ),远红外光区(25 ~ 1000μm)。

近红外光区(0.75 ~ 2.5μm) 近红外光区的吸收带主要是由低能电子跃迁、含氢原子团(如O—H、N—H、C—H)伸缩振动的倍频吸收等产生的。该区的光谱可用来研究稀土和其它过渡金属离子的化合物,并适用于水、醇、某些高分子化合物以及含氢原子团化合物的定量分析。 中红外光区(2.5 ~ 25μm) 绝大多数有机化合物和无机离子的基频吸收带出现在该光区。由于基频振动是红外光谱中吸收最强的振动,所以该区最适于进行红外光谱的定性和定量分析。同时,由于中红外光谱仪最为成熟、简单,而且目前已积累了该区大量的数据资料,因此它是应用极为广泛的光谱区。通常,中红外光谱法又简称为红外光谱法。 远红外光区(25 ~1000μm)该区的吸收带主要是由气体分子中的纯转动跃迁、 振动-转动跃迁、液体和固体中重原子的伸缩振动、某些变角振动、骨架振动以及晶体中的晶格振动所引起的。由于低频骨架振动能很灵敏地反映出结构变化,所以对异构体的研究特别方便。此外,还能用于金属有机化合物(包括络合物)、氢键、吸附现象的研究。但由于该光区能量弱,除非其它波长区间内没有合适的分析谱带,一般不在此范围内进行分析。 红外吸收光谱一般用T~λ曲线或T~ 波数曲线表示。纵坐标为百分透射比T%,因而吸收峰向下,向上则为谷;横坐标是波长λ(单位为μm),或波数(单位为cm-1)。 波长λ与波数之间的关系为: 波数/cm-1=104/(λ / μm) 中红外区的波数范围是4000 ~ 400cm-1。 二、红外光谱法的特点 紫外、可见吸收光谱常用于研究不饱和有机物,特别是具有共轭体系的有机化合物,而红外光谱法主要研究在振动中伴随有偶

紫外光谱法与红外光谱法

部分一紫外光谱法与红外光谱法 摘要:光谱法是基于物质与辐射能作用时,测量由物质内部发生量子化的能级之间的跃迁而产生的发射、吸收或散射辐射的波长和强度进行分析的方法,紫外光谱法(UV),红外光谱法(IR)都是属于光谱法。 一、原理不同 1、紫外光谱(UV) 分子中价电子经紫外光照射时,电子从低能级跃迁到高能级,此时电子就吸收了相应波长的光,这样产生的吸收光谱叫紫外光谱。紫外光谱是由于分子中价电子的跃迁而产生的。 紫外吸收光谱的波长范围是100-400nm(纳米), 其中100-200nm 为远紫外区,200-400nm为近紫外区, 一般的紫外光谱是指近紫外区。 2、红外光谱法(IR) 分子与红外辐射的作用,使分子产生振动和转动能级的跃迁所得到得吸收光谱,属于分子光谱与振转光谱范畴。利用样品的红外吸收光谱进行定性、定量分析及测定分子结构的方法称之红外光谱法。 红外光区的波长范围是0.76—500 μm,近红外0.76—2.5μm中红外 2.5—25μm远红外波长25—500μm 。 二、仪器对比

三、分析目的 1、紫外吸收光谱由电子能级跃迁引起紫外线波长短、频率高、光子能量大,能引起分子外层电子的能级跃迁。电子跃迁虽然伴随着振动及转动能级跃迁,但因后者能级差小,常被紫外曲线所淹没。除某些化合物蒸气(如苯等)的紫外吸收光谱会显现振动能级跃起迁外,一般不显现。因此,紫外吸收光谱属电子光谱。光谱简单。 2、中红外吸收光谱由振—转能级跃迁引起,红外线的波长比紫外线长,光子能量比紫外线小得多,只能收起分子的振动能级并伴随转动能级的跃迁,因而中红外光谱是振动—转动光谱,光谱复杂。 3、紫外吸收光谱法只适用于芳香族或具有共轭结构的不饱和脂肪族化合物及某些无物的定性分析,不适用于饱和有机化合物。红外吸收光谱法不受此限,在中红外区,能测得所有有机化合物的特征红外光谱,用于定性分析及结构研究,而且其特征性远远高于紫外吸收光谱,除此之外,红外光谱还可以用于某些无机物的研究 4、红外光谱的特征性比紫外光谱强。因为紫外光谱主要是分子的∏电子或n电子跃迁所产生的吸收光谱。因此,多数紫外光谱比较简单,特征性差。 UV-Vis主要用于分子的定量分析,但紫外光谱(UV)为四大波谱之一,是鉴定许多化合物,尤其是有机化合物的重要定性工具之一。红外光谱主要用于化合物鉴定及分子结构表征,亦可用于定量分析。

红外光谱习地的题目答案详解

红外光谱习题 一. 选择题 1.红外光谱是(AE ) A :分子光谱 B :原子光谱 C :吸光光谱 D :电子光谱 E :振动光谱 2.当用红外光激发分子振动能级跃迁时,化学键越强,则(ACE ) A :吸收光子的能量越大 B :吸收光子的波长越长 C :吸收光子的频率越大 D :吸收光子的数目越多 E :吸收光子的波数越大 3.在下面各种振动模式中,不产生红外吸收的是(AC ) A :乙炔分子中对称伸缩振动 B :乙醚分子中不对称伸缩振动 C :CO 2分子中对称伸缩振动 D :H 2O 分子中对称伸缩振动 E :HCl 分子中H -Cl 键伸缩振动 4.下面五种气体,不吸收红外光的是(D ) A:O H 2 B:2CO C:HCl D:2N 5 分子不具有红外活性的,必须是(D ) A:分子的偶极矩为零 B:分子没有振动 C:非极性分子 D:分子振动时没有偶极矩变化 E:双原子分子 6.预测以下各个键的振动频率所落的区域,正确的是(ACD ) A:O-H伸缩振动数在4000~25001 -cm B:C-O 伸缩振动波数在2500~15001 -cm C:N-H 弯曲振动波数在4000~25001 -cm D:C-N 伸缩振动波数在1500~10001 -cm E:C ≡N 伸缩振动在1500~10001 -cm 7.下面给出五个化学键的力常数,如按简单双原子分子计算,则在红外光谱中波数最大者是(B ) A:乙烷中C-H 键,=k 5.1510?达因1 -?cm B: 乙炔中C-H 键, =k 5.9510?达因1 -?cm

C: 乙烷中C-C 键, =k 4.5510?达因1 -?cm D: CH 3C ≡N 中C ≡N 键, =k 17.5510?达因1 -?cm E:蚁醛中C=O 键, =k 12.3510?达因1 -?cm 8.基化合物中,当C=O 的一端接上电负性基团则(ACE ) A:羰基的双键性增强 B:羰基的双键性减小 C:羰基的共价键成分增加 D:羰基的极性键成分减小 E:使羰基的振动频率增大 9.以下五个化合物,羰基伸缩振动的红外吸收波数最大者是(E ) A: B: C: D: E: 10.共轭效应使双键性质按下面哪一种形式改变(ABCD ) A:使双键电子密度下降 B:双键略有伸长 C:使双键的力常数变小 D.使振动频率减小 E:使吸收光电子的波数增加 11.下五个化合物羰基伸缩振动的红外吸收波数最小的是(E ) A: B: C: D: E: 12.下面四个化合物中的C=C 伸缩振动频率最小的是(D ) A: B: C: D: 13.两 个化合物(1) ,(2) 如用红外光谱鉴别,主要依 据的谱带是(C )

相关主题
文本预览
相关文档 最新文档