历年全国初中数学联赛试题总汇47321
- 格式:doc
- 大小:2.97 MB
- 文档页数:101
初中数学全国竞赛各省市试题汇编(附答案)2012全国初中数学竞赛各省市试题汇编重排版目录一2012广东初中数学竞赛预赛1二2012年全国初中数学竞赛预赛试题及参考答案(河南赛区)4三2012年北京市初二数学竞赛试题9四2012年全国初中数学竞赛(海南赛区)10五2012年全国初中数学竞赛(海南赛区)初赛试卷参考答案13六2012年全国初中数学竞赛试卷答案(福建赛区)14七2012年全国初中数学竞赛试题19八2012年全国初中数学竞赛天津赛区初赛试卷20九2012年全国初中数学联赛(浙江赛区)试题及参考答案26十2012年四川初中数学联赛(初二组)初赛试卷28十一2012年全国初中数学竞赛试题【安徽赛区】29十二2012届湖北省黄冈地区九年级四科联赛数学试题34 十三2012年全国初中数学竞赛试题(副题)38十四2012年全国初中数学竞赛试题(副题)参考答案40十五2012年全国初中数学竞赛试题(正题)49十六2012年全国初中数学竞赛试题(正题)参考答案54 小贴士:word目录发生下列问题ctrl+左键显示“由于本机的限制,该操作已被取消,请与系统管理员联系”请按下列步骤自行解决1.开始,运行里输入regedit,回车2.在注册表中,找到HKEY_CURRENT_USERSoftwareClasses.html项3.在默认项上点右键选择修改4.将Max2.Association.HTML改为Htmlfile,确认,然后退出注册表5.重启正在使用的Office程序,然后再次点Office里面超链接,ok了一2012广东初中数学竞赛预赛二2012年全国初中数学竞赛预赛试题及参考答案(河南赛区)一、选择题(共6小题,每小题6分,共36分.1.在1,3,6,9四个数中,完全平方数、奇数、质数的个数分别是【】(A)2,3,1(B)2,2,1(C)1,2,1(D)2,3,2【答】A.解:完全平方数有1,9;奇数有1,3,9;质数有3.2.已知一次函数的图象经过一、二、三象限,则下列判断正确的是【】(A)(B)(C)(D)【答】C.解:一次函数的图象经过一、二、三象限,说明其图象与y轴的交点位于y轴的正半轴,且y随x的增大而增大,所以解得.3.如图,在⊙O中,,给出下列三个结论:(1)DC=AB;(2)AO⊥BD;(3)当∠BDC=30°时,∠DAB=80°.其中正确的个数是【】(A)0(B)1(C)2(D)3【答】D.解:因为,所以DC=AB;因为,AO是半径,所以AO⊥BD;设∠DAB=x度,则由△DAB的内角和为180°得:,解得.4.有4张全新的扑克牌,其中黑桃、红桃各2张,它们的背面都一样,将它们洗匀后,背面朝上放到桌面上,从中任意摸出2张牌,摸出的花色不一样的概率是【】(A)(B)(C)(D)【答】B.解:从4张牌中任意摸出2张牌有6种可能,摸出的2张牌花色不一样的有4种可能,所以摸出花色不一样的概率是.5.在平面直角坐标系中,点A的坐标是,点B的坐标是,点C是y轴上一动点,要使△ABC为等腰三角形,则符合要求的点C的位置共有【】(A)2个(B)3个(C)4个(D)5个【答】D.解:由题意可求出AB=5,如图,以点A为圆心AB的长为半径画弧,交y轴于C1和C2,利用勾股定理可求出OC1=OC2=,可得,以点B为圆心BA的长为半径画弧,交y轴于点C3和C4,可得,AB的中垂线交y轴于点C5,利用三角形相似或一次函数的知识可求出.6.已知二次函数(为常数),当取不同的值时,其图象构成一个“抛物线系”,图中的实线型抛物线分别是b 取三个不同的值时二次函数的图象,它们的顶点在一条抛物线上(图中虚线型抛物线),这条抛物线的解析式是【】(A)(B)(C)(D)【答】A.解:的顶点坐标是,设,,由得,所以.二、填空题(共6小题,每小题6分,共36分)7.若,则的值为.【答】7.解:.8.方程的解是.【答】.解:.∴,解得.9.如图,在平面直角坐标系中,点B的坐标是(1,0),若点A的坐标为(a,b),将线段BA绕点B顺时针旋转90°得到线段,则点的坐标是.【答】.解:分别过点A、作x轴的垂线,垂足分别为C、D.显然Rt△ABC≌Rt△BD.由于点A的坐标是,所以,,所以点的坐标是.10.如图,矩形ABCD中,AD=2,AB=3,AM=1,是以点A为圆心2为半径的圆弧,是以点M为圆心2为半径的圆弧,则图中两段弧之间的阴影部分的面积为.【答】2.解:连接MN,显然将扇形AED向右平移可与扇形MBN重合,图中阴影部分的面积等于矩形AMND的面积,等于.11.已知α、β是方程的两根,则的值为.【答】.解:∵α是方程的根,∴.∴,又∵∴=.12.现有145颗棒棒糖,分给若干小朋友,不管怎样分,都至少有1个小朋友分到5颗或5颗以上,这些小朋友的人数最多有个.【答】36.解:利用抽屉原理分析,设最多有x个小朋友,这相当于x个抽屉,问题变为把145颗糖放进x个抽屉,至少有1个抽屉放了5颗或5颗以上,则≤145,解得≤36,所以小朋友的人数最多有36个.三、解答题(第13题15分,第14题15分,第15题18分,共48分)13.王亮的爷爷今年(2012年)80周岁了,今年王亮的年龄恰好是他出生年份的各位数字之和,问王亮今年可能是多少周岁?解:设王亮出生年份的十位数字为,个位数字为(x、y均为0~9的整数).∵王亮的爷爷今年80周岁了,∴王亮出生年份可能在2000年后,也可能是2000年前.故应分两种情况:…………………2分(1)若王亮出生年份为2000年后,则王亮的出生年份为,依题意,得,整理,得x、y均为0~9的整数,∴此时∴王亮的出生年份是2005年,今年7周岁.…………………8分(2)若王亮出生年份在2000年前,则王亮的出生年份为,依题意,得,整理,得,故x为偶数,又∴∴此时∴王亮的出生年份是1987年,今年25周岁.…………………14分综上,王亮今年可能是7周岁,也可能是25周岁.……………15分14.如图,在平面直角坐标系中,直角梯形OABC的顶点A、B的坐标分别是、,点D在线段OA上,BD=BA,点Q 是线段BD上一个动点,点P的坐标是,设直线PQ的解析式为.(1)求k的取值范围;(2)当k为取值范围内的最大整数时,若抛物线的顶点在直线PQ、OA、AB、BC围成的四边形内部,求a的取值范围.解:(1)直线经过P,∴.∵B,A,BD=BA,∴点D的坐标是,∴BD的解析式是,依题意,得,∴∴解得……………………………………………7分(2)且k为最大整数,∴.则直线PQ的解析式为.……………………………………………9分又因为抛物线的顶点坐标是,对称轴为.解方程组得即直线PQ与对称轴为的交点坐标为,∴.解得.……………………………………15分15.如图,扇形OMN的半径为1,圆心角是90°.点B是上一动点,BA⊥OM于点A,BC⊥ON于点C,点D、E、F、G分别是线段OA、AB、BC、CO的中点,GF与CE相交于点P,DE与AG相交于点Q.(1)求证:四边形EPGQ是平行四边形;(2)探索当OA的长为何值时,四边形EPGQ是矩形;(3)连结PQ,试说明是定值.解:(1)证明:如图①,∵∠AOC=90°,BA⊥OM,BC⊥ON,∴四边形OABC是矩形.∴.∵E、G分别是AB、CO的中点,∴∴四边形AECG为平行四边形. ∴……………………………4分连接OB,∵点D、E、F、G分别是线段OA、AB、BC、CO的中点,∴GF∥OB,DE∥OB,∴PG∥EQ,∴四边形EPGQ是平行四边形.………………………………………………6分(2)如图②,当∠CED=90°时,□EPGQ是矩形.此时∠AED+∠CEB=90°.又∵∠DAE=∠EBC=90°,∴∠AED=∠BCE.∴△AED∽△BCE.………………………………8分∴.设OA=x,AB=y,则∶=∶,得.…10分又,即.∴,解得.∴当OA的长为时,四边形EPGQ是矩形.………………………………12分(3)如图③,连结GE交PQ于,则.过点P作OC的平行线分别交BC、GE于点、.由△PCF∽△PEG得,∴==AB,=GE=OA,∴.在Rt△中,,即,又,∴,∴.……………………………………18分三2012年北京市初二数学竞赛试题.选择题(每小题5分,共25分).方程|2x-4|=5的所有根的和等于().A.-0.5B.4.5C.5D.4.在直角坐标系xOy中,直线y=ax+24与两个坐标轴的正半轴形成的三角形的面积等于72,则不在直线y=ax+24上的点的坐标是().A.(3,12)B.(1,20)C.(-0.5,26)D.(-2.5,32) .两个正数的算术平均数等于,它们乘积的算术平方根等于,则期中的大数比小数大().A.4B.C.6D.3.在△ABC中,M是AB的中点,N是BC边上一点,且CN =2BN,连接AN与MC交于点O,四边形BMON的面积为14cm2,则△ABC的面积为().A.56cm2B.60cm2C.64cm2D.68cm2.当a=1.67,b=1.71,c=0.46时,等于().A.20B.15C.10D.5.55.填空题(每小题7分,共35分).计算:1×2-3×4+5×6-7×8+…+2009×2010-2011×2012=___..由1到10这十个正整数按某个次序写成一行,记为a1,a2,…,a10,S1=a1,S2=a1+a2,…,S10=a1+a2+…+a10,则在S1,S2,…,S10中,最多能有__个质数..△ABC中,AB=12cm,AC=9cm,BC=13cm,自A分别作∠C平分线的垂线,垂足为M,作∠B的平分线的垂线,垂足为N,连接MN,则____..实数x和y满足x2+12xy+52y2-8y+1=0,则x2-y2=___..P为等边△ABC内一点,AP=3cm,BP=4cm,CP=5cm,则四边形ABCP的面积等于__cm2.(满分10分).求证:对任意两两不等的三个数a,b,c,是常数.(满分15分).已知正整数n可以表示为2011个数字和相同的自然数之和,同时也能表示为2012个数字和相同的自然数之和,试确定n的最小值.(满分15分).如图,在△ABC中,∠ABC=∠BAC=70°,P为形内一点,∠PAB=40°,∠PBA=20°,求证:PA+PB=PC.四2012年全国初中数学竞赛(海南赛区)初赛试卷(本试卷共4页,满分120分,考试时间:3月11日8:30——10:30)一、选择题(本大题满分50分,每小题5分)1、下列运算正确的是()A.x2‧x3=x6B.2x3x=5x2C.(x2)3=x6D .x6x2=x32、有大小两种游艇,2艘大游艇与3艘小游艇一次可载游客57人,3艘大游艇与2艘小游艇一次可载游客68人,则3艘大游艇与6艘小游艇一次可载游客的人数为()A.129B.120C.108D.963、实数a=20123-2012,下列各数中不能整除a的是()A.2013B.2012C.2011D.20104、如图1所示的两个圆盘中,指针落在每一个数所在的区域上的机会均等,则两个指针同时落在数“1”所在的区域上的概率是()A.B.C.D.5、一辆公共汽车从车站开出,加速行驶一段时间后匀速行驶,过了一段时间,汽车到达下一个车站.乘客上下车后汽车开始加速,一段时间后又开始匀速行驶,下面可以近似地刻画出汽车在这段时间内的速度变化情况的图象是()6、要使有意义,则的取值范围为A.B.C.D.7、菱形的两条对角线之和为L、面积为S,则它的边长为()A.B.C.D.8、如图2,将三角形纸片ABC沿DE折叠,使点A落在BC 边上的点F处,且DE∥BC,下列结论中,一定正确的个数是()①△CEF是等腰三角形②四边形ADFE是菱形③四边形BFED是平行四边形④∠BDF+∠CEF=2∠AA.1B.2C.3D.49、如图3,直线x=1是二次函数y=ax2+bx+c的图象的对称轴,则有()A.a+b+c=0B.b>a+cC.b=2aD.abc>010、铁板甲形状为直角梯形,两底边长分别为4cm,10cm,且有一内角为60°;铁板乙形状为等腰三角形,其顶角为45°,腰长12cm.在不改变形状的前提下,试图分别把它们从一个直径为8.5cm的圆洞中穿过,结果是()A.甲板能穿过,乙板不能穿过B.甲板不能穿过,乙板能穿过C.甲、乙两板都能穿过D.甲、乙两板都不能穿过二、填空题(本大题满分40分,每小题5分)11、x与y互为相反数,且,那么的值为__________.12、一次函数y=ax+b的图象如图4所示,则化简得________.13、若x=-1是关于x的方程a2x2+2011ax-2012=0的一个根,则a的值为__________.14、一只船从A码头顺水航行到B码头用6小时,由B码头逆水航行到A码头需8小时,则一块塑料泡沫从A码头顺水漂流到B码头要用______小时(设水流速度和船在静水中的速度不变).15、如图5,边长为1的正方形ABCD的对角线相交于点O,过点O的直线分别交AD、BC于E、F,则阴影部分的面积是.16、如图6,直线l平行于射线AM,要在直线l与射线AM上各找一点B和C,使得以A、B、C为顶点的三角形是等腰直角三角形,这样的三角形最多能画_______个.17、如图7,△ABC与△CDE均是等边三角形,若∠AEB=145°,则∠DBE的度数是________.18、如图8所示,矩形纸片ABCD中,AB=4cm,BC=3cm,把∠B、∠D分别沿CE、AG翻折,点B、D分别落在对角线AC的点B'和D'上,则线段EG的长度是________.三、解答题(本大题满分30分,每小题15分)19、某市道路改造工程,如果让甲工程队单独工作,需要30天完成,如果让乙工程队单独工作,则需要60天方可完成;甲工程队施工每天需付施工费2.5万元,乙工程队施工每天需付施工费1万元.请解答下列问题:(1)甲、乙两个工程队一起合作几天就可以完成此项工程?(2)甲、乙两个工程队一起合作10天后,甲工程队因另有任务调离,剩下的部分由乙工程队单独做,请问共需多少天才能完成此项工程?(3)如果要使整个工程施工费不超过65万元,甲、乙两个工程队最多能合作几天?(4)如果工程必须在24天内(含24天)完成,你如何安排两个工程队施工,才能使施工费最少?请说出你的安排方法,并求出所需要的施工费.20、如图9,四边形ABCD是矩形,点P是直线AD与BC外的任意一点,连接PA、PB、PC、PD.请解答下列问题:(1)如图9(1),当点P在线段BC的垂直平分线MN上(对角线AC与BD的交点Q除外)时,证明△PAC≌△PDB;(2)如图9(2),当点P在矩形ABCD内部时,求证:PA2+PC2=PB2+PD2;(3)若矩形ABCD在平面直角坐标系xoy中,点B的坐标为(1,1),点D的坐标为(5,3),如图9(3)所示,设△PBC的面积为y,△PAD的面积为x,求y与x之间的函数关系式.五2012年全国初中数学竞赛(海南赛区)初赛试卷参考答案一、选择题(本大题满分50分,每小题5分)题号12345678910答案CDDACBABDB7、提示:可设菱形的两条对角线长分别为a、b,利用对角线互相垂直进行解答.9、分析:由函数的图象可知:当x=1时有a+b+c<0,当x=-1时有a-b+c>0,即a+c>b,即b<a+c,函数的对称轴为,则b=-2a,因为抛物线的开口向上,所以a>0,抛物线与y轴的交点在负半轴,所以c<0,由b=-2a可得b<0.所以abc>0,因而正确答案为D10、分析:分别计算铁板的最窄处便可知,如图A,直角梯形,AD=4cm,BC=10cm,∠C=60°,过点A过AE//CD,交BC于点E,过点B作BE⊥CD于点F,可求得AB=cm>8.5cm,BE=cm>8.5cm铁板甲不能穿过,如图B,等腰三角形ABC中,顶角∠A=45°,作腰上的高线BD,可求得BD=cm<8.5cm,所以铁板乙可以穿过;所以选择B二、填空题(本大题满分40分,每小题5分)11、12、a+113、a1=2012,a2=-114、4815、单位面积16、3个17、85°18、17、分析:易证△CEA与△CDB全等,从而有∠DBC=∠EAC,因为,∠ABE+∠BAE=180°-145°=35°所以有∠EAC+∠EBC=120°-35°=85°,所以∠EBD=∠EBC+∠DBC=85°18、分析:AB=4cm,BC=3cm,可求得AC=5cm,由题意可知CB'=BC=3cm,AB'=2cm设BE=x,则AE=4-x,则有(4-x)2-x2=22,x=1.5cm,即BE=DG=1.5cm,过点G作GF⊥AB于点F,则可求出EF=1cm,所以EG=三、解答题(本大题满分30分,每小题15分)19、本题满分15分,第(1)、(2)、(3)小题,每小题4分,第(4)小题3分.解:(1)设甲、乙两个工程队一起合作x天就可以完成此项工程,依题意得:,解得:x=20答:甲、乙两个工程队一起合作20天就可以完成此项工程.(2)设完成这项道路改造工程共需y天,依题意得:,解得y=40。
全国初中数学联合竞赛试题第一试4月13日上午8:30—9:30一、选择题:(本题满分42分,每小题7分) 1、设a 2 + 1 = 3 a ,b 2 + 1 = 3 b ,且a ≠ b ,则代数式21a +21b的值为( ) (A )5 (B )7 (C )9 (D )11 2、如图,设AD ,BE ,CF 为△ABC 的三条高,若AB = 6,BC = 5,EF = 3,则线段BE 的长为( ) (A )185 (B )4 (C )215 (D )2453、从分别写有数字1,2,3,4,5的5张卡片中任意取出两张,把第一张卡片上的数字作为十位数字,第二张卡片上的数字作为个位数字,组成一个两位数,则所组成的数是3的倍数的概率是( ) (A )15 (B )310 (C )25 (D )124、在△ABC 中,∠ABC = 12°,∠ACB = 132°,BM 和CN 分别是这两个角的外角平分线,且点M ,N 分别在直线AC 和直线AB 上,则( )(A )BM > CN (B )BM = CN (C )BM < CN (D )BM 和CN 的大小关系不确定 5、现有价格相同的5种不同商品,从今天开始每天分别降价10%或20%,若干天后,这5种商品的价格互不相同,设最高价格和最低价格的比值为r ,则r 的最小值为( ) (A )(98) 3 (B )(98) 4 (C )(98) 5 (D )986、已知实数x ,y 满足( x 22008x -y 22008y -) = 2008, 则3 x 2 – 2 y 2 + 3 x – 3 y – 2007的值为( )(A )– 2008 (B )2008 (C )– 1 (D )1CBFDA E二、填空题:(本题满分28分,每小题7分)1、设a 512-5432322a a a a a a a +---+-= 。
2、如图,正方形ABCD 的边长为1,M ,N 为BD 所在直线上的两点,且5∠MAN = 135°,则四边形AMCN 的面积为 。
历年全国初中数学联赛试题总汇473211991年全国初中数学联合竞赛决赛试题第⼀试⼀、选择题本题共有8个⼩题,每⼩题都给出了(A )、(B )(C )、(D )四个答案结论,其中只有⼀个是正确的.请把正确结论的代表字母写在题后的圆括号内.1.设等式y a a x a y a a x a ---=-+-)()(在实数范围内成⽴,其中a ,x ,y 是两两不同的实数,则22223yxy x y xy x +--+的值是(A )3 ;(B )31;(C )2;(D )35.答()2.如图,AB ‖EF ‖CD ,已知AB =20,CD =80,BC =100,那么EF 的值是(A ) 10;(B )12;(C ) 16;(D)18.答()3.⽅程012=--x x 的解是(A )251±;(B )251±-;(C )251±或251±-;(D )251±-±.答()4.已知:)19911991(2111n nx --=(n 是⾃然数).那么n x x )1(2+-,的值是(A)11991-;(B)11991--;(C)1991)1(n -;(D)11991)1(--n .答()5.若M n 1210099321=Λ,其中M为⾃然数,n 为使得等式成⽴的最⼤的⾃然数,则M(A)能被2整除,但不能被3整除;(B)能被3整除,但不能被2整除;(C)能被4整除,但不能被3整除;(D)不能被3整除,也不能被2整除.答()6.若a ,c ,d 是整数,b 是正整数,且满⾜c b a =+,d c b =+,a d c =+,那么 d c b a +++的最⼤值是(A)1-;(B)5-;(C)0;(D)1.答()7.如图,正⽅形OPQR 内接于ΔABC .已知ΔAOR 、ΔBOP 和ΔCRQ 的⾯积分别是11=S ,32=S 和13=S ,那么,正⽅形OPQR 的边长是(A)2;(B)3;(C)2 ;(D)3.答()8.在锐⾓ΔABC 中,1=AC ,c AB =,ο60=∠A ,ΔABC 的外接圆半径R ≤1,则(A)21< c < 2 ;(B)0< c ≤21;答()(C )c > 2;(D )c = 2.答()⼆、填空题1.E是平⾏四边形ABCD 中BC 边的中点,AE 交对⾓线BD 于G ,如果ΔBEG 的⾯积是1,则平⾏四边形ABCD 的⾯积是.2.已知关于x 的⼀元⼆次⽅程02=++c bx ax 没有实数解.甲由于看错了⼆次项系数,误求得两根为2和4;⼄由于看错了某⼀项系数的符号,误求得两根为-1和4,那么,=+a cb 32 .3.设m ,n ,p ,q 为⾮负数,且对⼀切x >0,q pn m x x x x )1(1)1(+=-+恒成⽴,则 =++q p n m 22)2( .4.四边形ABCD 中,∠ ABC ο135=,∠BCD ο120=,AB 6=,BC 35-=,CD = 6,则AD = .11=S3S =132=Sο120ο135第⼆试xx + y,x -y,x y,y四个数中的三个⼜相同的数值,求出所有具有这样性质的数对(x , y).⼆、ΔABC中,AB<AC<BC,D点在BC上,E点在BA的延长线上,且BD=BE=AC,ΔBDE的外接圆与ΔABC的外接圆交于F点(如图).求证:BF=AF+CF三、将正⽅形ABCD分割为2n个相等的⼩⽅格(n是⾃然数),把相对的顶点A,C染成红⾊,把B,D染成蓝⾊,其他交点任意染成红、蓝两⾊中的⼀种颜⾊.证明:恰有三个顶点同⾊的⼩⽅格的数⽬必是偶数.1992年全国初中数学联合竞赛决赛试题第⼀试⼀.选择题本题共有8个题,每⼩题都给出了(A), (B), (C), (D)四个结论,其中只有⼀个是正确的.请把正确结论的代表字母写在题后的圆括号内.1.满⾜1=+-ab b a 的⾮负整数),(b a 的个数是(A)1; (B)2; (C)3; (D)4.2.若0x 是⼀元⼆次⽅程)0(02≠=++a c bx ax 的根,则判别式ac b 42-=?与平⽅式20)2(b ax M +=的关系是(A)?>M (B)?=M (C)?>M ; (D)不确定. 3.若01132=+-x x ,则44-+x x 的个位数字是(A)1; (B)3; (C)5; (D)7. 答( )4.在半径为1的圆中有⼀内接多边形,若它的边长皆⼤于1且⼩于2,则这个多边形的边数必为(A)7; (B)6; (C)5; (D)4. 答( )5.如图,正⽐例函数)0(>==a ax y x y 和的图像与反⽐例函数)0(>=k xky 的图像分别相交于A 点和C 点.若AOB Rt ?和COD ?的⾯积分别为S 1和S 2,则S 1与S 2的关系是(A)21S S > (B)21S S = (C)21S S < (D)不确定答( )6.在⼀个由88?个⽅格组成的边长为8的正⽅形棋盘内放⼀个半径为4的圆,若把圆周经过的所有⼩⽅格的圆内部分的⾯积之和记为1S ,把圆周经过的所有⼩⽅格的圆内部分的⾯积之和记为2S ,则21S S 的整数部分是 (A)0; (B)1; (C)2; (D)3. 答( )7.如图,在等腰梯形ABCD 中, AB //CD , AB=2CD , ?=∠60A ,⼜E 是底边AB 上⼀点,且FE=FB=AC , F A=AB .则AE :EB 等于(A)1:2 (B)1:3 (C)2:5 (D)3:10 答( )8.设9321,,,,x x x x 均为正整数,且921x x x(A)8; (B)9; (C)10; (D)11. 答( ) ⼆.填空题1.若⼀等腰三⾓形的底边上的⾼等于18cm ,腰上的中线等15cm ,则这个等腰三⾓形的⾯积等于________________.2.若0≠x ,则xx x x 44211+-++的最⼤值是__________.3.在ABC ?中,B A C ∠∠=∠和,90ο的平分线相交于P 点,⼜AB PE ⊥于E 点,若3,2==AC BC ,则=?EB AE .4.若b a ,都是正实数,且0111=+--b a b a ,则=+33)()(ba ab . 第⼆试⼀、设等腰三⾓形的⼀腰与底边的长分别是⽅程062=+-a x x 的两根,当这样的三⾓形只有⼀个时,求a 的取值范围.⼆、如图,在ABC ?中,D AC AB ,=是底边BC 上⼀点,E 是线段AD 上⼀点,且A CED BED ∠=∠=∠2.求证:CD BD 2=.三、某个信封上的两个邮政编码M 和N 均由0,1,2,3,5,6这六个不同数字组成,现有四个编码如下:A :320651B :105263C :612305D :316250已知编码A 、B 、C 、D 各恰有两个数字的位置与M 和N 相同.D 恰有三个数字的位置与M 和N 相同.试求:M 和N.1993年全国初中数学联合竞赛决赛试题第⼀试⼀.选择题本题共有8个⼩题,每⼩题都给出了(A), (B), (C), (D)四个结论,其中只有⼀个是正确的.请把正确结论的代表字母写在题后的圆括号内.1.多项式1612+-x x 除以12-x 的余式是(A)1; (B)-1; (C)1-x ; (D)1+x ; 2.对于命题Ⅰ.内⾓相等的圆内接五边形是正五边形.Ⅱ.内⾓相等的圆内接四边形是正四边形,以下四个结论中正确的是 (A )Ⅰ,Ⅱ都对 (B )Ⅰ对,Ⅱ错 (C )Ⅰ错,Ⅱ对. (D )Ⅰ,Ⅱ都错. 3.设x 是实数,11++-=x x y .下列四个结论: Ⅰ.y 没有最⼩值;Ⅱ.只有⼀个x 使y 取到最⼩值;Ⅲ.有有限多个x (不⽌⼀个)使y 取到最⼤值; Ⅳ.有⽆穷多个x 使y 取到最⼩值.其中正确的是(A )Ⅰ (B )Ⅱ (C )Ⅲ (D )Ⅳ 4.实数54321,,,,x x x x x 满⾜⽅程组=++=++=++=++=++.;;;;52154154354324321321a x x x a x x x a x x x a x x x a x x x 其中54321,,,,a a a a a 是实常数,且54321a a a a a >>>>,则54321,,,,x x x x x 的⼤⼩顺序是 (A)54321x x x x x >>>>; (B )53124x x x x x >>>>; (C )52413x x x x x >>>>; (D )24135x x x x x >>>>. 5.不等式73)1(12+<-<-x x x 的整数解的个解(A )等于4 (B )⼩于4 (C )⼤于5 (D )等于5 6.在ABC ?中,BC AO O A =∠,,是垂⼼是钝⾓, 则)cos(OCB OBC ∠+∠的值是(A)22-(B)22 (C)23 (D)21-. 答( )7.锐⾓三⾓ABC 的三边是a , b , c ,它的外⼼到三边的距离分别为m , n ,p ,那么m :n :p 等于(A)cb a 1:1:1; (B)c b a ::(C)C B A cos :cos :cos (D)C B A sin :sin :sin . 答( )8.13333)919294(3-+-可以化简成 (A))12(333+; (B))12(333- (C)123- (D)123+ 答( )⼆.填空题1.当x 变化时,分式15632212++++x x x x 的最⼩值是___________.2.放有⼩球的1993个盒⼦从左到右排成⼀⾏,如果最左⾯的盒⾥有7个⼩球,且每四个相邻的盒⾥共有30个⼩球,那么最右⾯的盒⾥有__________个⼩球.3.若⽅程k x x =--)4)(1(22有四个⾮零实根,且它们在数轴上对应的四个点等距排列,则k =____________.4.锐⾓三⾓形ABC 中,?=∠30A .以BC 边为直径作圆,与AB , AC 分别交于D , E ,连接DE , 把三⾓形ABC 分成三⾓形ADE 与四边形BDEC ,设它们的⾯积分别为S 1, S 2,则S 1:S 2=___________.第⼆试⼀.设H 是等腰三⾓形ABC 垂⼼,在底边BC 保持不变的情况下让顶点A ⾄底边BC 的距离变⼩,这时乘积HBC ABC S S 的值变⼩,变⼤,还是不变?证明你的结论.⼆.ABC ?中, BC =5, AC =12, AB =13, 在边AB ,AC 上分别取点D , E , 使线段DE 将ABC ?分成⾯积相等的两部分.试求这样的线段DE 的最⼩长度.三.已知⽅程0022=++=++b cx x c bx x 及分别各有两个整数根21,x x 及21,x x '',且,021>x x 021>''x x . (1)求证:;0,0,0,02121<'<'<1994年全国初中数学联赛试题第⼀试(4⽉3⽇上午8:30—9:30)考⽣注意:本试共两道⼤题,满分80分.⼀、选择题(本题满分48分,每⼩题6分)本题共有8个⼩题都给出了A,B、C,D,四个结论,其中只有⼀个是正确的,请把你认为正确结论的代表字母写在题后答案中的圆括号内,每⼩题选对得6分;不选、选错或选出的代表字母超过⼀个(不论是否写在圆括号内),⼀律得0分.〔答〕( )2.设a,b,c是不全相等的任意实数,若x=a2-bc,y=b2-ca,z=c2-ab,则x,y,zA.都不⼩于0B.都不⼤于0C.⾄少有⼀个⼩0于D.⾄少有⼀个⼤于0〔答〕( )3.如图1所⽰,半圆O的直径在梯形ABCD的底边AB上,且与其余三边BC,CD,DA相切,若BC=2,DA=3,则AB的长A.等于4B.等于5C.等于6D.不能确定〔答〕( )A.1 B.-1 C.22001D.-22001〔答〕( )5.若平⾏直线EF,MN与相交直线AB,CD相交成如图2所⽰的图形,则共得同旁内⾓A.4对B.8对C.12对D.16对〔答〕( )〔答〕( )7.设锐⾓三⾓形ABC的三条⾼AD,BE,CF相交于H。
【最新整理,下载后即可编辑】中国教育学会中学数学教学专业委员会全国初中数学竞赛试题一、选择题(共5小题,每小题6分,共30分.)1(甲).如果实数a,b,c在数轴上的位置如图所示,那么代数式22||()||a abc a b c++-+可以化简为().(A)2c a-(B)22a b-(C)a-(D)a1(乙).如果22a=-+11123a+++的值为().(A)2-(B2(C)2 (D)22(甲).如果正比例函数y = ax(a ≠ 0)与反比例函数y =xb(b ≠0 )的图象有两个交点,其中一个交点的坐标为(-3,-2),那么另一个交点的坐标为().(A)(2,3)(B)(3,-2)(C)(-2,3)(D)(3,2)2(乙).在平面直角坐标系xOy中,满足不等式x2+y2≤2x+2y的整数点坐标(x,y)的个数为().(A)10 (B)9 (C)7 (D)5 3(甲).如果a b,为给定的实数,且1a b<<,那么1121a ab a b++++,,,这四个数据的平均数与中位数之差的绝对值是().(A )1 (B )214a - (C )12(D )143(乙).如图,四边形ABCD 中,AC ,BD 是对角线,△ABC 是等边三角形.30ADC ∠=︒,AD = 3,BD= 5,则CD 的长为( ). (A )23 (B )4 (C )52(D )4.54(甲).小倩和小玲每人都有若干面值为整数元的人民币.小倩对小玲说:“你若给我2元,我的钱数将是你的n 倍”;小玲对小倩说:“你若给我n 元,我的钱数将是你的2倍”,其中n 为正整数,则n 的可能值的个数是( ).(A )1 (B )2 (C )3 (D )4 4(乙).如果关于x 的方程20x px q p q --=(,是正整数)的正根小于3,那么这样的方程的个数是( ).(A ) 5 (B ) 6 (C ) 7 (D ) 8 5(甲).一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,3,4,5,6.掷两次骰子,设其朝上的面上的两个数字之和除以4的余数分别是0,1,2,3的概率为0123p p p p ,,,,则0123p p p p ,,,中最大的是( ).OAB CED(A )0p (B )1p (C )2p (D )3p5(乙).黑板上写有111123100, , ,, 共100个数字.每次操作先从黑板上的数中选取2个数a b ,,然后删去a b ,,并在黑板上写上数a b ab ++,则经过99次操作后,黑板上剩下的数是( ).(A )2012 (B )101 (C )100 (D )99 二、填空题(共5小题,每小题6分,共30分) 6(甲).按如图的程序进行操作,规定:程序运行从“输入一个值x ”到“结果是否>487?”为一次操作.如果操作进行四次才停止,那么x 的取值范围是 .6(乙).如果a ,b ,c 是正数,且满足9a b c ++=,111109a b b c c a ++=+++,那么a b cb c c a a b+++++的值为 .7(甲).如图,正方形ABCD 的边长为215,E ,F 分别是AB ,BC 的中点,AF 与DE ,DB分别交于点M ,N ,则△DMN 的面积是 .7(乙).如图所示,点A 在半径为20的圆O上,以OA 为一条对角线作矩形OBAC ,设直线BC 交圆O 于D 、E 两点,若12OC =,则线段CE 、BD 的长度差是 。
保证原创精品 已受版权保护2020年全国初中数学竞赛试题(多份)及答案一、选择题1.设a <b <0,a 2+b 2=4ab ,则b a ba 的值为【 】A 、3B 、6C 、2D 、32.已知a =2020x +2020,b =2020x +2020,c =2020x +2020,则多项式a 2+b 2+c 2-ab -bc -ca 的值为【 】A 、0B 、1C 、2D 、33.如图,点E 、F 分别是矩形ABCD 的边AB 、BC 的中点,连AF 、CE 交于点G ,则ABCDAGCDS S 矩形四边形等于【 】A 、65B 、54C 、43D 、32ABC DEF G保证原创精品 已受版权保护4.设a 、b 、c 为实数,x =a 2-2b +3,y =b 2-2c +3,z =c 2-2a +3,则x 、y 、z 中至少有一个值【 】A 、大于0B 、等于0C 、不大于0D 、小于05.设关于x 的方程ax 2+(a +2)x +9a =0,有两个不等的实数根x 1、x 2,且x 1<1<x 2,那么a 的取值范围是【 】A 、72<a <52 B 、a >52 C 、a <72 D 、112<a <06.A 1A 2A 3…A 9是一个正九边形,A 1A 2=a ,A 1A 3=b ,则A 1A 5等于【 】A 、22b a B 、22b ab a C 、b a 21D 、a +b二、填空题7.设x 1、x 2是关于x 的一元二次方程x 2+ax +a =2的两个实数根,则(x 1-2x 2)(x 2-2x 1)的最大值为 。
8.已知a 、b 为抛物线y =(x -c)(x -c -d)-2与x 轴交点的横坐标,a <b ,则bc c a 的值为 。
9.如图,在△ABC 中,∠ABC =600,点P 是△ABC 内的一点,使得∠APB =∠BPC =∠CPA ,且PA =8,PC =6,则PB = 。
全国初中数学联合竞赛试题第一试一、选择题:(本题满分42分,每小题7分)1. 若,,a b c 均为整数且满足1010()()1a b a c -+-=,则||||||a b b c c a -+-+-= ( ) A .1. B .2. C .3. D .4..2.若实数,,a b c 满足等式23||6a b +=,49||6a b c -=,则c 可能取的最大值为 ( ) A .0. B .1. C .2. D .3.3.若b a ,是两个正数,且 ,0111=+-+-ab b a 则 ( )4.若方程2310x x --=的两根也是方程420x ax bx c +++=的根,则2a b c +-的值为 ( ) A .-13. B .-9. C .6. D . 0.5.在△ABC 中,已知︒=∠60CAB ,D ,E 分别是边AB ,AC 上的点,且︒=∠60AED ,CE DB ED =+,CDE CDB ∠=∠2,则=∠DCB ( )A .15°.B .20°.C .25°.D .30°.6.对于自然数n ,将其各位数字之和记为n a ,如2009200911a =+++=,201020103a =+++=,则12320092010a a a a a +++++= ( )A .28062.B .28065.C .28067.D .28068.二、填空题:(本题满分28分,每小题7分)1.已知实数,x y 满足方程组3319,1,x y x y ⎧+=⎨+=⎩则22x y += .2.二次函数c bx x y ++=2的图象与x 轴正方向交于A ,B 两点,与y 轴正方向交于点C .已知AC AB 3=,︒=∠30CAO ,则c = .3.在等腰直角△ABC 中,AB =BC =5,P 是△ABC 内一点,且PA 5PC =5,则PB =______.4.将若干个红、黑两种颜色的球摆成一行,要求两种颜色的球都要出现,且任意中间夹有5个或10个球的两个球必为同一种颜色的球.按这种要求摆放,最多可以摆放_______个球.第二试 (A )一.(本题满分20分)设整数,,a b c (a b c ≥≥)为三角形的三边长,满足22213a b c ab ac bc ++---=,___P_A_C_B求符合条件且周长不超过30的三角形的个数.二.(本题满分25分)已知等腰三角形△ABC 中,AB =AC ,∠C 的平分线与AB 边交于点P ,M 为△ABC 的内切圆⊙I 与BC 边的切点,作MD//AC ,交⊙I 于点D.证明:PD 是⊙I 的切线.三.(本题满分25分)已知二次函数2y x bx c =+-的图象经过两点P (1,)a ,Q (2,10)a . (1)如果,,a b c 都是整数,且8c b a <<,求,,a b c 的值.(2)设二次函数2y x bx c =+-的图象与x 轴的交点为A 、B ,与y 轴的交点为 C.如果关于x 的方程20x bx c +-=的两个根都是整数,求△ABC 的面积._ Q_I _ P_ C_ A_M_B第二试 (B )一.(本题满分20分)设整数,,a b c 为三角形的三边长,满足22213a b c ab ac bc ++---=,求符合条件且周长不超过30的三角形的个数(全等的三角形只计算1次).二.(本题满分25分)题目和解答与(A )卷第二题相同. 三.(本题满分25分)题目和解答与(A )卷第三题相同.第二试 (C )一.(本题满分20分)题目和解答与(B )卷第一题相同. 二.(本题满分25分)题目和解答与(A )卷第二题相同.三.(本题满分25分)设p 是大于2的质数,k 为正整数.若函数4)1(2-+++=p k px x y 的图象与x 轴的两个交点的横坐标至少有一个为整数,求k 的值.全国初中数学联合竞赛试题及详解第一试一、选择题:(本题满分42分,每小题7分)1. 若,,a b c 均为整数且满足1010()()1a b a c -+-=,则||||||a b b c c a -+-+-= ( B ) A .1. B .2. C .3. D .4. 解: 由已知可推得011a b b c a c -=⎧⇒-=±⎨-=±⎩ 或110a b b c a c -=±⎧⇒-=±⎨-=⎩,分别代入即得。
中国教育学会中学数学教学专业委员会2021年全国初中数学竞赛试题答题时注意:1.用圆珠笔或钢笔作答; 2.解答书写时不要超过装订线; 3.草稿纸不上交.一、选择题〔共5小题,每题7分,共35分.每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的.请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分〕1.设非零实数a ,b ,c 满足2302340a b c a b c ++=⎧⎨++=⎩,,那么222ab bc ca a b c ++++的值为〔 〕.〔A 〕12-〔B 〕0 〔C 〕12〔D 〕12.关于x 的不等式组255332x x x t x +⎧->-⎪⎨+⎪-<⎩,恰有5个整数解,那么t 的取值范围是〔 〕.〔A 〕6-<t <112-〔B 〕6-≤t <112-〔C 〕6-<t ≤112-〔D 〕6-≤t ≤112-3.如图,在Rt △ABC 中,O 是斜边AB 的中点,CD ⊥AB ,垂足为D ,DE ⊥OC ,垂足为E .假设AD ,DB ,CD 的长度都是有理数,那么线段OD ,OE ,DE ,AC 的长度中,不一定...是有理数的为〔 〕.〔A 〕OD 〔B 〕OE 〔C 〕DE〔D 〕AC4.如图,△ABC 的面积为24,点D 在线段AC 上,点F 在线段BC 的延长线上,且4BC CF =,DCFE 是平行四边形,那么图中阴影局部的面积为〔 〕.〔A 〕3 〔B 〕4 〔C 〕6〔D 〕85.对于任意实数x ,y ,z ,定义运算“*〞为:()()32233333451160x y x y xy x y x y +++*=+++-,且()x y z x y z **=**,那么2013201232****的值为〔 〕. 〔A 〕607967〔B 〕1821967〔C 〕5463967〔D 〕16389967二、填空题〔共5小题,每题7分,共35分〕6.设33a =,b 是a 的小数局部,c 是2a 的小数局部,那么(4)b b c ++的值为 .7.一个质地均匀的正方体的六个面上分别标有数1,2,3,4,5,6.掷这个正方体三次,那么其朝上的面的数和为3的倍数的概率是 .8.正整数a ,b ,c 满足2220+--=a b c ,2380-+=a b c ,那么abc 的最大值为 .9.实数a ,b ,c ,d 满足:一元二次方程20x cx d ++=的两根为a ,b ,一元二次方程20x ax b ++=的两根为c ,d ,那么所有满足条件的数组(),,,a b c d 为 .10.444444222222121231991001121231991001++++++++++-+-+-…的值为 .三、解答题〔共4题,每题20分,共80分〕11.如图,抛物线y=23ax bx+-,顶点为E,该抛物线与x轴交于A,B两点,与y轴交于点C,且OB=OC=3OA.直线113y x=-+与y轴交于点D.求∠DBC ∠CBE.12.设△ABC的外心、垂心分别为O H、,假设B C H O、、、共圆,对于所有的△ABC,求BAC∠所有可能的度数.13.如图,设点D 在△ABC 外接圆上,且为BC 的中点,点X 在BD 上,E 是AX 的中点,过△ABC 的内心I 作直线R T 平行于DE ,分别与BC ,AX 交于点R ,T ,设直线DR 与ET 交于点S .证明:点S 在△ABC 的外接圆上.14.假如将正整数M 放在正整数m 左侧,所得到的新数可被7整除,那么称M 为m 的“魔术数〞〔例如,把86放在415的左侧,得到的数86415能被7整除,所以称86为415的魔术数〕.求正整数n 的最小值,使得存在互不一样的正整数12n a a a ,,…,,满足对任意一个正整数m ,在12n a a a ,,…,中都至少有一个为m 的魔术数.中国教育学会中学数学教学专业委员会2021年全国初中数学竞赛试题参考答案一、选择题 1.A解:由得(234)(23)0a b c a b c a b c ++=++-++=,故2()0a b c ++=.于是2221()2ab bc ca a b c ++=-++,所以22212ab bc ca a b c ++=-++. 2.C解:根据题设知不等式组有解,解得,32t -<x <20.由于不等式组恰有5个整数解,这5个整数解只能为15,16,17,18,19,因此14≤32t -<15,解得6-<t ≤112-. 3.D解:因AD ,DB ,CD 的长度都是有理数,所以,OA =OB =OC =2AD BD+是有理数.于是,OD =OA -AD 是有理数.由Rt △DOE ∽Rt △COD ,知2OD OE OC =,·DC DODE OC=都是有理数,而AC=·AD AB 不一定是有理数. 4.C解:因为DCFE 是平行四边形,所以DE //CF ,且EF //DC .连接CE ,因为DE //CF ,即DE //BF ,所以S △DEB = S △DEC ,因此原来阴影局部的面积等于△ACE 的面积.连接AF ,因为EF //CD ,即EF //AC ,所以S △ACE = S △ACF .因为4BC CF =,所以S △ABC = 4S △ACF .故阴影局部的面积为6.5.C解:设201320124m ***=,那么()20132012433m ****=*32323339274593316460m m m m m m ⨯+⨯+⨯+==++++-, 于是()201320123292****=*3223333923929245546310360967⨯⨯+⨯⨯+⨯+==+-.二、填空题 6.2解:由于2123a a <<<<,故1=-b a ,22=-c a .所以223(4)(1)(124)(1)(1)12b b c a a a a a a a ++=--+-+=-++=-=.7.13解:掷三次正方体,朝上的面的数和为3的倍数的是3,6,9,12,15,18,且3=1+1+1,6=1+1+4=1+2+3=2+2+2,9=1+2+6=1+3+5=1+4+4=2+2+5=2+3+4=3+3+3, 12=1+5+6=2+4+6=2+5+5=3+3+6=3+4+5=4+4+4, 15=3+6+6=4+5+6=5+5+5, 18=6+6+6.记掷三次正方体面朝上的数分别为x ,y ,z .那么使x +y +z 为3的倍数的〔x ,y ,z 〕中,3个数都不相等的有8组,恰有两个相等的有6组,3个数都相等的有6组.故所求概率为83263616663⨯⨯+⨯+=⨯⨯.8.2013解:由2220+--=a b c ,2380-+=a b c 消去c ,并整理得()228666b a a -++=.由a 为正整数及26a a +≤66,可得1≤a ≤3.假设1a =,那么()2859b -=,无正整数解; 假设2a =,那么()2840b -=,无正整数解;假设3a =,那么()289b -=,于是可解得11=b ,5b =. 〔i 〕假设11b =,那么61c =,从而可得311612013abc =⨯⨯=; 〔ii 〕假设5b =,那么13c =,从而可得3513195abc =⨯⨯=. 综上知abc 的最大值为2013.9.(1212),,,--,(00),,,-t t 〔t 为任意实数〕 解:由韦达定理得,,,.+=-⎧⎪=⎪⎨+=-⎪=⎪⎩a b c ab d c d a cd b 由上式,可知b a c d =--=. 假设0b d =≠,那么1==d a b ,1==bc d ,进而2b d a c ==--=-.假设0b d ==,那么c a =-,有()(00),,,,,,=-a b c d t t 〔t 为任意实数〕. 经检验,数组(1212)--,,,与(00),,,-t t 〔t 为任意实数〕满足条件. 10解:设0k >,那么=11111(1)1k k k k ⎡⎤⎫=+=+-⎪⎢⎥++⎝⎭⎣⎦. 上式对1=k ,2,…,99求和,得原式11991100100100⎫⎫=+-=-=⎪⎪⎝⎭⎝⎭.三、解答题11.解:将0x =分别代入y =113x -+,23y ax bx =+-知,D (0,1),C (0,3-),所以B (3,0),A (1-,0).直线y =113x -+过点B .将点C (0,3-)的坐标代入y =(1)(3)a x x +-,得1a =.…………5分抛物线223y x x =--的顶点为E (1,4-).于是由勾股定理得BC =32,CE =2,BE =25. 因为BC 2+CE 2=BE 2,所以,△BCE 为直角三角形,90BCE ∠=︒.…………10分因此tan CBE ∠=CE CB =13.又tan ∠DBO =13OD OB =,那么∠DBO =CBE ∠. 所以,45DBC CBE DBC DBO OBC ∠-∠=∠-∠=∠=︒.…………20分12.解:分三种情况讨论. 〔i 〕假设△ABC 为锐角三角形.因为1802BHC A BOC A ∠=︒-∠∠=∠,,所以由BHC BOC ∠=∠,可得1802A A ︒-∠=∠,于是60A ∠=︒.…………5分〔ii 〕假设△ABC 为钝角三角形.当90A ∠>︒时,因为()1802180BHC A BOC A ∠=︒-∠∠=︒-∠,,所以由180BHC BOC ∠+∠=︒,可得()3180180A ︒-∠=︒,于是120A ∠=︒;当90A ∠<︒时,不妨假设90B ∠>︒,因为2BHC A BOC A ∠=∠∠=∠,,所以由180BHC BOC ∠+∠=︒,可得3180A ∠=︒,于是60A ∠=︒.…………15分〔iii 〕假设△ABC 为直角三角形.当90A ∠=︒时,因为O 为边BC 的中点,B C H O ,,,不可能共圆,所以A ∠不可能等于90︒;当90A ∠<︒时,不妨假设90B ∠=︒,此时点B 与H 重合,于是总有B C H O ,,,共圆,因此A ∠可以是满足090A ︒<∠<︒的所有角.综上可得,A ∠所有可能取到的度数为所有锐角及120︒.…………20分13.证明:如图,设DR 与△ABC 的外接圆交于点S ',AX 与S E '交于点T ',连接S C CD S A AE AD '',,,,.由D 为BC 的中点知,A ,I ,D 三点共线,且∠CS D '=∠RCD ,△S CD '∽△CRD ,所以S D CDCD RD'=, ① 即2CD S D RD '=⋅. ②…………5分由E 为AX 的中点知,∠AS E '=∠T AE ',△AS E '∽△T AE ',所以S E AEAE T E'=', ③ 即2AE S E T E ''=⋅. ④由IR ∥DE ,知180IRD S'DE S'AE ∠=︒-∠=∠.又因为IDR S DA S EA ''∠=∠=∠,所以△IRD ∽△S AE ',那么有ID S ERD AE'=. ⑤ …………10分由I 为△ABC 的内心,连接CI ,由CID CAI ACI DCB BCI ICD ∠=∠+∠=∠+∠=∠知ID CD =.由式①,⑤,得S D S ECD AE''=, 即S D CDS E AE'='. ⑥ 由式②,④,得22CD S D RDAE S E T E'⋅=''⋅. ⑦ 由式⑥,⑦得S D RDS E T E'='', …………15分于是RT '∥DE .又RT ∥DE ,故点T '与T 重合,即点S '在直线ET 上.从而,点S '与S 重合,即点S 在△ABC 的外接圆上.…………20分14.解:假设n ≤6,取m =1,2,…,7,根据抽屉原理知,必有12na a a ,,…,中的一个正整数M 是(1i j ,≤i <j ≤7)的公共的魔术数,即7|(10M i +),7|(10M j +).那么有7|(j i -),但0<j i -≤6,矛盾.故n ≥7.…………10分又当12n a a a ,,…,为1,2,…,7时,对任意一个正整数m ,设其为k 位数〔k 为正整数〕.那么10k i m +〔12i =,,…,7〕被7除的余数两两不同.假设不然,存在正整数i ,(1j ≤i <j ≤7),满足7|[(10)(10)]k k j m i m +-+,即7|10()k j i -,从而7|()j i -,矛盾.故必存在一个正整数i (1≤i ≤7),使得7|(10)k i m +,即i 为m 的魔术数. 所以,n 的最小值为7.…………20分。
1991年年全国初中数学联赛试题第一试一、选择题本题共有8个小题,每小题都给出了(A )、(B )(C )、(D )四个答案结论,其中只有一个是正确的。
请把正确结论的代表字母写在题后的圆括号内。
1.设等式y a a x a y a a x a ---=-+-)()(在实数范围内成立,其中a ,x ,y 是两两不同的实数,则22223yxy x y xy x +--+的值是()。
(A )3(B )31(C )2(D )35 1.如图,AB ‖EF ‖CD ,已知AB =20,CD =80,BC =100,那么EF 的值是()。
(A )10(B )12 1.(C )16(D )18。
2.2.方程012=--x x 的解是()。
(A )251±(B )251±-(C )251±或251±-(D )251±-± 3.已知:)19911991(2111n n x --=(n 是自然数)。
那么n x x )1(2+-的值是()。
(A )11991-(B )11991--(C )1991)1(n -(D )11991)1(--n4.若M n 1210099321=⨯⨯⨯⨯⨯ ,其中M 为自然数,n为使得等式成立的最大的自然数,则M ()。
(A )能被2整除,但不能被3整除(B )能被3整除,但不能被2整除(C )能被4整除,但不能被3整除(D )不能被3整除,也不能被2整除1.若a ,c ,d 是整数,b 是正整数,且满足c b a =+,d c b =+,a d c =+,那么d c b a +++的最大值是()。
(A )1- (B )5- (C )0 (D )12.如图,正方形OPQR 内接于ΔAB (C )已知ΔAOR 、ΔBOP 和ΔCRQ 的面积分别是11=S ,32=S 和13=S ,那么,正方形OPQR 的边长是()。
(A )2(B )31.(C )2(D )32.5.在锐角ΔABC 中,1=AC ,c AB =, 60=∠A ,ΔABC 的外接圆半径R ≤1,则()。
O1A B O2全国初中数学联赛试题一、选择题1、已知a=2-1,b=22-6,c=6-2,那么a,b,c的大小关系是【】(A) a<b<c (B) b<a<c (C) c<b<a(D)c<a<b2、若m2=n+2,n2=m+2(m≠n),则m3-2mn+n3的值为【】(A) 1 (B)0 (C)-1 (D)-23、已知二次函数的图象如图所示,并设M=|a+b+c|-|a-b+c|+|2a+b|-|2a-b|,则【】(A)M>0 (B)M=0 (C)M<0 (D)不能确定M为正、为负或为04、直角三角形ABC的面积为120,且∠BAC=90º,AD是斜边上的中线,过D作DE⊥AB 于E,连CE交AD于F,则△AFE的面积为【】(A)18 (B)20 (C)22 (D)245、圆O₁与O₂圆外切于点A,两圆的一条外公切线与圆O₁相切于点B,若AB与两圆的另一条外公切线平行,则圆O₁与圆O₂的半径之比为【】(A)2:5 (B)1:2 (C)1:3 (D)2:36、如果对于不小于8的自然数n,当3n+1是一个完全平方数是,n+1都能表示成个k 完全平方数的和,那么k的最小值为【】(A)1 (B)2 (C)3 (D)4二、填空题P ′QA B C RP 7、 已知a <0,ab <0,化简,1 │a -b -32│-│b -a +3│=____________8、 如图,7根圆柱形筷子的横截面圆的半径均为r ,则捆扎这7根筷子一周的绳子和长度为___________9、 甲乙两人到特价商店购买商品,已知两人购买商品的件数相等,且每件商品的单价只有8元和9元,若两人购买商品一共花费了172元,则其中单价为9元的商品有 件10、 设N =23x +92y 为完全平方数,且不超过2392,则满足上述条件的一切正整数对 (x ,y )共有 ____对三、解答题11、已知:a ,b ,c 三数满足方程组⎩⎨⎧=+-=+482882c c ab b a ,试求方程bx 2+cx -a =0的根。
中国教育学会中学数学教学专业委员会2021年全国初中数学竞赛试题答题时注意:1.用圆珠笔或钢笔作答; 2.解答书写时不要超过装订线; 3.草稿纸不上交.一、选择题〔共5小题,每题7分,共35分.每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的.请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分〕1.设非零实数a ,b ,c 满足2302340a b c a b c ++=⎧⎨++=⎩,,那么222ab bc ca a b c ++++的值为〔 〕.〔A 〕12-〔B 〕0 〔C 〕12〔D 〕12.关于x 的不等式组255332x x x t x +⎧->-⎪⎨+⎪-<⎩,恰有5个整数解,那么t 的取值范围是〔 〕.〔A 〕6-<t <112-〔B 〕6-≤t <112-〔C 〕6-<t ≤112-〔D 〕6-≤t ≤112-3.如图,在Rt △ABC 中,O 是斜边AB 的中点,CD ⊥AB ,垂足为D ,DE ⊥OC ,垂足为E .假设AD ,DB ,CD 的长度都是有理数,那么线段OD ,OE ,DE ,AC 的长度中,不一定...是有理数的为〔 〕.〔A 〕OD 〔B 〕OE 〔C 〕DE〔D 〕AC4.如图,△ABC 的面积为24,点D 在线段AC 上,点F 在线段BC 的延长线上,且4BC CF =,DCFE 是平行四边形,那么图中阴影局部的面积为〔 〕.〔A 〕3 〔B 〕4 〔C 〕6〔D 〕85.对于任意实数x ,y ,z ,定义运算“*〞为:()()32233333451160x y x y xy x y x y +++*=+++-,且()x y z x y z **=**,那么2013201232****的值为〔 〕. 〔A 〕607967〔B 〕1821967〔C 〕5463967〔D 〕16389967二、填空题〔共5小题,每题7分,共35分〕6.设33a =,b 是a 的小数局部,c 是2a 的小数局部,那么(4)b b c ++的值为 .7.一个质地均匀的正方体的六个面上分别标有数1,2,3,4,5,6.掷这个正方体三次,那么其朝上的面的数和为3的倍数的概率是 .8.正整数a ,b ,c 满足2220+--=a b c ,2380-+=a b c ,那么abc 的最大值为 .9.实数a ,b ,c ,d 满足:一元二次方程20x cx d ++=的两根为a ,b ,一元二次方程20x ax b ++=的两根为c ,d ,那么所有满足条件的数组(),,,a b c d 为 .10.444444222222121231991001121231991001++++++++++-+-+-…的值为 .三、解答题〔共4题,每题20分,共80分〕11.如图,抛物线y=23ax bx+-,顶点为E,该抛物线与x轴交于A,B两点,与y轴交于点C,且OB=OC=3OA.直线113y x=-+与y轴交于点D.求∠DBC ∠CBE.12.设△ABC的外心、垂心分别为O H、,假设B C H O、、、共圆,对于所有的△ABC,求BAC∠所有可能的度数.13.如图,设点D 在△ABC 外接圆上,且为BC 的中点,点X 在BD 上,E 是AX 的中点,过△ABC 的内心I 作直线R T 平行于DE ,分别与BC ,AX 交于点R ,T ,设直线DR 与ET 交于点S .证明:点S 在△ABC 的外接圆上.14.假如将正整数M 放在正整数m 左侧,所得到的新数可被7整除,那么称M 为m 的“魔术数〞〔例如,把86放在415的左侧,得到的数86415能被7整除,所以称86为415的魔术数〕.求正整数n 的最小值,使得存在互不一样的正整数12n a a a ,,…,,满足对任意一个正整数m ,在12n a a a ,,…,中都至少有一个为m 的魔术数.中国教育学会中学数学教学专业委员会2021年全国初中数学竞赛试题参考答案一、选择题 1.A解:由得(234)(23)0a b c a b c a b c ++=++-++=,故2()0a b c ++=.于是2221()2ab bc ca a b c ++=-++,所以22212ab bc ca a b c ++=-++. 2.C解:根据题设知不等式组有解,解得,32t -<x <20.由于不等式组恰有5个整数解,这5个整数解只能为15,16,17,18,19,因此14≤32t -<15,解得6-<t ≤112-. 3.D解:因AD ,DB ,CD 的长度都是有理数,所以,OA =OB =OC =2AD BD+是有理数.于是,OD =OA -AD 是有理数.由Rt △DOE ∽Rt △COD ,知2OD OE OC =,·DC DODE OC=都是有理数,而AC=·AD AB 不一定是有理数. 4.C解:因为DCFE 是平行四边形,所以DE //CF ,且EF //DC .连接CE ,因为DE //CF ,即DE //BF ,所以S △DEB = S △DEC ,因此原来阴影局部的面积等于△ACE 的面积.连接AF ,因为EF //CD ,即EF //AC ,所以S △ACE = S △ACF .因为4BC CF =,所以S △ABC = 4S △ACF .故阴影局部的面积为6.5.C解:设201320124m ***=,那么()20132012433m ****=*32323339274593316460m m m m m m ⨯+⨯+⨯+==++++-, 于是()201320123292****=*3223333923929245546310360967⨯⨯+⨯⨯+⨯+==+-.二、填空题 6.2解:由于2123a a <<<<,故1=-b a ,22=-c a .所以223(4)(1)(124)(1)(1)12b b c a a a a a a a ++=--+-+=-++=-=.7.13解:掷三次正方体,朝上的面的数和为3的倍数的是3,6,9,12,15,18,且3=1+1+1,6=1+1+4=1+2+3=2+2+2,9=1+2+6=1+3+5=1+4+4=2+2+5=2+3+4=3+3+3, 12=1+5+6=2+4+6=2+5+5=3+3+6=3+4+5=4+4+4, 15=3+6+6=4+5+6=5+5+5, 18=6+6+6.记掷三次正方体面朝上的数分别为x ,y ,z .那么使x +y +z 为3的倍数的〔x ,y ,z 〕中,3个数都不相等的有8组,恰有两个相等的有6组,3个数都相等的有6组.故所求概率为83263616663⨯⨯+⨯+=⨯⨯.8.2013解:由2220+--=a b c ,2380-+=a b c 消去c ,并整理得()228666b a a -++=.由a 为正整数及26a a +≤66,可得1≤a ≤3.假设1a =,那么()2859b -=,无正整数解; 假设2a =,那么()2840b -=,无正整数解;假设3a =,那么()289b -=,于是可解得11=b ,5b =. 〔i 〕假设11b =,那么61c =,从而可得311612013abc =⨯⨯=; 〔ii 〕假设5b =,那么13c =,从而可得3513195abc =⨯⨯=. 综上知abc 的最大值为2013.9.(1212),,,--,(00),,,-t t 〔t 为任意实数〕 解:由韦达定理得,,,.+=-⎧⎪=⎪⎨+=-⎪=⎪⎩a b c ab d c d a cd b 由上式,可知b a c d =--=. 假设0b d =≠,那么1==d a b ,1==bc d ,进而2b d a c ==--=-.假设0b d ==,那么c a =-,有()(00),,,,,,=-a b c d t t 〔t 为任意实数〕. 经检验,数组(1212)--,,,与(00),,,-t t 〔t 为任意实数〕满足条件. 10解:设0k >,那么=11111(1)1k k k k ⎡⎤⎫=+=+-⎪⎢⎥++⎝⎭⎣⎦. 上式对1=k ,2,…,99求和,得原式11991100100100⎫⎫=+-=-=⎪⎪⎝⎭⎝⎭.三、解答题11.解:将0x =分别代入y =113x -+,23y ax bx =+-知,D (0,1),C (0,3-),所以B (3,0),A (1-,0).直线y =113x -+过点B .将点C (0,3-)的坐标代入y =(1)(3)a x x +-,得1a =.…………5分抛物线223y x x =--的顶点为E (1,4-).于是由勾股定理得BC =32,CE =2,BE =25. 因为BC 2+CE 2=BE 2,所以,△BCE 为直角三角形,90BCE ∠=︒.…………10分因此tan CBE ∠=CE CB =13.又tan ∠DBO =13OD OB =,那么∠DBO =CBE ∠. 所以,45DBC CBE DBC DBO OBC ∠-∠=∠-∠=∠=︒.…………20分12.解:分三种情况讨论. 〔i 〕假设△ABC 为锐角三角形.因为1802BHC A BOC A ∠=︒-∠∠=∠,,所以由BHC BOC ∠=∠,可得1802A A ︒-∠=∠,于是60A ∠=︒.…………5分〔ii 〕假设△ABC 为钝角三角形.当90A ∠>︒时,因为()1802180BHC A BOC A ∠=︒-∠∠=︒-∠,,所以由180BHC BOC ∠+∠=︒,可得()3180180A ︒-∠=︒,于是120A ∠=︒;当90A ∠<︒时,不妨假设90B ∠>︒,因为2BHC A BOC A ∠=∠∠=∠,,所以由180BHC BOC ∠+∠=︒,可得3180A ∠=︒,于是60A ∠=︒.…………15分〔iii 〕假设△ABC 为直角三角形.当90A ∠=︒时,因为O 为边BC 的中点,B C H O ,,,不可能共圆,所以A ∠不可能等于90︒;当90A ∠<︒时,不妨假设90B ∠=︒,此时点B 与H 重合,于是总有B C H O ,,,共圆,因此A ∠可以是满足090A ︒<∠<︒的所有角.综上可得,A ∠所有可能取到的度数为所有锐角及120︒.…………20分13.证明:如图,设DR 与△ABC 的外接圆交于点S ',AX 与S E '交于点T ',连接S C CD S A AE AD '',,,,.由D 为BC 的中点知,A ,I ,D 三点共线,且∠CS D '=∠RCD ,△S CD '∽△CRD ,所以S D CDCD RD'=, ① 即2CD S D RD '=⋅. ②…………5分由E 为AX 的中点知,∠AS E '=∠T AE ',△AS E '∽△T AE ',所以S E AEAE T E'=', ③ 即2AE S E T E ''=⋅. ④由IR ∥DE ,知180IRD S'DE S'AE ∠=︒-∠=∠.又因为IDR S DA S EA ''∠=∠=∠,所以△IRD ∽△S AE ',那么有ID S ERD AE'=. ⑤ …………10分由I 为△ABC 的内心,连接CI ,由CID CAI ACI DCB BCI ICD ∠=∠+∠=∠+∠=∠知ID CD =.由式①,⑤,得S D S ECD AE''=, 即S D CDS E AE'='. ⑥ 由式②,④,得22CD S D RDAE S E T E'⋅=''⋅. ⑦ 由式⑥,⑦得S D RDS E T E'='', …………15分于是RT '∥DE .又RT ∥DE ,故点T '与T 重合,即点S '在直线ET 上.从而,点S '与S 重合,即点S 在△ABC 的外接圆上.…………20分14.解:假设n ≤6,取m =1,2,…,7,根据抽屉原理知,必有12na a a ,,…,中的一个正整数M 是(1i j ,≤i <j ≤7)的公共的魔术数,即7|(10M i +),7|(10M j +).那么有7|(j i -),但0<j i -≤6,矛盾.故n ≥7.…………10分又当12n a a a ,,…,为1,2,…,7时,对任意一个正整数m ,设其为k 位数〔k 为正整数〕.那么10k i m +〔12i =,,…,7〕被7除的余数两两不同.假设不然,存在正整数i ,(1j ≤i <j ≤7),满足7|[(10)(10)]k k j m i m +-+,即7|10()k j i -,从而7|()j i -,矛盾.故必存在一个正整数i (1≤i ≤7),使得7|(10)k i m +,即i 为m 的魔术数. 所以,n 的最小值为7.…………20分。
1991年全国初中数学联合竞赛决赛试题第一试一、选择题本题共有8个小题,每小题都给出了(A )、(B )(C )、(D )四个答案结论,其中只有一个是正确的.请把正确结论的代表字母写在题后的圆括号内. 1.设等式y a a x a y a a x a ---=-+-)()(在实数范围内成立,其中a ,x ,y 是两两不同的实数,则22223yxy x y xy x +--+的值是 (A )3 ; (B )31; (C )2; (D )35.答( )2. 如图,AB ‖EF ‖CD ,已知AB =20,CD =80,BC =100,那么EF 的值是 (A ) 10; (B )12; (C ) 16; (D )18. 答( ) 3. 方程012=--x x 的解是(A )251±; (B )251±-;(C )251±或251±-; (D )251±-±.答( ) 4.已知:)19911991(2111n nx --=(n 是自然数).那么n x x )1(2+-,的值是(A)11991-; (B)11991--; (C)1991)1(n -; (D)11991)1(--n . 答( ) 5.若M n 1210099321=⨯⨯⨯⨯⨯ ,其中M为自然数,n 为使得等式成立的最大的自然数,则M(A)能被2整除,但不能被3整除; (B)能被3整除,但不能被2整除; (C)能被4整除,但不能被3整除; (D)不能被3整除,也不能被2整除.答( )6. 若a ,c ,d 是整数,b 是正整数,且满足c b a =+,d c b =+,a d c =+,那么 d c b a +++的最大值是 (A)1-;(B)5-;(C)0;(D)1. 答( ) 7.如图,正方形OPQR 内接于ΔABC .已知ΔAOR 、ΔBOP 和ΔCRQ 的面积分别是11=S ,32=S 和13=S ,那么,正方形OPQR 的边长是(A)2;(B)3;(C)2 ;(D)3. 答( )8.在锐角ΔABC 中,1=AC ,c AB =, 60=∠A ,ΔABC 的外接圆半径R ≤1,则(A)21< c < 2 ; (B)0< c ≤21;答( )(C )c > 2; (D )c = 2. 答( ) 二、填空题1.E是平行四边形ABCD 中BC 边的中点,AE 交对角线BD 于G ,如果ΔBEG 的面积是1,则平行四边形ABCD 的面积是 .2.已知关于x 的一元二次方程02=++c bx ax 没有实数解.甲由于看错了二次项系数,误求得两根为2和4;乙由于看错了某一项系数的符号,误求得两根为-1和4,那么,=+a cb 32 .3.设m ,n ,p ,q 为非负数,且对一切x >0,q pn m x x x x )1(1)1(+=-+恒成立,则 =++q p n m 22)2( .4.四边形ABCD 中,∠ ABC 135=,∠BCD 120=,AB 6=,BC 35-=,CD = 6,则AD = .11=S3S =132=S120135第二试xx + y,x -y,x y,y四个数中的三个又相同的数值,求出所有具有这样性质的数对(x , y).二、ΔABC中,AB<AC<BC,D点在BC上,E点在BA的延长线上,且BD=BE=AC,ΔBDE的外接圆与ΔABC的外接圆交于F点(如图).求证:BF=AF+CF三、将正方形ABCD分割为2n个相等的小方格(n是自然数),把相对的顶点A,C染成红色,把B,D染成蓝色,其他交点任意染成红、蓝两色中的一种颜色.证明:恰有三个顶点同色的小方格的数目必是偶数.1992年全国初中数学联合竞赛决赛试题第一试一.选择题本题共有8个题,每小题都给出了(A), (B), (C), (D)四个结论,其中只有一个是正确的.请把正确结论的代表字母写在题后的圆括号内.1.满足1=+-ab b a 的非负整数),(b a 的个数是(A)1; (B)2; (C)3; (D)4.2.若0x 是一元二次方程)0(02≠=++a c bx ax 的根,则判别式ac b 42-=∆与平方式20)2(b ax M +=的关系是(A)∆>M (B)∆=M (C)∆>M ; (D)不确定. 3.若01132=+-x x ,则44-+x x 的个位数字是(A)1; (B)3; (C)5; (D)7. 答( )4.在半径为1的圆中有一内接多边形,若它的边长皆大于1且小于2,则这个多边形的边数必为(A)7; (B)6; (C)5; (D)4. 答( )5.如图,正比例函数)0(>==a ax y x y 和的图像与反比例函数)0(>=k xky 的图像分别相交于A 点和C 点.若AOB Rt ∆和COD ∆的面积分别为S 1和S 2,则S 1与S 2的关系是(A)21S S > (B)21S S = (C)21S S < (D)不确定答( )6.在一个由88⨯个方格组成的边长为8的正方形棋盘内放一个半径为4的圆,若把圆周经过的所有小方格的圆内部分的面积之和记为1S ,把圆周经过的所有小方格的圆内部分的面积之和记为2S ,则21S S 的整数部分是 (A)0; (B)1; (C)2; (D)3. 答( )7.如图,在等腰梯形ABCD 中, AB //CD , AB=2CD , ︒=∠60A ,又E 是底边AB 上一点,且FE=FB=AC , F A=AB .则AE :EB 等于(A)1:2 (B)1:3 (C)2:5 (D)3:10 答( )8.设9321,,,,x x x x ⋅⋅⋅均为正整数,且921x x x <⋅⋅⋅<<,220921=+⋅⋅⋅++x x x ,则当54321x x x x x ++++的值最大时,19x x -的最小值是(A)8; (B)9; (C)10; (D)11. 答( ) 二.填空题1.若一等腰三角形的底边上的高等于18cm ,腰上的中线等15cm ,则这个等腰三角形的面积等于________________.2.若0≠x ,则xx x x 44211+-++的最大值是__________.3.在ABC ∆中,B A C ∠∠=∠和,90 的平分线相交于P 点,又AB PE ⊥于E 点,若3,2==AC BC ,则=⋅EB AE .4.若b a ,都是正实数,且0111=+--b a b a ,则=+33)()(ba ab . 第二试一、设等腰三角形的一腰与底边的长分别是方程062=+-a x x 的两根,当这样的三角形只有一个时,求a 的取值范围.二、如图,在ABC ∆中,D AC AB ,=是底边BC 上一点,E 是线段AD 上一点,且A CED BED ∠=∠=∠2.求证:CD BD 2=.三、某个信封上的两个邮政编码M 和N 均由0,1,2,3,5,6这六个不同数字组成,现有四个编码如下:A :320651B :105263C :612305D :316250已知编码A 、B 、C 、D 各恰有两个数字的位置与M 和N 相同.D 恰有三个数字的位置与M 和N 相同.试求:M 和N.1993年全国初中数学联合竞赛决赛试题第一试一.选择题本题共有8个小题,每小题都给出了(A), (B), (C), (D)四个结论,其中只有一个是正确的.请把正确结论的代表字母写在题后的圆括号内.1.多项式1612+-x x 除以12-x 的余式是(A)1; (B)-1; (C)1-x ; (D)1+x ; 2.对于命题Ⅰ.内角相等的圆内接五边形是正五边形.Ⅱ.内角相等的圆内接四边形是正四边形,以下四个结论中正确的是 (A )Ⅰ,Ⅱ都对 (B )Ⅰ对,Ⅱ错 (C )Ⅰ错,Ⅱ对. (D )Ⅰ,Ⅱ都错. 3.设x 是实数,11++-=x x y .下列四个结论: Ⅰ.y 没有最小值;Ⅱ.只有一个x 使y 取到最小值;Ⅲ.有有限多个x (不止一个)使y 取到最大值; Ⅳ.有无穷多个x 使y 取到最小值.其中正确的是(A )Ⅰ (B )Ⅱ (C )Ⅲ (D )Ⅳ 4.实数54321,,,,x x x x x 满足方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=++=++=++=++.;;;;52154154354324321321a x x x a x x x a x x x a x x x a x x x 其中54321,,,,a a a a a 是实常数,且54321a a a a a >>>>,则54321,,,,x x x x x 的大小顺序是 (A)54321x x x x x >>>>; (B )53124x x x x x >>>>; (C )52413x x x x x >>>>; (D )24135x x x x x >>>>. 5.不等式73)1(12+<-<-x x x 的整数解的个解(A )等于4 (B )小于4 (C )大于5 (D )等于5 6.在ABC ∆中,BC AO O A =∠,,是垂心是钝角, 则)cos(OCB OBC ∠+∠的值是(A)22-(B)22 (C)23 (D)21-. 答( )7.锐角三角ABC 的三边是a , b , c ,它的外心到三边的距离分别为m , n ,p ,那么m :n :p 等于(A)cb a 1:1:1; (B)c b a ::(C)C B A cos :cos :cos (D)C B A sin :sin :sin . 答( )8.13333)919294(3-+-可以化简成 (A))12(333+; (B))12(333- (C)123- (D)123+ 答( )二.填空题1.当x 变化时,分式15632212++++x x x x 的最小值是___________.2.放有小球的1993个盒子从左到右排成一行,如果最左面的盒里有7个小球,且每四个相邻的盒里共有30个小球,那么最右面的盒里有__________个小球.3.若方程k x x =--)4)(1(22有四个非零实根,且它们在数轴上对应的四个点等距排列,则k =____________.4.锐角三角形ABC 中,︒=∠30A .以BC 边为直径作圆,与AB , AC 分别交于D , E ,连接DE , 把三角形ABC 分成三角形ADE 与四边形BDEC ,设它们的面积分别为S 1, S 2,则S 1:S 2=___________.第二试一.设H 是等腰三角形ABC 垂心,在底边BC 保持不变的情况下让顶点A 至底边BC 的距离变小,这时乘积HBC ABC S S ∆∆⋅的值变小,变大,还是不变?证明你的结论.二.ABC ∆中, BC =5, AC =12, AB =13, 在边AB ,AC 上分别取点D , E , 使线段DE 将ABC ∆分成面积相等的两部分.试求这样的线段DE 的最小长度.三.已知方程0022=++=++b cx x c bx x 及分别各有两个整数根21,x x 及21,x x '',且,021>x x 021>''x x . (1)求证:;0,0,0,02121<'<'<<x x x x (2)求证:1-b ≤c ≤1+b ; (3)求c b ,所有可能的值.1994年全国初中数学联赛试题第一试(4月3日上午8:30—9:30)考生注意:本试共两道大题,满分80分.一、选择题(本题满分48分,每小题6分)本题共有8个小题都给出了A,B、C,D,四个结论,其中只有一个是正确的,请把你认为正确结论的代表字母写在题后答案中的圆括号内,每小题选对得6分;不选、选错或选出的代表字母超过一个(不论是否写在圆括号内),一律得0分.〔答〕( )2.设a,b,c是不全相等的任意实数,若x=a2-bc,y=b2-ca,z=c2-ab,则x,y,zA.都不小于0B.都不大于0C.至少有一个小0于D.至少有一个大于0〔答〕( )3.如图1所示,半圆O的直径在梯形ABCD的底边AB上,且与其余三边BC,CD,DA相切,若BC=2,DA=3,则AB的长A.等于4B.等于5C.等于6D.不能确定〔答〕( )A.1 B.-1 C.22001D.-22001〔答〕( )5.若平行直线EF,MN与相交直线AB,CD相交成如图2所示的图形,则共得同旁内角A.4对B.8对C.12对D.16对〔答〕( )〔答〕( )7.设锐角三角形ABC的三条高AD,BE,CF相交于H。