汽车制动系统的结构设计说明
- 格式:doc
- 大小:1.27 MB
- 文档页数:16
毕业设计论文—汽车制动系统的设计汽车制动系统的设计是一项关键的工程,它直接影响到汽车的安全性能。
本文旨在探讨汽车制动系统的设计原理、组成部分以及优化方法,以满足日益增长的汽车市场需求。
首先,汽车制动系统的设计原理基于转动部件的摩擦力和力矩平衡。
当驾驶员踩下制动踏板时,制动助力器将压力传递给制动主缸。
主缸生成高压液体,通过制动液管传输到车轮上的制动器。
与轮轴相连的制动器则通过摩擦力将车轮减速或停止。
一个典型的汽车制动系统由几个主要部分组成:制动踏板、制动助力器、主缸、制动液管、制动器和制动片。
制动踏板是驾驶员踩下的控制装置,通过运动传感器将信号传递给制动助力器。
制动助力器增加制动力,减少驾驶员踩踏的力量。
主缸是一个液压装置,将驾驶员施加的力量转化为液压压力,并将其传输到制动器上。
制动液管连接主缸和制动器,将液体压力传递给制动器。
制动器包括制动片和制动盘(或制动鼓),分别与车轮相连。
当制动片与制动盘(或鼓)接触时,摩擦力将车轮减速或停止。
为了提高汽车制动系统的性能,需要进行优化设计。
首先,制动系统的制动力和灵敏度需满足不同驾驶条件下的要求。
制动力是制动器产生的摩擦力,可以通过调整制动片和盘(或鼓)之间的接触面积、制动片的材料以及压力比例装置来实现。
灵敏度是指制动器对驾驶员踩踏力的响应程度,可以通过调整制动助力器的机械结构和材料来实现。
其次,制动系统的耐久性和可靠性也是关键要素。
车辆在长时间行驶中,制动系统需要承受较大的磨损和高温。
因此,制动片的材料和设计应具有良好的耐磨和耐高温性能。
此外,制动液管和连接件应具有高强度和密封性,以防止液压泄漏和系统失效。
最后,制动系统的安全性是设计的重要目标。
为了提高系统的安全性,制动系统应具有防抱死制动系统(ABS)和电子制动力分配系统(EBD)。
ABS系统能够避免车轮因制动过度而导致车辆失控,而EBD系统能够根据不同车轮的情况分配适当的制动力,以实现最佳制动性能。
新能源车辆制动系统方案范本____年新能源车辆制动系统的方案第一部分:电动汽车制动系统1. 制动能量回收技术由于电动汽车在行驶过程中存在能量损耗的问题,制动能量回收技术成为了一项重要的创新内容。
通过引入制动能量回收装置,将制动时产生的能量转化为电能储存起来,以供驱动电动汽车使用。
这种技术不仅提高了能源利用效率,也减少了对电池的依赖,延长了电池使用寿命。
2. 制动力分配系统由于电动汽车的动力系统与传统车辆存在一定的差异,制动力分配系统需要进行相应的调整。
根据电动汽车的动力性能和质量分布等因素,合理分配前后轮制动力,提高制动效果和稳定性,并减少制动过程中的能量损耗。
3. 制动辅助系统为了提高电动汽车的安全性和稳定性,制动辅助系统也需要进行改进。
包括提供制动效果的预警系统、自动刹车系统等,以确保驾驶员在遇到紧急情况时能够及时做出反应并减少事故的发生。
第二部分:氢燃料电池汽车制动系统1. 高效制动液氢燃料电池汽车的制动系统液压系统对制动液的要求更加严格,需要使用高效制动液。
这种制动液具有较高的沸点和阻尼性能,能够更好地适应高速制动和长时间制动,提高制动稳定性和耐久性。
2. 制动力调整系统氢燃料电池汽车的动力系统与传统汽车有所不同,制动力调整系统应根据氢燃料电池汽车的特性和行驶状态进行调整,以提高制动效果和稳定性。
3. 制动信号传输系统由于氢燃料电池汽车使用的是电子制动系统,制动信号传输系统也需要进行改进。
采用更先进的传输技术,确保制动信号的准确传输,提高制动反应速度和安全性。
结论:随着新能源汽车的快速发展,制动系统作为汽车安全的核心保障之一,也需要进行相应的创新和改进。
____年的新能源汽车制动系统方案包括电动汽车制动系统和氢燃料电池汽车制动系统,通过引入制动能量回收技术、制动力分配系统和制动辅助系统等新技术,提高制动效果、稳定性和安全性,推动新能源汽车的进一步发展。
新能源车辆制动系统方案范本(二)____年新能源车辆制动系统方案一、引言二、背景分析1. 新能源车辆市场需求增加:随着环境保护要求的提高和汽车市场的竞争加剧,新能源车辆的市场需求有望继续增加。
目录第一章绪论 (1)1.1 本次制动系统设计的意义 (2)1.2 本次制动系统应达到的目标 (2)1.3 本次制动系统设计容 (3)1.4 汽车制动系统的组成 (3)1.5 制动系统类型 (3)1.6 制动系工作原理 (3)第二章汽车制动系统方案确定 (4)2.1 汽车制动器形式的选择 (5)2.2 鼓式制动器的优点及其分类 (6)2.3 盘式制动器的缺点 (8)2.4 制动驱动机构的结构形式 (8)2.4.1 简单制动系 (9)2.4.2 动力制动系 (9)2.4.3 伺服制动系 (10)2.5 制动管路的形式选择 (10)2.6 液压制动主缸方案的设计 (12)第三章制动系统主要参数的确定 (14)3.1 轻型货车主要技术参数 (14)的确定 (14)3.2 同步附着系数的3.3 前、后轮制动力分配系数 的确定 (15)3.4 鼓式制动器主要参数的确定 (16)3.5 制动器制动力矩的确定 (18)3.6 制动器制动因数计算 (19)3.6.1 制动器制动因数计算 (19)3.6.1 制动器制动因数计算 (20)3.7 鼓式制动器零部件的结构设计 (21)第四章液压制动驱动机构的设计计算 (24)4.1 制动轮缸直径d的确定 (24)的计算 (25)4.2 制动主缸直径d4.3 制动踏板力F (26)P4.4 制动踏板工作行程Sp (26)第五章制动性能分析 (27)5.1 制动性能评价指标 (27)5.2 制动效能 (27)5.3 制动效能的恒定性 (27)5.4 制动时汽车的方向稳定性 (28)5.5 前、后制动器制动力分配 (28)5.5.1 地面对前、后车轮的法向反作用力 (29)5.6 制动减速度j (29)5.7 制动距离S (29)5.8 摩擦衬片(衬块)的磨损特性计算 (30)5.9 汽车能够停留在极限上下坡角度计算 (32)第六章总结 (33)参考文献 (34)一.绪论汽车工业是一个综合性产业,汽车工业的生产水平,能够代表一个国家的整个工业水平,汽车工业的发展,能够带动各行各业的发展,进而促进我国工业生产的总体水品。
汽车制动系统工作原理详解为了确保行车安全,汽车制动系统成为车辆中最为关键的部件之一。
它负责控制和减缓车辆速度,使车辆能够稳定地停下或减速。
本文将详细解析汽车制动系统的工作原理,包括液压制动和刹车片的协同作用,以及制动过程中的主要部件。
一、液压制动系统的作用及构成部分液压制动系统是汽车制动系统的重要组成部分,通过将驾驶员的制动操作转化为液压信号,从而实现刹车效果。
它由主缸、助力器、制动管路以及刹车器等几个关键部分构成。
1. 主缸:主缸位于驾驶舱内,通过驾驶员的制动踏板操作来产生制动信号。
当驾驶员踏下制动踏板时,主缸内液体压力增加,将制动信号传递给制动器。
2. 助力器:助力器旨在减轻驾驶员的制动操作力度。
它通过感应驾驶员的制动踏板力度变化,产生相应的助力信号,从而降低制动的难度。
3. 制动管路:制动管路是液压制动系统中连接主缸、助力器和刹车器的管道。
它起到传递制动信号和液压力的作用。
4. 刹车器:刹车器负责把液压力转换为制动力,并施加在车轮上,从而减速或停车。
它由制动卡钳、刹车盘和刹车鼓构成。
二、刹车片的作用和工作原理刹车片是汽车制动系统中非常关键的部件,它通过与刹车盘或刹车鼓的摩擦来产生制动力。
常见的刹车片包括盘式刹车片和鼓式刹车片。
1. 盘式刹车片:盘式刹车片主要应用于轿车和一些商用车上。
当驾驶员踏下制动踏板时,制动系统会产生液压力,使得刹车盘固定在车轮轴上的刹车卡钳夹紧刹车盘。
同时,刹车片与刹车盘之间的摩擦力产生制动力,使车辆减速或停车。
2. 鼓式刹车片:鼓式刹车片常用于汽车的后轮制动系统。
它由鼓式刹车盘、刹车鼓和刹车片组成。
当制动信号传递到刹车器时,刹车鼓会扩张开,使刹车片与刹车鼓内壁之间产生摩擦力,从而减速或停车。
三、制动过程中的关键部件除了液压制动和刹车片,汽车制动系统中还有一些关键部件,它们也对制动效果发挥重要作用。
1. 刹车盘和刹车鼓:刹车盘和刹车鼓是车轮中心固定的圆盘或圆筒形零件,它们承载着制动片对刹车器施加的摩擦力。
盘式制动器设计范文盘式制动器是一种常见的汽车制动系统,在汽车制动过程中起到关键作用。
它由刹车盘、刹车片、刹车卡钳、刹车片卡钳、制动油管等组成。
以下是关于盘式制动器设计的一些信息,涵盖了设计原则、材料选择、结构设计等方面。
1.设计原则:(1)刹车力的均匀分布:刹车力要均匀分布到所有刹车片中,以确保制动效果稳定。
(2)热量散发和通风:盘式制动器在制动过程中会产生大量的热量,需要在设计中考虑热量的散发和通风,以避免制动效果因过热而下降。
(3)轻量化:盘式制动器需要在保证安全性能的基础上尽可能轻量化,以减少整车的质量。
(4)材料的选择:盘式制动器的材料需要具备高温抗磨损和耐腐蚀性能。
2.材料选择:(1)刹车盘:常见的刹车盘材料有钢铁、复合材料和碳陶瓷等。
钢铁材料价格低廉,但其热膨胀系数较大,容易导致制动时的变形;复合材料在热量散发和通风方面较好,但价格较高;碳陶瓷材料具有较好的高温抗磨损性能和轻量化特点,但价格昂贵。
(2)刹车片:常见的刹车片材料有有机材料、半金属材料和陶瓷材料等。
有机材料制动片具有制动效果较好、噪音小、对刹车盘磨损小的特点,但耐高温性能较差;半金属材料制动片具有耐高温性能较好,但噪音大、对刹车盘磨损大;陶瓷材料制动片具有良好的高温抗磨损性能和耐腐蚀性能,但价格昂贵。
(3)刹车卡钳:刹车卡钳一般采用铝合金材料制作,具有较好的强度和轻量化特点。
3.结构设计:(1)刹车盘:刹车盘一般为圆盘状,中间部分为锁定于车轮轮毂上的固定盘,可用螺栓与车轮连接;外边缘为可摩擦的刹车片接触面。
刹车盘一般具有散热孔,以增强热量散发和通风效果。
(2)刹车片:刹车片一般为半圆形,两片作用在刹车盘两侧。
刹车片与刹车盘之间的摩擦产生刹车力。
(3)刹车卡钳:刹车卡钳用于固定刹车片,通常采用活塞和活塞密封圈结构。
活塞在制动过程中施加压力使刹车片与刹车盘接触,并在松开刹车时将刹车片与刹车盘分离。
以上是关于盘式制动器设计的一些信息,涉及了设计原则、材料选择、结构设计等方面。
可编辑修改精选全文完整版一、国标要求1、GB 12676-1999《汽车制动系统结构、性能和试验方法》2、GB 13594-2003《机动车和挂车防抱制动性能和试验方法》3、GB 7258-1997《机动车运行安全技术条件》二、整车基本参数及样车制动系统主要参数整车基本参数样车制动系统主要参数三、计算1. 前、后制动器制动力分配1.1 地面对前、后车轮的法向反作用力 公式:gz h dt du mGb L F +=1 ………………………………(1) gz h dt du mGa L F -=2 (2)参数:1z F ——地面对前轮的法向反作用力,N ;2z F ——地面对后轮的法向反作用力,N ;G ——汽车重力,N ;b ——汽车质心至后轴中心线的水平距离,m ;a ——汽车质心至前轴中心线的距离,m 。
m ——汽车质量,kg ;gh ——汽车质心高度,m ;L ——轴距,m ;dt du——汽车减速度,m/s 2四、制动器的结构方案分析制动器有摩擦式、液力式和电磁式等几种。
电磁式制动器虽有作用滞后小、易于连接且接头可靠等优点,但因成本高而只在一部分重型汽车上用来做车轮制动器或缓速器。
液力式制动器只用作缓速器。
目前广泛使用的仍为摩擦式制动器。
摩擦式制动器按摩擦副结构形式不同,分为鼓式、盘式和带式三种。
带式只用作中央制动器。
一、鼓式制动器鼓式制动器分为领从蹄式、双领蹄式、双向双领蹄式、双从蹄式、单向增力式、双向增力式等几种,见图la ~f 。
不同形式鼓式制动器的主要区别有:①蹄片固定支点的数量和位置不同。
②张开装置的形式与数量不同。
③制动时两块蹄片之间有无相互作用。
因蹄片的固定支点和张开力位置不同,使不同形式鼓式制动器的领、从蹄数量有差别,并使制动效能不同。
制动器在单位输入压力或力的作用下所输出的力或力矩,称为制动器效能。
在评比不同形式制动器的效能时,常用一种称为制动器效能因数的无因次指标。
制动器效能因数的定义为,在制动鼓或制动盘的作用半径R 上所得到的摩擦力(RM μ)与输入力0F 之比,即RF M K 0μ=式中,K 为制动器效能因数;μM 为制动器输出的制动力矩。
Ⅰ. 概述双向双领蹄式制动器是一种常见的汽车制动系统,它通过摩擦力来减缓车辆的速度并将其停止。
与其他类型的制动系统相比,双向双领蹄式制动器具有较高的制动效率和稳定性。
本文将就双向双领蹄式制动器的结构和工作原理进行详细介绍。
Ⅱ. 结构1. 制动鼓制动鼓是双向双领蹄式制动器的重要组成部分,通常安装在车轮上。
制动鼓的内部空间用于容纳制动器的其他零部件,同时具有良好的散热性能。
2. 制动鞋制动鞋是双向双领蹄式制动器的摩擦件,通常由金属制成,外表覆有摩擦片。
制动鞋通过外力作用于制动鼓的内表面,产生摩擦力来减缓车辆的速度。
3. 液压缸液压缸是双向双领蹄式制动器的辅助装置,用于传递制动指令并带动制动鞋进行摩擦接触。
液压缸通过轮缘间隙的调整来保证制动鞋的良好接触。
Ⅲ. 工作原理1. 制动指令发出当司机踩下制动踏板时,制动液被压力增加,传递给液压缸。
液压缸收到制动指令后,会带动制动鞋向制动鼓靠拢。
3. 摩擦作用制动鞋与制动鼓接触后,产生较大的摩擦力,使车轮减速并最终停止。
4. 制动释放当松开制动踏板时,液压缸停止工作,制动鞋与制动鼓分离,车辆恢复正常行驶。
Ⅳ. 总结双向双领蹄式制动器以其高效的制动性能和稳定的工作原理,成为了汽车制动系统中的重要组成部分。
通过对其结构和工作原理的深入了解,可以更好地维护和保养车辆的制动系统,确保行车安全。
V. 制动效率与稳定性1. 制动效率双向双领蹄式制动器具有较高的制动效率,其关键在于制动鞋与制动鼓的设计。
制动鞋对制动鼓的摩擦接触面较大,使得制动力均匀分布并且有较强的制动力。
制动鼓内部的空间设计充分利用了制动摩擦的力量,使得制动效果更加明显。
车辆在高速行驶过程中,双向双领蹄式制动器能够快速减速并稳定停车,确保驾驶人员和乘客的安全。
双向双领蹄式制动器的制动稳定性也是其优势之一。
其结构设计使得制动鞋能够均匀、稳定地与制动鼓接触,摩擦力可以始终保持在一个稳定的范围内,不会出现突然失效或制动力不均匀的情况。
汽车制动系统结构性能和试验方法一、汽车制动系统结构1.制动器:主要分为盘式制动器和鼓式制动器两种类型。
盘式制动器由刹车盘、刹车片、刹车卡钳和刹车液组成,通过刹车卡钳施加在刹车盘上的刹车力来实现制动。
鼓式制动器由鼓式刹车核心、制动皮、刹车回踏杆和制动鼓等组成,通过刹车回踏杆施加在制动鼓上的制动力来实现制动。
2.制动传动装置:包括制动踏板、制动杆、制动器杆等,通过力的传递将驾驶者施加在制动踏板上的力转化为刹车盘或制动鼓上的制动力。
3.制动液压装置:由主缸、助力器、制动管路和制动油等组成,通过踏板力传达到主缸,再通过液压助力器将主缸力放大,通过制动油传达到制动器,实现制动。
二、汽车制动系统性能1.制动力:指制动系统施加在车轮上的力,取决于制动器和制动液压装置的性能。
制动力越大,汽车减速越快。
2.制动距离:指汽车从开始制动到完全停下所行驶的距离,取决于汽车的质量、速度、制动力和路面情况等因素。
3.制动稳定性:指制动系统的工作稳定性和一致性。
制动系统在长时间的制动过程中,应始终保持稳定的制动力和制动平衡,减少制动的波动和失效。
三、汽车制动系统试验方法1.性能试验:包括制动力试验、制动距离试验和制动稳定性试验等。
制动力试验通过测量刹车盘上的制动力来评估制动系统的制动力是否符合要求;制动距离试验通过测量汽车从开始制动到完全停下所行驶的距离来评估制动系统的制动性能;制动稳定性试验通过对汽车制动过程中制动力的变化进行测量,评估制动系统的制动稳定性。
2.耐久性试验:通过长时间的制动测试,评估制动系统在重复使用和高温条件下的耐久性和可靠性。
常见的耐久性试验包括持续制动试验、急停试验和重负荷制动试验等。
3.安全性试验:用于评估制动系统的紧急制动和制动失效时的安全性能,主要包括制动距离加长试验、制动失效试验和制动力均衡试验等。
综上所述,汽车制动系统结构包括制动器、制动传动装置和制动液压装置;性能主要包括制动力、制动距离和制动稳定性;试验方法包括性能试验、耐久性试验和安全性试验等。
汽车制动系统设计与仿真随着现代社会发展,汽车作为我们生活中必不可少的工具,对于其安全性能的要求越来越高。
而汽车制动系统则是保障我们行驶安全的最重要的系统之一。
所以,设计出一款高效、稳定、可靠的汽车制动系统显得尤为重要。
本文将重点探讨汽车制动系统的设计与仿真。
1. 汽车制动系统的结构及作用汽车制动系统主要包括制动器、制动管路、制动液、制动辅助器和制动控制系统等。
其中,制动器分为盘式制动器和鼓式制动器两种,其中盘式制动器主要用于中高档车型,而鼓式制动器则适用于低档车型。
制动管路则是将制动器与制动液相连,起到传递制动力的作用。
制动辅助器则是帮助驾驶员较少脚力确保汽车制动效果的装置。
最后,制动控制系统则是通过传感器感知车辆运行状态,为驾驶员提供合理、安全的制动力下限。
2. 汽车制动系统的仿真汽车制动系统的仿真是通过计算机模拟来模拟实际的汽车制动情况,为汽车制动系统提供设计安全性能。
通常采用AMESim、MATLAB等仿真软件进行仿真模拟。
而利用仿真能够准确的反映出制动系统的运行情况,有效帮助设计师优化和调整汽车制动系统。
3. 汽车制动系统设计要点(1)盘式制动器的设计盘式制动器是较高档车型采用的制动器,其优点是制动稳定性好、磨损较慢、散热性能好等。
但是在设计过程中需要考虑制动噪音和热胀冷缩等因素。
因为制动器制动时会产生高温,当高温冷却时,会产生热胀冷缩,导致制动力变化。
并且制动板和刹车碟之间因为摩擦而产生的振动会引起制动噪音。
(2)鼓式制动器的设计鼓式制动器是较低档车型采用的制动器,由于其制动鼓的设计各不相同,因此在设计过程中需要特别注意。
一般有刚性鼓式制动器、弹性鼓式制动器等。
弹性鼓式制动器较为广泛采用,其结构与盘式制动器相似,由制动鼓、制动鞋等组成。
但需要注意的是,鼓式制动器鼓与制动器鞋接触面积较小,在制动时受力较大,对制动鞋的材料和结构的要求较高。
(3)制动管路和制动液的设计在设计制动管路和制动液时,需要考虑到管路和液体的流通受到的升降等因素,以及液体的密度、黏度等参数。
汽车制动系设计方案2023-10-27CATALOGUE 目录•引言•制动系统设计基础•制动系统设计方案•制动系统优化设计•制动系统设计方案实施•结论与展望01引言汽车制动系统是保障行车安全的重要系统,随着汽车工业的发展,对制动系统的性能和安全性要求也不断提高。
在此背景下,研究和设计更加先进、更加可靠的汽车制动系具有重要意义。
研究背景和意义研究现状和发展趋势发展趋势主要表现为制动器向着盘式、鼓式、电磁式等多种形式并存的方向发展;制动管路向着轻量化、集成化方向发展。
制动液向着环保、高性能方向发展;目前,国内外对于汽车制动系的研究和应用已经十分广泛,涉及制动器、制动液、制动管路等多个方面。
02制动系统设计基础定义制动系统是汽车中用于减速或停车的系统,由驾驶员操作或自动控制。
功能制动系统的功能是减缓或停止车辆的行驶,确保安全。
制动系统概述基础原理制动系统利用摩擦力来减缓或停止车辆的行驶。
当驾驶员踩下制动踏板时,制动系统会通过摩擦力将车辆的动能转化为热能,从而实现减速或停车。
部件与流程制动系统的主要部件包括制动踏板、制动液、制动管路、制动器等。
当驾驶员踩下制动踏板时,制动踏板会推动制动液,通过制动管路将压力传递到制动器,从而产生摩擦力。
制动系统的工作原理制动系统的基本组成制动器是制动系统中最重要的部件之一,它利用摩擦力来减缓或停止车辆的行驶。
制动器制动液制动管路制动踏板制动液是一种高粘度、高沸点的液体,用于将压力从制动踏板传递到制动器。
制动管路是连接制动踏板和制动器的管道,用于传递压力。
制动踏板是驾驶员操作制动系统的部件,它可以通过杠杆或电子信号将驾驶员的意图传递到制动器。
03制动系统设计方案制动系统是汽车安全的重要组成部分,应确保在各种工况下的制动性能稳定、可靠,确保驾驶员和乘客的安全。
安全性制动系统的性能不仅要求安全,还需要满足舒适性的要求。
制动时要保证减速度平稳,避免制动点头现象,提高乘坐舒适度。
错误!未找到引用源。
盘式制动器设计说明书一汽车制动系概述使行驶中的汽车减速甚至停车,使下坡行驶的汽车的速度保持稳定,以及使已经停驶的汽车保持不动,这些作用统称为汽车制动。
对汽车起到制动作用的是作用在汽车上,其方向与汽车行驶方向相反的外力。
作用在行驶汽车上的滚动阻力,上坡阻力,空气阻力都能对汽车起制动作用,但这外力的大小是随机的,不可控制的。
因此,汽车上必须设一系列专门装置,以便驾驶员能根据道路和交通等情况,借以使外界在汽车上某些部分施加一定的力,对汽车进行一定程度的强制制动。
这种可控制的对汽车进行制动的外力,统称为制动力。
这样的一系列专门装置即成为制动系。
1 制动系的功用:使汽车以适当的减速度降速行驶直至停车;在下坡行驶时,使汽车保持适当的稳定车速;使汽车可靠的停在原地或--=-坡道上。
2 制动系的组成任何制动系都具有以下四个基本组成部分:(1)供能装置——包括供给、调节制动所需能量以及改善传能介质状态的各种部件。
其中,产生制动能量的部位称为制动能源。
(2)控制装置——包括产生制动动作和控制制动效果的各种部件。
(3)传动装置——包括将制动能量传输到制动器的各个部件。
(4)制动器——产生阻碍车辆的运动或运动趋势的力的部件,其中也包括辅助制动系中的缓速装置。
较为完善的制动系还具有制动力调节装置以及报警装置、压力保护装置等附加装置。
3 制动系的类型(1)按制动系的功用分类1)行车制动系——使行使中的汽车减低速度甚至停车的一套专门装置。
2)驻车制动系——是以停止的汽车驻留在原地不动的一套装置。
3)第二制动系——在行车制动系失效的情况下,保证汽车仍能实现减速或停车的一套装置。
在许多国家的制动法规中规定,第二制动系是汽车必须具备的。
4)辅助制动系——在汽车长下坡时用以稳定车速的一套装置。
(2)按制动系的制动能源分类1)人力制动系——以驾驶员的肢体作为唯一的制动能源的制动系。
2)动力制动系——完全靠由发动机的动力转化而成的气压或液压形式的势能进行制动的制动系。
摘要本文主要针对四驱越野车的行驶性能对其车架和制动系统进行设计。
车架采用边梁式梯形车架,纵梁采用冷冲压成型的槽钢相互嵌入焊接而成,横梁采用冷冲压成型的槽钢与钢板焊接而成,纵梁与横梁的连接亦采用焊接技术。
另外主要对纵梁进行结构设计和强度、刚度的计算校核,对横梁进行结构设计和危险截面的应力计算。
制动系统采用液压传动对角线双回路制动系统,其中前轮制动器采用通风盘式制动器,后轮制动器采用实心盘式制动器,制动主缸采用串联式双腔制动主缸。
制动系统设计中首先进行整车力学模拟分析,进而对制动器进行力学分析进行结构设计和强度校核,另外对制动轮缸、制动主缸的直径容积进行计算和强度校核。
种种设计计算是为了保证该设计具有生产加工和应用的可行性。
关键词:四驱越野车车架制动系统Abstract:The paper main for driving performance of four-wheel-drive sport utility vehicle to design frame and braking frame apply the ladder frame of edge beam, the longeron is welded together in the channel steel of embedded in each other which by the way of cold stamping molding. The beams is welded together in the channel steel and plate which by the way of cold stamping molding connect way of longerons and beems is by the way of welding technology. Another the calculate of strength and stiffness is main for the design of longeron. The calculate to the beems part is the stress of section braking system is hydraulic braking system of diagonal double-loop. In which the front-wheel use the ventilated disc brake brake and the back-wheel use the solid rear disc brakes brakes. The brake master cylinder use the series type of dual-chamber brake master cylinder-type. First of all,the simulation analysis of vehicle mechanics is used for the design of thebraking system. Further, the analysis of brake mechanics in order to structural design and strength check. Another, calculate the diameter of the volume and intensity calibration of the brake wheel cylinder, brake master cylinder. A variety of design and calculation is to ensure the feasbility of processing and application.Keywords:Four-wheel-drive sport utility vehicle; Frame; Braking System前言 (5)1越野车车架设计 (5)车架概述 (5)车架的基本要求 (6)越野车车架的结构型式选择 (6)车架纵梁、横梁及其联接 (9)车架的制造工艺及材料选择 (10)车架的设计计算 (10)1.6.1车架尺寸的计算 (10)1.6.2车架纵梁刚度、强度的设计计算 (12)1.6.3车架横梁的设计计算 (15)2 制动系统设计方法方案分析 (20)制动系统概述 (20)2.1.1制动系统的功用 (20)2.1.2制动系统的类型 (20)2.1.3制动系统组成 (21)2.1.4制动系统的基本要求: (21)2.1.5制动系统设计的内容 (23)制动器的结构型式及选择 (25)2.2.1制动器分类 (25)2.2.2制动器设计型式的选择 (25)3 汽车制动系统力学模型分析 (27)制动时车轮的受力 (27)3.1.1地面制动力 (27)3.1.2制动器制动力 (27)3.1.3地面制动力、制动器制动力与附着力之间的关系 (28)地面对前、后车轮的法向反作用力 (29)理想的前、后制动器制动力分配曲线 (30)4 制动器的设计计算 (31)越野车制动器的力学计算 (31)同步附着系数 (32)制动力分配系数 (33)制动强度和附着系数利用率 (33)制动器最大制动力矩 (34)制动器因数 (34)制动器摩擦系数 (34)摩擦衬块的磨损特性计算 (34)制动器的热容量和温升的核算 (35)制动器制动力矩的计算 (36)驻车制动计算 (38)5 液压制动驱动机构的设计计算 (39)制动轮缸的设计计算 (39)5.1.1制动轮缸直径与工作容积的计算 (39)5.1.2制动轮缸强度校核 (41)制动主缸的设计计算 (42)5.2.1制动主缸直径与工作容积的计算 (42)5.2.2制动主缸强度校核 (42)制动踏板力与踏板行程 (43)制动液的选择和使用 (44)5.4.1制动液的主要性能要求 (44)5.4.2制动液的分类 (45)5.4.3制动液选用注意事项: (46)总结 (47)参考文献 (48)致谢 (49)前言四驱越野车具有爬坡度高、涉水度深,适应恶劣道路环境及野外行驶,既能高速行驶于铺装路面,又能快速行驶于急造路、乡村土路,还能顺畅地通过无路地区。
汽车制动系统的构成
汽车制动系统主要由四部分组成:供能装置、控制装置、传动装置和制动器。
1. 供能装置负责提供制动系统所需能量。
2. 控制装置负责对制动系统进行控制和调节,使制动器得以产生所需制动力矩。
3. 传动装置则负责将制动能量传输至制动器,使制动器得以产生制动力矩。
4. 制动器通过与车轮相连的旋转元件之间的相互摩擦来阻止车轮的转动或转动的趋势,从而实现对汽车的减速或停止。
除了这四部分,汽车的制动系统还包括行车制动装置和停车制动装置两套独立的装置。
行车制动装置由驾驶员用脚来操纵,也称为脚制动装置;停车制动装置由驾驶员用手操纵,也称为手制动装置。
在紧急情况下,两种制动装置可以同时使用以增加汽车制动的效果。
以上信息仅供参考,如需了解更多信息,建议咨询汽车行业专业人士。
摘要制动系统是汽车中最重要的系统之一。
因为随着高速公路的不断发展,汽车的车速将越来越高,对制动系的工作可靠性要求日益提高,制动系工作可靠的汽车能保证行驶的安全性。
由此可见,本次制动系统设计具有实际意义。
本次设计主要是对轻型货车制动系统结构进行分析的基础上,根据对轻型货车制动系统的要求,设计出合理的符合国家标准和行业标准的制动系统。
首先制动系统设计是根据整车主要参数和相关车型,制定出制动系统的结构方案,其次设计计算确定前、后鼓式制动器、制动主缸的主要尺寸和结构形式等。
最后利用计算机辅助设计绘制出了前、后制动器装配图、制动主缸装配图、制动管路布置图。
最终对设计出的制动系统的各项指标进行评价分析。
另外在设计的同时考虑了其结构简单、工作可靠、成本低等因素。
结果表明设计出的制动系统是合理的、符合国家标准的。
关键词:轻型货车;制动;鼓式制动器;制动主缸;液压系统.AbstractBraking system is one of the most important system in the automotive . because of the continuous development with the the work of the increasing reliability requirements,Brake work of a reliable car,guarantee the safety of travelling,This shows that, The braking system design of practical significance.The braking system is one of important system of active safety. Based on the structural analysis and the design requirements of intermediate car’s braking system, a braking system design is performed in this thesis, according to the national and professional standards.First through analyzing the main parameters of the entire vehicle, the braking system design starts from determination of the structure scheme. SecondlyCalculating and determining the main dimension and structural type of the front、rear drum brake,brake master cylinder ans so on,Finally use of computer-aided design drawing draw the engineering drawings of the front and rear brakes, the master brake cylinder, the diagram of the brake pipelines. Furthermore, each target of the designed system is analyzed forchecking whether it meets the requirements. some factors are considered in this thesis, such as simple structure, low costs, and environmental protection, etc. The result shows that the design is reasonable and accurate, comparing with the related national standards.Key words:light truck;brake;drum brake;master cylinder;2) (+sin)R=178.91mm摩擦片摩擦系数=0.3~0.5 取0.3=arctan=arctan0.3=16.7°θ=90°—θ2=90°—90°2=45°=arctan°2)从蹄的效能因数-+=16.7°-5.83°+20°=30.87°Kt= =1.6(0.8×cos30.87°1.1×cos5.83×sin16.7+1)=0.5后轮总的效能因数 Kt= Kt +Kt=1.03+0.5=1.532.前轮双向自增力效能因数:摩擦衬片包角θ=102°θ=123°摩擦衬片起始角θ=48°θ=30°制动蹄支承点位置坐标a=118mm制动蹄支承点位置坐标c=132mm制动器中心到张开力P 作用线的距离e=90mm制动鼓半径 R=162.56mm摩擦衬片包角 =90°摩擦片摩擦系数=0.3~0.5 取0.3=arctan=arctan0.3=16.7°θ=90°—θ2=90°—90°2=45°=2+-θ-θ2=7.7°Kt= =0.92次领蹄制动效能因数Kt= )1sin cos ''/'cos '/(''-γβλξe k p =2.5双增力总的效能因数Kt= Kt+ Kt=3.423.7 鼓式制动器零部件的结构设计1)摩擦衬片摩擦衬片选择应满足以下条件:具有稳定的摩擦因数,有良好的耐磨性。
课题名称:汽车制动系统的结构设计与计算第一章:制动器结构型式即选择一、汽车已知参数:汽车轴距(mm):3800 车轮滚动半径(mm ):407.5 汽车空载时的总质量(kg ):3330 汽车满载时的总质量(kg )6330空载时,前轴负荷G=mg=12348.24N 后轴负荷为38624.52N 满载时,前轴负荷G=mg=9963.53N 后轴负荷为43157.62N 空载时质心高度为750mm 满载时为930mm质心距离前轴距离空载时为2.36m 满载时为2.62m汽车设计课程设计质心距离后轴距离满载时为1.44m 满载时为1.18m二、鼓式制动器工作原理鼓式制动器的工作原理与盘式制动器的工作原理基本相同:制动蹄压住旋转表面。
这个表面被称作鼓。
许多车的后车轮上装有鼓式制动器,而前车轮上装有盘式制动器。
鼓式制动器具有的元件比盘式制动器的多,而且维修难度更大,但是鼓式制动器的制造成本低,并且易于与紧急制动系统结合。
我们将了解鼓式制动器的工作原理、检查紧急制动器的安装情况并找出鼓式制动器所需的维修类别。
我们将鼓式制动器进行分解,并分别说明各个元件的作用。
图1 鼓式制动器的各个元件与盘式制动器一样,鼓式制动器也带有两个制动蹄和一个活塞。
但是鼓式制动器还带有一个调节器机构、一个紧急制动机构和大量弹簧。
图2仅显示了提供制动力的元件。
图2. 运行中的鼓式制动器当您踩下制动踏板时,活塞会推动制动蹄靠紧鼓。
这一点很容易理解,但是为什么需要这些弹簧呢?这就是鼓式制动器比较复杂的地方。
许多鼓式制动器都是自作用的。
图5中显示,当制动蹄与鼓发生接触时,会出现某种楔入动作,其效果是借助更大的制动力将制动蹄压入鼓中。
楔入动作提供的额外制动力,可让鼓式制动器使用比盘式制动器所用的更小的活塞。
但是,由于存在楔入动作,在松开制动器时,必须使制动蹄脱离鼓。
这就是需要一些弹簧的原因。
其他弹簧有助于将制动蹄固定到位,并在调节臂驱动之后使它返回。
为了让鼓式制动器正常工作,制动蹄必须与鼓靠近,但又不能接触鼓。
如果制动蹄与鼓相隔太远(例如,由于制动蹄已磨损),那么活塞需要更多的制动液才能完成这段距离的行程,并且当您使用制动器时,制动踏板会下沉得更靠近地板。
这就是大多数鼓式制动器都带有一个自动调节器的原因。
当衬块磨损时,制动蹄和鼓之间将产生更多的空间。
汽车在倒车过程中停止时,会推动制动蹄,使它与鼓靠紧。
当间隙变得足够大时,调节杆会摇动足够的幅度,使调节器齿轮前进一个齿。
调节器上带有像螺栓一样的螺纹,因此它可以在转动时松开一点,并延伸以填充间隙。
每当制动蹄磨损一点时,调节器就会再前进一点,因此它总是使制动蹄与鼓保持靠近。
一些汽车的调节器在使用紧急制动器时会启动。
如果紧急制动器有很长一段时间没有使用了,则调节器可能无法再进行调整。
因此,如果您的汽车装有这类调节器,一周应至少使用紧急制动器一次。
汽车上的紧急制动器必须使用主制动系统之外的动力源来启动。
鼓式制动器的设计允许简单的线缆启动机构。
鼓式制动器最常见的维修是更换制动蹄。
一些鼓式制动器的背面提供了一个检查孔,可以通过这个孔查看制动蹄上还剩下多少材料。
当摩擦材料已磨损到铆钉只剩下0.8毫米长时,应更换制动蹄。
如果摩擦材料是与后底板粘合在一起的(不是用铆钉),则当剩余的摩擦材料仅为1.6毫米厚时,应更换制动蹄。
图3. 制动蹄与盘式制动器中的情况相同,制动鼓中有时会磨损出很深的划痕。
如果磨损完的制动蹄使用时间太长,将摩擦材料固定在后部的铆钉会把鼓磨出凹槽。
出现严重划痕的鼓有时可以通过重新打磨来修复。
盘式制动器具有最小允许厚度,而鼓式制动器具有最大允许直径。
由于接触面位于鼓,因此当您从鼓式制动器中去除材料时,直径会变大。
图4. 制动鼓第二章:制动系的主要参数及其选择一、制动力及制动力分配系数分析二、汽车前后车轮同时抱死时的制动力和分配系数1、制动力(满载)假设汽车的同步附着系数为0ϕ=0.8.在前后车轮均被抱死时,q=0ϕ=0.8,这时前后轴车轮的制动器制动力1f F 、2f F 即是理想最大制动力,此时B F 、f F 和F ϕ相等,所以有:(B F 为汽车总的地面制动力,f F 为汽车总的制动器制动力,F ϕ车轮与路面总的附着力)L=3.8M L1=2.62M L2=1.18M Hg=0.93M11200()B f g GF F F L h L1ϕ===+ϕϕ=24891.2N22100()B f g GF F F L h Lϕ2===-ϕϕ=24786.628N2、制动力分配系数与同步附着系数 假设汽车的同步附着系数为0ϕ=0.8. 则制动力分配系数0g h b Lϕ+β==0.53、制动强度和附着系数利用率取该车所能遇到的最大附着系数为max ϕ=1,从保证汽车制动时的稳定性出发来确定各轴的最大制动力矩。
ϕ=1时,后轴先抱死,当后轴刚要抱死时,可推出得:110()B gGL F L h ϕ=+ϕ-ϕ=66.8039KN110()gL q L h ϕ=+ϕ-ϕ=0.9342110()g L L h ε=+ϕ-ϕ= 1.871.87(10.8)*0.886+-=0.93424、最大制动力矩对于选取较大0ϕ值的汽车,这类车辆经常行驶在良好道路上,车速较高,后轮制动抱死失去稳定而出现甩尾的危险性较前一类汽车大得多。
因此应从保证汽车制动时的稳定性出发,来确定各轴的最大制动力矩。
2max12800*9.81()*(1.870.9134*0.886)*1*0.352.8f g e G T L qh r L =-ϕ=-=10100.5NM1max2max 0.585*5403.08110.585f f T T β==-β-=10143.2NM 5、制动器因数领蹄的制动蹄因数11Nf h f BF c P b f b ⎛⎫⎪=== ⎪ ⎪-⎝⎭ 2.6 从蹄的制动蹄因数为11Nf h f BF c P b f b ⎛⎫⎪=== ⎪⎪+⎝⎭ 2.66、鼓式制动器主要结构参数○1、车轮的滚动半径为r=407.5mm,通过中华人民国国标,载重汽车标准,轮辋直径为d=16in=406.4mm制动鼓直径D,通过查表得D/Dr=0.787D=d*78.7%=406.4*0.787=320mm 取D=300mm 制动间隙取0.3mm.○2、制动蹄摩擦片包角β宽度b 和单个制动器摩擦衬片总面积,取β=90°A=4002cm (前轴制动器) A=4002cm (后轴制动器)b=A Rβ=16.98cm (前轮制动器摩擦片宽度) b=A Rβ==16.98cm (后轮制动器摩擦片宽度) ○3、摩擦衬块起始角β。
β。
=β/2=45°○4、制动器中心开到开力F 。
作用线的距离e e=0.8R=0.8*15=12cm○5、制动器距支撑点位置坐标a 与ca=0.8R=0.8*15=12cm两支承销之间距离k=1.5cm第三章:鼓式制动器设计计算一、制动蹄片上的制动力矩前轴单个制动器应能产生的最大制动力矩:f T =1max /2f T =5071NM单个蹄片上的制动力矩()11111111cos sin Tf T P fh c f f P B ρδδρ='+-=⎡⎤⎣⎦……………○1 ()12222222cos sin Tf T P fh c f f P B ρδδρ='++=⎡⎤⎣⎦.....……….○2 ()()arctan arctan cos 2cos 2/2sin 2sin 2X Y N N δβ⎛⎫''''''==∂+∂-∂+∂⎡⎤ ⎪⎣⎦⎝⎭…………………………………………………………….…○3 ()14cos cos /R ρ'''=∂-∂⎡⎤⎣⎦…………………………………………………………….….○4 121122f Tf Tf T T T P B P B +==+…………….……….○5:对于液压驱动的制动器,由于12P P =,故所需要的开力为()12/f P T B B =+…………………………………………….○6由上图可得参数数据:R=159.65mm ,c ′=131.46860∂=13.19°,β=90°,'∂= 31.81°,''∂=121.81°,f=0.35f T =7955.64NM将参数带入○1○2○3○4○5○6计算得: 1δ=0.115°,2δ=0.5°10.22025ρ=,20.22025ρ=10.0009268B =,20.002693B =带入.○6式得P=2197.8KN同理可得后轮单个制动器另外,在计算蹄式制动器时,必须检查蹄有无自锁的可能。
由式子○1得出自锁条件,当该式得分母等于零时,蹄自锁,即蹄式制动器的自锁条件为()111cos sin 0c f f δδρ'+-=如果式子111cos sin c f c δρδ'≤'-成立,则不会自锁代入数据得0.350.637≤ ,所以成立!因为亲后轮取的轮胎一样,只有摩擦衬片不一样,而且前轮的制动力矩比较大,所以只需验证前轮即可,后轮也应该满足条件。
二、摩擦衬片的磨损特性计算1、比能量耗散率e (取极限工况)双轴汽车单个前轮制动器和单个后轮制动器的比能量消耗率分别是()2212111*22a m v v e tA δβ-=……………………………○7()()2212221*122a m v v e tA δβ-=-………………………○8其中a m 为汽车总质量6330kg ,δ为汽车回旋质量换算系数取1这里,1v =18m/s ,20v =,12v v t j -=,j 为制动减速度这里取0.6g ;1,2A A 分别为前、后制动器衬片的摩擦面积,β为制动力分配系数这里为0.501.因为对于鼓式制动器的比能量耗散率小于等于21.8/W mm 故满足要求!2、单个车轮的磨损特性指标可用衬片比摩擦力0f F 表示 当汽车产生最大制动力时,前轮单个制动器的制动力矩Tf=5018,R=150mm ,1A =4002cmFfo=Tf/RA=0.421<0.48N/mm2所以符合要求!3.比滑磨功LfL衡量,最大车速为100公里每小时由动初速度至停车所完成的单位衬片面积的比滑磨功f车轮制动器个制动衬片的总摩擦面积为1600cm2得Lf<[Lf] 满足条件第四章:制动器主要零部件的结构设计与强度计算一、制动鼓制动鼓应具有非常好的刚性和大的热容量,制动时气温升不应超过极限值。