2015年高考全国卷2理科数学试题解析
- 格式:pdf
- 大小:861.04 KB
- 文档页数:14
2015年普通高等学校招生全国统一考试(重庆卷)数学(理科)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项符合题目要求. (1)【2015年重庆,理1】已知集合{}1,2,3A =,{}2,3B =,则( )(A )A B = (B )A B =∅ (C )A B (D )B A【答案】D【解析】A={1,2,2}B={2,3}B A B A B A ⇒⊂≠⇒⊂≠,且,故选D .(2)【2015年重庆,理2】在等差数列{}n a 中,若24a =,42a =,则6a =( )(A )1- (B )0 (C )1 (D )6 【答案】B【解析】利用264+2a a a =可求得60a =,故选B . (3)【2015年重庆,理3】重庆市2013年各月的平均气温(C ︒)数据的茎叶图如右,则这组数据的中位数是( ) (A )19(B )20 (C )21.5 (D )23【答案】B 【解析】这组数据是8,9,12,15,18,20,20,23,23,28,31,32. 中位数是20+20202=,故选B .(4)【2015年重庆,理4】“1x >”是“()12log 20x +<”的( )(A )充要条件 (B )充分不必要条件 (C )必要不充分条件 (D )既不充分也不必要条件 【答案】B【解析】12log (2)01x x +<⇒>-,故选B .(5)【2015年重庆,理5】某几何体的三视图如图所示,则该几何体的体积为( )(A )13π+ (B )23π+ (C )123π+ (D )223π+【答案】A【解析】该立体图形是由一个三棱锥和一个半圆柱拼接而成的,其体积为两部分体积之和:211(1)212113223ππ⨯⨯⎛⎫⨯⨯⨯⨯+=+ ⎪⎝⎭,故选A . (6)【2015年重庆,理6】若非零向量,a b 满足22||||3a b =,且()()32a b a b -⊥+,则a 与b 的夹角为( ) (A )4π (B )2π (C )34π (D )π 【答案】A【解析】()(32)()(32)0a b a b a b a b -⊥+⇒-+=,结合22||||3a b =,可得2||3a b b =,2cos ,,,[0,],24||||a b a b a b a b a b ππ∴<>==<>∈⇒<>=,故选A .(7)【2015年重庆,理7】执行如图所示的程序框图,若输入k 的值为8,则判断框图可填入的条件是( )(A )34s ≤ (B )56s ≤ (C )1112s ≤ (D )1524s ≤【答案】C【解析】10,022s k k s ==⇒==是,是,114+24k s ⇒==,是,1116++246k s ⇒==,是11118+++2468k s ⇒==,否,判断框内应该填11111++=24612s ≤,故选C .(8)【2015年重庆,理8】已知直线l :()10x ay a R +-=∈是圆C :224210x y x y +--+=的对称轴,过点()4,A a -作圆C 的一条切线,切点为B ,则||AB =( )(A )2 (B) (C )6 (D)【答案】C【解析】()()22:-2-14C x y +=,其圆心坐标为2,1C (),半径2r =.由题意可知直线:10()l x ay a R +-=∈是圆的直径所在直线,它过圆心2,1C (),所以21101(4,1)a a A AC +⨯-=⇒=-⇒--⇒=知,6AB ==,故选C .(9)【2015年重庆,理9】若tan 2tan 5πα=,则3cos()10sin()5παπα--=( )(A )1 (B )2 (C )3 (D )4 【答案】C【解析】2sin5tan 2tansin cos 5cos5ππαααπ=⇒=⊗,3cos()cos[()]sin()sin cos cos sin cos 1052555sin()sin()sin()sin cos cos sin cos55555ππππππαααααπππππααααα-+-++∴===---- 将⊗式带入上式可得:3cos()103sin()5παπα-=-,故选C . (10)【2015年重庆,理10】设双曲线()222210,0x y a b a b-=>>的右焦点为F ,右顶点为A ,过F 作AF 的垂线与双曲线交于,B C 两点,过,B C 分别作,AC AB 的垂线交于点D .若D 到直线BC 的距离小于a )(A )()()1,00,1- (B )()(),11,-∞-+∞ (C )()()0,2 (D )((),2,-∞+∞【答案】A【解析】由题意可得:22(,0),(,0),(,),b b A a F c B c AF c a BF a a ∴=-=.在Rt ABD ∆中,由射影定理有:22222()()()b BF c a c a a BF AF DF DF AF c a a +-=⋅⇒===-.即点D 到直线BC 的距离为22()()c a c a a +-,由题意得:22()()c a c a a +-<01ba a c a+⇒<<.而双曲线的渐近线斜率(1,0)(0,1)bk k a =±∴∈-,故选A .二、填空题:本大题共6小题,考生作答5小题,每小题5分,共25分.把答案填在答题卡的相应位置. (11)【2015年重庆,理11】设复数()i ,a b a b R +∈()()i i a b a b +-= . 【答案】3【解析】复数i(,)a b a b R +∈223a b =+=.22(i)(i)3a b a b a b ∴+-=+=. (12)【2015年重庆,理12】53x ⎛+ ⎝的展开式中8x 的系数是 (用数字作答).【答案】52【解析】71535215517()()1582222r r rrr r r r T C x C x r x --+=⋅=∴-=∴=.故35()2x x +的展开式中8x 的系数为2521522C =. (13)【2015年重庆,理13】在ABC ∆中,0120B =,2AB =,P ABC -的角平分线3AD =,则AC = . 【答案】6【解析】由正弦定理可得:2sin 451530sin sin 2AD AB ADB ADB BAD BAC B ADB =⇒∠=⇒∠=⇒∠=⇒∠=∠, 30C ∴∠=,再由正弦定理可得:6sin sin AC ABAC B C=⇒=.考生注意:(14)、(15)、(16)三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分. (14)【2015年重庆,理14】如图,圆O 的弦,AB CD 相交于点E ,过点A 作圆O 的切线与DC 的延长线交于点P ,若6PA =,9AE =,3PC =,:2:1CE ED =,则BE = . 【答案】2【解析】由切割线定理可得:21296,3PA PC PD PD CD CE ED =⋅⇒=⇒=⇒==.再由相交弦定理可得:2AE BE CE DE BE ⋅=⋅⇒=.(15)【2015年重庆,理15】已知直线l 的参数方程为11x ty t =-+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为235cos24(0,)44ππρθρθ=><<.则直线l 与曲线C 的交点的极坐标为 .【答案】()2,π【解析】直线l 的直角坐标方程为2y x =+.222222cos 24(cos sin )4 4.x y ρθρθθ=∴-=∴-=由 222240y x x x y y =+=-⎧⎧⇒⎨⎨-==⎩⎩222x y ρ∴=+=.由35sin 0=44y ππρθθθπ==<<⇒及. 故直线l 与曲线C 的交点的极坐标为2,π(). (16)【2015年重庆,理16】若函数()1f x x x a =++-的最小值为5,则实数a = __.【答案】4或-6【解析】分情况讨论:(1)当1a ≤-时,利用零点分段讨论法分段讨论并结合函数图像可知:()f x 在a 处取得最小值5,所以|1|56a a +=⇒=-;(2)当1a >时,利用零点分段讨论法分段讨论并结合函数图像可知:()f x 在a 处取得最小值5,|1|54a a +=⇒=,综上,可得实数a =6-或4.三、解答题:本大题共6题,共75分.解答应写出文字说明,演算步骤或证明过程. (17)【2015年重庆,理17】(本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分)端午节吃粽子是我国的传统习俗,设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同, 从中任意选取3个.(Ⅰ)求三种粽子各取到1个的概率;(Ⅱ)设X 表示取到的豆沙粽个数,求X 的分布列与数学期望.解:(Ⅰ)令A 表示事件“三种粽子各取到一个”,则()11123531014C C C P A C ==. (Ⅱ)X 所有可能取值为0,1,2,且()383107015C P X C ===,()12283107115C C P X C ===, ()21283101215C C P X C ===.故分布列见表:且X 0 1 2 P715715 115()77130121515155E X =⨯+⨯+⨯=(个). (18)【2015年重庆,理18】(本小题满分13分,(Ⅰ)小问7分,(Ⅱ)小问6分)设()2sin sin 3cos 2f x x x x π⎛⎫=-- ⎪⎝⎭.(Ⅰ)求()f x 的最小正周期和最大值;(Ⅱ)讨论()f x 在2,63ππ⎡⎤⎢⎥⎣⎦上的单调性.解:(Ⅰ)由题()()213cos sin 3cos sin 21cos22f x x x x x x =-=-+=3sin 23x π⎛⎫--⎪⎝⎭,故()f x 的最小正周期 T π=,最大值为23-. (Ⅱ)由2,63x ππ⎡⎤∈⎢⎥⎣⎦知023x ππ≤-≤,从而当0232x ππ≤-≤即5612x ππ≤≤时,()f x 单调递增;当223x πππ≤-≤即52123x ππ≤≤时,()f x 单调递减.因此,()f x 在5,612ππ⎡⎤⎢⎥⎣⎦单调递增,在52,123ππ⎡⎤⎢⎥⎣⎦单调递减.(19)【2015年重庆,理19】(本小题满分13分,(Ⅰ)小问4分,(Ⅱ)小问9分)如图,三棱锥P ABC -中,PC ⊥平面ABC ,3PC =,2ACB π∠=,,D E 分别为线段,AB BC 上的点,且2CD DE ==,22CE EB ==.(Ⅰ)证明:DE ⊥平面PCD ;(Ⅱ)求二面角A PD C --的余弦值.解:(Ⅰ)因PC ⊥平面ABC ,DE ⊂平面ABC ,故PC DE ⊥.又2CD DE ==,2CE =,故CDE ∆为等腰直角三角形,且CD DE ⊥.因PC CD C =,PC ⊂平面PCD ,CD ⊂平面PCD , 所以DE ⊥平面PCD .(Ⅱ)如图,取CE 的中点F ,连DF .由(Ⅰ)知CDE ∆为等腰直角三角形,故DF CE ⊥,1DF CF FE ===.又2ACB π∠=,故//DF AC ,因此23DF FB AC CB ==,从而32AC =.以C 为原点,,,CA CB CP 的方向分别为,,x y z 轴的正方向建立空间直角坐标系C xyz -.则()0,0,0C ,3,0,02A ⎛⎫ ⎪⎝⎭,()0,2,0E ,()1,1,0D ,()0,0,3P ,故1,1,02DA ⎛⎫=- ⎪⎝⎭,()1,1,3DP =--,()1,1,0DE =-.设()1111,,n x y z =为平面APD 的法向量,则110n DA n DP ⎧⋅=⎪⎨⋅=⎪⎩即111112030x y x y z -=⎧⎨--+=⎩,取11y =得()12,1,1n =.由(Ⅰ)知DE ⊥平面PCD ,故DE 即为平面PCD 的法向量.因1113cos ,||||n DE n DE n DE ⋅==⋅,故所求二面角A PD C --的余弦值为3. (20)【2015年重庆,理20】(本小题满分12分,(Ⅰ)小问7分,(Ⅱ)小问5分)设函数()()23xx axf x a R e +=∈.(Ⅰ)若()f x 在0x =处取得极值,确定a 的值,并求此时曲线()y f x =在点()()1,1f 处的切线方程;(Ⅱ)若()f x 在[)3,+∞上为减函数,求a 的取值范围. 解:(Ⅰ)由题()()()()2226336x xxxx a e x ax e x a x af x ee+-+-+-+'==,因()f x 在0x =处取得极值,故()00f '=,得0a =.因此()23x f x x e -=,()()263x f x x x e -'=-.从而()31f e =,()31f e'=,所以曲线()y f x =在点()()1,1f 处的切线方程为()331y x e e-=-即30x ey -=.z yxF PEDC BA(Ⅱ)由题知()0f x '≤对3x ≥恒成立,故()2360x a x a -+-+≥即()3311a x x ≥---对3x ≥恒成立.显然()()3311g x x x =---在[)3,+∞单调递减,故()()max 932g x g ==-,所以92a ≥-,即a 的取值范围为9,2⎡⎫+∞⎪⎢⎣⎭. (21)【2015年重庆,理21】(本题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分)如图,椭圆()222210x y a b a b+=>>的左右焦点分别为12,F F ,过2F 的直线交椭圆于,P Q 两点,且 1PQ PF ⊥. (Ⅰ)若1||22PF =+,2||22PF =-,求椭圆的标准方程; (Ⅱ)若1||||PF PQ =,求椭圆的离心率e .解:(Ⅰ)由题122||||4a PF PF =+=,故2a =.又222124||||12c PF PF =+=,故23c =,因此2221b a c =-=,从而椭圆方程为2214x y +=.(Ⅱ)连1F Q ,由题()1114||||||22||a F P PQ QF F P =++=+,故()1||222F P a =-,从而21||2||F P a F P =-()221a =-,因此()2222124||||4962c PF PF a =+=-,所以()2296263e =-=-,得63e =-.(22)【2015年重庆,理22】(本题满分12分,(Ⅰ)小问4分,(Ⅱ)小问8分)在数列{}n a 中,13a =,()2110n n n n a a a a n N λμ+++++=∈.(Ⅰ)若0λ=,2μ=-,求数列{}n a 的通项公式; (Ⅱ)若()0001,2k N k k λ+=∈≥,1μ=-,证明:010011223121k a k k ++<<+++. 解:(Ⅰ)由0λ=,2μ=-得212n n n a a a +=.因130a =>,故0n a >,得12n n a a +=.因此{}n a 是首项为3公比为2的等比数列,从而132n n a -=⋅.(Ⅱ)由题2101n n n a a a k +⎛⎫+= ⎪⎝⎭,因130a =>,故1230n a a a =>>>>>.因21000011111n n n n n a a a k k k a a k +==-+⋅+⎛⎫+ ⎪⎝⎭,即1001111n n n a a k k a +⎛⎫-=-⎪+⎝⎭, 故()0011111100000111113131213131k k k k i i i i i i a a a a k k a k k k ++===⎛⎫⎛⎫=+-=+->+-=+ ⎪ ⎪+++⎝⎭⎝⎭∑∑∑,因此001212k k a a a a +>>>>>,从而00110001113122121k k i a k k k +=⎛⎫<+-=+⎪++⎝⎭∑. 综上可知010011223121k a k k ++<<+++.。
一、选择题:1.将三组生理状态相同的某植物幼根分别培养在含有相同培养液的密闭培养瓶中,一段时间后,测定根吸收某一矿质元素离子的量。
培养条件及实验结果见下表:A.有氧条件有利于该植物幼根对该离子的吸收B.该植物幼根对该离子的吸收与温度的变化无关C.氮气环境中该植物幼根细胞吸收该离子不消耗ATPD.【答案】A2.端粒酶由RNA的是A.B.C.D.【答案】CA错误。
由“端粒酶由RNA RNA为模板合成端粒DNA的一条链”可知端粒酶中D错误。
3.A.B.mRNAC.分泌蛋白从胰腺的腺泡细胞到胞外的过程D.突触小泡中神经递质释放到突触间隙的过程【答案】B【解析】抗体、分泌蛋白均为大分子物质,出细胞方式为胞吐;mRNA通过核孔从细胞核到细胞质中,不是胞吐作用;突触前膜通过胞吐将神经递质释放到突触间隙;综上分析符合题意的为B选项。
4.下列有关生态系统的叙述,错误的是A.生态系统的组成成分中含有非生物成分B.生态系统相对稳定时无能量输入和散失C.生态系统维持相对稳定离不开信息传递D.负反馈调节有利于生态系统保持相对稳定【答案】B【解析】生态系统的组成成分:非生物的物质和能量、生产者、消费者、分解者;A正确。
生态系统相对稳定时能量的输入=输出(散失);B错误。
5.下列与病原体有关的叙述,正确的是(1)抗体可以进入细胞消灭寄生在其中的结核杆菌(2)抗体抵抗病毒的机制与溶菌酶杀灭细菌的机制相同(3)Rous肉瘤病毒不是致癌因子,与人的细胞癌变无关(4)人体感染HIV后的症状与体内该病毒浓度和T细胞数量有关【答案】D下可推测,(2)A(2分)乙烯具有促进果实成熟的作用,该组乙烯的含量(或释放量)高于其他组(3分,其它合理也给分)B(2分)30.(9分)甲状腺激素是人体中的重要激素。
回答下列相关问题:(1)通常,新生儿出生后,由于所处环境温度比母体内低,甲状腺激素水平会升高。
在这个过程中,甲状腺激素分泌的调节是分级调节,其中由分泌促甲状腺激素释放激素,由分泌促甲状腺激素。
2015北京高考数学理科试卷解析及评价纯WORD版参与人员:陈玉兵王海军韦家鼎刘迎春沈少林高原马文超石运红何军凤闫泓水从2015年北京高考数学理科试卷来看,命题依旧考察学生的空间想象、抽象概括、推理论证、运算求解、数据处理、分析问题和解决问题的能力.从试卷整体来看,难度有所下降,在考察能力的同时,更注重基础知识的和方法的考察.从试题来看,小题部分对函数的直接考察力度加大,其中第七题、第八题、第十四题均为函数问题;小题部分有所调整,今年取消了几何证明选讲部分的考察,增加了二项式定理部分的题目.整体来看,小题部分难度有所下降.解答题部分15题三角函数、16题概率、17题立体几何这三个题目没有太大改变,题目比较常规,18题导数部分加强了导数运算的能力,19题圆锥曲线通过三角形相似构建坐标关系,较去年难度有所下降;第20题依然考察学生思维能力,注重数学模型和数学语言的表达.从2015高考试题来看,北京高考依然以第8题,14题和20题三个题目为难点考察学生综合分析和综合运用的能力,起到高考选拔的作用.2015年普通高等学校招生全国统一考试(北京卷)理科数学第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分. 1.复数()2i i -=( ).A .12i +B .12i -C .12i -+D .12i -- 【解析】()22212i i i i i -=-=+,选A2.若x ,y 满足010x y x y x -≤⎧⎪+≤⎨⎪≥⎩,则2z x y =+的最大值为( ).A .0B .1C .32D .2 【解析】如图,当 01x y ==,max 2z =,选B 3.执行如图所示的程序框图,输出的结果为( ).A .(2,2)-B .(4,0)-C .(4,4)-D .(0,8)-【解析】020212222240403s t x y k s t x y k s t x y k ======-==-===-==-==结束,输出(4,0)-,选择B4.设αβ,是两个不同的平面,m 是直线且αm ⊂,“//m β”是“//αβ”的( ). A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【解析】//m β不能推出//αβ,而//αβ,//m β⇒,∴“//m β”是“//αβ”的必要不充分条件,答案为B5.某三棱锥的三视图如图所示,则该三棱锥的表面积是( ). A .25+ B .45+ C .225+ D .5【解析】由三视图知,PA ⊥面ABC ,12222ABCS=⨯⨯=,5AB AC ==,155122PABPCASS==⨯⨯=,6PC PB ==,12552PBCS =⨯⨯=,∴225S =+,答案为C6.设{}n a 是等差数列,下列结论中正确的是( ).A .若120a a +>,则230a a +>B .若130a a +<,则120a a +<C .若120a a <<,则213a a a >D .若10a <,则2123(-)(-)0a a a a > 【解析】210a a >>,0d ⇒>,所以30a >,132132a a a a a +=>,故答案为C 7.如图,函数()f x 的图像为折线ACB ,则不等式()2()1f x x +≥log 的解集是( ). A .{}|10x x -<≤ B .{}|11x x -≤≤ C .{}|11x x -<≤ D .{}|12x x -<≤ 【解析】由题可知:22-10()202x x f x x x +≤≤⎧=⎨-+<≤⎩,当(]1,0x ∈-时,2log (1)022x x +<<+.(]0,2x ∈时,()f x 单调递减,2()log (1)g x x =+单调递增,2log (1)2x x +=-+1x ⇒=∴当01x <≤时,2log (1)2x x +≤-+,∴2()log (1)f x x ≥+的解集为(]1,1-,∴答案选择C8.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况,下列叙述中正确的是( ).A .消耗1升汽油,乙车最多可行驶5千米B .以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C .甲车以80千米/小时的速度行驶1小时,消耗10升汽油D .某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车更省油【解析】由图可知,对乙车存在一个速度,使燃油效率高于5,∴A 错;由图知,当以40/km h 的速度行驶时,甲车燃油效率最高,行驶相同路程时,耗油最少,B 错;甲车以80/km h 行驶1小时耗油8升,故C 错在限速80/km h ,相同情况下,丙车燃油效率较乙车高,所以乙车更省油,所以选D第二部分(非选择题 共110分)二、填空题 共6小题,每小题5分,共30分.9. 在()52x +的展开式中,3x 的系数为__________.(用数字作答)【解析】rr r r x C T -+=5512,当3=r 时,系数为4024542235=⨯⨯=C . 10.已知双曲线1222=-y a x )0(>a 的一条渐近线为03=+y x ,则=a __________.【解析】令00222=+⇒=-y a x y a x ,所以3331=⇒=a a .11.在极坐标中,点)3,2(π在直线6)sin 3(cos =+θθρ的距离为__________.【解析】直线方程为36360x y x y +=⇒+-=,点为)3,1(,所以点到直线方程的距离为12231631==+-+=d . 12.在ABC △中,4a =,5b =,6c =,则=CAsin 2sin __________. 【解析】222sin 22sin cos 24253616901sin sin 263090A A A a b c a C C c bc +-+-==⋅=⨯==.13. 在ABC △中,点N M ,满足.,2NC BC MC AM ==若,AC y AB x MN +=则=x __________;=y __________.【解析】CN MC MN +==31+AC 21CB =31AC +21)(AC AB -=21-AB 61AC ,所以61,21-==y x14. 设函数2,1()4()(2),1x a x f x x a x a x ⎧-<=⎨--⎩≥.①若1a =,则)(x f 的最小值为 ;②若)(x f 恰有2个零点,则实数a 的取值范围是 .【解析】①当1=a 时,⎩⎨⎧≥--<-=1),2)(1(41,12)(x x x x x f x ,1<x 时,1()1f x -<<,1≥x 时,min 311()()4()1222f x f ==⨯⨯-=-,所以1)(min -=x f ;②(I )当0≤a 时,)(x f 没有两个零点,(Ⅱ)当10<<a 时,1<x 时,220log 0x aa x -=⇒=<,()f x 有一个零点;1≥x 时,a x a x x f 2,0)(21==⇒=;当12≥a ,即21≥a 时,)(x f 恰有两个零点, 所以当121<≤a 时,)(x f 恰有两个零点; (Ⅲ)当21<≤a 时,1<x 时,220log 1x aa x -=⇒=<,()f x 有一个零点;1≥x 时,1()0f x x a =⇒=,22x a =,()f x 有两个零点,此时)(x f 有三个零点;(Ⅳ)当2≥a 时,1<x 时,无零点;1x ≥时,有两个零点,此时)(x f 有两个零点.综上所述[)+∞⋃⎪⎭⎫⎢⎣⎡∈,21,21a .三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)已知函数2—2.222()x x x sin cos sin f x =(Ⅰ)求(x)f 的最小正周期;(Ⅱ)求(x)f 在区间[,0]π-上的最小值. 解:(Ⅰ)22()sin (1cos )22f x x x =-- 222sin cos 222x x =+-2sin()42x π=+-周期221T ππ==. (Ⅱ)0x π-≤≤3444x πππ∴-≤+≤21sin()42x π∴-≤+≤21()02f x ∴--≤≤ ∴最小值为212--.16.(本小题满分13分)A ,B 两组各有 7 位病人,他们服用某种药物后的康复时间(单位:天)记录如下:A 组: 10111213141516,,,,,,B 组: 121315161714a ,,,,,,假设所有病人的康复时间互相独立,从A ,B 两组随机各选 1人,A 组选出的人记为 甲,B 组选出的人记为乙.(Ⅰ)求甲的康复时间不少于14 天的概率;(Ⅱ)如果 25a =,求甲的康复时间比乙的康复时间长的概率;(Ⅲ)当 a 为何值时,A ,B 两组病人康复时间的方差相等?(结论不要求证明) 解:(Ⅰ)记甲康复时间不小于14天为事件A .则3()7P A =答:甲康复时间不小于14天的概率为37. (Ⅱ)记甲的康复时间比乙的康复时间长为事件B .基本事件空间如下表乙 甲 10 11 12 13 14 15 16 12 短 短 短 长 长 长 长 13 短 短 短 短 长 长 长 14 短 短 短 短 短 长 长 15 短 短 短 短 短 短 长 16 短 短 短 短 短 短 短 17 短 短 短 短 短 短 短 25短短短短短短短所以1010()7749P B ==⨯. (Ⅲ)11a =或18a =由于A 组为公差为1的等差数列,所以当11a =或18a =时B 组也为公差为1的等差数列,所以方差一定相等,而方差相等的方程是关于a 的一个一元二次方程,故最多有两个解,所以只有11a =或18a =两个值.17.(本小题满分14分)如图,在四棱锥A EFCB -中,AEF △为等边三角形,平面AEF ⊥平面EFCB ,//EF BC ,4BC =, 2EF a =,060EBC FCB ∠=∠=,O 为EF 的中点.(Ⅰ)求证:AO BE ⊥;(Ⅱ)求二面角F AE B --的余弦值; (Ⅲ)若 BE ⊥平面AOC ,求a 的值.解:(Ⅰ)证明:AEF ∆为等边三角形,O 为EF 中点, AO EF ∴⊥又平面AEF ⊥平面EFCB ,平面AEF平面EFCB EF =,AO ∴⊥平面EFCB ,AO BE ∴⊥,(Ⅱ)以O 为原点建立如图坐标系(),0,0E a ,(),0,0F a -,()0,0,3A a ,()()2,32,0B a -(),0,3EA a a →=-,()()2,32,0EB a a →=--平面AEF 的法向量()0,1,0m →=; 设平面AEB 的法向量(),,n x y z →=,则030300n EA x z x y n EB →→→→⎧⎧⋅=-+=⎪⎪⇒⎨⎨+=⎪⎪⎩⋅=⎩ 取()3,1,1n →=-15cos ,515m nm n m n→→→→→→⋅-∴===-⨯⋅ 又二面角F AE B --为钝角,∴二面角F AE B --的余弦值为55-. (Ⅲ)BE ⊥平面AOC ,BE OC ∴⊥,()()2,32,0OC a →=--,()()()2232320BE OC a a a →→⋅=--+-⨯-=,解得2a =(舍)或43a =18.(本小题满分13分)已知函数()1ln1xf x x+=-.(Ⅰ)求曲线(x)y f =在点(0,(0))f 处的切线方程;(Ⅱ)求证:当(0,1)x ∈时,2(x)2(x )3xf >+;(Ⅲ)设实数k 使得3x (x)k(x )3f >+对(0,1)x ∈恒成立,求k 的最大值解:(Ⅰ) (x)ln(1x)ln(1x)f =+--11(x)11f x x -'=-+- 1111x x =++-所以(0)2f '= 又()0f x =所以,切线方程为02(x 0)y -=- 即2y x =(Ⅱ)3322(x)f(x)2x ln(1)ln(1x)2x 33F x x x =--=+----211(x)2211F x x x '=+--+-222(1)(1)(1x)x x =-++- 22222(1)(1)1x x x -+-=- 4221x x =- 又因为01x <<,所以(x)0F '>所以(x)F 在(0,1)上是增函数 又(0)0F =, 故(x)(0)F F >所以3x (x)k(x )3f >+(Ⅲ)31ln (x ),x (0,1)13x x k x +>+∈-设 21(x)ln (x )0,(0,1)13x x t k x x +=-+>∈-422222(x)(1),(0,1),11kx k t k x x x x +-'=-+=∈--[0,2]k ∈,(x)0t '≥,函数(x)t 是单调递增,(x)t(0)t '>显然成立当2k >时,令(x)0t '=()0t x '=,得402(0,1)k x k-=∈ x 0(0,)x0x0(,1)x(x)t '— 0+ (x)t ↓极值↑0(x )t(0)0t <=,显然不成立,由此可知k 最大值为2.19. (本小题满分14分)已知椭圆C :22221x y a b+=(0a b >>)的离心率为22,点()0,1P ,和点(,)(0)A m n m ≠都在椭圆C 上,直线PA 交x 轴于点M M .(Ⅰ)求椭圆C 的方程,并求点M 的坐标(用m ,n 表示);(Ⅱ)设O 为原点,点B 与点A 关于x 轴对称,直线PB 交x 轴于点N .问:y 轴上是否存在点Q Q ,使得若存在,求点Q 的坐标;若不不存在,说明理由.解:(Ⅰ)由题意知1b =,22c a =,又222a b c =+,解得2,1a b c ===, 所以C 的方程为2212x y +=. PA 的斜率1PA n k m-=, 所以PA 方程11n y x m-=+, 令0y =,解得1m x n=- 所以,01m M n ⎛⎫ ⎪-⎝⎭(Ⅱ)(),B m n -,同(I )可得,01m N n ⎛⎫ ⎪+⎝⎭, 1tan QM OQM k ∠=,tan QN ONQ k ∠=,因为OQM ONQ ∠=∠所以1QN QM k k ⋅=,设(),0Q t 则111t t m m n n⋅=-+--即2221m t n =-, 又A 在椭圆C 上,所以2212m n +=,即2221m n =-, 所以2t =±,故存在()2,0Q ±使得OQM ONQ ∠=∠20. (本小题满分13分)已知数列{n a }满足1a ∈Ν*,136a ≤,且12,18(1,2).236,18n n n n n a a a n a a +≤⎧==⋯⎨->⎩ 记集合{|}n M a n =∈N*(Ⅰ)若16a =,写出集合M 的所有元素;(Ⅱ)若集合M 存在一个元素是3的倍数,证明:M 的所有元素都是3的倍数; (Ⅲ)求集合M 的元素个数的最大值. 解:(Ⅰ)6,12,24.(Ⅱ)若存在(1,2,,)i a i n =L 是3的倍数,设3()i a k k =∈*N , 当18i a ≤时,126i i a a k +==,1i a +也是3的倍数; 当18i a >时,1236636i i a a k +=-=-,1i a +也是3的倍数. 综上,1i a +是3的倍数,依次类推,当n i ≥时,n a 是3的倍数;若存在(2,3,,)i a i n =L 是3的倍数,设3()i a k k =∈*N ,当118i a -≤时,1322i i a k a -==⋅,因为1i a -∈*N ,所以1i a -也是3的倍数; 当18i a >时,1363(6)22i i a k a -+==⋅+,因为1i a -∈*N ,所以1i a -也是3的倍数;. 综上,1i a -是3的倍数,依次类推,当n i <时,n a 是3的倍数; 所以原结论成立.(Ⅲ)当11a =时,将11a =代入12,18(1,2,)236,18n n n nn a a a n a a +⎧==⎨->⎩L ≤, 依次得到2,4,8,16,32,28,20,4,L 所以当9n ≥时,6n n a a -=,此时{1,2,4,8,16,20,28,32}M =, 共8个元素.由题意,3a 可取的值有14a ,1436a -,1472a -,14108a -共4个元素, 显然,不论1a 为何值,3a 必为4的倍数,所以34(1,2,,9)a k k ==L ,① 当3{4,8,16,20,28,32}a ∈时, {4,8,16,20,28,32}n a ∈(3)n ≥,此时M 最多有8个元素; ② 当3{12,24}a ∈时,{12,24}n a ∈(3)n ≥,此时M 最多有4个元素; ③ 当336a =时,36n a =(3)n ≥,此时M 最多有3个元素; 所以集合M 的元素个数的最大值为8.。
2015年普通高等学校招生全国统一考试(卷)数学(理科)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项符合题目要求.(1)【1,5分】i 为虚数单位,607i的共轭复数....为( )(A )i (B )i - (C )1 (D )1- 【解析】60741513i i i i ⨯=⋅=-,共轭复数为i ,故选A .(2)【2015年,理2,5分】我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米夹谷,抽样取米一把,数得254粒夹谷28粒,则这批米夹谷约为( )(A )134石 (B )169石 (C )338石 (D )1365石 【答案】B【解析】依题意,这批米夹谷约为281534169254⨯=石,故选B . (3)【2015年,理3,5分】已知(1)n x +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数)(A )122(B )112 (C )102 (D )92【答案】【解析】因为(1)n x +的展开式中第4项与第8项的二项式系数相等,所以37n n C C =,解得10n =,所以二项式(1)nx +中奇数项的二项式系数和为1091222⨯=,故选D . 以及计算能力.(4)【2015年,理4,5分】设211(,)X N μσ:,222(,)Y N μσ:,这两个正态分布密 (A )21()()P Y P Y μμ≥≥≥ (B )21()()P X P X σσ≤≤≤(C )对任意正数t ,()()P X t P Y t ≤≥≤ (D )对任意正数t ,()()P X t P Y t ≥≥≥ 【答案】【解析】正态分布密度曲线图象关于x μ=对称,所以12μμ<,从图中容易得到()()P X t P Y t ≤≥≤,故选C .【点评】本题考查了正态分布的图象与性质,学习正态分布,一定要紧紧抓住平均数μ和标准差σ这两个关键(5)【2015年,理5,5分】设12,,,n a a a ∈R L ,3n ≥.若p :12,,,n a a a L 成等比数列;q :22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++L L L ,则( )(A q 的充分条件 (C )p 是q 的充分必要条件 (D )p 既不是q 的充分条件,也不是q 的必要条件 【答案】A【解析】对命题12:,,,n p a a a L 成等比数列,则公比()13n n aq n a -=≥且0n a ≠;对命题q ,①当0=n a 时,22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++L L L 成立; ②当0≠n a 时,根据柯西不等式,等式22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++L L L 成立,则nn a a a a a a 13221-=⋅⋅⋅==,所以12,,,n a a a L 成等比数列,所以p 是q 的充分条件,但不是q 的必要(6)【2015年,理6,5分】已知符号函数1,0,sgn 0,0,1,0.x x x x >⎧⎪==⎨⎪-<⎩()f x 是R 上的增函数,()()()(1)g x f x f ax a =->,(A )sgn[()]sgn g x x = (B )sgn[()]sgn g x x =- (C )sgn[()]sgn[()]g x f x = (D )sgn[()]sgn[()]g x f x =- 【答案】【解析】因为()f x 是R 上的增函数,令()f x x =,所以()()1g x a x =-,因为1a >,所以()g x 是R 上的减函数,由符号函数1,0,sgn 0,0,1,0.x x x x >⎧⎪==⎨⎪-<⎩知,1,0,sgn 0,0,sgn 1,0.x x x x x >⎧⎪===-⎨⎪-<⎩,故选B .(7)【2015年,理7,5分】在区间[0,1]上随机取两个数,x y ,记1p 为事件“12x y +≥”的概率,2p 为事件“1||2x y -≤”的概率,3p 为事件“12xy ≤”的概率,则( ) (A )123p p p << (B )231p p p << (C )312p p p << (D )321p p p << 【解析】因为[],0,1x y ∈,对事件“12x y -≥”如图(1)阴影部分1S , 对事件“12x y -≤”,如图(2)阴影部分2S ,对事件“12xy ≤”,如图(3)阴影部分3S ,由图知,阴影部分的面积从下到大依次是231S S S <<,正方形的面积为111⨯=,根据几何概型公式可得231p p p <<,故选B .【点评】利用数形结合是解决本题的关键.本题也可以直接通过图象比较面积的大小即可比较大小.(8)【2015年,理8,5分】将离心率为1e 的双曲线1C 的实半轴长a 和虚半轴长()b a b ≠同时增加(0)m m >个单位长度,得到离心率为2e 的双曲线2C ,则( )(A )对任意的,a b ,12e e > (B )当a b >时,12e e >;当a b <时,12e e < (C )对任意的,a b ,12e e < (D )当a b >时,12e e <;当a b <时,12e e > 【答案】【解析】依题意,22211a b b e a a +⎛⎫==+ ⎪⎝⎭,()()22221a m b m b m e a ma m ++++⎛⎫==+ ⎪++⎝⎭,因为()()()m b a b b m ab bm ab am a a m a a m a a m -++---==+++,由于0m >,0a >,0b >,当a b >时,01b a <<,01b m a m +<<+,b b m a a m +<+,22b b m a a m +⎛⎫⎛⎫< ⎪ ⎪+⎝⎭⎝⎭,所以12e e <;当a b <时,1b a >,1b m a m +>+,而b b m a a m +>+,所以22b b m a a m +⎛⎫⎛⎫> ⎪ ⎪+⎝⎭⎝⎭,所以12e e >.所以当a b >时,12e e <,当a b <时,12e e >,故选D .(9)【2015年,理9,5分】已知集合22{(,)1,,}A x y x y x y =+≤∈Z ,{(,)||2,||2,,}B x y x y x y =≤≤∈Z ,定义集合12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕中元素的个数为( )(A )77 (B )49 (C )45 (D )30 【解析】因为集合(){}22,1,,A x y xy x y =+≤∈Z ,所以集合A 中有9个元素(即9个点),即图中圆中的整点,集合{(,)||2,||2,,}B x y x y x y =≤≤∈Z 中有25个元素(即 25个点):即图中正方形ABCD 中的整点,集合12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈的元素可看作正方形1111A B C D中的整点(除去四个顶点),即77445⨯-=个,故选C .复的元素.(10)【2015年,理10,5分】设x ∈R ,[]x 表示不超过x 的最大整数. 若存在实数t ,使得[]1t =,2[]2t =,…,[]n t n =同时成立....,则正整数n 的最大值是( ) (A )3 (B )4 (C )5 (D )6 【答案】B【解析】由[]1t =得12t ≤<,由2[]2t =得223t ≤<,由43t ⎡⎤=⎣⎦得445t ≤<,可得225t ≤<,所以225t ≤<; 由3[]3t =得334t ≤<,所以5645t ≤<,由55t ⎡⎤=⎣⎦得556t ≤<,与5645t ≤<矛盾,故正整数n 的最大值是4,故选B .【点评】本题考查简单的演绎推理,涉及新定义,属基础题.二、填空题:共6小题,考生需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上...........答错位置,书写不清,模棱两可均不得分. (一)必考题(11-14题)(11)【2015年,理11,5分】已知向量OA AB ⊥u u u r u u u r ,||3OA =u u u r ,则OA OB ⋅=u u u r u u u r . 【答案】9【解析】因为OA AB ⊥u u u r u u u r ,3OA =u u u r ,()22239OA OB OA OA OB OA OA OB OA ⋅=⋅+=+⋅===u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r .(12)【2015年,理12,5分】函数2π()4cos cos()2sin |ln(1)|22x f x x x x =---+的零点个数为 . 【答案】2 【为()()()()()24cos cos 2sin ln 121cos sin 2sin ln 1sin 2ln 122x x f x x x x x x x x x x ⎛⎫=----=+--+=-+ ⎪⎝⎭,所以函数()f x 的零点个数为函数sin 2y x =与()ln 1y x =+图像如图,由图知,两函数图像右2个交点, 所以函数()f x 由2个零点.(13)【2015年,理13,5分】如图,一辆汽车在一条水平的公路上向正西行驶,到A 处在西偏北30o 的方向上,行驶600m 后到达B 处,测得此山顶在西偏北75o 的方向上,仰角为30o ,则此山的高度CD = m .【答案】1006 【解析】依题意,30BAC ∠=︒,105ABC ∠=︒,在ABC ∆中,由180ABC BAC ACB ∠+∠+∠=︒,所以45ACB ∠=︒,因为600AB =,由正弦定理可得600sin 45sin30BC-=︒︒,即3002BC =m ,在Rt BCD ∆中, 因为30CBD ∠=︒,3002BC =,所以tan303002CD CDBC ︒==,所以1006CD =m .(14)【2015年,理14,5分】如图,圆C 与x 轴相切于点(1,0)T ,与y 轴正半轴交于两点,A B (B 在A 的上方),且2AB =.(1)圆C 的标准..方程为 ;(2)过点A 任作一条直线 与圆22:1O x y +=相交于,M N 两点,下列三个结论: ①NA MA NBMB=; ②2NB MA NAMB-=; ③22NB MA NAMB+=.其中正确结论的序号是 . (写出所有正确结论的序号) 【答案】(1)()()22122x y -+-=;(2)①②③【解析】(1)依题意,设()1,C r (r 为圆的半径),因为2AB =,所以22112r =+=,所以圆心()1,2C ,故圆的标准方程为()()22122x y -+-=.(2)解法一:联立方程组()()22122x x y =⎧⎪⎨-+-=⎪⎩,解得021x y =⎧⎪⎨=-⎪⎩或021x y =⎧⎪⎨=+⎪⎩,因为B 在A 的上方,所以()0,21A -,()0,21B +,领直线MN 的方程为0x =,此时()0,1M -,()0,1N ,所以2MA =,22MB =+,22NA =-,2NB =,因为22212NA NB-==-,22122MA MB==-+,所以NA MA NB MB =所以()22212122222NB MA NAMB-=-=+--=-+,()222121222222NB MA NAMB+=+=++-=-+,正确结论的序号是①②③.解法二:因为圆心()1,2C ,()0,2E ∴,又2AB =Q ,且E 为AB 中点,∴()0,21A -,()0,21B +,M Q ,N 在圆22:1O x y +=,∴可设()cos ,sin M αα,()cos ,sin N ββ,()()22cos 0sin 21NA ββ⎡⎤∴=-+--⎣⎦()22cos sin 221sin 322βββ=+--+-()()()422221sin 2221221sin ββ=---=---()()2212sin β=--,()()22cos 0sin 21NB ββ⎡⎤∴=-+-+⎣⎦()22cos sin 221sin 322βββ=+-+++()()()422221sin 2221221sin ββ=+-+=+-+()()2212sin β=+-,()()()()2212sin 2121212212sin NA NBββ---∴===-++-,同理21MA MB=-.所以NA MA NBMB=,所以()22212122222NB MA NA MB -=-=+--=-+, ()222121222222NB MA NAMB+=+=++-=-+,【点评】本题考查求圆的标准方程,用三角函数值表示单位圆上点的坐标是解决本题的关键,注意解题方法的积累,属于难题.(一)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B 铅笔涂黑,如果全选,则按第15题作答结果计分.) (15)【P A 是圆的切线,A 为切点,PBC 是圆的割线,且3BC PB =,则ABAC=_______. 【答案】12【解析】因为PA 是圆的切线,A 为切点,PBC 是圆割定理知,()2PA PB PC PB PB BC =⋅=+,因为3BC PB =,所以224PA PB =,即2PA PB =,由A PAB PC ∆∆∽,所以12AB PB AC PA ==. (16)【2015年,理16,5分】(选修4-4:坐标系与参数方程)在直角坐标系xOy 中,以O 轴为极轴建立极坐标系. 已知直线l 的极坐标方程为(sin 3cos )0ρθθ-=,曲线C 的参数方程为1,1x t ty t t ⎧=-⎪⎪⎨⎪=+⎪⎩( t 为参数) ,l 与C 相交于A ,B 两点,则||AB = .【答案】25【解析】因为()sin 3cos 0ρθθ-=,所以sin 3cos 0ρθρθ-=,所以30y x -=,即3y x =;由11x t ty t t ⎧=-⎪⎪⎨⎪=+⎪⎩,消去t得224y x -=,联立方程组2234y x y x =⎧⎨-=⎩,解得22322x y ⎧=⎪⎪⎨⎪=⎪⎩或22322x y ⎧=-⎪⎪⎨⎪=-⎪⎩,即232,22A ⎛⎫ ⎪ ⎪⎝⎭,232,22B ⎛⎫-- ⎪ ⎪⎝⎭,由两点间的距离公式得22223232252222AB ⎛⎫⎛⎫=+++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 础的计算题.三、解答题:共6题,共75(17)【2015年,理17,11分】某同学用“五点法”画函数()sin()f x A x ωϕ=+π(0,||)2ωϕ><在某一个周期x ωϕ+ 0π2 π 3π2 2π x π3 5π6sin()A x ωϕ+0 5 5- 0(1)请将上表数据补充完整,填写在答题卡上相应位置...........,并直接写出函数()f x 的解析式; (2)将()y f x =图象上所有点向左平行移动θ(0)θ>个单位长度,得到()y g x =的图象. 若()y g x =图象的一个对称中心为5π(,0)12,求θ的最小值. 解:(1)根据表中已知数据,解得π5,2,6A ωϕ===-.数据补全如下表:x ωϕ+ 0π2π 3π22πxπ12 π3 7π12 5π6 13π12 sin()A x ωϕ+55-且函数表达式为π()5sin(2)6f x x =-.(2)由(1)知 π()5sin(2)6f x x =-,得π()5sin(22)6g x x θ=+-. 因为sin y x =的对称中心为(π,0)k ,k ∈Z .令π22π6x k θ+-=,解得ππ212k x θ=+-,k ∈Z . 由于函数()y g x =的图象关于点5π(,0)12成中心对称,令ππ5π21212k θ+-=,解得ππ23k θ=-,k ∈Z . 由0θ>可知,当1k =时,θ取得最小值π6. 【点评】本题主要考查了由()sin y A x ωϕ=+的部分图象确定其解析式,函数()sin y A x ωϕ=+的图象变换规律(18)【2015年,理18,12分】设等差数列{}n a 的公差为d 前n 项和为n S ,等比数列{}n b 的公、比为q .已知11b a =,22b =,q d =,10100S =.(1)求数列{}n a ,{}n b 的通项公式;(2)当1d >时,记n n nac b =,求数列{}n c 的前n 项和n T .解:(1)由题意知:1110451002a d a d -=⎧⎨=⎩,即1129202a d a d +=⎧⎨=⎩,得112a d =⎧⎨=⎩或1929a d =⎧⎪⎨=⎪⎩,故1212n n n a n b -=-⎧⎪⎨=⎪⎩或()112799299n n n a n b -⎧=+⎪⎪⎨⎛⎫⎪= ⎪⎪⎝⎭⎩. (2)由1d >,知21n a n =-,12n n b -=,故1212n n n c --=, 于是2341357921122222n n n T --=+++++L L ① 2345113579212222222n n n T -=+++++L L ② 由①-②可得234521111111212323222222222n n n n n n T --+=++++++-=-L L ,故12362nn n T -+=-. (19)【2015年,理19,12分】《九章算术》中,将底面为长方形且有如图,在阳马P ABCD -中,侧棱PD ⊥底面ABCD ,且PD CD =,过棱PC 的中点E ,作EF PB ⊥交PB 于点F ,连接,,,.DE DF BD BE . (1)证明:PB DEF ⊥平面.试判断四面体DBEF 是否为鳖臑,若是,写出其每个面的直(2)若面DEF 与面ABCD 所成二面角的大小为π3,求DCBC的值.解:(1)因为PD ⊥底面ABCD ,所以PD BC ⊥,由底面ABCD 为长方形,有BC CD ⊥,而PD CD D =I ,所以BC PCD ⊥平面. 而DE PCD ⊂平面,所以BC DE ⊥. 又因为PD CD =,点E 是PC 的中点,所以DE PC ⊥. 而PC BC C =I ,所以DE ⊥平面PBC . 而PB PBC ⊂平面,所以PB DE ⊥. 又PB EF ⊥,DE EF E =I ,所以PB ⊥平面DEF .由DE ⊥平面PBC ,PB ⊥平面DEF ,可知四面体BDEF 的四个面都是直角三角形,即四面体BDEF 是一个鳖臑,其四个面的直角分别为DEB DEF ∠∠,,EFB DFB ∠∠,. (2)如图1,在面PBC ,延长BC 与FE 交于点G ,则DG 是平面DEF 与平面ABCD 的由(1)知,PB DEF ⊥平面,所以PB DG ⊥. 又因为PD ⊥底面ABCD ,所以 PD DG ⊥. 而PD PB P =I ,所以DG PBD ⊥平面.故BDF ∠是面DEF 与面ABCD 所成二面角的平面角,设1PD DC ==,BC λ=,有21BD λ=+,在Rt △PDB 中, 由DF PB ⊥, 得π3DPF FDB ∠=∠=,则 2πtan tan 133BDDPF PD λ=∠==+=, 解得2λ=. 所以12.2DC BC λ== 故当面DEF 与面ABCD 所成二面角的大小为π3时,22DC BC =. (1)如图2,以D 为原点,射线,,DA DC DP 分别为,,x y z 轴的正半轴,建立空间直角坐标系. 设1PD DC ==,BC λ=,则(0,0,0),(0,0,1),(,1,0),(0,1,0)D P B C λ, (,1,1)PB λ=-u u u r ,点E 是PC 的中点,所以11(0,,)22E ,11(0,,)22DE =u u u r ,于是0PB DE ⋅=u u u r u u u r,即PB DE ⊥. 又已知EF PB ⊥,而DE EF E =I ,所以PB DEF ⊥平面. 因(0,1,1)PC =-u u u r , 0DE PC ⋅=u u u r u u u r, 则DE PC ⊥, 所以DE PBC ⊥平面.由DE ⊥平面PBC ,PB ⊥平面DEF ,可知四面体BDEF 的四个面都是直角三角形,即四面体BDEF 是一个鳖臑,四个面的直角分别为DEB DEF ∠∠,,EFB DFB ∠∠,. (2)由PD ABCD ⊥平面,所以(0,0,1)DP =u u u r是平面ABCD 的一个法向量;由(1)知,PB DEF ⊥平面,所以(,1,1)BP λ=--u u u r是平面DEF 的一个法向量.若面DEF 与面ABCD 所成二面角的大小为π3,则2π11cos 32||||2BP DP BP DP λ⋅===⋅+u u u r u u u r u u ur u u u r , 解得2λ=. 所以12.2DC BC λ== 故当面DEF 与面ABCD 所成二面角的大小为π3时,22DC BC =. 于难题.(20)【2015年,理20,12分】某厂用鲜牛奶在某台设备上生产,A B 两种奶制品.生产1吨A 产品需鲜牛奶210001吨B 产品需鲜牛奶1.51.5小时,获利 1200元.要求每天B 产品的产量不超过A 产品产量的2倍,设备每天生产,A B 两种产品时间之和不超过 12小时. 假定每天可获取的鲜牛奶数量W (单位:吨)是一个随机变量,其分布列为W 12 15 18 P 0.3 0.5 0.2该厂每天根据获取的鲜牛奶数量安排生产,使其获利最大,因此每天的最大获利Z (单位:元)是一个(1)求Z 的分布列和均值;(2)若每天可获取的鲜牛奶数量相互独立,求3天中至少有1解:(1)设每天,A B 两种产品的生产数量分别为,x y ,相应的获利为z ,则有2 1.5,1.512, 20,0, 0.x y W x y x y x y +≤⎧⎪+≤⎪⎨-≥⎪⎪≥≥⎩ (1) 目标函数为 10001200z x y =+.当12W =时,(1)表示的平面区域如图1,三个顶点分别为(0, 0), (2.4, 4.8), (6, 0)A B C .将10001200z x y =+变形为561200z y x =-+,当 2.4, 4.8x y ==时,直线l :561200z y x =-+在y 轴上的截距最大,最大获利max 2.41000 4.812008160Z z ==⨯+⨯=.当15W =时,(1)表示的平面区域如图2,三个顶点分别为(0, 0), (3, 6), (7.5, 0)A B C .将10001200z x y =+变形为561200z y x =-+,当3, 6x y ==时,直线l :561200z y x =-+在y 轴上的截距最大,最大获利max 310006120010200Z z ==⨯+⨯=.当18W =时,(1)表示的平面区域如图3, 四个顶点分别为(0, 0), (3, 6), (6, 4), (9, 0)A B C D . 将10001200z x y =+变形为561200z y x =-+,当6,4x y ==时,直线l :561200zy x =-+在y 轴上的截距最大,最大获利max 610004120010800Z z ==⨯+⨯=.故最大获利Z 的分布列为Z8160 10200 10800 P0.3 0.5 0.2 因此,()81600.3102000.5108000.29708.E Z =⨯+⨯+⨯= (2)由(1)知,一天最大获利超过10000元的概率1(10000)0.50.20.7p P Z =>=+=,由二项分布,3天中至少有1天最大获利超过10000元的概率为()3311110.30.973p p =--=-=.问题解决问题的能力.(21)【2015年,理21,14分】一种作图工具如图1所示.O 是滑槽AB 的中点,短杆MN 通过N 处铰链与ON 连接,MN D AB 滑动,且1DN ON ==,3MN =.当栓子D 在滑槽AB 作往复运动时,带动..N 绕O 转动一周(D 不动时,N C .以O 为原点,AB 所在的直线为x 轴建立如图2所示的平面直角坐标系.(2)设动直线l 与两定直线1:20l x y -=和2:20l x y +=分别交于,P Q 两点.若直线l 总与曲线C 有且只有一个公共点,试探 OPQ 的面积是否存在最小值?若存在,求出该最小值; 解:(1)设点(,0)(||2)D t t ≤,00(,),(,)N x y M x y ,依题意,2MD DN =u u u u r u u u r,且||||1DN ON ==u u u r u u u r ,所以00(,)2(,)t x y x t y --=-,且22002200()1,1.x t y x y ⎧-+=⎪⎨+=⎪⎩ 即0022,2.t x x t y y -=-⎧⎨=-⎩且0(2)0.t t x -= 由于当点D 不动时,点N也不动,所以t 不恒等于0,于是02t x =,故00,42x y x y ==-,(2②8.【点评】本题的关键.综合性较强,运算量较大.(22)【2015年,理22,14(((解:(1①(2②(3运算求解能力、创新知识,考查了利用放缩法法证明数列不等式,是压轴题.。
2015年普通高等学校招生全国统一考试(安徽卷)数学(理科)本试卷分第I 卷(选择题目)和第II 卷(非选择题目)两部分,第I 卷第1至第2页,第II 卷第3至第4页。
全卷满分150分,考试时间120分钟。
考生注意事项:1.答题前,务必在试卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致。
务必在答题卡背面规定的地方填写姓名和座位号后两位。
2.答第I 卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
3.答第II 卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡上....书写,要求字体工整、笔迹清晰。
作图题可先用铅笔在答题卡...规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚。
必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在答题卷、...................草稿纸上答题无效........。
4.考试结束,务必将试卷和答题卡一并上交。
参考公式:第Ⅰ卷(选择题目共50分)一、选择题目:本大题共10个小题;每小题5分,共50分.在每小题给出的四个选项中,有且只有一项是符合题目要求的。
(1)设i 是虚数单位,则复数21ii 在复平面内所对应的点位于(A )第一象限(B )第二象限(C )第三象限(D )第四象限(2)下列函数中,既是偶函数又存在零点的是(A )y cos x (B )y sin x (C )y n l x (D )21y x (3)设p :1<x<2,q :2x >1,则p 是q 成立的(A )充分不必要条件(B )必要不充分条件(C )充分必要条件(D )既不充分也不必要条件4、下列双曲线中,焦点在y 轴上且渐近线方程为2y x 的是()(A )2214y x (B )2214x y (C )2214y x (D )2214x y 5、已知m ,n 是两条不同直线, , 是两个不同平面,则下列命题正确的是()(A )若 , 垂直于同一平面,则 与 平行(B )若m ,n 平行于同一平面,则m 与n 平行(C )若 , 不平行,则在 内不存在与 平行的直线(D )若m ,n 不平行,则m 与n 不可能垂直于同一平面6、若样本数据1x ,2x , ,10x 的标准差为8,则数据121x ,221x , ,1021x 的标准差为()(A )8(B )15(C )16(D )327、一个四面体的三视图如图所示,则该四面体的表面积是()(A )13(B )23 (C )122 (D )228、C 是边长为2的等边三角形,已知向量a ,b 满足2a ,C 2a b ,则下列结论正确的是()(A )1b (B )a b (C )1a b (D ) 4C a b 9、函数2ax b f x x c 的图象如图所示,则下列结论成立的是()(A )0a ,0b ,0c (B )0a ,0b ,0c (C )0a ,0b ,0c (D )0a ,0b ,0c 10、已知函数sin f x x ( , , 均为正的常数)的最小正周期为 ,当23x时,函数 f x 取得最小值,则下列结论正确的是()(A ) 220f f f (B )022f f f (C )202f f f (D ) 202f f f 第二卷二.填空题目11.371()x x 的展开式中5x 的系数是(用数字填写答案)12.在极坐标系中,圆8sin 上的点到直线()3R 距离的最大值是13.执行如图所示的程序框图(算法流程图),输出的n为14.已知数列{}n a 是递增的等比数列,14329,8a a a a ,则数列{}n a 的前n 项和等于15.设30x ax b ,其中,a b 均为实数,下列条件中,使得该三次方程仅有一个实根的是(写出所有正确条件的编号)(1)3,3a b ;(2)3,2a b ;(3)3,2a b ;(4)0,2a b ;(5)1,2a b .三.解答题16.在ABC 中,3,6,324A AB AC ,点D 在BC 边上,AD BD ,求AD 的长。
2015年普通高等学校招生全国统一考试(湖北卷)数学(理科)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项符合题目要求.(1)【2015年湖北,理1,5分】i 为虚数单位,607i 的共轭复数....为( ) (A )i (B )i - (C )1 (D )1- 【答案】A【解析】60741513i i i i ⨯=⋅=-,共轭复数为i ,故选A .【点评】本题考查复数的基本运算,复式单位的幂运算以及共轭复数的知识,基本知识的考查.(2)【2015年湖北,理2,5分】我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( ) (A )134石 (B )169石 (C )338石 (D )1365石 【答案】B【解析】依题意,这批米内夹谷约为281534169254⨯=石,故选B .【点评】本题考查利用数学知识解决实际问题,考查学生的计算能力,比较基础.(3)【2015年湖北,理3,5分】已知(1)n x +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( ) (A )122(B )112 (C )102 (D )92【答案】D 【解析】因为(1)n x +的展开式中第4项与第8项的二项式系数相等,所以37n n C C =,解得10n =,所以二项式(1)n x + 中奇数项的二项式系数和为1091222⨯=,故选D .【点评】本题考查二项式定理的应用,组合数的形状的应用,考查基本知识的灵活运用 以及计算能力.(4)【2015年湖北,理4,5分】设211(,)X N μσ,222(,)Y N μσ,这两个正态分布密度曲线如图所示.下列结论中正确的是( )(A )21()()P Y P Y μμ≥≥≥ (B )21()()P X P X σσ≤≤≤(C )对任意正数t ,()()P X t P Y t ≤≥≤ (D )对任意正数t ,()()P X t P Y t ≥≥≥ 【答案】C【解析】正态分布密度曲线图象关于x μ=对称,所以12μμ<,从图中容易得到()()P X t P Y t ≤≥≤,故选C .【点评】本题考查了正态分布的图象与性质,学习正态分布,一定要紧紧抓住平均数μ和标准差σ这两个关键量,结合正态曲线的图形特征,归纳正态曲线的性质.(5)【2015年湖北,理5,5分】设12,,,n a a a ∈R ,3n ≥.若p :12,,,n a a a 成等比数列;q :22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++,则( ) (A )p 是q 的充分条件,但不是q 的必要条件 (B )p 是q 的必要条件,但不是q 的充分条件 (C )p 是q 的充分必要条件 (D )p 既不是q 的充分条件,也不是q 的必要条件 【答案】A【解析】对命题12:,,,n p a a a 成等比数列,则公比()13n n aq n a -=≥且0n a ≠;对命题q ,①当时,成立;②当时,根据柯西不等式,等式成立,则,所以成等比数列,所以p 是q 的充分条件,但不是q 的必要 0=n a 22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++0≠n a 22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++nn a a a a a a 13221-=⋅⋅⋅==12,,,n a a a条件.故选A .(6)【2015年湖北,理6,5分】已知符号函数1,0,sgn 0,0,1,0.x x x x >⎧⎪==⎨⎪-<⎩()f x 是R 上的增函数,()()()(1)g x f x f ax a =->,则( )(A )sgn[()]sgn g x x = (B )sgn[()]sgn g x x =- (C )sgn[()]sgn[()]g x f x = (D )sgn[()]sgn[()]g x f x =- 【答案】B【解析】因为()f x 是R 上的增函数,令()f x x =,所以()()1g x a x =-,因为1a >,所以()g x 是R 上的减函数,由符号函数1,0,sgn 0,0,1,0.x x x x >⎧⎪==⎨⎪-<⎩知,1,0,sgn 0,0,sgn 1,0.x x x x x >⎧⎪===-⎨⎪-<⎩,故选B .(7)【2015年湖北,理7,5分】在区间[0,1]上随机取两个数,x y ,记1p 为事件“12x y +≥”的概率,2p 为事件“1||2x y -≤”的概率,3p 为事件“12xy ≤”的概率,则( ) (A )123p p p << (B )231p p p << (C )312p p p << (D )321p p p << 【答案】B【解析】因为[],0,1x y ∈,对事件“12x y -≥”如图(1)阴影部分1S , 对事件“12x y -≤”,如图(2)阴影部分2S ,对事件“12xy ≤”,如图(3)阴影部分3S ,由图知,阴影部分的面积从下到大依次是231S S S <<,正方形的面积为111⨯=,根据几何概型公式可得231p p p <<,故选B .【点评】本题主要考查几何概型的概率计算,利用数形结合是解决本题的关键.本题也可以直接通过图象比较面积的大小即可比较大小.(8)【2015年湖北,理8,5分】将离心率为1e 的双曲线1C 的实半轴长a 和虚半轴长()b a b ≠同时增加(0)m m >个单位长度,得到离心率为2e 的双曲线2C ,则( )(A )对任意的,a b ,12e e > (B )当a b >时,12e e >;当a b <时,12e e <(C )对任意的,a b ,12e e < (D )当a b >时,12e e <;当a b <时,12e e > 【答案】D【解析】依题意,22211a b b e a +⎛⎫==+ ⎪⎝⎭,()()22221a m b m b m e a m ++++⎛⎫==+ ⎪+⎝⎭,因为()()()m b a b b m ab bm ab am a a m a a m a a m -++---==+++,由于0m >,0a >,0b >, 当a b >时,01b a <<,01b m a m +<<+,b b m a a m +<+,22b b m a a m +⎛⎫⎛⎫< ⎪ ⎪+⎝⎭⎝⎭,所以12e e <;当a b <时,1b a >,1b m a m +>+,而b b m a a m +>+,所以22b b m a a m +⎛⎫⎛⎫> ⎪ ⎪+⎝⎭⎝⎭,所以12e e >.所以当a b >时,12e e <,当a b <时,12e e >,故选D .【点评】本题考查双曲线的性质,考查学生的计算能力,比较基础.(9)【2015年湖北,理9,5分】已知集合22{(,)1,,}A x y x y x y =+≤∈Z ,{(,)||2,||2,,}B x y x y x y =≤≤∈Z ,定义集合12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈,则A B⊕中元素的个数为( )(A )77 (B )49 (C )45 (D )30 【答案】C【解析】因为集合(){}22,1,,A x y xy x y =+≤∈Z ,所以集合A 中有9个元素(即9个点),即图中圆中的整点,集合{(,)||2,||2,,}B x y x y x y =≤≤∈Z 中有25个元素(即25个点):即图中正方形ABCD 中的整点,集合12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈的元素可看作正方形1111A B C D中的整点(除去四个顶点),即77445⨯-=个,故选C .【点评】本题以新定义为载体,主要考查了几何的基本定义及运算,解题中需要取得重复的元素.(10)【2015年湖北,理10,5分】设x ∈R ,[]x 表示不超过x 的最大整数. 若存在实数t ,使得[]1t =,2[]2t =,…,[]n t n =同时成立....,则正整数n 的最大值是( ) (A )3 (B )4 (C )5 (D )6 【答案】B【解析】由[]1t =得12t ≤<,由2[]2t =得223t ≤<,由43t ⎡⎤=⎣⎦得445t ≤<,可得225t ≤<,所以225t ≤<; 由3[]3t =得334t ≤<,所以5645t ≤<,由55t ⎡⎤=⎣⎦得556t ≤<,与5645t ≤<矛盾,故正整数n 的最大值是4,故选B .【点评】本题考查简单的演绎推理,涉及新定义,属基础题.二、填空题:共6小题,考生需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号.......的位置上....答错位置,书写不清,模棱两可均不得分. (一)必考题(11-14题)(11)【2015年湖北,理11,5分】已知向量OA AB ⊥,||3OA =,则OA OB ⋅= . 【答案】9 【解析】因为OA AB ⊥,3OA =,()22239OA OB OA OA OB OA OA OB OA ⋅=⋅+=+⋅===.【点评】本题考查了平面向量的数量积运算,考查了向量模的求法,是基础的计算题.(12)【2015年湖北,理12,5分】函数2π()4cos cos()2sin |ln(1)|22x f x x x x =---+的零点个数为 . 【答案】2 【解析】因为()()()()()24cos cos 2sin ln 121cos sin 2sin ln 1sin 2ln 122x x f x x x x x x x x x x ⎛⎫=----=+--+=-+ ⎪⎝⎭,所以函数()f x 的零点个数为函数sin 2y x =与()ln 1y x =+图像如图,由图知,两函数图像右2个交点,所以函数()f x 由2个零点.【点评】本题考查三角函数的化简,函数的零点个数的判断,考查数形结合与转化思想的应用.(13)【2015年湖北,理13,5分】如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30的方向上,行驶600m 后到达B 处,测得此山顶在西偏北75的方向上,仰角为30,则此山的高度CD = m .【答案】1006【解析】依题意,30BAC ∠=︒,105ABC ∠=︒,在ABC ∆中,由180ABC BAC ACB ∠+∠+∠=︒,所以45ACB ∠=︒,因为600AB =,由正弦定理可得600sin 45sin30BC-=︒︒,即3002BC =m ,在Rt BCD ∆中,因为30CBD ∠=︒,3002BC =,所以tan303002CD BC ︒==,所以1006CD =m . 【点评】本题主要考查了解三角形的实际应用.关键是构造三角形,将各个已知条件向这个主三角形集中,再通过正弦、余弦定理或其他基本性质建立条件之间的联系,列方程或列式求解.(14)【2015年湖北,理14,5分】如图,圆C 与x 轴相切于点(1,0)T ,与y 轴正半轴交于两点,A B (B 在A的上方),且2AB =.(1)圆C 的标准..方程为 ;(2)过点A 任作一条直线 与圆22:1O x y +=相交于,M N 两点,下列三个结论: ①NA MA NBMB=; ②2NB MA NAMB-=; ③22NB MA NAMB+=.其中正确结论的序号是 . (写出所有正确结论的序号) 【答案】(1)()()22122x y -+-=;(2)①②③【解析】(1)依题意,设()1,C r (r 为圆的半径),因为2AB =,所以22112r =+=,所以圆心()1,2C ,故圆的标准方程为()()22122x y -+-=.(2)解法一:联立方程组()()22122x x y =⎧⎪⎨-+-=⎪⎩,解得021x y =⎧⎪⎨=-⎪⎩或021x y =⎧⎪⎨=+⎪⎩,因为B 在A 的上方,所以()0,21A -,()0,21B +,领直线MN 的方程为0x =,此时()0,1M -,()0,1N ,所以2MA =,22MB =+,22NA =-,2NB =,因为22212NA NB-==-,22122MA MB==-+,所以NA MA NBMB =所以()22212122222NB MA NAMB-=-=+--=-+,()222121222222NB MA NAMB+=+=++-=-+,正确结论的序号是①②③.解法二:因为圆心()1,2C ,()0,2E ∴,又2AB =,且E 为AB 中点,∴()0,21A -,()0,21B +,M ,N 在圆22:1O x y +=,∴可设()cos ,sin M αα,()cos ,sin N ββ,()()22cos 0sin 21NA ββ⎡⎤∴=-+--⎣⎦()22cos sin 221sin 322βββ=+--+-()()()422221sin 2221221sin ββ=---=---()()2212sin β=--,()()22cos 0sin 21NB ββ⎡⎤∴=-+-+⎣⎦()22cos sin 221sin 322βββ=+-+++()()()422221sin 2221221sin ββ=+-+=+-+()()2212sin β=+-,()()()()2212sin 2121212212sin NA NBββ---∴===-++-,同理21MA MB=-.所以NA MA NBMB=,所以()22212122222NB MA NA MB -=-=+--=-+,()222121222222NB MA NAMB+=+=++-=-+,正确结论的序号是①②③.【点评】本题考查求圆的标准方程,用三角函数值表示单位圆上点的坐标是解决本题的关键,注意解题方法的积累,属于难题.(一)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B 铅笔涂黑,如果全选,则按第15题作答结果计分.)(15)【2015年湖北,理15,5分】(选修4-1:几何证明选讲)如图,P A 是圆的切线,A 为切点,PBC 是圆的割线,且3BC PB =,则ABAC=_______.【答案】12【解析】因为PA 是圆的切线,A 为切点,PBC 是圆的割线,由切割定理知,()2PA PB PC PB PB BC =⋅=+,因为3BC PB =,所以224PA PB =,即2PA PB =,由A PAB PC ∆∆∽,所以12AB PB AC PA ==. 【点评】本题考查切割线定理以及相似三角形的判定与应用,考查逻辑推理能力.(16)【2015年湖北,理16,5分】(选修4-4:坐标系与参数方程)在直角坐标系xOy 中,以O 为极点,x轴的正半轴为极轴建立极坐标系. 已知直线l 的极坐标方程为(sin 3cos )0ρθθ-=,曲线C 的参数方程为1,1x t t y t t ⎧=-⎪⎪⎨⎪=+⎪⎩( t 为参数) ,l 与C 相交于A ,B 两点,则||AB =.【答案】25【解析】因为()sin 3cos 0ρθθ-=,所以sin 3cos 0ρθρθ-=,所以30y x -=,即3y x =;由11x t ty t t ⎧=-⎪⎪⎨⎪=+⎪⎩,消去t 得224y x -=,联立方程组2234y x y x =⎧⎨-=⎩,解得2232x y ⎧=⎪⎪⎨⎪=⎪⎩或2232x y ⎧=-⎪⎪⎨⎪=-⎪⎩,即232,A ⎛⎫ ⎪ ⎪⎝⎭,232,B ⎛⎫-- ⎪ ⎪⎝⎭,由两点间的距离公式得22223232252222AB ⎛⎫⎛⎫=+++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 【点评】本题考查极坐标方程化直角坐标方程,参数方程化普通方程,考查了直线和圆锥曲线的位置关系,是基础的计算题.三、解答题:共6题,共75分.解答应写出文字说明,演算步骤或证明过程.(17)【2015年湖北,理17,11分】某同学用“五点法”画函数()sin()f x A x ωϕ=+π(0,||)2ωϕ><在某一个周期(1...........(2)将()y f x =图象上所有点向左平行移动θ(0)θ>个单位长度,得到()y g x =的图象. 若()y g x =图象的一个对称中心为5π(,0)12,求θ的最小值.解:(1)根据表中已知数据,解得π5,2,A ωϕ===-.数据补全如下表:且函数表达式为()5sin(2)6f x x =-.(2)由(1)知 π()5sin(2)6f x x =-,得π()5sin(22)6g x x θ=+-. 因为sin y x =的对称中心为(π,0)k ,k ∈Z .令π22π6x k θ+-=,解得ππ212k x θ=+-,k ∈Z . 由于函数()y g x =的图象关于点5π(,0)12成中心对称,令ππ5π21212k θ+-=,解得ππ23k θ=-,k ∈Z . 由0θ>可知,当1k =时,θ取得最小值π6. 【点评】本题主要考查了由()sin y A x ωϕ=+的部分图象确定其解析式,函数()sin y A x ωϕ=+的图象变换规律的应用,属于基本知识的考查.(18)【2015年湖北,理18,12分】设等差数列{}n a 的公差为d 前n 项和为n S ,等比数列{}n b 的公、比为q .已知11b a =,22b =,q d =,10100S =.(1)求数列{}n a ,{}n b 的通项公式;(2)当1d >时,记n n nac b =,求数列{}n c 的前n 项和n T .解:(1)由题意知:1110451002a d a d -=⎧⎨=⎩,即1129202a d a d +=⎧⎨=⎩,得112a d =⎧⎨=⎩或1929a d =⎧⎪⎨=⎪⎩,故1212n n na nb -=-⎧⎪⎨=⎪⎩或()112799299n n n a n b -⎧=+⎪⎪⎨⎛⎫⎪= ⎪⎪⎝⎭⎩. (2)由1d >,知21n a n =-,12n n b -=,故1212n n n c --=, 于是2341357921122222n n n T --=+++++ ① 2345113579212222222n n n T -=+++++ ② 由①-②可得234521111111212323222222222n n n n n n T --+=++++++-=-,故12362nn n T -+=-. 【点评】本题考查求数列的通项及求和,利用错位相减法是解决本题的关键,注意解题方法的积累,属于中档题.(19)【2015年湖北,理19,12分】《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马P ABCD -中,侧棱PD ⊥底面ABCD ,且PD CD =,过棱PC 的中点E ,作EF PB ⊥交PB 于点F ,连接,,,.DE DF BD BE .(1)证明:PB DEF ⊥平面.试判断四面体DBEF 是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;(2)若面DEF 与面ABCD 所成二面角的大小为π3,求DCBC的值.解:解法一:(1)因为PD ⊥底面ABCD ,所以PD BC ⊥,由底面ABCD 为长方形,有BC CD ⊥,而PD CD D =,所以BC PCD ⊥平面. 而DE PCD ⊂平面,所以BC DE ⊥. 又因为PD CD =,点E 是PC 的中点, 所以DE PC ⊥. 而PC BC C =,所以DE ⊥平面PBC . 而PB PBC ⊂平面,所以PB DE ⊥. 又PB EF ⊥,DE EF E =,所以PB ⊥平面DEF .由DE ⊥平面PBC ,PB ⊥平面DEF ,可知四面体BDEF 的四个面都是直角三角形, 即四面体BDEF 是一个鳖臑,其四个面的直角分别为DEB DEF ∠∠,,EFB DFB ∠∠,. (2)如图1,在面PBC 内,延长BC 与FE 交于点G ,则DG 是平面DEF 与平面ABCD 的交线.由(1)知,PB DEF ⊥平面,所以PB DG ⊥. 又因为PD ⊥底面ABCD ,所以 PD DG ⊥. 而PD PB P =,所以DG PBD ⊥平面.故BDF ∠是面DEF 与面ABCD 所成二面角的平面角,设1PD DC ==,BC λ=,有21BD λ=+,在Rt △PDB 中, 由DF PB ⊥, 得π3DPF FDB ∠=∠=,则 2πtan tan 133BD DPF PD λ=∠==+=, 解得2λ=.所以12.DC BC λ== 故当面DEF 与面ABCD 所成二面角的大小为π3时,22DC BC =. 解法二:(1)如图2,以D 为原点,射线,,DA DC DP 分别为,,x y z 轴的正半轴,建立空间直角坐标系. 设1PD DC ==,BC λ=,则(0,0,0),(0,0,1),(,1,0),(0,1,0)D P B C λ,(,1,1)PB λ=-,点E 是PC 的中点,所以11(0,,)22E ,11(0,,)22DE =,于是0PB DE ⋅=,即PB DE ⊥. 又已知EF PB ⊥,而DE EF E =,所以PB DEF ⊥平面. 因(0,1,1)PC =-, 0DE PC ⋅=, 则DE PC ⊥, 所以DE PBC ⊥平面.由DE ⊥平面 PBC ,PB ⊥平面DEF ,可知四面体BDEF 的四个面都是直角三角形,即四面体BDEF 是一个鳖臑, 四个面的直角分别为DEB DEF ∠∠,,EFB DFB ∠∠,. (2)由PD ABCD ⊥平面,所以(0,0,1)DP =是平面ABCD 的一个法向量;由(1)知,PB DEF ⊥平面,所以(,1,1)BP λ=--是平面DEF 的一个法向量. 若面DEF 与面ABCD 所成二面角的大小为π3,则2π11cos 32||||2BP DP BP DP λ⋅===⋅+, 解得2λ=. 所以12.DC BC λ== 故当面DEF 与面ABCD 所成二面角的大小为π3时,2DC BC =. 【点评】本题综合考查了空间直线平面的垂直问题,直线与直线,直线与平面的垂直的转化,空间角的求解,属于难题.(20)【2015年湖北,理20,12分】某厂用鲜牛奶在某台设备上生产,A B 两种奶制品.生产1吨A 产品需鲜牛奶2吨,使用设备1小时,获利1000元;生产1吨B 产品需鲜牛奶1.5吨,使用设备1.5小时,获利1200元.要求每天B 产品的产量不超过A 产品产量的2倍,设备每天生产,A B 两种产品时间之和不超过12小时.Z (单位:元)是一个随机变量.(1)求Z 的分布列和均值;(2)若每天可获取的鲜牛奶数量相互独立,求3天中至少有1天的最大获利超过10000元的概率.解:(1)设每天,A B 两种产品的生产数量分别为,x y ,相应的获利为z ,则有2 1.5,1.512, 20,0, 0.x y W x y x y x y +≤⎧⎪+≤⎪⎨-≥⎪⎪≥≥⎩ (1) 目标函数为 10001200z x y =+.当12W =时,(1)表示的平面区域如图1,三个顶点分别为(0, 0), (2.4, 4.8), (6, 0)A B C .将10001200z x y =+变形为561200z y x =-+,当 2.4, 4.8x y ==时,直线l :561200zy x =-+在y 轴上的截距最大,最大获利max 2.41000 4.812008160Z z ==⨯+⨯=.当15W =时,(1)表示的平面区域如图2,三个顶点分别为(0, 0), (3, 6), (7.5, 0)A B C .将10001200z x y =+变形为561200z y x =-+,当3, 6x y ==时,直线l :561200zy x =-+在y 轴上的截距最大,最大获利max 310006120010200Z z ==⨯+⨯=.当18W =时,(1)表示的平面区域如图3,四个顶点分别为(0, 0), (3, 6), (6, 4), (9, 0)A B C D . 将10001200z x y =+变形为561200zy x =-+,当6,4x y ==时,直线l :561200zy x =-+在y 轴上的截距最大,最大获利max 610004120010800Z z ==⨯+⨯=.(2)由(1)知,一天最大获利超过10000元的概率1(10000)0.50.20.7p P Z =>=+=,由二项分布,3天中至少有1天最大获利超过10000元的概率为()3311110.30.973p p =--=-=.【点评】本题考查离散型随机变量的分布列以及期望的求法,线性规划的应用,二项分布概率的求法,考查分析问题解决问题的能力.(21)【2015年湖北,理21,14分】一种作图工具如图1所示.O 是滑槽AB 的中点,短杆ON 可绕O 转动,长杆MN 通过N 处铰链与ON 连接,MN 上的栓子D 可沿滑槽AB 滑动,且1DN ON ==,3MN =.当栓子D 在滑槽AB 内作往复运动时,带动..N 绕O 转动一周(D 不动时,N 也不动),M 处的笔尖画出的曲线记为C .以O 为原点,AB 所在的直线为x 轴建立如图2所示的平面直角坐标系.(1)求曲线C 的方程;(2)设动直线l 与两定直线1:20l x y -=和2:20l x y +=分别交于,P Q 两点.若直线l 总与曲线C 有且只有一个公共点,试探 究:△OPQ 的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.解:(1)设点(,0)(||2)D t t ≤,00(,),(,)N x y M x y ,依题意,2MD DN =,且||||1DN ON ==,所以00(,)2(,)t x y x t y --=-,且22002200()1,1.x t y x y ⎧-+=⎪⎨+=⎪⎩ 即0022,2.t x x t y y -=-⎧⎨=-⎩且0(2)0.t t x -= 由于当点D 不动时,点N也不动,所以t 不恒等于0,于是02t x =,故00,42x y x y ==-,代入22001x y +=,可得221164x y +=,即所求的曲线C 的方程为22 1.164x y +=(2)①当直线l 的斜率不存在时,直线l 为4x =或4x =-,都有14482OPQ S ∆=⨯⨯=.②当直线l 的斜率存在时,设直线1:()2l y kx m k =+≠±,由22,416,y kx m x y =+⎧⎨+=⎩消去y ,可得222(14)84160k x kmx m +++-=.因为直线l 总与椭圆C 有且只有一个公共点,所以2222644(14)(416)0k m k m ∆=-+-=,即22164m k =+. ① 又由,20,y kx m x y =+⎧⎨-=⎩可得2(,)1212m m P k k --;同理可得2(,)1212m m Q k k -++.由原点O 到直线PQ 的距离为21d k =+和2||1||P Q PQ k x x =+-,可得22111222||||||||222121214OPQ P Q m m m S PQ d m x x m k k k ∆=⋅=-=⋅+=-+-. ②将①代入②得,222241281441OPQk m S k k ∆+==--. 当214k >时,2224128()8(1)84141OPQ k S k k ∆+==+>--;当2104k ≤<时,2224128()8(1)1414OPQ k S k k ∆+==-+--. 因2104k ≤<,则20141k <-≤,22214k ≥-,所以228(1)814OPQS k ∆=-+≥-, 当且仅当0k =时取等号.所以当0k =时,OPQ S ∆的最小值为8.综合(1)(2)可知,当直线l 与椭圆C 在四个顶点处相切时,△OPQ 的面积取得最小值8.【点评】本题主要考查椭圆方程的求解,以及直线和圆锥曲线的位置关系的应用,结合三角形的面积公式是解决本题的关键.综合性较强,运算量较大.(22)【2015年湖北,理22,14分】已知数列{}n a 的各项均为正数,1(1)()n n n b n a n n+=+∈N ,e 为自然对数的底数.(1)求函数()1e x f x x =+-的单调区间,并比较1(1)n n+与e 的大小;(2)计算11b a ,1212b ba a ,123123b b b a a a ,由此推测计算1212n n b b b a a a 的公式,并给出证明;(3)令112()nn n c a a a =,数列{}n a ,{}n c 的前n 项和分别记为n S ,n T ,证明:e n n T S <.解:(1)()f x 的定义域为(,)-∞+∞,()1e x f x '=-.当()0f x '>,即0x <时,()f x 单调递增;当()0f x '<,即0x >时,()f x 单调递减. 故()f x 的单调递增区间为(,0)-∞,单调递减区间为(0,)+∞.当0x >时,()(0)0f x f <=,即1e xx +<. 令1x n=,得111e n n +<,即1(1)e n n +<. ①(2)11111(1)1121b a =⋅+=+=;22212121212122(1)(21)32b b b b a a a a =⋅=⋅+=+=;2333123312123123133(1)(31)43b b b b b b a a a a a a =⋅=⋅+=+=. 由此推测:1212(1).n n nb b b n a a a =+ ② 下面用数学归纳法证明②.①当1n =时,左边=右边2=,②成立.②假设当n k =时,②成立,即1212(1)k kk b b b k a a a =+. 当1n k =+时,1111(1)(1)1k k k b k a k +++=+++,由归纳假设可得 111211211211211(1)(1)(1)(2)1k k k k k k k k k k k b b b b b b b b k k k a a a a a a a a k ++++++=⋅=+++=++.所以当1n k =+时,②也成立.根据(1)(2),可知②对一切正整数n 都成立.(3)由n c 的定义,②,算术-几何平均不等式,n b 的定义及①得123n n T c c c c =++++=111131211212312()()()()nn a a a a a a a a a ++++111131212312112()()()()2341nn b b b b b b b b b n =+++++ 121111111[][]1223(1)2334(1)(1)n b b b n n n n n n =+++++++++⋅⨯⨯+⨯⨯++ 1211111(1)()()1211n b b b n n n n =-+-++-+++1212n b b b n <+++1212111(1)(1)(1)12n n a a a n =++++++12e e e n a a a <+++=e n S . 即e n n T S <.【点评】本题主要考查导数在研究函数中的应用,考查利用归纳法证明与自然数有关的问题,考查推理论证能力、运算求解能力、创新知识,考查了利用放缩法法证明数列不等式,是压轴题.。
2015年浙江省高考数学试卷(理科)附详细解析2015年浙江省高考数学试卷(理科)一、选择题:本大题共8小题,每小题5分,共40分2015年普通高等学校招生全国统一考试(浙江卷)数学(理科)1.(5分)(2015•浙江)已知集合P={x|x2﹣2x≥0},Q={x|1<x≤2},则(∁R P)∩Q=()A.[0,1) B.(0,2]C.(1,2)D.[1,2]2.(5分)(2015•浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积是()A.8cm3B.12cm3C.D.3.(5分)(2015•浙江)已知{a n }是等差数列,公差d 不为零,前n 项和是S n ,若a 3,a 4,a 8成等比数列,则( )A . a 1d >0,dS 4>0B . a 1d <0,dS 4<0C . a 1d >0,dS 4<0D . a 1d <0,dS 4>04.(5分)(2015•浙江)命题“∀n ∈N *,f (n )∈N *且f (n )≤n ”的否定形式是( ) A . ∀n ∈N *,f (n )∉N *且f (n )>n B . ∀n ∈N *,f (n )∉N *或f (n )>n C . ∃n 0∈N *,f (n 0)∉N *且f (n 0)>n 0 D . ∃n 0∈N *,f (n 0)∉N *或f (n 0)>n 05.(5分)(2015•浙江)如图,设抛物线y 2=4x 的焦点为F ,不经过焦点的直线上有三个不同的点A ,B ,C ,其中点A ,B 在抛物线上,点C 在y 轴上,则△BCF 与△ACF 的面积之比是( )A .B .C .D .6.(5分)(2015•浙江)设A ,B 是有限集,定义:d (A ,B )=card (A ∪B )﹣card (A ∩B ),其中card (A )表示有限集A 中的元素个数( )命题①:对任意有限集A ,B ,“A ≠B ”是“d (A ,B )>0”的充分必要条件;命题②:对任意有限集A ,B ,C ,d (A ,C )≤d (A ,B )+d (B ,C )A . 命题①和命题②都成立B . 命题①和命题②都不成立 C . 命题①成立,命题②不成立 D . 命题①不成立,命题②成立7.(5分)(2015•浙江)存在函数f (x )满足,对任意x ∈R 都有( )A . f (sin2x )=sinxB . f (sin2x )=x 2+xC . f (x 2+1)=|x+1|D . f (x 2+2x )=|x+1|8.(5分)(2015•浙江)如图,已知△ABC,D 是AB的中点,沿直线CD将△ACD折成△A′CD,所成二面角A′﹣CD﹣B的平面角为α,则()A .∠A′DB≤αB.∠A′DB≥αC.∠A′CB≤αD.∠A′CB≥α二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.(6分)(2015•浙江)双曲线=1的焦距是,渐近线方程是.10.(6分)(2015•浙江)已知函数f(x)=,则f(f(﹣3))=,f(x)的最小值是.11.(6分)(2015•浙江)函数f(x)=sin2x+sinxcosx+1的最小正周期是,单调递减区间是.12.(4分)(2015•浙江)若a=log43,则2a+2﹣a=.13.(4分)(2015•浙江)如图,三棱锥A﹣BCD 中,AB=AC=BD=CD=3,AD=BC=2,点M,N 分别是AD,BC的中点,则异面直线AN,CM 所成的角的余弦值是.14.(4分)(2015•浙江)若实数x,y满足x2+y2≤1,则|2x+y﹣2|+|6﹣x﹣3y|的最小值是.15.(6分)(2015•浙江)已知是空间单位向量,,若空间向量满足,且对于任意x,y∈R,,则x0=,y0=,|=.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(14分)(2015•浙江)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知A=,b 2﹣a 2=c2.(1)求tanC的值;(2)若△ABC的面积为3,求b的值.17.(15分)(2015•浙江)如图,在三棱柱ABC ﹣A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.(1)证明:A1D⊥平面A1BC;(2)求二面角A1﹣BD﹣B1的平面角的余弦值.18.(15分)(2015•浙江)已知函数f(x)=x2+ax+b (a,b∈R),记M(a,b)是|f(x)|在区间[﹣1,1]上的最大值.(1)证明:当|a|≥2时,M(a,b)≥2;(2)当a,b满足M(a,b)≤2时,求|a|+|b|的最大值.19.(15分)(2015•浙江)已知椭圆上两个不同的点A,B关于直线y=mx+对称.(1)求实数m的取值范围;(2)求△AOB面积的最大值(O为坐标原点).20.(15分)(2015•浙江)已知数列{a n}满足a1=且a n+1=a n﹣a n2(n∈N*)(1)证明:1≤≤2(n∈N*);(2)设数列{a n2}的前n项和为S n,证明(n∈N*).2015年浙江省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分2015年普通高等学校招生全国统一考试(浙江卷)数学(理科)1.(5分)(2015•浙江)已知集合P={x|x 2﹣2x ≥0},Q={x|1<x ≤2},则(∁R P )∩Q=( ) A . [0,1) B . (0,2] C . (1,2) D . [1,2] 考点:交、并、补集的混合运算.专题:集合.分析: 求出P 中不等式的解集确定出P ,求出P 补集与Q 的交集即可.解答: 解:由P 中不等式变形得:x (x ﹣2)≥0, 解得:x ≤0或x ≥2,即P=(﹣∞,0]∪[2,+∞),∴∁R P=(0,2), ∵Q=(1,2],∴(∁R P )∩Q=(1,2), 故选:C . 点评: 此题考查了交、并、补集的混合运算,熟练掌握运算法则是解本题的关键.2.(5分)(2015•浙江)某几何体的三视图如图所示(单位:cm ),则该几何体的体积是( )A . 8cm 3B . 12cm 3C .D .考点:由三视图求面积、体积.专题:空间位置关系与距离.分析: 判断几何体的形状,利用三视图的数据,求几何体的体积即可.解解:由三视图可知几何体是下部为棱长为2答: 的正方体,上部是底面为边长2的正方形奥为2的正四棱锥,所求几何体的体积为:23+×2×2×2=.故选:C . 点评: 本题考查三视图与直观图的关系的判断,几何体的体积的求法,考查计算能力.3.(5分)(2015•浙江)已知{a n }是等差数列,公差d 不为零,前n 项和是S n ,若a 3,a 4,a 8成等比数列,则( )A . a 1d >0,dS 4>0B . a 1d <0,dS 4<0C . a 1d >0,dS 4<0D . a 1d <0,dS 4>0考点:等差数列与等比数列的综合.专题:等差数列与等比数列. 分析: 由a 3,a 4,a 8成等比数列,得到首项和公差的关系,即可判断a 1d 和dS 4的符号. 解答: 解:设等差数列{a n }的首项为a 1,则a 3=a 1+2d ,a 4=a 1+3d ,a 8=a 1+7d ,由a 3,a 4,a 8成等比数列,得,整理得:.∵d ≠0,∴,∴,=<0.故选:B .点评: 本题考查了等差数列和等比数列的性质,考查了等差数列的前n 项和,是基础题.4.(5分)(2015•浙江)命题“∀n ∈N *,f (n )∈N *且f (n )≤n ”的否定形式是( ) A . ∀n ∈N *,f (n )∉N *且f (n )>n B . ∀n ∈N *,f (n )∉N *或f (n )>n C . ∃n 0∈N *,f (n 0)∉N *且f (n 0)>n 0 D . ∃n 0∈N *,f (n 0)∉N *或f (n 0)>n 0考点:命题的否定.专题:简易逻辑.分根据全称命题的否定是特称命题即可得到析: 结论. 解答: 解:命题为全称命题, 则命题的否定为:∃n 0∈N *,f (n 0)∉N *或f(n 0)>n 0, 故选:D . 点评: 本题主要考查含有量词的命题的否定,比较基础.5.(5分)(2015•浙江)如图,设抛物线y 2=4x 的焦点为F ,不经过焦点的直线上有三个不同的点A ,B ,C ,其中点A ,B 在抛物线上,点C 在y 轴上,则△BCF 与△ACF 的面积之比是( )A .B .C .D .考点:直线与圆锥曲线的关系.专圆锥曲线的定义、性质与方程.题: 分析:根据抛物线的定义,将三角形的面积关系转化为的关系进行求解即可. 解答: 解:如图所示,抛物线的准线DE 的方程为x=﹣1,过A ,B 分别作AE ⊥DE 于E ,交y 轴于N ,BD ⊥DE 于E ,交y 轴于M , 由抛物线的定义知BF=BD ,AF=AE , 则|BM|=|BD|﹣1=|BF|﹣1, |AN|=|AE|﹣1=|AF|﹣1, 则===,故选:A点评: 本题主要考查三角形的面积关系,利用抛物线的定义进行转化是解决本题的关键.6.(5分)(2015•浙江)设A ,B 是有限集,定义:d (A ,B )=card (A ∪B )﹣card (A ∩B ),其中card (A )表示有限集A 中的元素个数( )命题①:对任意有限集A ,B ,“A ≠B ”是“d (A ,B )>0”的充分必要条件;命题②:对任意有限集A ,B ,C ,d (A ,C )≤d (A ,B )+d (B ,C )A . 命题①和命题②都成立B . 命题①和命题②都不成立 C . 命题①成立,命题②不成立 D . 命题①不成立,命题②成立考点:复合命题的真假.专题:集合;简易逻辑.分析: 命题①根据充要条件分充分性和必要性判断即可,③借助新定义,根据集合的运算,判断即可. 解答: 解:命题①:对任意有限集A ,B ,若“A ≠B ”,则A ∪B ≠A ∩B ,则card (A ∪B )>card (A ∩B ),故“d (A ,B )>0”成立,若d (A ,B )>0”,则card (A ∪B )>card (A ∩B ),则A ∪B ≠A ∩B ,故A ≠B 成立,故命题①成立,命题②,d (A ,B )=card (A ∪B )﹣card (A ∩B ),d (B ,C )=card (B ∪C )﹣card (B ∩C ),∴d (A ,B )+d (B ,C )=card (A ∪B )﹣card (A ∩B )+card (B ∪C )﹣card (B ∩C )=[card (A ∪B )+card (B ∪C )]﹣[card (A ∩B )+card (B ∩C )]≥card (A ∪C )﹣card (A ∩C )=d (A ,C ),故命题②成立, 故选:A 点评: 本题考查了,元素和集合的关系,以及逻辑关系,分清集合之间的关系与各集合元素个数之间的关系,注意本题对充要条件的考查.集合的元素个数,体现两个集合的关系,但仅凭借元素个数不能判断集合间的关系,属于基础题.7.(5分)(2015•浙江)存在函数f (x )满足,对任意x ∈R 都有( )A . f (sin2x )=sinxB . f (sin2x )=x 2+xC . f (x 2+1)=|x+1|D . f (x 2+2x )=|x+1|考点:函数解析式的求解及常用方法.专题: 函数的性质及应用.分析: 利用x 取特殊值,通过函数的定义判断正误即可.解答: 解:A .取x=0,则sin2x=0,∴f (0)=0; 取x=,则sin2x=0,∴f (0)=1;∴f (0)=0,和1,不符合函数的定义; ∴不存在函数f (x ),对任意x ∈R 都有f (sin2x )=sinx ;B .取x=0,则f (0)=0; 取x=π,则f (0)=π2+π;∴f (0)有两个值,不符合函数的定义; ∴该选项错误;C .取x=1,则f (2)=2,取x=﹣1,则f (2)=0;这样f (2)有两个值,不符合函数的定义; ∴该选项错误;D .令|x+1|=t ,t ≥0,则f (t 2﹣1)=t ; 令t 2﹣1=x ,则t=;∴;即存在函数f (x )=,对任意x ∈R ,都有f (x 2+2x )=|x+1|; ∴该选项正确. 故选:D . 点评: 本题考查函数的定义的应用,基本知识的考查,但是思考问题解决问题的方法比较难.8.(5分)(2015•浙江)如图,已知△ABC ,D 是AB 的中点,沿直线CD 将△ACD 折成△A ′CD ,所成二面角A ′﹣CD ﹣B 的平面角为α,则( )A . ∠A ′DB ≤α B . ∠A ′D B ≥αC . ∠A ′C B ≤αD . ∠A ′C B ≥α考点:二面角的平面角及求法.专题:创新题型;空间角.分析: 解:画出图形,分AC=BC ,AC ≠BC 两种情况讨论即可.解答: 解:①当AC=BC 时,∠A ′DB=α; ②当AC ≠BC 时,如图,点A ′投影在AE上,α=∠A ′OE ,连结AA ′, 易得∠ADA ′<∠AOA ′,∴∠A ′DB >∠A ′OE ,即∠A ′DB >α 综上所述,∠A ′DB ≥α, 故选:B .点评: 本题考查空间角的大小比较,注意解题方法的积累,属于中档题.二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.(6分)(2015•浙江)双曲线=1的焦距是2 ,渐近线方程是 y=±x . 考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程. 分析: 确定双曲线中的几何量,即可求出焦距、渐近线方程.解答:解:双曲线=1中,a=,b=1,c=, ∴焦距是2c=2,渐近线方程是y=±x .故答案为:2;y=±x . 点评: 本题考查双曲线的方程与性质,考查学生的计算能力,比较基础.10.(6分)(2015•浙江)已知函数f (x )=,则f (f (﹣3))= 0 ,f (x )的最小值是 .考函数的值.点: 专题:计算题;函数的性质及应用. 分析:根据已知函数可先求f (﹣3)=1,然后代入可求f (f (﹣3));由于x ≥1时,f (x )=,当x <1时,f (x )=lg (x 2+1),分别求出每段函数的取值范围,即可求解 解答:解:∵f (x )=,∴f (﹣3)=lg10=1,则f (f (﹣3))=f (1)=0, 当x ≥1时,f (x )=,即最小值,当x <1时,x 2+1≥1,(x )=lg (x 2+1)≥0最小值0,故f (x )的最小值是. 故答案为:0;.点评: 本题主要考查了分段函数的函数值的求解,属于基础试题.11.(6分)(2015•浙江)函数f (x )=sin 2x+sinxcosx+1的最小正周期是 π ,单调递减区间是 [k π+,k π+](k ∈Z ) . 考点: 两角和与差的正弦函数;三角函数的周期性及其求法;正弦函数的单调性.专题:三角函数的求值.分析: 由三角函数公式化简可得f (x )=sin (2x ﹣)+,易得最小正周期,解不等式2k π+≤2x ﹣≤2k π+可得函数的单调递减区间. 解答: 解:化简可得f (x )=sin 2x+sinxcosx+1 =(1﹣cos2x )+sin2x+1=sin (2x ﹣)+,∴原函数的最小正周期为T==π, 由2k π+≤2x ﹣≤2k π+可得k π+≤x ≤k π+,∴函数的单调递减区间为[k π+,k π+](k ∈Z )故答案为:π;[k π+,k π+](k ∈Z ) 点本题考查三角函数的化简,涉及三角函数的评: 周期性和单调性,属基础题.12.(4分)(2015•浙江)若a=log 43,则2a +2﹣a = .考点:对数的运算性质.专题:函数的性质及应用.分析: 直接把a 代入2a +2﹣a ,然后利用对数的运算性质得答案.解答: 解:∵a=log 43,可知4a =3, 即2a =,所以2a +2﹣a =+=.故答案为:.点评: 本题考查对数的运算性质,是基础的计算题.13.(4分)(2015•浙江)如图,三棱锥A ﹣BCD 中,AB=AC=BD=CD=3,AD=BC=2,点M ,N分别是AD ,BC 的中点,则异面直线AN ,CM 所成的角的余弦值是.考点:异面直线及其所成的角.专题:空间角.分析: 连结ND ,取ND 的中点为:E ,连结ME 说明异面直线AN ,CM 所成的角就是∠EMC 通过解三角形,求解即可. 解答: 解:连结ND ,取ND 的中点为:E ,连结ME ,则ME ∥AN ,异面直线AN ,CM 所成的角就是∠EMC , ∵AN=2,∴ME==EN ,MC=2, 又∵EN ⊥NC ,∴EC==,∴cos ∠EMC===.故答案为:.点评: 本题考查异面直线所成角的求法,考查空间想象能力以及计算能力.14.(4分)(2015•浙江)若实数x ,y 满足x 2+y 2≤1,则|2x+y ﹣2|+|6﹣x ﹣3y|的最小值是 3 . 考点:函数的最值及其几何意义.专题:不等式的解法及应用;直线与圆. 分析: 根据所给x ,y 的范围,可得|6﹣x ﹣3y|=6﹣x ﹣3y ,再讨论直线2x+y ﹣2=0将圆x 2+y 2=1分成两部分,分别去绝对值,运用线性规划的知识,平移即可得到最小值. 解答: 解:由x 2+y 2≤1,可得6﹣x ﹣3y >0,即|6﹣x ﹣3y|=6﹣x ﹣3y , 如图直线2x+y ﹣2=0将圆x 2+y 2=1分成两部分,在直线的上方(含直线),即有2x+y ﹣2≥0,即|2+y ﹣2|=2x+y ﹣2,此时|2x+y ﹣2|+|6﹣x ﹣3y|=(2x+y ﹣2)+(6﹣x ﹣3y )=x ﹣2y+4,利用线性规划可得在A (,)处取得最小值3;在直线的下方(含直线),即有2x+y ﹣2≤0, 即|2+y ﹣2|=﹣(2x+y ﹣2),此时|2x+y ﹣2|+|6﹣x ﹣3y|=﹣(2x+y ﹣2)+(6﹣x ﹣3y )=8﹣3x ﹣4y ,利用线性规划可得在A (,)处取得最小值3.综上可得,当x=,y=时,|2x+y ﹣2|+|6﹣x ﹣3y|的最小值为3. 故答案为:3.点评: 本题考查直线和圆的位置关系,主要考查二元函数在可行域内取得最值的方法,属于中档题.15.(6分)(2015•浙江)已知是空间单位向量,,若空间向量满足,且对于任意x ,y ∈R ,,则x 0=1 ,y 0=2 ,|= 2 . 考点: 空间向量的数量积运算;平面向量数量积的运算.专题:创新题型;空间向量及应用.分析:由题意和数量积的运算可得<•>=,不妨设=(,,0),=(1,0,0),由已知可解=(,,t ),可得|﹣(|2=(x+)2+(y ﹣2)2+t 2,由题意可得当x=x 0=1,y=y 0=2时,(x+)2+(y ﹣2)2+t 2取最小值1,由模长公式可得|.解答: 解:∵•=||||cos <•>=cos <•>=,∴<•>=,不妨设=(,,0),=(1,0,0),=(m ,n ,t ), 则由题意可知=m+n=2,=m=,解得m=,n=,∴=(,,t ), ∵﹣()=(﹣x ﹣y ,,t ), ∴|﹣(|2=(﹣x ﹣y )2+()2+t 2 =x 2+xy+y 2﹣4x ﹣5y+t 2+7=(x+)2+(y ﹣2)2+t 2,由题意当x=x 0=1,y=y 0=2时,(x+)2+(y ﹣2)2+t 2取最小值1, 此时t 2=1,故|==2故答案为:1;2;2 点评: 本题考查空间向量的数量积,涉及向量的模长公式,属中档题.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤. 16.(14分)(2015•浙江)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知A=,b 2﹣a 2=c 2.(1)求tanC 的值;(2)若△ABC 的面积为3,求b 的值.考点:余弦定理.专题:解三角形.分析: (1)由余弦定理可得:,已知b 2﹣a 2=c 2.可得,a=.利用余弦定理可得cosC .可得sinC=,即可得出tanC=. (2)由=×=3,可得c ,即可得出b . 解答:解:(1)∵A=,∴由余弦定理可得:,∴b 2﹣a 2=bc ﹣c 2, 又b 2﹣a 2=c 2.∴bc ﹣c 2=c 2.∴b=c .可得,∴a 2=b 2﹣=,即a=. ∴cosC===.∵C ∈(0,π), ∴sinC==. ∴tanC==2.(2)∵=×=3,解得c=2.∴=3.点评: 本题考查了正弦定理余弦定理、同角三角形基本关系式、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.17.(15分)(2015•浙江)如图,在三棱柱ABC ﹣A 1B 1C 1中,∠BAC=90°,AB=AC=2,A 1A=4,A 1在底面ABC 的射影为BC 的中点,D 是B 1C 1的中点.(1)证明:A 1D ⊥平面A 1BC ;(2)求二面角A 1﹣BD ﹣B 1的平面角的余弦值.考点: 二面角的平面角及求法;直线与平面垂直的判定.专题:空间位置关系与距离;空间角.分析: (1)以BC 中点O 为坐标原点,以OB 、OA 、OA 1所在直线分别为x 、y 、z 轴建系,通过•=•=0及线面垂直的判定定理即得结论;(2)所求值即为平面A 1BD 的法向量与平面B 1BD 的法向量的夹角的余弦值的绝对值的相反数,计算即可. 解答: (1)证明:如图,以BC 中点O 为坐标原点,以OB 、OA 、OA 1所在直线分别为x 、y 、z 轴建系.则BC=AC=2,A 1O==,易知A 1(0,0,),B (,0,0),C (﹣,0,0),A (0,,0),D (0,﹣,),B 1(,﹣,),=(0,﹣,0),=(﹣,﹣,),=(﹣,0,0),=(﹣2,0,0),=(0,0,),∵•=0,∴A 1D ⊥OA 1, 又∵•=0,∴A 1D ⊥BC ,又∵OA 1∩BC=O ,∴A 1D ⊥平面A 1BC ; (2)解:设平面A 1BD 的法向量为=(x ,y ,z ),由,得,取z=1,得=(,0,1),设平面B 1BD 的法向量为=(x ,y ,z ), 由,得,取z=1,得=(0,,1), ∴cos <,>===,又∵该二面角为钝角,∴二面角A 1﹣BD ﹣B 1的平面角的余弦值为﹣.点评: 本题考查空间中线面垂直的判定定理,考查求二面角的三角函数值,注意解题方法的积累,属于中档题.18.(15分)(2015•浙江)已知函数f (x )=x 2+ax+b (a ,b ∈R ),记M (a ,b )是|f (x )|在区间[﹣1,1]上的最大值.(1)证明:当|a|≥2时,M (a ,b )≥2; (2)当a ,b 满足M (a ,b )≤2时,求|a|+|b|的最大值. 考点:二次函数在闭区间上的最值.专题:函数的性质及应用.分析: (1)明确二次函数的对称轴,区间的端点值,由a 的范围明确函数的单调性,结合已知以及三角不等式变形所求得到证明; (2)讨论a=b=0以及分析M (a ,b )≤2得到﹣3≤a+b ≤1且﹣3≤b ﹣a ≤1,进一步求出|a|+|b|的求值. 解答: 解:(1)由已知可得f (1)=1+a+b ,f (﹣1)=1﹣a+b ,对称轴为x=﹣,因为|a|≥2,所以或≥1,所以函数f (x )在[﹣1,1]上单调, 所以M (a ,b )=max{|f (1),|f (﹣1)|}=max{|1+a+b|,|1﹣a+b|},所以M (a ,b )≥(|1+a+b|+|1﹣a+b|)≥|(1+a+b )﹣(1﹣a+b )|≥|2a|≥|a|≥2;(2)当a=b=0时,|a|+|b|=0又|a|+|b|≥0,所以0为最小值,符合题意;又对任意x ∈[﹣1,1].有﹣2≤x 2+ax+b ≤2得到﹣3≤a+b ≤1且﹣3≤b ﹣a ≤1,易知|a|+|b|=max{|a ﹣b|,|a+b|}=3,在b=﹣1,a=2时符合题意,所以|a|+|b|的最大值为3. 点评: 本题考查了二次函数闭区间上的最值求法;解答本题的关键是正确理解M (a ,b )是|f(x )|在区间[﹣1,1]上的最大值,以及利用三角不等式变形.19.(15分)(2015•浙江)已知椭圆上两个不同的点A ,B 关于直线y=mx+对称. (1)求实数m 的取值范围;(2)求△AOB 面积的最大值(O 为坐标原点).考点:直线与圆锥曲线的关系.专题:创新题型;圆锥曲线中的最值与范围问题. 分析: (1)由题意,可设直线AB 的方程为x=﹣my+n ,代入椭圆方程可得(m 2+2)y 2﹣2mny+n 2﹣2=0,设A (x 1,y 1),B (x 2,y 2).可得△>0,设线段AB 的中点P (x 0,y 0),利用中点坐标公式及其根与系数的可得P ,代入直线y=mx+,可得,代入△>0,即可解出.(2)直线AB 与x 轴交点横坐标为n ,可得S △OAB =,再利用均值不等式即可得出.解答: 解:(1)由题意,可设直线AB 的方程为x=﹣my+n ,代入椭圆方程,可得(m 2+2)y 2﹣2mny+n 2﹣2=0,设A (x 1,y 1),B (x 2,y 2).由题意,△=4m 2n 2﹣4(m 2+2)(n 2﹣2)=8(m 2﹣n 2+2)>0, 设线段AB 的中点P (x 0,y 0),则.x 0=﹣m ×+n=, 由于点P 在直线y=mx+上,∴=+,∴,代入△>0,可得3m 4+4m 2﹣4>0, 解得m 2,∴或m .(2)直线AB 与x 轴交点横坐标为n ,∴S△OAB==|n|•=,由均值不等式可得:n 2(m 2﹣n 2+2)=,∴S△AOB=,当且仅当n 2=m 2﹣n 2+2,即2n 2=m 2+2,又∵,解得m=,当且仅当m=时,S△AOB取得最大值为.点评:本题考查了椭圆的定义标准方程及其性质、直线与椭圆相交问题转化为方程联立可得根与系数的关系、中点坐标公式、线段垂直平分线的性质、三角形面积计算公式、弦长公式、均值不等式的性质,考查了推理能力与计算能力,属于难题.20.(15分)(2015•浙江)已知数列{a n }满足a 1=且a n+1=a n ﹣a n 2(n ∈N *) (1)证明:1≤≤2(n ∈N *);(2)设数列{a n 2}的前n 项和为S n ,证明(n ∈N *).考点:数列的求和;数列与不等式的综合.专题:创新题型;点列、递归数列与数学归纳法. 分析: (1)通过题意易得0<a n ≤(n ∈N *),利用a n ﹣a n+1=可得≥1,利用==≤2,即得结论;(2)通过=a n ﹣a n+1累加得S n =﹣a n+1,利用数学归纳法可证明≥a n ≥(n ≥2),从而≥≥,化简即得结论.解答:证明:(1)由题意可知:0<a n ≤(n ∈N *),又∵a 2=a1﹣=,∴==2,又∵a n﹣a n+1=,∴a n>a n+1,∴≥1,∴==≤2,∴1≤≤2(n∈N*);(2)由已知,=a n﹣a n+1,=a n﹣1﹣a n,…,=a 1﹣a2,累加,得S n=++…+=a1﹣a n+1=﹣a n+1,易知当n=1时,要证式子显然成立;当n≥2时,=.下面证明:≥a n≥(n≥2).易知当n=2时成立,假设当n=k时也成立,则a k+1=﹣+,由二次函数单调性知:a n+1≥﹣+=≥,a n+1≤﹣+=≤,∴≤≤,即当n=k+1时仍然成立,故对n≥2,均有≥a n≥,∴=≥≥=,即(n ∈N *).点评: 本题是一道数列与不等式的综合题,考查数学归纳法,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于难题.。
试题类型:A2015年普通高等学校招生全国统一考试理科数学注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷3至5页。
2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。
3.全部答案在答题卡上完成,答在本试题上无效。
4. 考试结束后,将本试题和答题卡一并交回。
第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) 设复数z 满足1+z1z-=i ,则|z|=(A )1 (B )2 (C )3 (D )2 (2)sin20°cos10°-con160°sin10°=(A )32- (B )32(C )12- (D )12(3)设命题P :∃n ∈N ,2n >2n ,则⌝P 为(A )∀n ∈N, 2n >2n (B )∃ n ∈N, 2n ≤2n (C )∀n ∈N, 2n ≤2n (D )∃ n ∈N, 2n =2n(4)投篮测试中,每人投3次,至少投中2次才能通过测试。
已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为 (A )0.648 (B )0.432 (C )0.36 (D )0.312(5)已知M (x 0,y 0)是双曲线C :2212x y -= 上的一点,F 1、F 2是C 上的两个焦点,若1MF ∙2MF<0,则y 0的取值范围是(A )(-33,33) (B )(-36,36) (C )(223-,223) (D )(233-,233)(6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。
问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有A.14斛B.22斛C.36斛D.66斛(7)设D为错误!未找到引用源。
绝密★启用前2015年普通高等学校招生全国统一考试(四川卷)数 学(理工类)本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)。
第Ⅰ卷1至2页,第Ⅱ卷3至4页,共4页。
满分150分。
考试时间120分钟。
考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷 (选择题 共50分)注意事项:必须使用2B 铅笔在答题卡上将所选答案对应的标号涂黑。
第Ⅰ卷共10小题一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的。
{|(1)(2)0}A x x x =+-<,集合{|13}B x x =<<,则AB ( )A.{x|-1<x<3}B.{x|-1<x<1}C.{x|1<x<2}D.{x|2<x<3} 2.设i 是虚数单位,则复数32i i- =( ) A.3.执行如图所示的程序框图,输出S 的值是( ) A.32 B.3212D.124.下列函数中,最小正周期为π且图象关于原点对称的函数是( ) A. cos(2)2y x π=+B. sin(2)2y x π=+C. sin 2cos 2y x x =+ D sin cos y x x =+5.过双曲线2213y x -=的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A ,B 两点,则AB =( )(A) (B ) (C )6 (D )6.用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有( ) (A )144个 (B )120个 (C )96个 (D )72个7.设四边形ABCD 为平行四边形,6AB =,4AD =.若点M ,N 满足3BM MC =,2DN NC =,则.AM NM =( )(A )20 (B )15 (C )9 (D )6 8.设a ,b 都是不等于1的正数,则“333a b >>”是“log 3log 3a b <”的 (A )充要条件 (B )充分不必要条件 (C )必要不充分条件 (D )既不充分也不必要条件 9.如果函数()()()()21281002f x m x n x m n =-+-+≥≥,在区间122⎡⎤⎢⎥⎣⎦,单调递减,则mn 的最大值为( )(A )16 (B )18 (C )25 (D )81210.设直线l 与抛物线24y x =相交于A ,B 两点,与圆()()22250x y r r -+=>相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是( ) (A )()13, (B )()14, (C )()23, (D )()24,第Ⅱ卷 (非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分。
数学试卷 第1页(共21页)数学试卷 第2页(共21页)数学试卷 第3页(共21页)绝密★启用前2015年普通高等学校招生全国统一考试(全国新课标卷2)数学(理科)使用地区:海南、宁夏、黑龙江、吉林、辽宁、新疆、云南、内蒙古、青海、贵州、甘肃、广西、西藏本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共24题,共150分,共6页.考试结束后,将本试卷和答题卡一并交回. 注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内.2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚.3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效.4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑.5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{2,1,0,1,2}A =--,{|(1)(2)0}B x x x =-+<,则AB =( )A .{1,0}A =-B .{0,1}C .{1,0,1}-D .{0,1,2} 2.若a 为实数,且(2i)(2i)4i a a +-=-,则a =( )A .1-B .0C .1D .23.根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是( )A .逐年比较,2008年减少二氧化硫排放量的效果最显著B .2007年我国治理二氧化硫排放显现成效C .2006年以来我国二氧化硫年排放量呈减少趋势D .2006年以来我国二氧化硫年排放量与年份正相关4.已知等比数列{}n a 满足13a =,135a a a ++=21,则357a a a ++=( )A .21B .42C .63D .845.设函数211log (2),1,()2, 1,x x x f x x -+-⎧=⎨⎩<≥则2(2)(log 12)f f -+=( )A .3B .6C .9D .126.一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为( )A.18B .17C .16D .157.过三点(1,3)A ,(4,2)B ,(1,7)C -的圆交y 轴于M ,N 两点,则||MN =( )A .26B .8C .46D .108.如图所示的程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a ,b 分别为14,18,则输出的a =( )A .0B .2C .4D .149.已知A ,B 是球O 的球面上两点,∠AOB =90°, C 为该球面上的动点.若三棱锥O-ABC 体积的 最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256π10.如图,长方形ABCD 的边2AB =,1BC =,O 是AB 的中点.点P 沿着边BC ,CD 与DA 运动,记BOP x ∠=.将动点P 到A ,B 两点距离之和表示为x 的函数()f x ,则()y f x =的图象大致为( )ABCD11.已知A ,B 为双曲线E 的左、右顶点,点M 在E 上,△ABM 为等腰三角形,且顶角为120°,则E 的离心率为( )A .5B .2C .3D .2 12.设函数'()f x 是奇函数()()f x x ∈R 的导函数,(1)0f -=,当0x >时,'()()0xf x f x -<,则使得()0f x >成立的x 的取值范围( )A .(,1)(0,1)-∞-B .(1,0)(1,)-+∞C .(,1)(1,0)-∞--D .(0,1)(1,)+∞--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共21页)数学试卷 第5页(共21页)数学试卷 第6页(共21页)第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中的横线上. 13.设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=________.14.若x ,y 满足约束条件10,20,220,x y x y x y -+⎧⎪-⎨⎪+-⎩≥≤≤则z x y =+的最大值为________.15.4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a =________. 16.设n S 是数列{}n a 的前n 项和,且11a =-,11n n n a S S ++=,则n S =________. 三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤. 17.(本小题满分12分)ABC △中,D 是BC 上的点,AD 平分BAC ∠,ABD △面积是ADC △面积的2倍.(Ⅰ)求sin sin BC∠∠;(Ⅱ)若1AD =,22DC =,求BD 和AC 的长. 18.(本小题满分12分)某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A 地区:62 73 81 92 95 85 74 64 53 76 78 86 95 66 97 78 88 82 76 89B 地区:73 83 62 51 91 46 53 73 64 82 93 48 65 81 74 56 54 76 65 79 (Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,得出结论即可);(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个等级:满意度评分 低于70分 70分到89分 不低于90分 满意度等级 不满意 满意 非常满意记事件C :“A 地区用户的满意度等级高于B 地区用户的满意度等级”.假设两地区用户的评价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C 的概率.19.(本小题满分12分)如图,长方体1111ABCD A B C D -中,=16AB ,=10BC ,18AA =,点E ,F 分别在11A B ,11D C 上,114A E D F ==.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(Ⅰ)在图中画出这个正方形(不必说明画法和理由); (Ⅱ)求直线AF 与平面α所成角的正弦值.20.(本小题满分12分)已知椭圆222 9(0)C x y m m +=>:,直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(Ⅰ)证明:直线OM 的斜率与l 的斜率的乘积为定值; (Ⅱ)若l 过点(,)3mm ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率;若不能,请说明理由.21.(本小题满分12分)设函数2()mx f x e x mx =+-.(Ⅰ)证明:()f x 在(,0)-∞上单调递减,在(0,)+∞上单调递增;(Ⅱ)若对于任意12,[1,1]x x ∈-,都有12()()1f x f x e --≤,求m 的取值范围.请考生在第22~24三题中任选一题作答,如果多做,则按所做的第一题记分. 22.(本小题满分10分)选修4—1:几何证明选讲如图,O 为等腰三角形ABC 内一点,⊙O 与ABC △的底边BC 交于M ,N 两点,与底边上的高AD 交于点G ,且与AB ,AC 分别相切于E ,F 两点. (Ⅰ)证明:EF BC ∥;(Ⅱ)若AG 等于⊙O 的半径,且23AE MN ==,求四边形EBCF 的面积.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,曲线1cos ,:sin ,x t C y t αα=⎧⎨=⎩(t 为参数,0t ≠),其中0πα≤<.在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线2:2sin C ρθ=,3:23cos C ρθ=. (Ⅰ)求2C 与3C 交点的直角坐标;(Ⅱ)若1C 与2C 相交于点A ,1C 与3C 相交于点B ,求||AB 最大值.24.(本小题满分10分)选修4—5:不等式选讲设a ,b ,c ,d 均为正数,且a b c d +=+,证明: (Ⅰ)若ab cd >,则a b c d +>+; (Ⅱ)a b c d +>+是||||a b c d -<-的充要条件.数学试卷 第7页(共21页)数学试卷 第8页(共21页)数学试卷 第9页(共21页)2015年普通高等学校招生全国统一考试(全国新课标卷2)理科数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】由已知得{|21}B x x =-<<,故,}10{AB -=,故选A .【提示】解一元二次不等式,求出集合B ,然后进行交集的运算即可. 【考点】集合的交集运算和一元二次方程求根. 2.【答案】B【解析】由已知得24+(4)i 4i a -=-,所以40a =,244a -=-,解得0a =,故选B .【提示】首先将坐标展开,然后利用复数相等解之. 【考点】复数的四则运算. 3.【答案】D【解析】解:A .从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量明显减少,且减少的最多,故A 正确;B .2004~2006年二氧化硫排放量越来越多,从2007年开始二氧化硫排放量变少,故B 正确;C .从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C 正确;D .2006年以来我国二氧化硫年排放量越来越少,而不是与年份正相关,故D 错误. 故选:D【提示】A .从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量减少的最多,故A 正确;B .从2007年开始二氧化硫排放量变少,故B 正确;C .从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C 正确;D .2006年以来我国二氧化硫年排放量越来越少,与年份负相关,故D 错误. 【考点】柱形图信息的获得. 4.【答案】B51AB CB k =-,所以径为5,所以面积为:4π144πS R ==,选C .。
2015年高考全国卷2数学试题解析1.已知集合{}|12A x x =-<<,{}|03B x x =<<,则A B =( )A .()1,3-B .()1,0-C .()0,2D .()2,3【答案】A考点:集合运算.2. 若为a 实数,且2i 3i 1ia +=++,则a =( ) A .4- B .3- C .3 D .4【答案】D【解析】试题分析:由题意可得()()2i 1i 3i 24i 4a a +=++=+⇒= ,故选D.考点:复数运算.3. 根据下面给出的2004年至2013年我国二氧化碳年排放量(单位:万吨)柱形图,以下结论中不正确的是( )A .逐年比较,2008年减少二氧化碳排放量的效果最显著B .2007年我国治理二氧化碳排放显现成效C .2006年以来我国二氧化碳年排放量呈减少趋势D .2006年以来我国二氧化碳年排放量与年份正相关【答案】 D考点:柱形图4. 已知()1,1=-a ,()1,2=-b ,则(2)+⋅=a b a ( )A .1-B .0C .1D .2【答案】C【解析】2004年 2005年 2006年 2007年 2008年 2009年 2010年 2011年 2012年 2013年 190020002100220023002400250026002700试题分析:由题意可得22=a ,3,⋅=-a b 所以()222431+⋅=+⋅=-=a b a a a b .故选C. 考点:向量数量积.5. 设n S 是等差数列{}n a 的前n 项和,若1353a a a ++=,则5S =( )A .5B .7C .9D .11【答案】A【解析】试题解析:13533331a a a a a ++==⇒=,()15535552a a S a +===.故选A. 考点:等差数列6. 一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为( )1A.8 1B.7 1C.6 1D.5【答案】D 【解析】试题分析:截去部分是正方体的一个角,其体积是正方体体积的16,所以截去部分体积与剩余部分体积的比值为15,故选D.考点:三视图7. 已知三点(1,0),(0,3),(2,3)A B C,则△ABC外接圆的圆心到原点的距离为()5 A. 321B.325C.34D.3【答案】B考点:直线与圆的方程.8. 右边程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的,a b分别为14,18,则输出的a为()A.0B.2C.4D.14【答案】B【解析】试题分析:由题意输出的a 是18,14的最大公约数2,故选B.考点:1. 更相减损术;2.程序框图.9.已知等比数列{}n a 满足114a =,()35441a a a =-,则2a =( ) A.2 B.1 1C.2 1D.8【答案】C【解析】试题分析:由题意可得()235444412a a a a a ==-⇒=,所以34182a q q a ==⇒= ,故2112a a q == ,选C.考点:等比数列.10. 已知B A ,是球O 的球面上两点,︒=∠90AOB ,C 为该球面上的动点.若三棱锥ABC O -体积的最大值为36,则球O 的表面积为( )A.π36B. π64C.π144D. π256【答案】C考点:球与几何体的切接.11. 如图,长方形的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记BOP x ∠= ,将动点P 到A ,B 两点距离之和表示为x 的函数()f x ,则的图像大致为( )A .B .C .D .【答案】B考点:函数图像12. 设函数21()ln(1||)1f x x x =+-+,则使得()(21)f x f x >-成立的x 的取值范围是( )A .1,13⎛⎫ ⎪⎝⎭B .()1,1,3⎛⎫-∞+∞ ⎪⎝⎭C .11,33⎛⎫- ⎪⎝⎭D .11,,33⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭ 【答案】A【解析】试题分析:由21()ln(1||)1f x x x =+-+可知()f x 是偶函数,且在[)0,+∞是增函数,所以()()()()121212113f x f x f x f x x x x >-⇔>-⇔>-⇔<< .故选A. 考点:函数性质二、填空题:本大题共4小题,每小题5分,共20分13. 已知函数()32f x ax x =-的图像过点(-1,4),则a = .【答案】-2【解析】试题分析:由()32f x ax x =-可得()1242f a a -=-+=⇒=- .考点:函数解析式14. 若x ,y 满足约束条件50210210x y x y x y +-≤⎧⎪--≥⎨⎪-+≤⎩,则z =2x +y 的最大值为 .【答案】8考点:线性规划15. 已知双曲线过点()4,3,且渐近线方程为12y x =±,则该双曲线的标准方程为 . 【答案】2214x y -=考点:双曲线几何性质16. 已知曲线ln y x x =+在点()1,1 处的切线与曲线()221y ax a x =+++ 相切,则a = .【答案】8【解析】 试题分析:由11y x'=+可得曲线ln y x x =+在点()1,1处的切线斜率为2,故切线方程为21y x =-,与()221y ax a x =+++ 联立得220ax ax ++=,显然0a ≠,所以由 2808a a a ∆=-=⇒=. 考点:导数的几何意义.三、解答题17(本小题满分12分)△ABC 中D 是BC 上的点,AD 平分∠BAC ,BD =2DC .(I )求sin sin B C∠∠ ; (II )若60BAC∠=,求B ∠. 【答案】(I )12;30.考点:解三角形试题解析:(I )由正弦定理得,,sin sin sin sin AD BD AD DC B BAD C CAD ==∠∠∠∠ 因为AD 平分∠BAC ,BD =2DC ,所以sin 1.sin 2B DC C BD ∠==∠. (II )因为()180,60,C BAC B BAC ∠=-∠+∠∠=所以()31sin sin cos sin .22C BAC B B B ∠=∠+∠=∠+∠ 由(I )知2sin sin B C ∠=∠, 所以3tan 30.B B ∠=∠= 考点:解三角形18. (本小题满分12分)某公司为了了解用户对其产品的满意度,从A ,B 两地区分别随机调查了40个用户,根据用户对其产品的满意度的评分,得到A 地区用户满意度评分的频率分布直方图和B 地区用户满意度评分的频率分布表.A地区用户满意度评分的频率分布直方图(I)在答题卡上作出B地区用户满意度评分的频率分布直方图,并通过此图比较两地区满意度评分的平均值及分散程度.(不要求计算出具体值,给出结论即可)B地区用户满意度评分的频率分布直方图(II)根据用户满意度评分,将用户的满意度评分分为三个等级:估计那个地区的用户的满意度等级为不满意的概率大,说明理由.【答案】(I)见试题解析(II)A地区的用户的满意度等级为不满意的概率大.考点:1.频率分布直方图;2.概率估计.19. (本小题满分12分)如图,长方体1111ABCD A B C D -中AB =16,BC =10,18AA =,点E ,F 分别在1111,A B D C 上,11 4.A E D F ==过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(I )在图中画出这个正方形(不必说明画法与理由);(II )求平面α把该长方体分成的两部分体积的比值.【答案】(I )见试题解析(II )97 或79考点:1.几何体中的截面问题;2.几何体的体积20. (本小题满分12分)已知椭圆()2222:10x y C a b a b +=>> 2,点(2在C 上.(I )求C 的方程;(II )直线l 不经过原点O ,且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 中点为M ,证明:直线OM 的斜率与直线l 的斜率乘积为定值.【答案】(I )2222184x y +=(II )见试题解析 考点:直线与椭圆21. (本小题满分12分)已知()()ln 1f x x a x =+-.(I )讨论()f x 的单调性;(II )当()f x 有最大值,且最大值大于22a -时,求a 的取值范围.【答案】(I )0a ≤,()f x 在()0,+∞是单调递增;0a >,()f x 在10,a ⎛⎫ ⎪⎝⎭单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭单调递减;(II )()0,1.【解析】考点:导数的应用.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号22. (本小题满分10分)选修4-1:几何证明选讲如图O是等腰三角形AB C内一点,圆O与△ABC的底边BC交于M,N两点,与底边上的高交于点G,且与AB,AC分别相切于E,F两点.(I )证明EF BC ;(II )若AG 等于圆O 半径,且23AE MN == ,求四边形EBCF 的面积.【答案】(I )见试题解析;(II )1633考点:1.几何证明;2.四边形面积的计算.23. (本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1cos ,:sin ,x t C y t αα=⎧⎨=⎩ (t 为参数,且0t ≠ ),其中0απ≤<,在以O 为极点,x轴正半轴为极轴的极坐标系中,曲线23:2sin ,:23cos .C C ρθρθ==(I )求2C 与3C 交点的直角坐标;(II )若1C 与 2C 相交于点A ,1C 与3C 相交于点B ,求AB 最大值.【答案】(I )()330,0,,22⎛⎫ ⎪ ⎪⎝⎭;(II )4. 【解析】试题分析:(I )把2C 与3C 的方程化为直角坐标方程分别为2220x y y +-=,22230x y x +-=,联立解考点:参数方程、直角坐标及极坐标方程的互化.24. (本小题满分10分)选修4-5:不等式证明选讲设,,,a b c d 均为正数,且a b c d +=+.证明:(I )若ab cd > ,>(II )>a b c d -<-的充要条件.【答案】【解析】试题分析:(I )由a b c d +=+及ab cd >,可证明22>,开方即得>(II )本小题可借助第一问的结论来证明,但要分必要性与充分性来证明. 试题解析:解:(I )因为22a b c d =++=++。
绝密★启用前2015年普通高等学校招生全国统一考试(全国卷2)理科数学注意事项:1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
答卷前,考生务必先将自己的姓名、准考证号码填写在答题卡上。
2.回答第I卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第II卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合A={-2,-1,0,1,2},B={x|(X-1)(x+2)<0},则A∩B=()(A){--1,0}(B){0,1}(C){-1,0,1}(D){,0,,1,2}(2)若a为实数且(2+ai)(a-2i)=-4i,则a=()(A)-1 (B)0 (C)1 (D)2(3)根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图。
以下结论不正确的是( )(A)逐年比较,2008年减少二氧化硫排放量的效果最显著(B ) 2007年我国治理二氧化硫排放显现(C ) 2006年以来我国二氧化硫年排放量呈减少趋势 (D ) 2006年以来我国二氧化硫年排放量与年份正相关(4)等比数列{a n }满足a 1=3,135a a a ++ =21,则357a a a ++= ( )(A )21 (B )42 (C )63 (D )84(5)设函数211log (2),1,()2,1,x x x f x x -+-<⎧=⎨≥⎩,2(2)(log 12)f f -+=( )(A )3 (B )6 (C )9 (D )12(6)一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为(A )81 (B )71 (C )61 (D )51 (7)过三点A (1,3),B (4,2),C (1,-7)的圆交于y 轴于M 、N 两点,则MN =(A )26 (B )8 (C )46 (D )10(8)右边程序抗土的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”。
数学试卷 第1页(共24页)数学试卷 第2页(共24页)数学试卷 第3页(共24页)绝密★启用前2015年普通高等学校招生全国统一考试(湖北卷)数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟. 注意事项:1.答卷前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.用2B 铅笔将答题卡上试卷类型A 后的方框涂黑. 2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试题卷、草稿纸和答题卡上的非答题区域均无效.3.填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内.写在试题卷、草稿纸和答题卡上的非答题区域均无效.4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑,再在答题卡上对应的答题区域内答题.写在试题卷、草稿纸和答题卡上的非答题区域均无效.5.考试结束后,请将本试题卷和答题卡一并上交.第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.i 为虚数单位,607i 的共轭复数为( )A .iB .i -C .1D .1-2.我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1 534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( )A .134石B .169石C .338石D .1 365石3.已知(1)nx +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( )A .122B .112C .102D .924.设211(,)X N μσ~,222(,)Y N μσ~,这两个正态分布密度曲线如图所示.下列结论中正确的是 ( )A .21()()P Y P Y μμ≥≥≥B .21()()P X P X σσ≤≤≤C .对任意正数t ,()()P X t P Y t ≤≥≤D .对任意正数t ,()()P X t P Y t ≥≥≥5.设12,,,n a a a ∈R ,3n ≥.若p :12,,,n a a a 成等比数列;q :222121()n a a a -+++22(a +222312231)()n n n a a a a a a a a -++=+++,则( )A .p 是q 的充分条件,但不是q 的必要条件B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件6.已知符号函数1,0,sgn 0,0,1,0.x x x x >⎧⎪==⎨⎪-<⎩()f x 是R 上的增函数,()()()(1)g x f x f ax a =->,则( )A .sgn[()]sgn g x x =B .sgn[()]sgn g x x =-C .sgn[()]sgn[()]g x f x =D .sgn[()]sgn[()]g x f x =-7.在区间[0,1]上随机取两个数,x y ,记1p 为事件“12x y +≥”的概率,2p 为事件“1||2x y -≤”的概率,3p 为事件“12xy ≤”的概率,则( )A .123p p p <<B .231p p p <<C .312p p p <<D .321p p p <<8.将离心率为1e 的双曲线1C 的实半轴长a 和虚半轴长()b a b ≠同时增加(0)m m >个单位长度,得到离心率为2e 的双曲线2C ,则( )A .对任意的,a b ,12e e >B .当a b >时,12e e >;当a b <时,12e e <C .对任意的,a b ,12e e <D .当a b >时,12e e <;当a b <时,12e e >9.已知集合22{(,)|1,,}A x y x y x y =+∈Z ≤,{(,)|||2,||2,,}B x y x y x y =∈Z ≤≤,定义集合12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕中元素的个数为 ( ) A .77B .49C .45D .30 10.设x ∈R ,[]x 表示不超过x 的最大整数.若存在实数t ,使得[]1t =,2[]2t =,…,[]n t n =同时成立,则正整数n 的最大值是( )A .3B .4C .5D .6 第Ⅱ卷(非选择题 共100分)二、填空题:本大题共6小题,考生需作答5小题,每小题5分,共25分.把答案填在题中的横线上. (一)必考题(11~14题)11.已知向量OA AB ⊥,||3OA =,则OA OB =___________. 12.函数2π()4cos cos()2sin |ln(1)|22xf x x x x =---+的零点个数为___________. 13.如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30的方向上,行驶600m 后到达B 处,测得此山顶在西偏北75的方向上,仰角为30,则此山的高度CD =___________m .14.如图,圆C 与x 轴相切于点(1,0)T ,与y 轴正半轴交于两点,A B (B 在A 的上方),且2AB =.(1)圆C 的标准方程为___________;(2)过点A 任作一条直线与圆22:1O x y +=相交于M ,N 两点,下列三个结论: ①||||||||NA MA NB NB =; ②||||2||||NB MA NA MB -=;③||||||||NB MA NA MB += 其中正确结论的序号是___________(写出所有正确结论的序号). -------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共24页)数学试卷 第5页(共24页)数学试卷 第6页(共24页)(二)选考题(请考生在第15,16两题中任选一题作答,如果全选,则按第15题作答结果记分) 15.(选修4—1:几何证明选讲)如图,P A 是圆的切线,A 为切点,PBC 是圆的割线,且3BC PB =,则ABAC=___________. 16.(选修4—4:坐标系与参数方程)在直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系.已知直线l的极坐标方程为(sin 3cos )0ρθθ-=,曲线C 的参数方程为1,1,x t ty t t ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数),l与C 相交于A ,B 两点,则||AB =___________.三、解答题:本大题共6小题,共75分.解答应写出必要的文字说明、证明过程或演算步骤. 17.(本小题满分11分)某同学用“五点法”画函数π()sin()(0,||)2f x A x ωϕωϕ=+><在某一个周期内的图象时,列表并填入了部分数据,如下表:(Ⅰ)请将上表数据补充完整,并直接写出函数()f x 的解析式;(Ⅱ)将()y f x =图象上所有点向左平行移动θ(0)θ>个单位长度,得到()y g x =的图象.若()y g x =图象的一个对称中心为5π(,0)12,求θ的最小值.18.(本小题满分12分)设等差数列{}n a 的公差为d ,前n 项和为n S ,等比数列{}n b 的公比为q .已知11b a =,22b =,q d =,10100S =. (Ⅰ)求数列{}n a ,{}n b 的通项公式;(Ⅱ)当1d >时,记n n nac b =,求数列{}n c 的前n 项和n T .19.(本小题满分12分)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑. 如图,在阳马P ABCD -中,侧棱PD ⊥底面ABCD , 且PD CD =,过棱PC 的中点E ,作EF PB ⊥交PB 于点F ,连接,,,DE DF BD BE . (Ⅰ)证明:PB DEF ⊥平面.试判断四面体DBEF 是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由; (Ⅱ)若面DEF 与面ABCD 所成二面角的大小为π3,求DCBC的值.20.(本小题满分12分)某厂用鲜牛奶在某台设备上生产,A B 两种奶制品.生产1吨A 产品需鲜牛奶2吨,使用设备1小时,获利1 000元;生产1吨B 产品需鲜牛奶1.5吨,使用设备1.5小时,获利1 200元.要求每天B 产品的产量不超过A 产品产量的2倍,设备每天生产,A B 两种产品时间之和不超过12小时.假定每天可获取的鲜牛奶数量W (单位:吨)是一个该厂每天根据获取的鲜牛奶数量安排生产,使其获利最大,因此每天的最大获利Z (单位:元)是一个随机变量. (Ⅰ)求Z 的分布列和均值;(Ⅱ)若每天可获取的鲜牛奶数量相互独立,求3天中至少有1天的最大获利超过10 000元的概率. 21.(本小题满分14分)一种作图工具如图1所示.O 是滑槽AB 的中点,短杆ON 可绕O 转动,长杆MN 通过N 处铰链与ON 连接,MN 上的栓子D 可沿滑槽AB 滑动,且1DN ON ==,MN 3=.当栓子D 在滑槽AB 内作往复运动时,带动N 绕O 转动一周(D 不动时,N 也不动),M 处的笔尖画出的曲线记为C .以O 为原点,AB 所在的直线为x 轴建立如图2所示的平面直角坐标系.(Ⅰ)求曲线C 的方程;(Ⅱ)设动直线l 与两定直线1:20l x y -=和2:20l x y +=分别交于,P Q 两点.若直线l 总与曲线C 有且只有一个公共点,试探究:△OPQ 的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.22.(本小题满分14分)已知数列{}n a 的各项均为正数,*1(1)()n n n b n a n n=+∈N ,e 为自然对数的底数. (Ⅰ)求函数()1e x f x x =+-的单调区间,并比较1(1)n n +与e 的大小; (Ⅱ)计算11b a ,1212b ba a ,123123b b b a a a ,由此推测计算1212nnb b b a a a 的公式,并给出证明; (Ⅲ)令112()nn n c a a a =,数列{}n a ,{}n c 的前n 项和分别记为n S ,n T ,证明:e n n T S <.数学试卷 第7页(共24页)数学试卷 第8页(共24页)数学试卷 第9页(共24页)2015年普通高等学校招生全国统一考试(湖北卷)数学(理科)答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】60760433i i i i +===-,它的共轭复数为i . 【提示】直接利用复数的单位的幂运算求解即可. 【考点】虚数单位i 及其性质 2.【答案】B【解析】由题意,这批米内夹谷约为281534169254⨯≈石. 【提示】根据254粒内夹谷28粒,可得比例,即可得出结论. 【考点】随机抽样,样本估计总体的实际应用 3.【答案】D【解析】已知(1)nx +的展开式中第4项与第8项的二项式系数相等,可得37nnC C =,可得3710n =+=,10(1)x +的展开式中奇数项的二项式系数和为1091222⨯=.【提示】直接利用二项式定理求出n ,然后利用二项式定理系数的性质求出结果即可. 【考点】二项式定理,二项式系数的性质 4.【答案】C【解析】正态分布密度曲线图象关于x μ=对称,所以12μμ<,从图中容易得到()()P X t P Y t ≤≥≤.【提示】直接利用正态分布曲线的特征,集合概率,直接判断即可.【考点】正态分布曲线的特点及曲线所表示的意义 5.【答案】A【解析】由12,,,,3n a a a n ⋯∈≥R ,运用柯西不等式,可得:222222212-1231223-1()()()n n n n a a a a a a a a a a a a ++⋯+++⋯+≥++⋯+,若12,,,na a a ⋯成等比数列,即有32121n n a a a a a a -==⋯=,则22222212-1231223-1()()()nnn n a a a aaa a a a a a a ++⋯+++⋯+=++⋯+,即由p 推得q ,但由q 推不到p ,比如1230n a a a a ===⋯==,则12,,,n a a a ⋯不成等比数列,故p 是q 的充分不必要条件.【提示】运用柯西不等式,可得22222212-1231223-1()()()nn nn a a a aaa a a a a a a++⋯+++⋯+≥++⋯+,讨论等号成立的条件,结合等比数列的定义和充分必要条件的定义,即可得到. 【考点】等比数列的性质 6.【答案】B【解析】由于本题是选择题,可以常用特殊法,符号函数1,0sgn 0,01,0x x x x >⎧⎪==⎨⎪-<⎩,()f x 是R 上的增函数,()()()(1)g x f x f ax a =->,令()f x x =,2a =,则()()()g x f x f a x x=-=-,sgn[()]sgn()g x x =-,所以A 不正确,B 正确,sgn[()]sgn()f x x =,C 不正确;D 正确;对于D ,令()1f x x =+,2a =, 则()()()g x f x f ax x=-=-,1,1sgn[()]sgn(1)0,11,1x f x x x x >⎧⎪=+==-⎨⎪-<-⎩;1,0sgn[()]sgn()0,01,0x g x x x x >⎧⎪=-==⎨⎪-<⎩,1,1sgn[()]sgn(1)0,11,1x f x x x x ->-⎧⎪-=+==-⎨⎪<-⎩;所以D 不正确;故选B .【提示】直接利用特殊法,设出函数()f x ,以及a 的值,判断选项即可.【考点】函数与方程的综合运用 7.【答案】B【解析】分别作出事件对应的图象如图(阴影部分).P 1:10,2D ⎛⎫ ⎪⎝⎭,1,02F ⎛⎫⎪⎝⎭,(0,1)A ,(1,1)B ,(1,0)C ,则阴影部分的面积11111711122288S =⨯-⨯⨯=-=,211113112122243S =⨯-⨯⨯⨯=-=, 31111121ln 212222S dx x =⨯+=+⎰,231S S S ∴<<,即231p p p <<.【提示】作出每个事件对应的平面区域,求出对应的面积,利用几何概型的概率公式进行计算比较即可. 【考点】几何概型 8.【答案】D【解析】由题意,双曲线C 1:222c a b =+,1ce a =;双曲线C 2:222()()c a m b m '=+++,2e =,222222122()(2)()b b m abm bm am e e a a a m +++∴-=-+,∴当a b >时,12e e <;当a b <时,12e e >.【提示】分别求出双曲线的离心率,再平方作差,即可得出结论.【考点】双曲线的简单性质 9.【答案】C【解析】因为集合22{(,)1,,}A x y x y x y =+≤∈Z ,所以集合A 中有5个元素,即图中圆中的整点,{(,)||2,||2,,}B x y x y x y =≤≤∈Z ,中有5525⨯=个元素,即图中正方形ABCD 中的整点,12121122{(,)|(,),(,)}A B x x y y x y A x y B ⊕=++∈∈的元素可看作正方形1111A B C D 中的整点(除去四个顶点),即77445⨯-=个.数学试卷 第10页(共24页)数学试卷 第11页(共24页)数学试卷 第12页(共24页)【提示】分别求出集合A 与集合B 的解集,将其在坐标系中标出,即可求. 【考点】集合中元素个数的最值 10.【答案】B【解析】若[]1t =,则[1,2)t ∈,若2[]2t =,则t ∈(因为题目需要同时成立,则负区间舍去),若3[]3t =,则t ∈,若4[]4t =,则t ∈,若5[]5t =,则t ∈,1.732≈1.587≈1.4951.431 1.495≈<; 通过上述可以发现,当4t =时,可以找到实数t使其在区间334554[1,2)[2,3)[3,4)[4,5)[5,6)上,但当5t =时,无法找到实数t 使其在区间334554[1,2)[2,3)[3,4)[4,5)[5,6)上,∴正整数n 的最大值4.【提示】由新定义可得t 的范围,验证可得最大的正整数n 为4. 【考点】进行简单的演绎推理第Ⅱ卷二、填空题 (一)必考题 11.【答案】9【解析】由OA AB ⊥uu r uu u r ,得0O A A B =u u r u uur g ,即()0O A O B O A -=uu r uu u r uu r g ,3OA =uu rQ ,2||9OA AB OA ∴==u u r u u u r u u r g .【提示】由已知结合平面向量是数量积运算求得答案. 【考点】平面向量数量积的运算 12.【答案】2【解析】函数()f x 的定义域为{|1}x x >-.22π()4cos cos 2sin |ln(1)|2sin 2cos 1|ln(1)|sin 2|ln(1)|222x x f x x x x x x x x ⎛⎫⎛⎫=---+=--+=-+ ⎪ ⎪⎝⎭⎝⎭,分别画出函数sin 2y x =,|ln(1)|y x =+的图象,由函数的图象可知,交点个数为2,所以函数的零点有2个.【提示】利用二倍角公式化简函数的解析式,求出函数的定义域,画出函数的图象,求出交点个数即可.【考点】根的存在性及根的个数判断 13.【答案】【解析】设此山高h (m ),则BC =,在ABC △中,30BAC ∠=,105CBA ∠=,45BCA ∠=,600AB =,根据正弦定理得600sin 30sin 45=,解得h =m ). 【提示】设此山高h (m ),在BCD △中,利用仰角的正切表示出BC ,进而在ABC △中利用正弦定理求得h .【考点】解三角形的实际应用 14.【答案】(1)22(1)(2x y -+= (2)①②③【解析】解:(1)Q 圆C 与x 轴相切于点(1,0)T ,∴圆心的横坐标1x =,取AB 的中点E ,||2AB =Q ,||1BE ∴=,则||BC=,即圆的半径||rBC ==∴圆心C ,则圆的标准方程为22(1)(2x y -+=.(2)Q 圆心C,E ∴,又||2AB =Q,且E 为AB 中点,1)A ∴,1)B ,Q M 、N 在圆O :221x y +=上,∴可设(cos ,sin )M αα,(cos ,sin )N ββ, ||NA ∴=====||NB====||1||NA NB∴===, 同理可得||1||MA MB =,||||||||NA MA NB MB ∴=,①成立; ||||1)2||||NB NA NA NB-==,②正确; ||||1)||||NB MA NA MB +==,③正确.【提示】(1)取AB 的中点E ,通过圆C 与x 轴相切于点T ,利用弦心距、半径与半弦长之间的关系,计算即可;(2)设(cos ,sin )M αα,(cos ,sin )N ββ,计算出||||MA MB 、||||NA NB、||||NB NA 的值即可. 【考点】命题的真假判断与应用,圆与圆的位置关系及其判定 (二)选考题 15.【答案】12数学试卷 第13页(共24页)数学试卷 第14页(共24页)数学试卷 第15页(共24页)【解析】由切割线定理可知2PA PB PC =g ,又3BC PB =,可得2PA PB =,在PAB △与PAC △中,P P ∠=∠,PAB PCA ∠=∠(同弧上的圆周角与弦切角相等),可得PAB PCA△∽△, 122AB PB PB AC PA PB ∴===.【提示】利用切割线定理推出2PA PB =,利用相似三角形求出比值即可. 【考点】与圆有关的比例线段 16.【答案】【解析】由(sin 3cos )0ρθθ-=,得30y x -=,由C 的参数方程为11x t ty t t ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数),两式平方作差得224x y -=-.联立2234y x x y =⎧⎨-=-⎩,得212x =,即2x =±,22A ⎛∴ ⎝⎭,,22B ⎛-- ⎝⎭,||AB ∴==.【提示】化极坐标方程化直角坐标方程,参数方程化为普通方程,联立直线方程和双曲线方程后求得交点坐标,由两点间的距离公式可得答案. 【考点】简单曲线的极坐标方程,双曲线的参数方程 三、解答题 17.【答案】(Ⅰ)π127π12 13π12π()5sin 26f x x ⎛⎫=- ⎪⎝⎭(Ⅱ)π6【解析】(Ⅰ)根据表中已知数据,解得5A =,2,ω=,π6ϕ=-,数据补全如下表:且函数表达式为()5sin 26f x x ⎛⎫=- ⎪⎝⎭.(Ⅱ)由(Ⅰ)知π()5sin 26f x x ⎛⎫=- ⎪⎝⎭,得π()5sin 226g x x θ⎛⎫=+- ⎪⎝⎭,因为sin y x =的对称中心为(π,0)k ,k ∈Z ,令π22π6x k θ+-=,解得ππ212k x θ=+-,k ∈Z , 由于函数()y g x =的图象关于点5π,012⎛⎫⎪⎝⎭成中心对称, 令ππ5π21212k θ+-=,解得ππ23k θ=-,k ∈Z . 由0θ>可知,当1k =时,θ取得最小值π6. 【提示】(Ⅰ)根据表中已知数据,解得5A =,2,ω=,π6ϕ=-,从而可补全数据,解得函数表达式为π()5sin 26f x x ⎛⎫=- ⎪⎝⎭;(Ⅱ)由(Ⅰ)及函数sin()y A x ωϕ=+的图象变换规律得π()5sin 226g x x θ⎛⎫=+- ⎪⎝⎭.令π22π6x k θ+-=,解得ππ212k x θ=+-,k ∈Z ,令ππ5π21212k θ+-=,解得ππ23k θ=-,k ∈Z ,由0θ>可得解.【考点】由sin()y A x ωϕ=+的部分图象确定其解析式,函数sin()y A x ωϕ=+的图象变换18.【答案】(Ⅰ)21n a n =-,12n n b -=或1(279)9n a n =+,1299n n b -⎛⎫= ⎪⎝⎭g (Ⅱ)12362n n n T -+=-【解析】(Ⅰ)设1a a =,由题意可得10451002a d ad +=⎧⎨=⎩,解得12a d =⎧⎨=⎩,或929a d =⎧⎪⎨=⎪⎩,当12a d =⎧⎨=⎩时,21n a n =-,12n nb -=; 当929a d =⎧⎪⎨=⎪⎩时,1(279)9n a n =+,1299n n b -⎛⎫= ⎪⎝⎭g .(Ⅱ)当1d >时,由(Ⅰ)知21n a n =-,12n n b -=,1212n n n n a n c b --∴==, 23411111113579(21)22222n n T n -∴=++++++-g g g g L g ,234111*********(23)(21)2222222n n n T n n -∴=+++++-+-g g g g L g g 23421111111232(21)322222222n n n n n T n -+=++++++--=-L g 12362n n n T -+∴=-.【提示】(Ⅰ)利用前10项和与首项、公差的关系,联立方程组计算即可;(Ⅱ)当1d >时,由(Ⅰ)知1212nn n c --=,写出n T 、12n T 的表达式,利用错位相减法及等比数列的求和公式,计算即可. 【考点】数列的求和 19.【答案】(Ⅰ)见解析(Ⅱ)DC BC =【解析】解法一:(Ⅰ)因为PD ⊥底面ABCD ,所以PD BC ⊥,由底面ABCD 为长方形,有BC CD ⊥,而PD CD D =,所以BC ⊥平面PCD , 而DE ⊂平面PDC ,所以BC DE ⊥.又因为PD CD =,点E 是PC 的中点,所以DE PC ⊥, 而PC CB C =I ,所以DE ⊥平面PBC ,而PB ⊂平面PBC ,所以PB DE ⊥.又PB EF ⊥,DE FE E =I ,所以PB ⊥平面DEF .数学试卷 第16页(共24页)数学试卷 第17页(共24页) 数学试卷 第18页(共24页)由DE ⊥平面PBC ,PB ⊥平面DEF ,可知四面体BDEF 的四个面都是直角三角形, 即四面体BDEF 是一个鳖臑,其四个面的直角分别为DEB ∠,DEF ∠,EFB ∠,DFB ∠. (Ⅱ)如图,在面BPC 内,延长BC 与FE 交于点G ,则D G 是平面DEF 与平面ACBD 的交线.由(Ⅰ)知,PB ⊥平面DEF ,所以PB DG ⊥. 又因为PD ⊥底面ABCD ,所以PD DG ⊥, 而PD PB P =I ,所以DG ⊥平面PBD , 所以DG DF ⊥,DG DB ⊥.故BDF ∠是面DEF 与面ABCD 所成二面角的平面角, 设1PD DC ==,BC λ=,有BD =在Rt PDB △中,由DF PB ⊥,得π3DPF FDB ∠=∠=,则πtan tan 3BDDPF PD=∠===解得λ=1DC BC λ=, 故当面DEF 与面ABCD 所成二面角的大小为π3时,DC BC =解法二:(Ⅰ)以D 为原点,射线DA ,DC ,DP 分别为x ,y ,z 轴的正半轴,建立空间直角坐标系.设1PD DC ==,BC λ=,则(0,0,0)D ,(0,0,1)P ,(,1,0)B λ,(0,1,0)C ,(,1,1)PB λ=-uu r,点E 是PC 的中点,所以110,,22E ⎛⎫ ⎪⎝⎭,110,,22DE ⎛⎫= ⎪⎝⎭uuur ,于是0PB DE =uu r uuu rg ,即PB DE ⊥.又已知EF PB ⊥,而ED EF E =I ,所以PB ⊥平面DEF , 因(0,1,1)PC =-uu u r ,0DE PC =uuu r uu u rg ,则DE PC ⊥,所以DE ⊥平面PBC .由DE ⊥平面PBC ,PB ⊥平面DEF ,可知四面体BDEF 的四个面都是直角三角形, 即四面体BDEF 是一个鳖臑,其四个面的直角分别为DEB ∠,DEF ∠,EFB ∠,DFB ∠.(Ⅱ)由PD ⊥底面ABCD ,所以(0,0,1)DP =uu u r是平面ACDB 的一个法向量;由(Ⅰ)知,PB ⊥平面DEF ,所以(,1,1)BP λ=--uu r是平面DEF 的一个法向量.若面DEF 与面ABCD 所成二面角的大小为π3,则运用向量的数量积求解得出π1cos 32==,解得λ=12DC BC λ==, 故当面DEF 与面ABCD 所成二面角的大小为π3时,DC BC =【提示】解法一:(Ⅰ)直线与直线,直线与平面的垂直的转化证明得出PB EF ⊥,DE FE E =I ,所以PB ⊥平面DEF ,即可判断DE ⊥平面PBC ,PB ⊥平面DEF ,可知四面体BDEF 的四个面都是直角三角形,确定直角;(Ⅱ)根据公理2得出DG 是平面DEF 与平面ACBD 的交线,利用直线平面的垂直判断出DG DF ⊥,DG DB ⊥,根据平面角的定义得出BDF ∠是面DEF 与面ABCD 所成二面角的平面角,转化到直角三角形求解即可.解法二:(Ⅰ)以D 为原点,射线DA ,DC ,DP 分别为x ,y ,z 轴的正半轴,建立空间直角坐标系,运用向量的数量积判断即可;(Ⅱ)由PD ⊥底面ABCD ,所以(0,0,1)DP =uu u r是平面ACDB 的一个法向量;由(Ⅰ)知,PB ⊥平面DEF ,所以(,1,1)BP λ=--uu r是平面DEF 的一个法向量,根据数量积得出夹角的余弦即可得出所求解的答案.【考点】用空间向量求平面间的夹角,直线与平面垂直的判定 20.【答案】(Ⅰ)见解析 (Ⅱ)0.973【解析】(Ⅰ)设每天A ,B 两种产品的生产数量分别为x ,y ,相应的获利为Z ,则有2 1.51.512200,0x y W x y x y x y +≤⎧⎪+≤⎪⎨-≥⎪⎪≥≥⎩①,如图1,目标函数为10001200Z x y =+.当12W =时,①表示的平面区域如图1,三个顶点分别为(0,0)A ,(2.4,4.8)B ,(6,0)C ,将10001200Z x y =+变形为561200Zy x =-+,当 2.4x =, 4.8y =时,直线l :561200Zy x =-+在y 轴上的截距最大,最大获利max 2.41000 4.812008160Z Z ==⨯+⨯=; 当15W =时,①表示的平面区域如图2,三个顶点分别为(0,0)A ,(3,6)B ,(7.5,0)C , 将10001200Z x y =+变形为561200Zy x =-+,当3x =,6y =时,直线l :561200Zy x =-+在y 轴上的截距最大,最大获利max 310006120010200Z Z ==⨯+⨯=; 当18W =时,①表示的平面区域如图3,四个顶点分别为(0,0)A ,(3,6)B ,(6,4)C ,(9,0)D , 将10001200Z x y =+变形为561200Zy x =-+,当6x =,4y =时,直线l :561200Zy x =-+在y 轴上的截距最大,最大获利max 610004120010800Z Z ==⨯+⨯=.因此,()81600.3102000.5108000.29708E Z =⨯+⨯+⨯=.数学试卷 第19页(共24页)数学试卷 第20页(共24页)数学试卷 第21页(共24页)(Ⅱ)由(Ⅰ)知,一天最大获利超过10000元的概率1(10000)0.50.20.7P P Z =>=+=,由二项分布,3天中至少有1天最大获利超过10000元的概率为311(1)0.973P P =--=.【提示】(Ⅰ)设每天A ,B 两种产品的生产数量分别为x ,y ,相应的获利为z ,列出可行域,目标函数,通过当12W =时,当15W =时,当18W =时,分别求出目标函数的最大获利,然后得到Z 的分布列,求出期望即可;(Ⅱ)判断概率类型是二项分布,然后求解所求概率即可. 【考点】简单线性规划的应用,离散型随机变量的期望与方差21.【答案】(Ⅰ)221164x y += (Ⅱ)见解析【解析】(Ⅰ)设(,0)(||2)D t t ≤,00(,)N x y ,(,)M x y ,由题意得2MD DN =uuu r uuu r,且||||1DN ON ==uuu r uuu r ,00(,)2(,)t x y x t y ∴--=-,且22002200()11x t y x y ⎧-+=⎪⎨+=⎪⎩,即00222t x x t y y -=-⎧⎨=-⎩,且0(2)0t t x -=, 由于当点D 不动时,点N 也不动,∴t 不恒等于0,于是02t x =,故04x x =,02yy =-, 代入2201x y +=,得方程221164x y +=.(Ⅱ)(1)当直线l 的斜率k 不存在时,直线l 为:4x =或4x =-,都有14482OPQ S =⨯⨯=△, (2)直线l 的斜率k 存在时,直线l 为:12y kx m k ⎛⎫=+≠± ⎪⎝⎭,由22416y kx m x y =+⎧⎨+=⎩消去y ,可得222(14)84160k x kmx m +++-=, 直线l 总与椭圆C 有且只有一个公共点,2222644(14)(416)0k m k m ∴∆=-+-=,即22164m k =+①. 由20y kx m x y =+⎧⎨-=⎩,可得2,1212m m P k k ⎛⎫ ⎪--⎝⎭,同理得2,1212mm Q k k -⎛⎫ ⎪++⎝⎭, 原点O 到直线PQ的距离d =和|||P Q PQ x x -, 可得22111222||||||||222121214OPQP Q m m m S PQ d m x x m k k k ==-=+=-+-△②. 将①代入②得222224181441OPQm k S k k +==--△, 当214k >时,22241288184141OPQ k S k k ⎛⎫+⎛⎫==+> ⎪ ⎪--⎝⎭⎝⎭△, 当2104k ≤<时,22222414128881414114OPQ k k S k k k ⎛⎫++⎛⎫==-=-+ ⎪ ⎪---⎝⎭⎝⎭△, 2104k ≤<时,20141k ∴<-≤,22214k ≥-, 2281814OPQS k ⎛⎫∴=-+≥ ⎪-⎝⎭△,当且仅当0k =时取等号,0k ∴=时,OPQ S △的最小值为8.综上可知当直线l 与椭圆C 在四个顶点处相切时,三角形OPQ 的面积存在最小值为8. 【提示】(Ⅰ)根据条件求出a ,b 即可求椭圆C 的方程;(Ⅱ)联立直线方程和椭圆方程,求出原点到直线的距离,结合三角形的面积公式进行求解即可.【考点】直线与圆锥曲线的关系,椭圆的标准方程22.【答案】(Ⅰ)()f x 的单调递增区间为(,0)-∞,单调递减区间为(0,)+∞11e nn ⎛⎫+< ⎪⎝⎭ (Ⅱ)见解析 (Ⅲ)见解析【解析】(Ⅰ)()f x 的定义域为(,)-∞+∞,()1e x f x '=-, 当()0f x '>,即0x <时,()f x 单调递增, 当()0f x '<,即0x >时,()f x 单调递减,故()f x 的单调递增区间为(,0)-∞,单调递减区间为(0,)+∞. 当0x >时,()(0)0f x f <=,即1e x x +<,令1x n =,得111e n n +<,即11e nn ⎛⎫+< ⎪⎝⎭①(Ⅱ)1111111121b a ⎛⎫=+=+= ⎪⎝⎭g ;222121212121221(21)32b b b b a a a a ⎛⎫==+=+= ⎪⎝⎭g g ;32331233121231231331(31)43b b b b b b a a a a a a ⎛⎫==+=+= ⎪⎝⎭g g ; 由此推测:1212(1)n nnb b b n a a a =+L L ② 下面用数学归纳法证明②,(1)当1n =时,2==左边右边,②成立.(2)假设当n k =时,②成立,即1212(1)k kk b b b k a a a =+L L , 当1n k =+时,1111(1)11k k k b k a k +++⎛⎫=++ ⎪+⎝⎭,由归纳假设可得111211211211211(1)(1)1(2)1k k k k k k k k k k k b b b b b b b b k k k a a a a a a a a k ++++++⎛⎫==+++=+ ⎪+⎝⎭L L g L L∴当1n k =+时,②也成立.根据(1)(2),可知②对一切正整数n 都成立.(Ⅲ)证明:由n c 的定义,②,算术-几何平均不等式,n b 的定义及①得数学试卷 第22页(共24页) 数学试卷 第23页(共24页) 数学试卷 第24页(共24页)111131212311212312()()()()nn n n T c c c c a a a a a a a a a =++++=++++11113121231212312112112()()()()2341122334(1)nn n b b b b b b b b bb b b b b b b b b n n n ++++++=++++≤+++++⨯⨯⨯+L L L L1211111111223(1)2334(1)(1)n b b b n n n n n n ⎡⎤⎡⎤=+++++++++⎢⎥⎢⎥⨯⨯+⨯⨯++⎣⎦⎣⎦L L L g 1212111111121112n n b b b b b b n n n n n ⎛⎫⎛⎫⎛⎫=-+-++-<+++ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭ 121212111111e e e 12nn n a a a a a a n ⎛⎫⎛⎫⎛⎫=++++++<+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭L L即e n n T S <.【提示】(Ⅰ)求出()f x 的定义域,利用导数求其最大值,得到1e x x +<,取1x n=即可得到答案;(Ⅱ)由11()nn n b n a n n +⎛⎫=+∈ ⎪⎝⎭N ,变形求得11b a ,1212b b a a ,123123b b b a a a ,由此推测1212(1)n nnb b b n a a a =+,然后利用数学归纳法证明;(Ⅲ)由n c 的定义、1212(1)n n n b b b n a a a =+、算术-几何平均不等式、n b 的定义及11e nn ⎛⎫+< ⎪⎝⎭,利用放缩法证得e n n T S <. 【考点】数列与不等式的综合。
绝密★启用前2015年普通高等学校招生全国统一考试(全国新课标卷2)数学(理科)使用地区:海南、宁夏、黑龙江、吉林、辽宁、新疆、云南、内蒙古、青海、贵州、甘肃、广西、西藏本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共24题,共150分,共6页.考试结束后,将本试卷和答题卡一并交回. 注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内.2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚.3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效.4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑.5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{2,1,0,1,2}A =--,{|(1)(2)0}B x x x =-+<,则AB =( )A .{1,0}A =-B .{0,1}C .{1,0,1}-D .{0,1,2} 2.若a 为实数,且(2i)(2i)4i a a +-=-,则a =( )A .1-B .0C .1D .23.根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是( )A .逐年比较,2008年减少二氧化硫排放量的效果最显著B .2007年我国治理二氧化硫排放显现成效C .2006年以来我国二氧化硫年排放量呈减少趋势D .2006年以来我国二氧化硫年排放量与年份正相关4.已知等比数列{}n a 满足13a =,135a a a ++=21,则357a a a ++=( )A .21B .42C .63D .845.设函数211log (2),1,()2, 1,x x x f x x -+-⎧=⎨⎩<≥则2(2)(log 12)f f -+=( ) A .3B .6C .9D .126.一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为( )A.18B .17C .16D .157.过三点(1,3)A ,(4,2)B ,(1,7)C -的圆交y 轴于M ,N 两点,则||MN =( )A .26B .8C .46D .108.如图所示的程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a ,b 分别为14,18,则输出的a =( )A .0B .2C .4D .149.已知A ,B 是球O 的球面上两点,∠AOB =90°, C 为该球面上的动点.若三棱锥O-ABC 体积的 最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256π10.如图,长方形ABCD 的边2AB =,1BC =,O 是AB 的中点.点P 沿着边BC ,CD 与DA 运动,记BOP x ∠=.将动点P 到A ,B 两点距离之和表示为x 的函数()f x ,则()y f x =的图象大致为( )ABCD11.已知A ,B 为双曲线E 的左、右顶点,点M 在E 上,△ABM 为等腰三角形,且顶角为120°,则E 的离心率为( )A .5B .2C .3D .2 12.设函数'()f x 是奇函数()()f x x ∈R 的导函数,(1)0f -=,当0x >时,'()()0xf x f x -<,则使得()0f x >成立的x 的取值范围( )A .(,1)(0,1)-∞-B .(1,0)(1,)-+∞C .(,1)(1,0)-∞--D .(0,1)(1,)+∞--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中的横线上. 13.设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=________.14.若x ,y 满足约束条件10,20,220,x y x y x y -+⎧⎪-⎨⎪+-⎩≥≤≤则z x y =+的最大值为________.15.4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a =________. 16.设n S 是数列{}n a 的前n 项和,且11a =-,11n n n a S S ++=,则n S =________. 三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤. 17.(本小题满分12分)ABC △中,D 是BC 上的点,AD 平分BAC ∠,ABD △面积是ADC △面积的2倍.(Ⅰ)求sin sin BC∠∠;(Ⅱ)若1AD =,22DC =,求BD 和AC 的长. 18.(本小题满分12分)某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A 地区:62 73 81 92 95 85 74 64 53 76 78 86 95 66 97 78 88 82 76 89B 地区:73 83 62 51 91 46 53 73 64 82 93 48 65 81 74 56 54 76 65 79 (Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,得出结论即可);(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个等级:满意度评分 低于70分 70分到89分 不低于90分 满意度等级 不满意 满意 非常满意记事件C :“A 地区用户的满意度等级高于B 地区用户的满意度等级”.假设两地区用户的评价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C 的概率.19.(本小题满分12分)如图,长方体1111ABCD A B C D -中,=16AB ,=10BC ,18AA =,点E ,F 分别在11A B ,11D C 上,114A E D F ==.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(Ⅰ)在图中画出这个正方形(不必说明画法和理由); (Ⅱ)求直线AF 与平面α所成角的正弦值.20.(本小题满分12分)已知椭圆222 9(0)C x y m m +=>:,直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(Ⅰ)证明:直线OM 的斜率与l 的斜率的乘积为定值; (Ⅱ)若l 过点(,)3mm ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率;若不能,请说明理由.21.(本小题满分12分)设函数2()mx f x e x mx =+-.(Ⅰ)证明:()f x 在(,0)-∞上单调递减,在(0,)+∞上单调递增;(Ⅱ)若对于任意12,[1,1]x x ∈-,都有12()()1f x f x e --≤,求m 的取值范围.请考生在第22~24三题中任选一题作答,如果多做,则按所做的第一题记分. 22.(本小题满分10分)选修4—1:几何证明选讲如图,O 为等腰三角形ABC 内一点,⊙O 与ABC △的底边BC 交于M ,N 两点,与底边上的高AD 交于点G ,且与AB ,AC 分别相切于E ,F 两点. (Ⅰ)证明:EF BC ∥;(Ⅱ)若AG 等于⊙O 的半径,且23AE MN ==,求四边形EBCF 的面积.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,曲线1cos ,:sin ,x t C y t αα=⎧⎨=⎩(t 为参数,0t ≠),其中0πα≤<.在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线2:2sin C ρθ=,3:23cos C ρθ=. (Ⅰ)求2C 与3C 交点的直角坐标;(Ⅱ)若1C 与2C 相交于点A ,1C 与3C 相交于点B ,求||AB 最大值.24.(本小题满分10分)选修4—5:不等式选讲设a ,b ,c ,d 均为正数,且a b c d +=+,证明: (Ⅰ)若ab cd >,则a b c d +>+; (Ⅱ)a b c d +>+是||||a b c d -<-的充要条件.2015年普通高等学校招生全国统一考试(全国新课标卷2)理科数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】由已知得{|21}B x x =-<<,故,}10{AB -=,故选A .【提示】解一元二次不等式,求出集合B ,然后进行交集的运算即可. 【考点】集合的交集运算和一元二次方程求根. 2.【答案】B【解析】由已知得24+(4)i 4i a -=-,所以40a =,244a -=-,解得0a =,故选B .【提示】首先将坐标展开,然后利用复数相等解之. 【考点】复数的四则运算. 3.【答案】D【解析】解:A .从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量明显减少,且减少的最多,故A 正确;B .2004~2006年二氧化硫排放量越来越多,从2007年开始二氧化硫排放量变少,故B 正确;C .从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C 正确;D .2006年以来我国二氧化硫年排放量越来越少,而不是与年份正相关,故D 错误. 故选:D【提示】A .从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量减少的最多,故A 正确;B .从2007年开始二氧化硫排放量变少,故B 正确;C .从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C 正确;D .2006年以来我国二氧化硫年排放量越来越少,与年份负相关,故D 错误. 【考点】柱形图信息的获得. 4.【答案】B【解析】设等比数列公比为q ,则24111++21a a q a q =,又因为13a =,所以42+60q q -=,解得22q =,所以2357135++(++)42a a a a a a q ==,故选B .【提示】由已知,13a =,135++21a a a =,利用等比数列的通项公式可求q ,然后在代入等比数列通项公式即可求.【考点】等比数列通项公式和性质.5.【答案】C【解析】由已知得2(2)1+log 43f -==,又2log 121>,所以22log 121log 62(log 12)226f -===,故2(2)+(log 12)9f f -=.【提示】先求2(2)1+log (2+2)1+23f -===,再由对数恒等式,求得2(log 12)6f =,进而得到所求和.【考点】函数定义域以及指数对数的运算. 6.【答案】D【解析】由三视图得,在正方体1111ABCD A B C D -中,截去四面体111A A B D -,如图所示,设正方体棱长为a ,则11133111326A A B D V a a -=⨯=,故剩余几何体积为3331566a a a -=,所以截去部分体积与剩余部分体积的比值为15.故选D .【提示】由三视图判断,正方体被切掉的部分为三棱锥,把相关数据代入棱锥的体积公式计算即可.【考点】几何图形的三视图. 7.【答案】C【解析】由已知得321143AB k -==--,2+7341CB k ==-,所以1AB CB k k =-,所以AB CB ⊥,即ABC △为直角三角形,其外接圆圆心为(1,2)-,半径为5,所以外接圆方程为22(1)+(+2)25x y -=,令0x =,得2y =±,所以||MN =,故选C .【提示】设圆的方程为22+++0x y Dx Ey F =,代入点的坐标,求出D ,E ,F ,令0x =,即可得出结论.【考点】直线与圆的相交,距离的计算. 8.【答案】B【解析】程序在执行过程中,a ,b 的值依次为14a =,18b =;4b =;10a =;6a =;2a =;2b =,此时2a b ==程序结束,输出a 的值为2,故选B .【提示】由循环结构的特点,先判断,再执行,分别计算出当前的a ,b 的值,即可得到结论.【考点】程序框图. 9.【答案】C【解析】如图所示,当点C 位于垂直面AOB 的直径端点时,三棱锥O ABC -体积最大,设球O 的半径为R ,此时23--11136326O ABC C ABC V V R R R ==⨯⨯==,故R =6,则球O 的表面积为:24π144πS R ==,选C .【提示】当点C 位于垂直于面AOB 的直径端点时,三棱锥O ABC -的体积最大,利用三棱锥O ABC -体积的最大值为36,求出半径,即可求出球O 的表面积.【考点】球面的表面积和锥体的体积. 10.【答案】B【解析】由已知得,当点P 在BC 边上运动时,即π04x ≤≤时,P A +PBtan x ; 当点P在CD边上运动时,即π3π44x ≤≤,π2x ≠时,+PA P B =当π2x =时,+PA PB = 当点P 在AD 边上运动时,3ππ4x ≤≤时,P A +PB=tan +P A P x B =, 从点P 的运动过程可以看出轨迹关于直线π2x =对称,且ππ42f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,且轨迹非线型,故选B .【提示】根据函数图像关系,利用排除法进行求解即可. 【考点】动点的函数图像. 11.【答案】D【解析】设双曲线方程为22221(00)x y a b a b-=>>,,如图所示,||||AB BM =,120ABM ∠=︒,过点M 作MN x ⊥轴,垂足为N ,在Rt BMN △中,||BN a =,||MN =,故点M 的坐标为(2)M a ,代入双曲线方程得2222a b c a ==-,即222c a =,所以e 故选D .【提示】设M 在双曲线22221x ya b -=的左支上,由题意可得M的坐标为(2)M a ,代入双曲线方程可得a b =,再由离心率公式即可得到所求值. 【考点】双曲线离心率. 12.【答案】A 【解析】记函数()()f x g x x =,则2()()()xf x f x g x x'-'=,因为当0x >时,()()0xf x f x '-<,故当0x >时,()0g x '<,所以()g x 在(,+)∞0单调递减,又因为函数()f x ()x ∈R 是奇函数,故函数()g x 是偶函数,所以()g x 在(,0)-∞单调递增,且(1)(1)0g g -==.当01x <<时,()0g x >,则()0f x >;当1x <-时,()0g x <,则()0f x >,综上所述,使得()0f x >成立的x 的取值范围是(,1)(0,1)-∞-,故选A .【提示】由已知当0x >时总有()()0xf x f x '-<成立,可判断函数()()f x g x x=为减函数,由已知()f x 是定义在R 上的奇函数,可证明()g x 为(,0)(0,+)-∞∞上的偶函数,根据函数()g x 在(0,+)∞上的单调性和奇偶性,模拟()g x 的图像,而不等式()0f x >等价于()0x g x >,数形结合解不等式组即可.【考点】奇函数,导数,定义域的求解.第Ⅱ卷二、填空题 13.【答案】12【解析】因为向量+a b λ与+2a b 平行,所以+(+2)a b k a b λ=,则12k k λ=⎧⎨=⎩,,所以12λ=.【提示】利用向量平行即共线的条件,得到向量+a b λ与+2a b 之间的关系,利用向量相等解析【考点】平面向量的基本定理.14.【答案】32【解析】画出可行域,如图所示,将目标函数变形为+y x z =,当z 取最大时,直线+y x z=的纵截距最大,故将直线尽可能地向上平移到11,2D ⎛⎫⎪⎝⎭,则+z x y =的最大值为32.【提示】首先画出平面区域,然后将目标函数变形为直线的斜截式,求在y 轴的截距最大值【考点】线性规划问题的最值求解. 15.【答案】3【解析】由已知得4234(1+)1+4+6+4+x x x x x =,故4(+)(1+)a x x 的展开式中x 的奇数次幂项分别为4ax ,34ax ,x ,36x ,5x ,其系数之和为4+4+1+6+132a a =,解得3a =. 【提示】给展开式中的x 分别赋值1,1-,可得两个等式,两式相减,再除以2得到答案.【考点】排列组合. 16.【答案】1n-【解析】由已知得111n n n n n a S S S S +++=-=,两边同时除以+1n n S S ,得+1111n nS S -=-,故数列1n S ⎧⎫⎨⎬⎩⎭是以1-为首项,1-为公差的等差数列,则11(1)n n n S =---=-,所以1n S n =-. 【提示】通过111n n n n n a S S S S +++=-=,并变形可得数列1n S ⎧⎫⎨⎬⎩⎭是以首项和公差均为1-的等差数列,进而可得结论. 【考点】数列的求和运算. 三、解答题 17.【答案】(Ⅰ)12(Ⅱ)BD =1AC =【解析】(Ⅰ)1sin 2ABD S AB AD BAD =∠△,1sin 2ADC S AC AD CAD =∠△. 因为2ABD ADC S S =△△,BAD CAD ∠=∠, 所以2AB AC =. 由正弦定理得:sin 1sin 2B AC C AB ∠==∠.(Ⅱ)因为:ABD ADC S S BD DC ==△△所以BD =.在ABD △和ADC △,由余弦定理知:222+2cos AB AD BD AD BD ADB =-∠,222+2cos AC AD DC AD DC ADC =-∠,故22222+23++26AB AC AD BD DC == 由(Ⅰ)知2AB AC =, 所以1AC =.【提示】(Ⅰ)过A 作AE BC ⊥于E ,由已知及面积公式可得2BD DC =,由AD 平分BAC ∠及正弦定理可得sin sin AD BAD B BD ⨯∠∠=,sin sin AD DAC C DC ⨯∠∠=,从而得解sin sin BC∠∠.(Ⅱ)由(Ⅰ)可求BD =D 作DM AB ⊥于M ,作DN AC ⊥于N ,由AD平分BAC ∠,可求2AB AC =,利用余弦定理即可解得BD 和AC 的长. 【考点】正弦定理,余弦定理. 18.【答案】(Ⅰ)见解析 (Ⅱ)0.48【解析】(Ⅰ)两地区用户满意度评分的茎叶图如下:通过茎叶图可以看出,A 地区用户满意度评分的平均值高于B 地区用户满意度评分的平均值;A 地区用户满意度评分比较集中,B 地区用户满意度评分比较分散. (Ⅱ)记1AC 表示事件:“A 地区用户满意度等级为满意或不满意”; 记2A C 表示事件:“A 地区用户满意度等级为非常满意”; 记1B C 表示事件:“B 地区用户满意度等级为不满意”; 记2B C 表示事件:“B 地区用户满意度等级为满意”.则1A C 与1B C 独立,2A C 与2B C 独立,1B C 与2B C 互斥,1122B A B A C C C C C =,112211221122()()()+()()()+()()B A B A B A B A B A B A P C P C C C C P C C P C C P C P C P C P C ===由所给数据的1A C ,2A C ,1B C ,2B C 发生的概率分别为1620,420,1020,820,故116()20A P C =,24()20A P C =,110()20B P C =,28()20B PC =,101684()+202020200.48P C =⨯⨯=.【提示】(Ⅰ)根据茎叶图的画法,以及有关茎叶图的知识,比较即可; (Ⅱ)根据概率的互斥和对立,以及概率的运算公式,计算即可. 【考点】茎叶图,古典概型的相关运算. 19.【答案】(Ⅰ)见如图(Ⅱ)15【解析】(Ⅰ)交线围成的正方形EHGF 如图:(Ⅱ)作EM AB ⊥,垂足为M ,则14AM A E ==,18EM AA ==.因为EHGF 为正方形,所以10EH EF BC ===.于是6MH ==,所以10AH =.以D 为坐标原点,DA 的方向为x 轴正方向,建立如图示空间直角坐标系D xyz -, 则(10,0,0)A ,(10,10,0)H ,(10,4,8)E ,(0,4,8)F .(0,6,8)HE =-,(10,0,0)FE =. 设(,,)n x y z =是平面EHGF 的法向量,则00n FE n HE ⎧=⎪⎨=⎪⎩,即1006+80x y z =⎧⎨-=⎩,所以可取(0,4,3)n =又(10,4,8)AF -=.故||45sin |cos ,|=15||||n AF n AF n AF θ==.所以AF 与平面EHGF . 【提示】(Ⅰ)容易知道所围成正方形的边长为10,再结合长方体各边的长度,即可找出正方形的位置,从而画出这个正方形;(Ⅱ)分别以直线DA ,DC ,DD 1为x ,y ,z 轴,建立空间直角坐标系,考虑用空间向量解决本问,能够确定A ,H ,E ,F 几点的坐标.设平面EFGH 的法向量为(,,)n x y z =,根据n FE n HE ⎧=⎪⎨=⎪⎩即可求出法向量n ,AF 坐标可以求出,可设直线AF 与平面EFGH 所成角为θ,由sin |cos ,|n AF θ=即可求得直线AF 与平面α所成角的正弦值. 【考点】线面平行、相交,线面夹角的求解. 20.【答案】(Ⅰ)见解析 (Ⅱ)能4【解析】(Ⅰ)设直线l :+(00)y kx b k b =≠≠,,11(,)A x y ,22(,)B x y (,)M M M x y .将+y kx b =代入2229+x y m =得2222(+9)+2+0k x kbx b m -=.故122+2+9M x x kb x k -==,29++9M M by kx b k ==, 于是直线OM 的斜率9M OM M y k x k==-,9OM k k =-.所以直线OM 的斜率与l 的斜率的乘积为定值.(Ⅱ)四边形OAPB 能为平行四边形.因为直线l 过点,3m m ⎛⎫⎪⎝⎭,所以l 不过原点且与C 有两个交点的充要条件是0k >,3k ≠.由(Ⅰ)得OM 的方程为9y x k=-.设点P 的横坐标为P x . 由22299+y x k xy m⎧=-⎪⎨⎪=⎩得22229+81P k m x k =,即P x = 将点,3m m ⎛⎫⎪⎝⎭的坐标代入l 的方程得(3)3m k b -=,因此()233+9M kk m x k -=()四边形OAPB 为平行四边形且当且仅当线段AB 与线段OP 互相平分,即2P M x x =, 于是()2323+9k k m k =-(),解得14k =-2k =因为0i k>,3i k ≠,12i =,, 所以当l 的斜率为4OAPB 为平行四边形.【提示】(Ⅰ)联立直线方程和椭圆方程,求出对应的直线斜率即可得到结论.(Ⅱ)四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分,即2P M x x =,建立方程关系即可得到结论.【考点】直线的点斜式方程,平行四边形的判定. 21.【答案】(Ⅰ)见解析 (Ⅱ)(1,1)-【解析】(Ⅰ)因为2()e mx f x x mx =+-,所以()e 2mx f x m x m '=+-,2()e +20mxf x m ''=≥在R 上恒成立, 所以()e 2mxf x m x m '=+-在R 上单调递增,而(0)0f '=,所以0x >时,()0f x '>; 所以0x <时,()0f x '<.所以()f x 在(,0)-∞单调递减,在(0,)+∞单调递增.(Ⅱ)由(Ⅰ)知min ()(0)1f x f ==,当0m =时,2()1+f x x =, 此时()f x 在[]1,1-上的最大值是2. 所以此时12()()|e 1f x f x -≤-|成立.当0m ≠时,(1)e +1+m f m --=,(1)e +1mf m =-,令()(1)(1)e e 2m mg m f f m -=--=--在R 上单调递增,而(0)0g =,所以0m >时,()0g m >,即(1)(1)f f >-, 0m <时,()0g m <,即(1)(1)f f <-.当0m >时,12|()()|(1)1e e 101mf x f x f m m -≤-=-≤-⇒<<,当0m <时,12|()()|(1)1e +e ()e 110m mf x f x f m m m ---≤--=≤--≤-⇒-<<.所以,综上所述m 的取值范围是(1,1)-.【提示】(Ⅰ)利用()0f x '≥说明函数为增函数,利用()0f x '≤说明函数为减函数.注意参数m 的讨论;(Ⅱ)由(Ⅰ)知,对任意的m ,()f x 在[]1,0-单调递减,在[0,1]单调递增,则恒成立问题转化为最大值和最小值问题.从而求得m 的取值范围. 【考点】导数的运算,单调性的判别,分类讨论,运算求解能力. 22.【答案】(Ⅰ)见解析【解析】(Ⅰ)由于ABC △是等腰三角形,AD BC ⊥, 所以AD 是CAB ∠的平分线.又因为O 分别与AB ,AC 相切于点E ,F ,故AD EF ⊥. 所以EF BC ∥.(Ⅱ)由(Ⅰ)知,AE AF =,AD EF ⊥, 故AD 是EF 的垂直平分线,又EF 为O 的弦, 所以O 在AD 上.连接OE ,OM ,则OE AE ⊥. 由AG 等于O 的半径的2AO OE =,所以30OAE ∠︒=,因此△ABC 和△AEF 都是等边三角形.因为AE = 所以4AO =,2OE =.因为2OE OM ==,12DM MN == 所以1OD =.于是5AD =,AB =.所以四边形EBCF的面积为221122⨯-⨯=⎝⎭(.【提示】(Ⅰ)通过AD 是CAB ∠的角平分线及圆O 分别与AB .AC 相切于点E 、F ,利用相似的性质即得结论;(Ⅱ)通过(Ⅰ)知AD 是EF 的垂直平分线,连结OE 、OM ,则OE AE ⊥,利用ABC AEF S S -△△计算即可.【考点】等腰三角形,线线平行的判别,运算求解能力,面积的求解 23.【答案】(Ⅰ)(0,0)32⎫⎪⎪⎝⎭(Ⅱ)4【解析】(Ⅰ)曲线2C 的直角坐标方程为2220x y y +-=,曲线3C的直角坐标方程为22+0x y -=.联立2222+20+0x y y x y ⎧-=⎪⎨-=⎪⎩,解得00x y =⎧⎨=⎩或32x y ⎧=⎪⎪⎨⎪=⎪⎩.所以2C 与3C 交点的直角坐标为(0,0)和32⎫⎪⎪⎝⎭.(Ⅱ)曲线1C 的极坐标方程为θα=(0)ρρ∈≠R ,,其中0πα≤<. 因此A 的极坐标为(2sin ,)αα,B的极坐标为,)αα.所以π|||2sin |4sin 3AB ααα⎛⎫=-=- ⎪⎝⎭.当5π6α=时,||AB 取得最大值,最大值为4. 【提示】(Ⅰ)由曲线C 2:2sin ρθ=,化为22sin ρρθ=,把222s n +i x y y ρρθ⎧=⎨=⎩代入可得直角坐标方程.同理,由C 3:ρθ=,可得直角坐标方程,联立解出可得C 2与C 3交点的直角坐标. (Ⅱ)由曲线1C 的参数方程,消去参数t ,化为普通方程:tan y x α=,其中0πα≤<,其极坐标方程为:θα=(0)ρρ∈≠R ,,利用|||2sin |AB αα=-即可得出. 【考点】极坐标与参数方程,求解交点坐标,最大值的求解24.【答案】(Ⅰ)见解析 (Ⅱ)见解析【解析】(Ⅰ)因为2+a b =2+c d = 由题设++a b c d =,ab cd >得22>>(Ⅱ)(ⅰ)若||||a b c d -<-则22()()a b c d -<-,即22(+)4(+)4a b ab c d cd -<-.因为++a b c d =,所以ab cd >.>(ⅱ)22>,即2++a b c d >. 因为++a b c d =,所以ab cd >,于是2222()(+)4(+)4()a b a b ab c d cd c d -=-<-=-因此||||a b c d -<-.||||a b c d-<-的充要条件.【提示】(Ⅰ)运用不等式的性质,结合条件a,b,c,d均为正数,且++a b c d=,ab cd>,即可得证;(Ⅱ)从两方面证,>证得||||a b c d-<-,②若||||a b c d-<-,证>【考点】不等式的证明和判定,充分、必要条件.。
绝密★启封并使用完毕前2015年普通高等学校招生全国统一考试理科综合能力测试本试卷分第I卷(选择题)和第II卷(非选择题)两部分,共40题,共300分,共16页。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,现将自己的姓名、准考证号填写清楚,将条形码准确粘贴在条形码区域内。
2。
选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔记清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无线;再猜告知、试题卷上答题无效..4。
作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5。
保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀.可能用到的相对原子质量:H 1 C 12 N 14 O 16 F 19 Na 23 AI 27 P 31 S 32CL 35.5 Ca 40 Fe 56 Zn 65 Br 80第I卷一、选择题:本题共13小题,每小题6分,在每小题给出的四个选项中,只有一项是符合题目要求的1。
将三组生理状态相通的某种植物幼根分别培养在含有相同培养液的密闭培养瓶下,一段时间后,测定根吸收某一矿质元素离子的量。
培养条件及实验结果见下表:培养瓶中气体温度(°C)离子相对吸收量空气17 100氮气17 10空气 3 28 下列分析正确的是A.有氧条件有利于该植物幼根对该离子的吸收B.该植物幼根对该离子的吸收与温度的变化无关C。
氮气环境中该植物幼根细胞吸收该离子不消耗ATPD.与空气相比,氮气环境有利于该植物幼根对该离子的吸收2.端粒酶由RNA和蛋白质组成,该酶能结合到端粒子上,以自身的RNA为模板合成端粒子DNA 的一条链。
下列叙述正确的是A。
大肠杆菌拟核的DNA中含有端粒B.端粒酶中的蛋白质为RNA聚合酶C。
正常人细胞的每条染色体两端都含有端粒DNAD.正常体细胞的端粒DNA随细胞分裂次数增加而变长3.下列过程中不属于胞吐作用的是A。
2015年普通高等学校招生全国统一考试(卷)数学(理科)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项符合题目要求.(1)【年,理1,5分】i 为虚数单位,607i的共轭复数....为( )(A )i (B )i - (C )1 (D )1- 【解析】60741513i i i i ⨯=⋅=-,共轭复数为i ,故选A .【点评】本题考查复数的基本运算,复式单位的幂运算以及共轭复数的知识,基本知识的考查. (2)【2015年,理2,5分】我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米夹谷,抽样取米一把,数得254粒夹谷28粒,则这批米夹谷约为( )(A )134石 (B )169石 (C )338石 (D )1365石 【答案】B【解析】依题意,这批米夹谷约为281534169254⨯=石,故选B .(3)【2015年,理3,5分】已知(1)n x +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式)(A )122(B )112 (C )102 (D )92【答案】D 【解析】因为(1)n x +的展开式中第4项与第8项的二项式系数相等,所以37n n C C =,解得10n =,所以二项式(1)n x + 中奇数项的二项式系数和为1091222⨯=,故选D .以及计算能力.(4)【2015年,理4,5分】设211(,)X N μσ:,222(,)Y N μσ:,这两个正态分布密 (A )21()()P Y P Y μμ≥≥≥ (B )21()()P X P X σσ≤≤≤(C )对任意正数t ,()()P X t P Y t ≤≥≤ (D )对任意正数t ,()()P X t P Y t ≥≥≥ 【答案】【解析】正态分布密度曲线图象关于x μ=对称,所以12μμ<,从图中容易得到()()P X t P Y t ≤≥≤,故选C .【点评】本题考查了正态分布的图象与性质,学习正态分布,一定要紧紧抓住平均数μ和标准差σ这两个关键(5)【2015年,理5,5分】设12,,,n a a a ∈R L ,3n ≥.若p :12,,,n a a a L 成等比数列;q :22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++L L L ,则( )(A q 的充分条件 (C )p 是q 的充分必要条件 (D )p 既不是q 的充分条件,也不是q 的必要条件【答案】A【解析】对命题12:,,,n p a a a L 成等比数列,则公比()13nn a q n a -=≥且0n a ≠; 对命题q ,①当0=n a 时,22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++L L L 成立;②当0≠n a 时,根据柯西不等式,等式22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++L L L 成立,则nn a a a a a a 13221-=⋅⋅⋅==,所以12,,,n a a a L 成等比数列,所以p 是q 的充分条件,但不是q 的必要 (6)【2015年,理6,5分】已知符号函数1,0,sgn 0,0,1,0.x x x x >⎧⎪==⎨⎪-<⎩()f x 是R 上的增函数,()()()(1)g x f x f ax a =->,则( )(A )sgn[()]sgn g x x = (B )sgn[()]sgn g x x =- (C )sgn[()]sgn[()]g x f x = (D )sgn[()]sgn[()]g x f x =-【答案】【解析】因为()f x 是R 上的增函数,令()f x x =,所以()()1g x a x =-,因为1a >,所以()g x 是R 上的减函数,由符号函数1,0,sgn 0,0,1,0.x x x x >⎧⎪==⎨⎪-<⎩知,1,0,sgn 0,0,sgn 1,0.x x x x x >⎧⎪===-⎨⎪-<⎩,故选B .(7)【2015年,理7,5分】在区间[0,1]上随机取两个数,x y ,记1p 为事件“12x y +≥”的概率,2p 为事件“1||2x y -≤”的概率,3p 为事件“12xy ≤”的概率,则( ) (A )123p p p << (B )231p p p << (C )312p p p << (D )321p p p << 【答案】B【解析】因为[],0,1x y ∈,对事件“12x y -≥”如图(1)阴影部分1S , 对事件“12x y -≤”,如图(2)阴影部分2S ,对事件“12xy ≤”,如图(3)阴影部分3S ,由图知,阴影部分的面积从下到大依次是231S S S <<,正方形的面积为111⨯=,根据几何概型公式可得231p p p <<,故选B .【点评】利用数形结合是解决本题的关键.本题也可以直接通过图象比较面积的大小即可比较大小.(8)【2015年,理8,5分】将离心率为1e 的双曲线1C 的实半轴长a 和虚半轴长()b a b ≠同时增加(0)m m >个单位长度,得到离心率为2e 的双曲线2C ,则( )(A )对任意的,a b ,12e e > (B )当a b >时,12e e >;当a b <时,12e e < (C )对任意的,a b ,12e e < (D )当a b >时,12e e <;当a b <时,12e e > 【答案】【解析】依题意,22211a b b e a a +⎛⎫==+ ⎪⎝⎭,()()22221a m b m b m e a ma m ++++⎛⎫==+ ⎪++⎝⎭,因为()()()m b a b b m ab bm ab am a a m a a m a a m -++---==+++,由于0m >,0a >,0b >, 当a b >时,01b a <<,01b m a m +<<+,b b m a a m +<+,22b b m a a m +⎛⎫⎛⎫< ⎪ ⎪+⎝⎭⎝⎭,所以12e e <;当a b <时,1b a >,1b m a m +>+,而b b m a a m +>+,所以22b b m a a m +⎛⎫⎛⎫> ⎪ ⎪+⎝⎭⎝⎭,所以12e e >.所以当a b >时,12e e <,当a b <时,12e e >,故选D .(9)【2015年,理9,5分】已知集合22{(,)1,,}A x y x y x y =+≤∈Z ,{(,)||2,||2,,}B x y x y x y =≤≤∈Z ,定义集合12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕中元素的个数为( ) (A )77 【解析】因为集合(){}22,1,,A x y xy x y =+≤∈Z ,所以集合A 中有9个元素(即9个点),即图中圆中的整点,集合{(,)||2,||2,,}B x y x y x y =≤≤∈Z 中有25个元素(即 25个点):即图中正方形ABCD 中的整点,集合12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈的元素可看作正方形1111A B C D中的整点(除去四个顶点),即77445⨯-=个,故选C .复的元素.(10)【2015年,理10,5分】设x ∈R ,[]x 表示不超过x 的最大整数. 若存在实数t ,使得[]1t =,2[]2t =,…,[]n t n =同时成立....,则正整数n 的最大值是( ) (A )3 (B )4 (C )5 (D )6【答案】B【解析】由[]1t =得12t ≤<,由2[]2t =得223t ≤<,由43t ⎡⎤=⎣⎦得445t ≤<,可得225t ≤<,所以225t ≤<; 由3[]3t =得334t ≤<,所以5645t ≤<,由55t ⎡⎤=⎣⎦得556t ≤<,与5645t ≤<矛盾,故正整数n 的最大值是4,故选B .【点评】本题考查简单的演绎推理,涉及新定义,属基础题.二、填空题:共6小题,考生需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上...........答错位置,书写不清,模棱两可均不得分. (一)必考题(11-14题) (11)【2015年,理11,5分】已知向量OA AB ⊥u u u r u u u r ,||3OA =u u u r ,则OA OB ⋅=u u u r u u u r .【答案】9【解析】因为OA AB ⊥u u u r u u u r ,3OA =u u u r ,()22239OA OB OA OA OB OA OA OB OA ⋅=⋅+=+⋅===u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r .(12)【2015年,理12,5分】函数2π()4cos cos()2sin |ln(1)|22x f x x x x =---+的零点个数为 . 【答案】2 【为()()()()()24cos cos 2sin ln 121cos sin 2sin ln 1sin 2ln 122x x f x x x x x x x x x x ⎛⎫=----=+--+=-+ ⎪⎝⎭,所以函数()f x 的零点个数为函数sin 2y x =与()ln 1y x =+图像如图,由图知,两函数图像右2个交点, 所以函数()f x 由2个零点.(13)【2015年,理13,5分】如图,一辆汽车在一条水平的公路上向正西行驶,到A 处D 在西偏北30o 的方向上,行驶600m 后到达B 处,测得此山顶 在西偏北75o 的方向上,仰角为30o ,则此山的高度CD = m .【答案】1006【解析】依题意,30BAC ∠=︒,105ABC ∠=︒,在ABC ∆中,由180ABC BAC ACB ∠+∠+∠=︒,所以45ACB ∠=︒,因为600AB =,由正弦定理可得600sin 45sin30BC-=︒︒,即3002BC =m ,在Rt BCD ∆中,因为30CBD ∠=︒,3002BC =,所以tan303002CD CDBC ︒==,所以1006CD =m .(14)【2015年,理14,5分】如图,圆C 与x 轴相切于点(1,0)T ,与y 轴正半轴交于两点,A B (B 在A 的上方),且2AB =.(1)圆C 的标准..方程为 ;)过点A 任作一条直线 与圆22:1O x y +=相交于,M N 两点,下列三个结论: ①NA MA NBMB=; ②2NB MA NAMB-=; ③22NB MA NAMB+=.其中正确结论的序号是 . (写出所有正确结论的序号) 【答案】(1)()()22122x y -+-=;(2)①②③【解析】(1)依题意,设()1,C r (r 为圆的半径),因为2AB =,所以22112r =+=,所以圆心()1,2C ,故圆的标准方程为()()22122x y -+-=.(2)解法一:联立方程组()()22122x x y =⎧⎪⎨-+-=⎪⎩,解得021x y =⎧⎪⎨=-⎪⎩或021x y =⎧⎪⎨=+⎪⎩,因为B 在A 的上方,所以()0,21A -,()0,21B +,领直线MN 的方程为0x =,此时()0,1M -,()0,1N ,所以2MA =,22MB =+,22NA =-,2NB =,因为22212NA NB-==-,22122MA MB==-+,所以NA MA NB MB =所以()22212122222NB MA NAMB-=-=+--=-+,()222121222222NB MA NAMB+=+=++-=-+,正确结论的序号是①②③.解法二:因为圆心()1,2C ,()0,2E ∴,又2AB =Q ,且E 为AB 中点,∴()0,21A -,()0,21B +,M Q ,N 在圆22:1O x y +=,∴可设()cos ,sin M αα,()cos ,sin N ββ,()()22cos 0sin 21NA ββ⎡⎤∴=-+--⎣⎦()22cos sin 221sin 322βββ=+--+-()()()422221sin 2221221sin ββ=---=---()()2212sin β=--,()()22cos 0sin 21NB ββ⎡⎤∴=-+-+⎣⎦()22cos sin 221sin 322βββ=+-+++()()()422221sin 2221221sin ββ=+-+=+-+()()2212sin β=+-,()()()()2212sin 2121212212sin NA NBββ---∴===-++-,同理21MA MB=-.所以NA MA NBMB=,所以()22212122222NB MA NA MB -=-=+--=-+, ()222121222222NB MA NAMB+=+=++-=-+,【点评】本题考查求圆的标准方程,用三角函数值表示单位圆上点的坐标是解决本题的关键,注意解题方法的积累,属于难题.(一)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B 铅笔涂黑,如果全选,则按第15题作答结果计分.) (15)【PA 是圆的切线,A 为切点,PBC 是圆的割线,且3BC PB =,则ABAC=_______. 【答案】12【解析】因为PA 是圆的切线,A 为切点,PBC 是圆割定理知,()2PA PB PC PB PB BC =⋅=+,因为3BC PB =,所以224PA PB =,即2PA PB =,由A PAB PC ∆∆∽,所以12AB PB AC PA ==. (16)【2015年,理16,5分】(选修4-4O 为极点,x 轴的正半轴为极轴建立极坐标系. 已知直线l 的极坐标方程为(sin 3cos )0ρθθ-=,曲线C 的参数方程为1,1x t ty t t ⎧=-⎪⎪⎨⎪=+⎪⎩( t 为参数) ,l 与C 相交于A ,B 两点,则||AB = .【答案】25【解析】因为()sin 3cos 0ρθθ-=,所以sin 3cos 0ρθρθ-=,所以30y x -=,即3y x =;由11x t ty t t ⎧=-⎪⎪⎨⎪=+⎪⎩,消去t得224y x -=,联立方程组2234y x y x =⎧⎨-=⎩,解得22322x y ⎧=⎪⎪⎨⎪=⎪⎩或22322x y ⎧=-⎪⎪⎨⎪=-⎪⎩,即232,22A ⎛⎫ ⎪ ⎪⎝⎭,232,22B ⎛⎫-- ⎪ ⎪⎝⎭,由两点间的距离公式得22223232252222AB ⎛⎫⎛⎫=+++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 础的计算题.三、解答题:共6题,共75(17)【2015年,理17,11分】某同学用“五点法”画函数()sin()f x A x ωϕ=+π(0,||)2ωϕ><在某一个周期的图象时,列表并填入了部分数据,如下表:x ωϕ+0 π2 π3π2 2πxπ3 5π6sin()A x ωϕ+55-(1)请将上表数据补充完整,填写在答题卡上相应位置...........,并直接写出函数()f x 的解析式; (2)将()y f x =图象上所有点向左平行移动θ(0)θ>个单位长度,得到()y g x =的图象. 若()y g x =图象的一个对称中心为5π(,0)12,求θ的最小值. 解:(1)根据表中已知数据,解得π5,2,6A ωϕ===-.数据补全如下表:x ωϕ+ 0 π2π3π2 2πxπ12 π3 7π125π613π12 sin()A x ωϕ+0 5 05-且函数表达式为π()5sin(2)6f x x =-.(2)由(1)知 π()5sin(2)6f x x =-,得π()5sin(22)6g x x θ=+-. 因为sin y x =的对称中心为(π,0)k ,k ∈Z .令π22π6x k θ+-=,解得ππ212k x θ=+-,k ∈Z . 由于函数()y g x =的图象关于点5π(,0)12成中心对称,令ππ5π21212k θ+-=,解得ππ23k θ=-,k ∈Z . 由0θ>可知,当1k =时,θ取得最小值π6. 【点评】本题主要考查了由()sin y A x ωϕ=+的部分图象确定其解析式,函数()sin y A x ωϕ=+的图象变换规律(18)【2015年,理18,12分】设等差数列{}n a 的公差为d 前n 项和为n S ,等比数列{}n b 的公、比为q .已知11b a =,22b =,q d =,10100S =.(1)求数列{}n a ,{}n b 的通项公式;(2)当1d >时,记n n nac b =,求数列{}n c 的前n 项和n T .解:(1)由题意知:1110451002a d a d -=⎧⎨=⎩,即1129202a d a d +=⎧⎨=⎩,得112a d =⎧⎨=⎩或1929a d =⎧⎪⎨=⎪⎩,故1212n n n a n b -=-⎧⎪⎨=⎪⎩或()112799299n n n a n b -⎧=+⎪⎪⎨⎛⎫⎪= ⎪⎪⎝⎭⎩. (2)由1d >,知21n a n =-,12n n b -=,故1212n n n c --=,于是2341357921122222n n n T --=+++++L L ① 2345113579212222222n n n T -=+++++L L ②由①-②可得234521111111212323222222222n n n n n n T --+=++++++-=-L L ,故12362nn n T -+=-. 【点评】本题考查求数列的通项及求和,利用错位相减法是解决本题的关键,注意解题方法的积累,属于中档题. (19)【2015年,理19,12分】《九章算术》中,将底面为长方形且有如图,在阳马P ABCD -中,侧棱PD ⊥底面ABCD ,且PD CD =,过棱PC 的中点E ,作EF PB ⊥交PB 于点F ,连接,,,.DE DF BD BE .(1)证明:PB DEF ⊥平面.试判断四面体DBEF 是否为鳖臑,若是,写出其每个面的直(2)若面DEF 与面ABCD 所成二面角的大小为π3,求DCBC的值.(1)因为PD ⊥底面ABCD ,所以PD BC ⊥,由底面ABCD 为长方形,有BC CD ⊥,而PD CD D =I ,所以BC PCD ⊥平面. 而DE PCD ⊂平面,所以BC DE ⊥. 又因为PD CD =,点E 是PC 的中点,所以DE PC ⊥. 而PC BC C =I ,所以DE ⊥平面PBC . 而PB PBC ⊂平面,所以PB DE ⊥. 又PB EF ⊥,DE EF E =I ,所以PB ⊥平面DEF .由DE ⊥平面PBC ,PB ⊥平面DEF ,可知四面体BDEF 的四个面都是直角三角形,即四面体BDEF 是一个鳖臑,其四个面的直角分别为DEB DEF ∠∠,,EFB DFB ∠∠,. (2)如图1,在面PBC ,延长BC 与FE 交于点G ,则DG 是平面DEF 与平面ABCD 的交线.由(1)知,PB DEF ⊥平面,所以PB DG ⊥. 又因为PD ⊥底面ABCD ,所以PD DG ⊥. 而PD PB P =I ,所以DG PBD ⊥平面.故BDF ∠是面DEF 与面ABCD 所成二面角的平面角,设1PD DC ==,BC λ=,有21BD λ=+,在Rt △PDB 中, 由DF PB ⊥, 得π3DPF FDB ∠=∠=,则 2πtan tan 133BDDPF PD λ=∠==+=, 解得2λ=. 所以12.2DC BC λ== 故当面DEF 与面ABCD 所成二面角的大小为π3时,22DC BC =. 解法二:(1)如图2,以D 为原点,射线,,DA DC DP 分别为,,x y z 轴的正半轴,建立空间直角坐标系. 设1PD DC ==,BC λ=,则(0,0,0),(0,0,1),(,1,0),(0,1,0)D P B C λ, (,1,1)PB λ=-u u u r ,点E 是PC 的中点,所以11(0,,)22E ,11(0,,)22DE =u u u r ,于是0PB DE ⋅=u u u r u u u r,即PB DE ⊥. 又已知EF PB ⊥,而DE EF E =I ,所以PB DEF ⊥平面. 因(0,1,1)PC =-u u u r , 0DE PC ⋅=u u u r u u u r, 则DE PC ⊥, 所以DE PBC ⊥平面.由DE ⊥平面 PBC ,PB ⊥平面DEF ,可知四面体BDEF 的四个面都是直角三角形,即四面体BDEF 是一个鳖臑,四个面的直角分别为DEB DEF ∠∠,,EFB DFB ∠∠,. (2)由PD ABCD ⊥平面,所以(0,0,1)DP =u u u r是平面ABCD 的一个法向量;由(1)知,PB DEF ⊥平面,所以(,1,1)BP λ=--u u u r是平面DEF 的一个法向量.若面DEF 与面ABCD 所成二面角的大小为π3,则2π11cos 32||||2BP DP BP DP λ⋅===⋅+u u u r u u u r u u ur u u u r , 解得2λ=. 所以12.2DC BC λ== 故当面DEF 与面ABCD 所成二面角的大小为π3时,22DC BC =. 【点评】本题综合考查了空间直线平面的垂直问题,直线与直线,直线与平面的垂直的转化,空间角的求解,属于难题.(20)【2015年,理20,12分】某厂用鲜牛奶在某台设备上生产,A B 两种奶制品.生产1吨A 产品需鲜牛奶2吨,使用设备1小时,获利1000元;生产1吨B 产品需鲜牛奶1.5吨,使用设备1.5小时,获利1200元.要求每天B 产品的产量不超过A 产品产量的2倍,设备每天生产,A B 两种产品时间之和不超过12小时.W 12 15 18 P0.30.50.2该厂每天根据获取的鲜牛奶数量安排生产,使其获利最大,因此每天的最大获利Z (单位:元)是一个(1)求Z 的分布列和均值;解:(1)设每天,A B 两种产品的生产数量分别为,x y ,相应的获利为z ,则有2 1.5,1.512, 20,0, 0.x y W x y x y x y +≤⎧⎪+≤⎪⎨-≥⎪⎪≥≥⎩ 10001200z x y =+.当12W =时,(1)表示的平面区域如图1,三个顶点分别为(0, 0), (2.4, 4.8), (6, 0)A B C .将10001200z x y =+变形为561200z y x =-+,当 2.4, 4.8x y ==时,直线l :561200z y x =-+在y 轴上的截距最大,最大获利max 2.41000 4.812008160Z z ==⨯+⨯=.当15W =时,(1)表示的平面区域如图2,三个顶点分别为(0, 0), (3, 6), (7.5, 0)A B C .将10001200z x y =+变形为561200z y x =-+,当3, 6x y ==时,直线l :561200z y x =-+在y 轴上的截距最大,最大获利max 310006120010200Z z ==⨯+⨯=.当18W =时,(1)表示的平面区域如图3, 四个顶点分别为(0, 0), (3, 6), (6, 4), (9, 0)A B C D . 将10001200z x y =+变形为561200z y x =-+,当6,4x y ==时,直线l :561200zy x =-+在y 轴上的截距最大,最大获利max 610004120010800Z z ==⨯+⨯=.故最大获利Z 的分布列为Z8160 10200 10800 P0.3 0.5 0.2 因此,()81600.3102000.5108000.29708.E Z =⨯+⨯+⨯= (2)由(1)知,一天最大获利超过10000元的概率1(10000)0.50.20.7p P Z =>=+=,由二项分布,3天中至少有1天最大获利超过10000元的概率为()3311110.30.973p p =--=-=.问题解决问题的能力.(21)【2015年,理21,14分】一种作图工具如图1所示.O 是滑槽AB 的中点,短杆杆MN 通过N 处铰链与ON 连接,MN D 滑动,且1DN ON ==,3MN =.当栓子D 在滑槽AB 作往复运动时,带动..N 绕O 转动一周(D 不动时,N记为C .以O 为原点,AB 所在的直线为x 轴建立如图2所示的平面直角坐标系. (1的方程;(2)设动直线l 与两定直线1:20l x y -=和2:20l x y +=分别交于,P Q 两点.若直线l 总与曲线C 有且只有一个公共点,试探究:△OPQ 的面积是否存在最小值?若存在,求出该最小值; 解:(1)设点(,0)(||2)D t t ≤,00(,),(,)N x y M x y ,依题意,2MD DN =u u u u r u u u r,且||||1DN ON ==u u u r u u u r ,所以00(,)2(,)t x y x t y --=-,且2200220()1,1.x t y x y ⎧-+=⎪⎨+=⎪⎩ 即0022,2.t x x t y y -=-⎧⎨=-⎩且0(2)0.t t x -= 由于当点D 不动时,点N也不动,所以t 不恒等于0,于是02t x =,故00,42x y x y ==-,代入22001x y +=,可得221164x y +=,即所求的曲线C 的方程为22 1.164x y += (2)①当直线l 的斜率不存在时,直线l 为4x =或4x =-,都有14482OPQ S ∆=⨯⨯=.②当直线l 的斜率存在时,设直线1:()2l y kx m k =+≠±,由22,416,y kx m x y =+⎧⎨+=⎩消去y ,可得222(14)84160k x kmx m +++-=.因为直线l 总与椭圆C 有且只有一个公共点, 所以2222644(14)(416)0k m k m ∆=-+-=,即22164m k =+. ① 又由,20,y kx m x y =+⎧⎨-=⎩可得2(,)1212m m P k k --;同理可得2(,)1212m mQ k k -++. 由原点O 到直线PQ 的距离为2||1m d k =+和2||1||P Q PQ k x x =+-,可得22111222||||||||222121214OPQP Q m m m S PQ d m x x m k k k ∆=⋅=-=⋅+=-+-. ② 将①代入②得,222241281441OPQk m S k k ∆+==--. 当214k >时,2224128()8(1)84141OPQ k S k k ∆+==+>--;当2104k ≤<时,2224128()8(1)1414OPQ k S k k ∆+==-+--. 因2104k ≤<,则20141k <-≤,22214k ≥-,所以228(1)814OPQS k ∆=-+≥-, 当且仅当0k =时取等号.所以当0k =时,OPQ S ∆的最小值为8.综合(1)(2)可知,当直线l 与椭圆C 在四个顶点处相切时,△OPQ 的面积取得最小值8.【点评】本题的关键.综合性较强,运算量较大.(22)【2015年,理22,14分】已知数列{}n a 的各项均为正数,1(1)()n n n b n a n n+=+∈N ,e 为自然对数的底数.(((解:(1①(2②(3运算求解能力、创新知识,考查了利用放缩法法证明数列不等式,是压轴题.。
2015年高考数学试卷一、选择题:本大题共8小题,每小题5分,共40分2015年普通高等学校招生全国统一考试(真题卷)数学(理科)1.(5分)(2015•真题)已知集合P={x|x2﹣2x≥0},Q={x|1<x≤2},则(∁R P)∩Q=()A .[0,1)B.(0,2]C.(1,2)D.[1,2]2.(5分)(2015•真题)某几何体的三视图如图所示(单位:cm),则该几何体的体积是()A .8cm3B.12cm3C.D.3.(5分)(2015•真题)已知{a n}是等差数列,公差d不为零,前n项和是S n,若a3,a4,a8成等比数列,则()A .a1d>0,dS4>0B.a1d<0,dS4<0C.a1d>0,dS4<0D.a1d<0,dS4>04.(5分)(2015•真题)命题“∀n∈N*,f(n)∈N*且f(n)≤n”的否定形式是()A.∀n∈N*,f(n)∉N*且f(n)>n B.∀n∈N*,f(n)∉N*或f(n)>nC.∂n0∈N*,f(n0)∉N*且f(n0)>n0D.∂n0∈N*,f(n0)∉N*或f(n0)>n05.(5分)(2015•真题)如图,设抛物线y2=4x的焦点为F,不经过焦点的直线上有三个不同的点A,B,C,其中点A,B在抛物线上,点C在y轴上,则△BCF与△ACF的面积之比是()A .B.C.D.6.(5分)(2015•真题)设A,B是有限集,定义:d(A,B)=card(A∪B)﹣card(A∩B),其中card(A)表示有限集A中的元素个数()命题①:对任意有限集A,B,“A≠B”是“d(A,B)>0”的充分必要条件;命题②:对任意有限集A,B,C,d(A,C)≤d(A,B)+d(B,C)A.命题①和命题②都成立B.命题①和命题②都不成立C.命题①成立,命题②不成立D.命题①不成立,命题②成立7.(5分)(2015•真题)存在函数f(x)满足,对任意x∈R都有()A .f(sin2x)=sinx B.f(sin2x)=x2+xC.f(x2+1)=|x+1| D.f(x2+2x)=|x+1|8.(5分)(2015•真题)如图,已知△ABC,D是AB的中点,沿直线CD将△ACD折成△A′CD,所成二面角A′﹣CD﹣B的平面角为α,则()A .∠A′DB≤αB.∠A′DB≥αC.∠A′CB≤αD.∠A′CB≥α二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.(6分)(2015•真题)双曲线=1的焦距是,渐近线方程是.10.(6分)(2015•真题)已知函数f(x)=,则f(f(﹣3))=,f(x)的最小值是.11.(6分)(2015•真题)函数f(x)=sin2x+sinxcosx+1的最小正周期是,单调递减区间是.12.(4分)(2015•真题)若a=log43,则2a+2﹣a=.13.(4分)(2015•真题)如图,三棱锥A﹣BCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N分别是AD,BC的中点,则异面直线AN,CM所成的角的余弦值是.14.(4分)(2015•真题)若实数x,y满足x2+y2≤1,则|2x+y﹣2|+|6﹣x﹣3y|的最小值是.15.(6分)(2015•真题)已知是空间单位向量,,若空间向量满足,且对于任意x,y∈R,,则x0=,y0=,|=.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(14分)(2015•真题)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知A=,b2﹣a2=c2.(1)求tanC的值;(2)若△ABC的面积为3,求b的值.17.(15分)(2015•真题)如图,在三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.(1)证明:A1D⊥平面A1BC;(2)求二面角A1﹣BD﹣B1的平面角的余弦值.18.(15分)(2015•真题)已知函数f(x)=x2+ax+b(a,b∈R),记M(a,b)是|f(x)|在区间[﹣1,1]上的最大值.(1)证明:当|a|≥2时,M(a,b)≥2;(2)当a,b满足M(a,b)≤2时,求|a|+|b|的最大值.19.(15分)(2015•真题)已知椭圆上两个不同的点A,B关于直线y=mx+对称.(1)求实数m的取值范围;(2)求△AOB面积的最大值(O为坐标原点).20.(15分)(2015•真题)已知数列{a n}满足a1=且a n+1=a n﹣a n2(n∈N*)(1)证明:1≤≤2(n∈N*);(2)设数列{a n2}的前n项和为S n,证明(n∈N*).高考数学试卷(理科)一、选择题:本大题共8小题,每小题5分,共40分2015年普通高等学校招生全国统一考试(真题卷)数学(理科)1.(5分)考点:交、并、补集的混合运算.专题:集合.分析:求出P中不等式的解集确定出P,求出P补集与Q的交集即可.解答:解:由P中不等式变形得:x(x﹣2)≥0,解得:x≤0或x≥2,即P=(﹣∞,0]∪[2,+∞),∴∁R P=(0,2),∵Q=(1,2],∴(∁R P)∩Q=(1,2),故选:C.点评:此题考查了交、并、补集的混合运算,熟练掌握运算法则是解本题的关键.2.(5分)考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:判断几何体的形状,利用三视图的数据,求几何体的体积即可.解答:解:由三视图可知几何体是下部为棱长为2的正方体,上部是底面为边长2的正方形奥为2的正四棱锥,所求几何体的体积为:23+×2×2×2=.故选:C.点评:本题考查三视图与直观图的关系的判断,几何体的体积的求法,考查计算能力.3.(5分)考点:等差数列与等比数列的综合.专题:等差数列与等比数列.分析:由a3,a4,a8成等比数列,得到首项和公差的关系,即可判断a1d和dS4的符号.解答:解:设等差数列{a n}的首项为a1,则a3=a1+2d,a4=a1+3d,a8=a1+7d,由a3,a4,a8成等比数列,得,整理得:.∵d≠0,∴,∴,=<0.故选:B.点评:本题考查了等差数列和等比数列的性质,考查了等差数列的前n项和,是基础题.4.(5分)考点:命题的否定.专题:简易逻辑.分析:根据全称命题的否定是特称命题即可得到结论.解答:解:命题为全称命题,则命题的否定为:∂n0∈N*,f(n0)∉N*或f(n0)>n0,故选:D.点评:本题主要考查含有量词的命题的否定,比较基础.5.(5分)考点:直线与圆锥曲线的关系.专题:圆锥曲线的定义、性质与方程.分析:根据抛物线的定义,将三角形的面积关系转化为的关系进行求解即可.解答:解:如图所示,抛物线的准线DE的方程为x=﹣1,过A,B分别作AE⊥DE于E,交y轴于N,BD⊥DE于E,交y轴于M,由抛物线的定义知BF=BD,AF=AE,则|BM|=|BD|﹣1=|BF|﹣1,|AN|=|AE|﹣1=|AF|﹣1,则===,故选:A点评:本题主要考查三角形的面积关系,利用抛物线的定义进行转化是解决本题的关键.6.(5分)考点:复合命题的真假.专题:集合;简易逻辑.分析:命题①根据充要条件分充分性和必要性判断即可,③借助新定义,根据集合的运算,判断即可.解答:解:命题①:对任意有限集A,B,若“A≠B”,则A∪B≠A∩B,则card(A∪B)>card(A∩B),故“d(A,B)>0”成立,若d(A,B)>0”,则card(A∪B)>card(A∩B),则A∪B≠A∩B,故A≠B成立,故命题①成立,命题②,d(A,B)=card(A∪B)﹣card(A∩B),d(B,C)=card(B∪C)﹣card(B∩C),∴d(A,B)+d(B,C)=card(A∪B)﹣card(A∩B)+card(B∪C)﹣card(B∩C)=[card (A∪B)+card(B∪C)]﹣[card(A∩B)+card(B∩C)]≥card(A∪C)﹣card(A∩C)=d(A,C),故命题②成立,故选:A点评:本题考查了,元素和集合的关系,以及逻辑关系,分清集合之间的关系与各集合元素个数之间的关系,注意本题对充要条件的考查.集合的元素个数,体现两个集合的关系,但仅凭借元素个数不能判断集合间的关系,属于基础题.7.(5分)考点:函数解析式的求解及常用方法.专题:函数的性质及应用.分析:利用x取特殊值,通过函数的定义判断正误即可.解答:解:A.取x=0,则sin2x=0,∴f(0)=0;取x=,则sin2x=0,∴f(0)=1;∴f(0)=0,和1,不符合函数的定义;∴不存在函数f(x),对任意x∈R都有f(sin2x)=sinx;B.取x=0,则f(0)=0;取x=π,则f(0)=π2+π;∴f(0)有两个值,不符合函数的定义;∴该选项错误;C.取x=1,则f(2)=2,取x=﹣1,则f(2)=0;这样f(2)有两个值,不符合函数的定义;∴该选项错误;D.令|x+1|=t,t≥0,则f(t2﹣1)=t;令t2﹣1=x,则t=;∴;即存在函数f(x)=,对任意x∈R,都有f(x2+2x)=|x+1|;∴该选项正确.故选:D.点评:本题考查函数的定义的应用,基本知识的考查,但是思考问题解决问题的方法比较难.8.(5分)考点:二面角的平面角及求法.专题:创新题型;空间角.分析:解:画出图形,分AC=BC,AC≠BC两种情况讨论即可.解答:解:①当AC=BC时,∠A′DB=α;②当AC≠BC时,如图,点A′投影在AE上,α=∠A′OE,连结AA′,易得∠ADA′<∠AOA′,∴∠A′DB>∠A′OE,即∠A′DB>α综上所述,∠A′DB≥α,故选:B.点评:本题考查空间角的大小比较,注意解题方法的积累,属于中档题.二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.(6分)双曲线的简单性质.考点:计算题;圆锥曲线的定义、性质与方程.专题:确定双曲线中的几何量,即可求出焦距、渐近线方程.分析:解解:双曲线=1中,a=,b=1,c=,答:∴焦距是2c=2,渐近线方程是y=±x.故答案为:2;y=±x.本题考查双曲线的方程与性质,考查学生的计算能力,比较基础.点评:10.(6分)函数的值.考点:计算题;函数的性质及应用.专题:分根据已知函数可先求f(﹣3)=1,然后代入可求f(f(﹣3));由于x≥1时,f(x)=,析:当x<1时,f(x)=lg(x2+1),分别求出每段函数的取值范围,即可求解解答:解:∵f(x)=,∴f(﹣3)=lg10=1,则f(f(﹣3))=f(1)=0,当x≥1时,f(x)=,即最小值,当x<1时,x2+1≥1,(x)=lg(x2+1)≥0最小值0,故f(x)的最小值是.故答案为:0;.本题主要考查了分段函数的函数值的求解,属于基础试题.点评:11.(6分)两角和与差的正弦函数;三角函数的周期性及其求法;正弦函数的单调性.考点:专三角函数的求值.题:分由三角函数公式化简可得f(x)=sin(2x﹣)+,易得最小正周期,解不等析:式2kπ+≤2x﹣≤2kπ+可得函数的单调递减区间.解答:解:化简可得f(x)=sin2x+sinxcosx+1=(1﹣cos2x)+sin2x+1=sin(2x﹣)+,∴原函数的最小正周期为T==π,由2kπ+≤2x﹣≤2kπ+可得kπ+≤x≤kπ+,∴函数的单调递减区间为[kπ+,kπ+](k∈Z)故答案为:π;[kπ+,kπ+](k∈Z)点评:本题考查三角函数的化简,涉及三角函数的周期性和单调性,属基础题.12.(4分)考点:对数的运算性质.专题:函数的性质及应用.分析:直接把a代入2a+2﹣a,然后利用对数的运算性质得答案.解答:解:∵a=log43,可知4a=3,即2a=,所以2a+2﹣a=+=.故答案为:.点评:本题考查对数的运算性质,是基础的计算题.13.(4分)考点:异面直线及其所成的角.专题:空间角.分析:连结ND,取ND 的中点为:E,连结ME说明异面直线AN,CM所成的角就是∠EMC 通过解三角形,求解即可.解答:解:连结ND,取ND 的中点为:E,连结ME,则ME∥AN,异面直线AN,CM所成的角就是∠EMC,∵AN=2,∴ME==EN,MC=2,又∵EN⊥NC,∴EC==,∴cos∠EMC===.故答案为:.点评:本题考查异面直线所成角的求法,考查空间想象能力以及计算能力.14.(4分)考点:函数的最值及其几何意义.专题:不等式的解法及应用;直线与圆.分析:根据所给x,y的范围,可得|6﹣x﹣3y|=6﹣x﹣3y,再讨论直线2x+y﹣2=0将圆x2+y2=1分成两部分,分别去绝对值,运用线性规划的知识,平移即可得到最小值.解答:解:由x2+y2≤1,可得6﹣x﹣3y>0,即|6﹣x﹣3y|=6﹣x﹣3y,如图直线2x+y﹣2=0将圆x2+y2=1分成两部分,在直线的上方(含直线),即有2x+y﹣2≥0,即|2+y﹣2|=2x+y﹣2,此时|2x+y﹣2|+|6﹣x﹣3y|=(2x+y﹣2)+(6﹣x﹣3y)=x﹣2y+4,利用线性规划可得在A(,)处取得最小值3;在直线的下方(含直线),即有2x+y﹣2≤0,即|2+y﹣2|=﹣(2x+y﹣2),此时|2x+y﹣2|+|6﹣x﹣3y|=﹣(2x+y﹣2)+(6﹣x﹣3y)=8﹣3x﹣4y,利用线性规划可得在A(,)处取得最小值3.综上可得,当x=,y=时,|2x+y﹣2|+|6﹣x﹣3y|的最小值为3.故答案为:3.点本题考查直线和圆的位置关系,主要考查二元函数在可行域内取得最值的方法,属于中档题.评:15.(6分)空间向量的数量积运算;平面向量数量积的运算.考点:专创新题型;空间向量及应用.题:分由题意和数量积的运算可得<•>=,不妨设=(,,0),=(1,0,0),析:由已知可解=(,,t),可得|﹣(|2=(x+)2+(y﹣2)2+t2,由题意可得当x=x0=1,y=y0=2时,(x+)2+(y﹣2)2+t2取最小值1,由模长公式可得|.解解:∵•=||||cos<•>=cos<•>=,答:∴<•>=,不妨设=(,,0),=(1,0,0),=(m,n,t),则由题意可知=m+n=2,=m=,解得m=,n=,∴=(,,t),∵﹣()=(﹣x﹣y,,t),∴|﹣(|2=(﹣x﹣y)2+()2+t2=x2+xy+y2﹣4x﹣5y+t2+7=(x+)2+(y﹣2)2+t2,由题意当x=x0=1,y=y0=2时,(x+)2+(y﹣2)2+t2取最小值1,此时t2=1,故|==2故答案为:1;2;2点本题考查空间向量的数量积,涉及向量的模长公式,属中档题.评:三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(14分)余弦定理.考点:解三角形.专题:分(1)由余弦定理可得:,已知b2﹣a2=c2.可得,a=.利析:用余弦定理可得cosC.可得sinC=,即可得出tanC=.(2)由=×=3,可得c,即可得出b.解解:(1)∵A=,∴由余弦定理可得:,∴b2﹣a2=bc﹣c2,答:又b2﹣a2=c2.∴bc﹣c2=c2.∴b=c.可得,∴a2=b2﹣=,即a=.∴cosC===.∵C∈(0,π),∴sinC==.∴tanC==2.(2)∵=×=3,解得c=2.∴=3.点评:本题考查了正弦定理余弦定理、同角三角形基本关系式、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.17.(15分)考点:二面角的平面角及求法;直线与平面垂直的判定.专题:空间位置关系与距离;空间角.分析:(1)以BC中点O为坐标原点,以OB、OA、OA1所在直线分别为x、y、z轴建系,通过•=•=0及线面垂直的判定定理即得结论;(2)所求值即为平面A1BD的法向量与平面B1BD的法向量的夹角的余弦值的绝对值的相反数,计算即可.解答:(1)证明:如图,以BC中点O为坐标原点,以OB、OA、OA1所在直线分别为x、y、z轴建系.则BC=AC=2,A1O==,易知A1(0,0,),B(,0,0),C(﹣,0,0),A(0,,0),D(0,﹣,),B1(,﹣,),=(0,﹣,0),=(﹣,﹣,),=(﹣,0,0),=(﹣2,0,0),=(0,0,),∵•=0,∴A1D⊥OA1,又∵•=0,∴A1D⊥BC,又∵OA1∩BC=O,∴A1D⊥平面A1BC;(2)解:设平面A1BD的法向量为=(x,y,z),由,得,取z=1,得=(,0,1),设平面B1BD的法向量为=(x,y,z),由,得,取z=1,得=(0,,1),∴cos<,>===,又∵该二面角为钝角,∴二面角A1﹣BD﹣B1的平面角的余弦值为﹣.点评:本题考查空间中线面垂直的判定定理,考查求二面角的三角函数值,注意解题方法的积累,属于中档题.18.(15分)考点:二次函数在闭区间上的最值.专题:函数的性质及应用.分析:(1)明确二次函数的对称轴,区间的端点值,由a的范围明确函数的单调性,结合已知以及三角不等式变形所求得到证明;(2)讨论a=b=0以及分析M(a,b)≤2得到﹣3≤a+b≤1且﹣3≤b﹣a≤1,进一步求出|a|+|b|的求值.解答:解:(1)由已知可得f(1)=1+a+b,f(﹣1)=1﹣a+b,对称轴为x=﹣,因为|a|≥2,所以或≥1,所以函数f(x)在[﹣1,1]上单调,所以M(a,b)=max{|f(1),|f(﹣1)|}=max{|1+a+b|,|1﹣a+b|},所以M(a,b)≥(|1+a+b|+|1﹣a+b|)≥|(1+a+b)﹣(1﹣a+b)|≥|2a|≥2;(2)当a=b=0时,|a|+|b|=0又|a|+|b|≥0,所以0为最小值,符合题意;又对任意x∈[﹣1,1].有﹣2≤x2+ax+b≤2得到﹣3≤a+b≤1且﹣3≤b﹣a≤1,易知|a|+|b|=max{|a﹣b|,|a+b|}=3,在b=﹣1,a=2时符合题意,所以|a|+|b|的最大值为3.点评:本题考查了二次函数闭区间上的最值求法;解答本题的关键是正确理解M(a,b)是|f(x)|在区间[﹣1,1]上的最大值,以及利用三角不等式变形.19.(15分)考点:直线与圆锥曲线的关系.专题:创新题型;圆锥曲线中的最值与范围问题.分析:(1)由题意,可设直线AB的方程为x=﹣my+n,代入椭圆方程可得(m2+2)y2﹣2mny+n2﹣2=0,设A(x1,y1),B(x2,y2).可得△>0,设线段AB的中点P(x0,y0),利用中点坐标公式及其根与系数的可得P,代入直线y=mx+,可得,代入△>0,即可解出.(2)直线AB与x轴交点横坐标为n,可得S△OAB=,再利用均值不等式即可得出.解答:解:(1)由题意,可设直线AB的方程为x=﹣my+n,代入椭圆方程,可得(m2+2)y2﹣2mny+n2﹣2=0,设A(x1,y1),B(x2,y2).由题意,△=4m2n2﹣4(m2+2)(n2﹣2)=8(m2﹣n2+2)>0,设线段AB的中点P(x0,y0),则.x0=﹣m×+n=,由于点P在直线y=mx+上,∴=+,∴,代入△>0,可得3m4+4m2﹣4>0,解得m2,∴或m.(2)直线AB与x轴交点纵坐标为n,∴S△OAB==|n|•=,由均值不等式可得:n2(m2﹣n2+2)=,∴S△AOB=,当且仅当n2=m2﹣n2+2,即2n2=m2+2,又∵,解得m=,当且仅当m=时,S△AOB取得最大值为.点评:本题考查了椭圆的定义标准方程及其性质、直线与椭圆相交问题转化为方程联立可得根与系数的关系、中点坐标公式、线段垂直平分线的性质、三角形面积计算公式、弦长公式、均值不等式的性质,考查了推理能力与计算能力,属于难题.20.(15分)考点:数列的求和;数列与不等式的综合.专题:创新题型;点列、递归数列与数学归纳法.分析:(1)通过题意易得0<a n≤(n∈N*),利用a n﹣a n+1=可得≥1,利用==≤2,即得结论;(2)通过=a n﹣a n+1累加得S n=﹣a n+1,利用数学归纳法可证明≥a n≥(n≥2),从而≥≥,化简即得结论.解答:证明:(1)由题意可知:0<a n≤(n∈N*),又∵a2=a1﹣=,∴==2,又∵a n﹣a n+1=,∴a n>a n+1,∴≥1,∴==≤2,∴1≤≤2(n∈N*);(2)由已知,=a n﹣a n+1,=a n﹣1﹣a n,…,=a1﹣a2,累加,得S n=++…+=a1﹣a n+1=﹣a n+1,易知当n=1时,要证式子显然成立;当n≥2时,=.下面证明:≥a n≥(n≥2).易知当n=2时成立,假设当n=k时也成立,则a k+1=﹣+,由二次函数单调性知:a n+1≥﹣+=≥,a n+1≤﹣+=≤,∴≤≤,即当n=k+1时仍然成立,故对n≥2,均有≥a n≥,∴=≥≥=,即(n∈N*).点评:本题是一道数列与不等式的综合题,考查数学归纳法,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于难题.。