小学四年级数学逻辑思维训练题目
- 格式:doc
- 大小:184.00 KB
- 文档页数:8
学生排队,士兵列队,横着排叫做行,竖着排叫做列.如果行数与列数都相等,则正好排成一个正方形,这种图形就叫方队,也叫做方阵(亦叫乘方问题)。
方阵的基本特点是:
①方阵不论在哪一层,每边上的人(或物)数量都相同.每向里一层,每边上的人数就少2。
②每边人(或物)数和四周人(或物)数的关系:
四周人(或物)数=[每边人(或物)数-1]×4;
每边人(或物)数=四周人(或物)数÷4+1。
③中实方阵总人(或物)数=每边人(或物)数×每边人(或物)数。
例1:有一条公路长900米,在公路的一侧从头到尾每隔10米栽一根电线杆,可栽多少根电线杆?
分析:要以两棵电线杆之间的距离作为分段标准.公路全长可分成若干段.由于公路的两端都要求栽杆,所以电线杆的根数比分成的段数多1。
解:以10米为一段,公路全长可以分成
900÷10=90(段)共需电线杆根数:90+1=91(根)
练习与作业
1.四年级同学参加广播体操比赛,要排列成每行11人,共11行的方阵。这个方阵里有多少同学?
2.用棋子排成一个6×6的正方形,共需用棋子多少枚?
3.有1764棵树苗,准备在一块正方形的苗圃(实心方阵)里栽培。这个正方形苗圃的每边要栽多少棵树苗?
4.576人排成一个实心方阵,这个方阵每边多少人?
5.棋子若干只,恰好可以排成每边6只的正方形,棋子的总数是多少?棋子最外层有多少?
6.在大楼的正方形平顶四周装彩灯,四个角都装一盏,每边装25盏,四周共装彩灯多少盏?
我们已经会计算长方形和正方形的周长了,但对于一些不是长方形、正方形而是多边形的图形,怎样求它的周长呢?可以把求多边形的周长转化为求长方形和正方形的周长。
例1:如图13—1所示,求这个多边形的周长是多少厘米?
练习与作业
1.下图的周长与长__厘米,宽__厘米的长方形周长相同,所以它的周长为__厘米(单位:厘米)。
2.下图的周长可以看成一个长由__个1厘米的小线段组成,宽由__个1厘米的小线段成的长方形的周长,所以它的周长是___厘米。
3.求下列各图形的周长(单位:厘米)。
①周长为__厘米。
逻辑推理初步培优专项训练
在有些问题中,条件和结论中不出现任何数和数字,也不出现任何图形,因而,它既不是一个算术问题,也不是一个几何问题。
也有这样的题目,表面看来是一个算术或几何问题,但在解决它们的过程中却很少用到算术或几何知识。
所有这些问题的解决,需要我们深入地理解条件和结论,分析关键所在,找到突破口,由此入手,进行有根有据的推理,做出正确的判断,最终找到问题的答案。这类问题我们称它为逻辑推理。
例1.一桩谋杀案中,两个嫌疑犯甲和乙。另有四个证人正在受到讯问。第一个证人说:“我只知道甲是无罪的。”第二个证人说:“我只知道乙是无罪的。”第三个证人说:“前面两个证词中至少有一个是真的。”第四个证人说:“我可以肯定第三个证人的证词是假的。”通过调查研究,已证实第四个证人说了实话,请你分析一下,凶手是谁?
分析与解:题目中条件较多,且四个人的证词有真有假,在这种情况下,要善于抓住关键,由此入手进行有根有据的逐步推理。本题的关键是:第四个人说了实话。
因为第四个人说了实话,所以第三个人的证词是伪证,也就是说“前两个证词中至少有一个是真的”是句假话。由此可以断定,第一个和第二个证人都说了假话。从而判断出甲和乙都是凶手。
练习与作业
1.有甲、乙两同学,其中一个人有奇数根铅笔,一个人有偶数根铅笔。如果再给甲原有的铅笔数,再给乙原有铅笔数的2倍,他们俩共有铅笔数为偶数。那么,甲同学原有铅笔数是__。
2.有甲、乙、丙、丁、戊五位同学,其中丙同学比丁同学高,比戊同学矮;丁同学比乙同学高;戊同学比甲同学矮。则最高的同学是__,最矮的同学是__。
3.有四种树的照片,它们是桃树、杏树、李树、梨树,生物老师将照片从1到4编了号,让同学们区分四种树,每人说出两个,学生回答如下;第一个学生:2号是桃树,3号是李树;第二个学生:1号是梨树,2号是杏树;第三个学生:2号是桃树,4号是梨树;第四个学生:4号是梨树d号是李树。老师发现这四个同学都只说对了一半,那么,1号是__,2号是__,3号是__,4号是__。
例.果品店把2千克酥糖,3千克水果糖,5千克奶糖混合成什锦糖.已知酥糖每千克4.40元,水果糖每千克4.20元,奶糖每千克7.20元.问:什锦糖每千克多少元?
分析:要求混合后的什锦糖每千克的价钱,必须知道混合后的总钱数和与总钱数相对应的总千克数。
解:①什锦糖的总价:4.40×2+4.20×3+7.20×5=57.4(元)
②什锦糖的总千克数:2+3+5=10(千克)
③什锦糖的单价:57.4÷10=5.74(元)
答:混合后的什锦糖每千克5.74元。
我们把上述这种平均数问题叫做“加权平均数”.例3中的5.74元叫做4.40元、4.20元、7.20元的加权平均数.2千克、3千克、5千克这三个数很重要,对什锦糖的单价产生不同影响,有权衡轻重的作用,所以这样的数叫做“权数”。
练习与作业
1.A、B、C三人储蓄,A储了1240元,B比A少储70元,C比B多储50元。求A、B、C三人平均储蓄额。
2.甲、乙二数的平均数是72,丙是18。甲、乙、丙三个数的平均数是多少?
3.甲、乙的平均数是30,乙、丙的平均数是34,甲、丙的平均数是32。求甲、乙、而三个数的平均数。
4.有A、B、C三个数,A与B的平均数是97,B与C的平均数为132,A与C的平均数为125。问:这三个数的平均数是多少?
5.小刚参加我学考试,前两次的平均分数是85分,后三次的平均分数是90分。小刚前后几次考试的平均分数是多少?