机械振动2015试题及参考答案-1

  • 格式:doc
  • 大小:229.00 KB
  • 文档页数:5

下载文档原格式

  / 5
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中南大学考试试卷(A卷)

2015 - 2016学年上学期时间110分钟

《机械振动基础》课程 32 学时 2 学分考试形式:闭卷专业年级:机械13级总分100分,占总评成绩 70 %

注:此页不作答题纸,请将答案写在答题纸上

1、简述机械振动定义,以及产生的内在原因。

(10分)

答:机械振动指机械或结构在它的静平衡位置附近的往复弹性运动。(5分)产生机械振动的内在原因是系统本身具有在振动时储存动能和势能,而且释放动能和势能并能使动能和势能相互转换的能力。(5分)

2、简述随机振动问题的求解方法,随机过程基本的数字特征包括哪些?

(10分)

答:随机振动问题只能用概率统计方法来求解,只能知道系统激励和相应的统计值(5分)。

随机过程基本的数字特征包括:均值、方差、自相关函数、互相关函数。(5分)

3、阻尼对系统的自由振动有何影响?若仪器表头可等效为具有黏性阻尼的单自由度系统,欲使其在受扰动后尽快回零,最有效的办法是什么?

(10分)

答:阻尼消耗振动系统的能量,它使自由振动系统的振动幅值快速减小(5分)。增加黏性阻尼量,可使指针快速回零位(5分)。

4、简述求解周期强迫振动和瞬态强迫振动问题的方法。

(10分)

答:求解周期强迫振动时,可利用傅里叶级数将周期激励力转化为简谐激励力,然后利用简谐激励情况下的周期解叠加,可以得到周期强迫振动的解(5分)。求解瞬态强迫振动的解时,利用脉冲激励后的自由振动函数,即单位脉冲响应函数,与瞬态激励外力进行卷积积分,可以求得瞬态激励响应(5分)。周期强迫振动和瞬态强迫振动,也可以通过傅里叶积分变换、拉普拉斯积分变换来求解。

5、如图1所示,系统中质量m 位于硬质杆2L (杆质量忽略)的中心,阻尼器的阻尼系数为c ,弹簧弹性系数为k ,

(1)建立此系统的运动微分方程; (5分) (2)求出临界阻尼系数表示式; (5分) (3)阻尼振动的固有频率表示式。 (5分)

答:(1)可以用力矩平衡方法列写平衡方程,也可以用能量方法列写方程,广义坐标可以选质量块的垂直直线运动,也可以选择杆的摆角,以质量块直线运动坐标为例,动能212T

E mx =&,势能21(2)2U k x =,能量耗散2

12

D cx =&,由222,,T T ij ij ij i j i j i j

E D U

m c k x x x x x x ∂∂∂===

∂∂∂∂∂∂,得到:40mx cx kx ++=&&&;

(2

)e c ==

(3

)d n ω==

6、如图2所示系统,两个圆盘的直径均为r ,设I 12,k 12,k 3=3k , (1)选取适当的坐标,求出系统动能、势能函数; (5分) (2)求出系统的质量矩阵、刚度矩阵; (5分) (3)写出该系统自由振动时运动微分方程。 (5分)

图1 图2

答:(1)取

1

,

2

位描述系统运动的广义坐标,即:{X }={

1

,

2

}T

各个自由度的原点均取静平衡位置,分别以顺时针方向旋转、垂直向下为坐标正方向。

22

222211221121232111111

1111;()()()2222222222

T E I I mx U k r k r r k x r θθθθθθ=

++

=++++&&&; (注:如果同学将r 当成半径,或者注明r 为半径,可不扣分)

(2)2

2

;;T ij ij i j

i j E U m m x x x x ∂∂==∂∂∂∂&&2

21

2

221102400130

0;420

3032

kr

kr I M I K kr kr kr m kr k ⎡⎤⎢⎥⎡⎤⎢

⎥⎢⎥⎢⎥

==⎢⎥⎢⎥

⎢⎥⎢⎥⎣⎦

⎢⎥⎣

。 (3){0};MX KX

+=其中,12{,,}T X x θθ=。

7、如图3所示,由一弹簧是连接两个质量1m ,2

m 构成的系统以速度v 撞击制动器1

k ,求1m 与2

m 之间弹簧k 所受到的最大压缩力。设v 为常数且弹簧无

初始变形,并设12m m =与12k k =。(30分)

图3

答:设1m ,2m 的坐标1()x t ,2()x t 向左运动为正方向,碰撞时刻为原点。碰撞后,按照线性系统规律运动。

L

L

c

k

m

1031;;{0}0111M m K k MX KX -⎡⎤⎡⎤==+=⎢⎥⎢⎥-⎣⎦⎣⎦&&

(5分)

系统固有频率:

12ωω=

=(5分)

振型:

1112212211;

11u

u U u u ⎡⎤⎡⎤==⎥⎢⎥⎣⎦⎦

(5分)

系统振动的初始条件:

11220;;

0x x v x x v ⎧⎫⎧⎫

⎧⎫⎧⎫==⎨⎬⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭⎩⎭

&& (5分)

按照振型叠加法求解:

1111211122222122sin()sin()x u u c t c t x u u ωϕωϕ⎧⎫⎧⎫⎧⎫

=-+-⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭

(2分)

将初始条件代入可以得到: 121212

0;0;;;22v v c c ϕϕωω===

= (3分)

得到解:

1

2121

211

sin sin ;22111

1

cos cos ;2211v v

X t t v v X t t ωωωωωω⎧⎫⎧⎫⎪⎪⎪

=+⎬⎨⎬+⎪⎪⎪⎭

⎩⎭⎧⎫⎧⎫⎪⎪⎪⎪=+⎬⎨⎬+⎪⎪⎪⎭⎩⎭

&

求弹簧k 的压缩量21()()x x t x t ∆=-最大值,令0d

x dt

∆=,得到:

121

2

x t t ωω∆=

-

12()cos cos 022

d x t t dt ωω∆=-=