半导体物理习题及答案
- 格式:docx
- 大小:197.67 KB
- 文档页数:14
第一章习题1.设晶格常数为a的一维晶格,导带极小值附近能量Ec(k)和价带极大值附近能量EV(k)分别为:h2k2h2(k-k1)2h2k213h2k2Ec= +,EV(k)=-3m0m06m0m0m0为电子惯性质量,k1=(1)禁带宽度;(2)导带底电子有效质量;(3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化解:(1)导带:2 2k2 2(k-k1)由+=03m0m03k14d2Ec2 22 28 22=+=>03m0m03m0dk得:k=所以:在k=价带:dEV6 2k=-=0得k=0dkm0d2EV6 2又因为=-<0,所以k=0处,EV取极大值2m0dk2k123=0.64eV 因此:Eg=EC(k1)-EV(0)=412m02=2dECdk23m0 8πa,a=0.314nm。
试求: 3k处,Ec取极小值4 (2)m*nC=3k=k14(3)m*nV 2=2dEVdk2=-k=01m06(4)准动量的定义:p= k所以:∆p=( k)3k=k14 3-( k)k=0= k1-0=7.95⨯10-25N/s42. 晶格常数为0.25nm的一维晶格,当外加102V/m,107 V/m的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:f=qE=h(0-∆t1=-1.6⨯10∆k ∆k 得∆t= ∆t-qEπa)⨯10)=8.27⨯10-13s2-19=8.27⨯10-8s (0-∆t2=π-1.6⨯10-19⨯107第三章习题和答案100π 21. 计算能量在E=Ec到E=EC+ 之间单位体积中的量子态数。
*22mLn31*2V(2mng(E)=(E-EC)2解232πdZ=g(E)dEdZ 单位体积内的量子态数Z0=V22100π 100h Ec+Ec+32mnl8mnl1*2(2mn1V Z0=g(E)dE=⎰(E-EC)2dE23⎰VEC2π EC 23100h*2 =V(2mn2(E-E)Ec+8m*L2Cn32π2 3Ecπ =10003L32. 试证明实际硅、锗中导带底附近状态密度公式为式(3-6)。
半导体物理试题及答案一、单项选择题(每题2分,共20分)1. 半导体材料的导电能力介于导体和绝缘体之间,这是由于()。
A. 半导体的原子结构B. 半导体的电子结构C. 半导体的能带结构D. 半导体的晶格结构答案:C2. 在半导体中,电子从价带跃迁到导带需要()。
A. 吸收能量B. 释放能量C. 吸收光子D. 释放光子答案:A3. PN结形成的基础是()。
A. 杂质掺杂B. 温度变化C. 压力变化D. 磁场变化答案:A4. 半导体器件中的载流子主要是指()。
A. 电子B. 空穴C. 电子和空穴D. 光子答案:C5. 半导体的掺杂浓度越高,其导电性能()。
A. 越好B. 越差C. 不变D. 先变好再变差答案:A二、填空题(每题2分,共20分)1. 半导体的导电性能可以通过改变其________来调节。
答案:掺杂浓度2. 半导体的能带结构中,价带和导带之间的能量差称为________。
答案:带隙3. 在半导体中,电子和空穴的复合现象称为________。
答案:复合4. 半导体器件中的二极管具有单向导电性,其导通方向是从________到________。
答案:阳极阴极5. 半导体的PN结在外加正向电压时,其内部电场会________。
答案:减弱三、简答题(每题10分,共30分)1. 简述半导体的掺杂原理。
答案:半导体的掺杂原理是指通过向半导体材料中掺入少量的杂质元素,改变其电子结构,从而调节其导电性能。
掺入的杂质元素可以是施主杂质(如磷、砷等),它们会向半导体中引入额外的电子,形成N型半导体;也可以是受主杂质(如硼、铝等),它们会在半导体中形成空穴,形成P型半导体。
2. 描述PN结的工作原理。
答案:PN结是由P型半导体和N型半导体结合而成的结构。
在PN结中,P型半导体的空穴会向N型半导体扩散,而N型半导体的电子会向P型半导体扩散。
由于扩散作用,会在PN结的交界面形成一个内建电场,该电场会阻止更多的载流子通过PN结。
半导体物理习题答案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】第一章半导体中的电子状态例1.证明:对于能带中的电子,K状态和-K状态的电子速度大小相等,方向相反。
即:v(k)= -v(-k),并解释为什么无外场时,晶体总电流等于零。
解:K状态电子的速度为:(1)同理,-K状态电子的速度则为:(2)从一维情况容易看出:(3)同理有:(4)(5)将式(3)(4)(5)代入式(2)后得:(6)利用(1)式即得:v(-k)= -v(k)因为电子占据某个状态的几率只同该状态的能量有关,即:E(k)=E(-k)故电子占有k状态和-k状态的几率相同,且v(k)=-v(-k)故这两个状态上的电子电流相互抵消,晶体中总电流为零。
例2.已知一维晶体的电子能带可写成:式中,a为晶格常数。
试求:(2)能带底部和顶部电子的有效质量。
解:(1)由E(k)关系(1)(2)令得:当时,代入(2)得:对应E(k)的极小值。
当时,代入(2)得:对应E(k)的极大值。
根据上述结果,求得和即可求得能带宽度。
故:能带宽度(3)能带底部和顶部电子的有效质量:习题与思考题:1 什么叫本征激发温度越高,本征激发的载流子越多,为什么试定性说明之。
2 试定性说明Ge、Si的禁带宽度具有负温度系数的原因。
3 试指出空穴的主要特征。
4 简述Ge、Si和GaAs的能带结构的主要特征。
5 某一维晶体的电子能带为其中E0=3eV,晶格常数a=5×10-11m。
求:(2)能带底和能带顶的有效质量。
6原子中的电子和晶体中电子受势场作用情况以及运动情况有何不同原子中内层电子和外层电子参与共有化运动有何不同7晶体体积的大小对能级和能带有什么影响?8描述半导体中电子运动为什么要引入“有效质量”的概念?用电子的惯性质量描述能带中电子运动有何局限性?9 一般来说,对应于高能级的能带较宽,而禁带较窄,是否如此为什么10有效质量对能带的宽度有什么影响?有人说:“有效质量愈大,能量密度也愈大,因而能带愈窄。
第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E c =0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+0m 。
试求:为电子惯性质量,nm a ak 314.0,1==(1)禁带宽度;(2)导带底电子有效质量;(3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化解:(1)eVm k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC===sN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-== 所以:准动量的定义:2.晶格常数为0.25nm 的一维晶格,当外加102V/m,107V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:tk hqE f ∆∆==得qEk t -∆=∆ sat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππ补充题1分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图)Si 在(100),(110)和(111)面上的原子分布如图1所示:(a )(100)晶面(b )(110)晶面(c )(111)晶面补充题2一维晶体的电子能带可写为)2cos 81cos 87()22ka ka ma k E +-= (,式中a 为晶格常数,试求(1)布里渊区边界;(2)能带宽度;(3)电子在波矢k 状态时的速度;(4)能带底部电子的有效质量*n m ;(5)能带顶部空穴的有效质量*pm 解:(1)由0)(=dk k dE 得an k π=(n=0,±1,±2…)进一步分析an k π)12(+=,E(k)有极大值,214221422142822/1083.7342232212414111/1059.92422124142110/1078.6)1043.5(224141100cm atom a a a cm atom a a a cm atom a a ⨯==⨯+⨯+⨯⨯==⨯⨯+⨯+⨯=⨯==⨯+-):():():(222)ma k E MAX =(ank π2=时,E(k)有极小值所以布里渊区边界为an k π)12(+=(2)能带宽度为222)()ma k E k E MIN MAX =-((3)电子在波矢k 状态的速度)2sin 41(sin 1ka ka ma dk dE v -== (4)电子的有效质量)2cos 21(cos 222*ka ka mdkEd m n-== 能带底部an k π2=所以mm n 2*=(5)能带顶部an k π)12(+=,且**n p m m -=,所以能带顶部空穴的有效质量32*m m p =半导体物理第2章习题1.实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。
第1章 半导体中的电子状态1. 设晶格常数为a 的一维晶格,导带极小值附近能量()c E k 和价带极大值附近能量()v E k 分别为2222100()()3c h k k h k E k m m -=+,22221003()6v h k h k E k m m =-0m 为电子惯性质量,112k a =, 0.314a =nm 。
试求:1) 禁带宽度;2) 导带底电子有效质量; 3) 价带顶电子有效质量;4) 价带顶电子跃迁到导带底时准动量的变化。
解:1) 禁带宽度g E ,根据22100()2()202c dE k h k k h k dk m m -=+=,可求出对应导带能量极小值min E 的k 值:min 134k k =, 由题目中()c E k 式可得:min 12min 3104()4c k k k h E E k k m ====; 根据20()60v dE k h k dk m =-=,可以看出,对应价带能量极大值max E 的k 值为:k max = 0;可得max 221max 00()6v k k h k E E k m ====,所以2221min max 2001248g h k h E E E m m a=-== 2) 导带底电子有效质量m n由于2222200022833c d E h h h dk m m m =+=,所以202238nc m h md E dk== 3) 价带顶电子有效质量vn m由于22206v d E h dk m =-,所以20226v nv m h m d E dk ==- 4) 准动量的改变量min max 133()48hh k h k k hk a∆=-==2. 晶格常数为 nm 的一维晶格,当外加102V/m 、107V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:设电场强度为E ,电子受到的力f 为dkf hqE dt==(E 取绝对值),可得h dt dk qE =, 所以12012ta h h t dt dk qE qE a===⎰⎰,代入数据得: 34619106.62108.310()1.6102(2.510)t s E E----⨯⨯==⨯⨯⨯⨯⨯ 当E = 102V/m 时,88.310t s -=⨯;当E = 107V/m 时,138.310t s -=⨯。
半导体物理课后习题答案(精)第一章习题1.设晶格常数为a的一维晶格,导带极小值附近能量Ec(k)和价带极大值附近能量EV(k)分别为:h2k2h2(k-k1)2h2k213h2k2Ec= +,EV(k)=-3m0m06m0m0m0为电子惯性质量,k1=(1)禁带宽度;(2)导带底电子有效质量;(3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化解:(1)导带:2 2k22(k-k1)由+=03m0m03k14d2Ec2 22 28 22=+=>03m0m03m0dk得:k=所以:在k=价带:dEV6 2k=-=0得k=0dkm0d2EV6 2又因为=-<0,所以k=0处,EV取极大值2m0dk2k123=0.64eV 因此:Eg=EC(k1)-EV(0)=412m02=2dECdk23m0 8πa,a=0.314nm。
试求: 3k处,Ec取极小值4 (2)m*nC=3k=k14 (3)m*nV 2=2dEVdk2=-k=01m06(4)准动量的定义:p= k所以:∆p=( k)3k=k14 3-( k)k=0= k1-0=7.95⨯10-25N/s42. 晶格常数为0.25nm的一维晶格,当外加102V/m,107 V/m的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:f=qE=h(0-∆t1=-1.6⨯10∆k ∆k 得∆t= ∆t-qEπa)⨯10)=8.27⨯10-13s2-19=8.27⨯10-8s (0-∆t2=π-1.6⨯10-19⨯107第三章习题和答案100π 21. 计算能量在E=Ec到E=EC+ 之间单位体积中的量子态数。
*22mLn31*2V(2mng(E)=(E-EC)2解 232πdZ=g(E)dEdZ 单位体积内的量子态数Z0=V22100π 100h Ec+Ec+32mnl8mnl1*2(2mn1VZ0=g(E)dE=⎰(E-EC)2dE23⎰VEC2π EC 23100h*2 =V(2mn2(E-E)Ec+8m*L2 Cn32π2 3Ecπ =10003L32. 试证明实际硅、锗中导带底附近状态密度公式为式(3-6)。
半导体物理参考习题和解答第一章1.原子中的电子和晶体中电子受势场作用情况以及运动情况有何不同, 原子中内层电子和外层电子参与共有化运动有何不同。
答:原子中的电子是在原子核与电子库伦相互作用势的束缚作用下以电子云的形式存在,没有一个固定的轨道;而晶体中的电子是在整个晶体内运动的共有化电子,在晶体周期性势场中运动。
当原子互相靠近结成固体时,各个原子的内层电子仍然组成围绕各原子核的封闭壳层,和孤立原子一样;然而,外层价电子则参与原子间的相互作用,应该把它们看成是属于整个固体的一种新的运动状态。
组成晶体原子的外层电子共有化运动较强,其行为与自由电子相似,称为准自由电子,而内层电子共有化运动较弱,其行为与孤立原子的电子相似。
2.描述半导体中电子运动为什么要引入"有效质量"的概念, 用电子的惯性质量描述能带中电子运动有何局限性。
答:引进有效质量的意义在于它概括了半导体内部势场的作用,使得在解决半导体中电子在外力作用下的运动规律时,可以不涉及半导体内部势场的作用。
惯性质量描述的是真空中的自由电子质量,而不能描述能带中不自由电子的运动,通常在晶体周期性势场作用下的电子惯性运动,成为有效质量3.一般来说, 对应于高能级的能带较宽,而禁带较窄,是否如此,为什么?答:不是,能级的宽窄取决于能带的疏密程度,能级越高能带越密,也就是越窄;而禁带的宽窄取决于掺杂的浓度,掺杂浓度高,禁带就会变窄,掺杂浓度低,禁带就比较宽。
4.有效质量对能带的宽度有什么影响,有人说:"有效质量愈大,能量密度也愈大,因而能带愈窄.是否如此,为什么?答:有效质量与能量函数对于K的二次微商成反比,对宽窄不同的各个能带,1(k 随k的变化情况不同,能带越窄,二次微商越小,有效质量越大,内层电子的能带窄,有效质量大;外层电子的能带宽,有效质量小。
5.简述有效质量与能带结构的关系;答:能带越窄,有效质量越大,能带越宽,有效质量越小。
半导体物理试题库及答案一、单项选择题(每题2分,共20分)1. 在半导体中,电子从价带跃迁到导带所需能量的最小值称为:A. 禁带宽度B. 费米能级C. 载流子浓度D. 电子亲和能答案:A2. 下列哪种半导体材料的禁带宽度大于硅?A. 锗B. 砷化镓C. 硅D. 碳化硅答案:D3. PN结在正向偏置时,其导电性能主要取决于:A. 电子B. 空穴C. 杂质D. 复合答案:B4. 半导体器件中,二极管的导通电压通常为:A. 0.2VB. 0.7VC. 1.5VD. 3.3V答案:B5. 在半导体物理学中,霍尔效应可以用来测量:A. 载流子浓度B. 载流子迁移率C. 载流子类型D. 所有以上答案:D二、多项选择题(每题3分,共15分)1. 下列哪些因素会影响半导体的载流子浓度?(多选)A. 温度B. 光照C. 杂质浓度D. 材料类型答案:ABCD2. 半导体器件的能带结构包括:A. 价带B. 导带C. 禁带D. 费米能级答案:ABC3. 下列哪些是半导体材料的特性?(多选)A. 导电性介于导体和绝缘体之间B. 导电性随温度升高而增加C. 导电性随光照强度增加而增加D. 导电性随杂质浓度增加而增加答案:ABCD三、填空题(每空1分,共20分)1. 半导体材料的导电性可以通过掺杂来改变,其中掺入____类型的杂质可以增加载流子浓度。
答案:施主2. 在PN结中,当外加电压的方向与PN结内电场方向相反时,称为______偏置。
答案:反向3. 半导体材料的导电性随温度升高而______。
答案:增加4. 半导体器件的能带结构中,价带和导带之间的区域称为______。
答案:禁带5. 霍尔效应测量中,当载流子受到垂直于电流方向的磁场作用时,会在垂直于电流和磁场的方向上产生______。
答案:霍尔电压四、简答题(每题5分,共10分)1. 简述半导体材料的导电机制。
答案:半导体材料的导电机制主要涉及价带中的电子获得足够能量跃迁到导带,从而成为自由电子,同时在价带中留下空穴。
第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E c =0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。
试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2) 导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)eV m k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC===sN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-== 所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:t k hqE f ∆∆== 得qEk t -∆=∆ sat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππ补充题1分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图)Si 在(100),(110)和(111)面上的原子分布如图1所示:(a )(100)晶面 (b )(110)晶面(c )(111)晶面补充题2一维晶体的电子能带可写为)2cos 81cos 87()22ka ka ma k E +-= (, 式中a 为 晶格常数,试求(1)布里渊区边界; (2)能带宽度;(3)电子在波矢k 状态时的速度;(4)能带底部电子的有效质量*n m ;(5)能带顶部空穴的有效质量*p m解:(1)由0)(=dk k dE 得 an k π= (n=0,±1,±2…) 进一步分析an k π)12(+= ,E (k )有极大值,214221422142822/1083.7342232212414111/1059.92422124142110/1078.6)1043.5(224141100cm atom a a a cm atom a a a cm atom a a ⨯==⨯+⨯+⨯⨯==⨯⨯+⨯+⨯=⨯==⨯+-):():():(222)mak E MAX =( ank π2=时,E (k )有极小值所以布里渊区边界为an k π)12(+=(2)能带宽度为222)()ma k E k E MIN MAX =-( (3)电子在波矢k 状态的速度)2sin 41(sin 1ka ka ma dk dE v -== (4)电子的有效质量)2cos 21(cos 222*ka ka mdkEd m n-== 能带底部 an k π2=所以m m n 2*= (5)能带顶部 an k π)12(+=, 且**n p m m -=,所以能带顶部空穴的有效质量32*mm p =半导体物理第2章习题1. 实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。
第一篇习题 半导体中的电子状态1-1、 什么叫本征激发?温度越高,本征激发的载流子越多,为什么?试定性说明之。
1-2、 试定性说明Ge 、Si 的禁带宽度具有负温度系数的原因。
1-3、 试指出空穴的主要特征。
1-4、简述Ge 、Si 和GaAS 的能带结构的主要特征。
1-5、某一维晶体的电子能带为[])sin(3.0)cos(1.01)(0ka ka E k E --=其中E 0=3eV ,晶格常数a=5х10-11m 。
求:(1) 能带宽度;(2) 能带底和能带顶的有效质量。
第一篇题解 半导体中的电子状态 刘诺 编1-1、 解:在一定温度下,价带电子获得足够的能量(≥E g )被激发到导带成为导电电子的过程就是本征激发。
其结果是在半导体中出现成对的电子-空穴对。
如果温度升高,则禁带宽度变窄,跃迁所需的能量变小,将会有更多的电子被激发到导带中。
1-2、 解:电子的共有化运动导致孤立原子的能级形成能带,即允带和禁带。
温度升高,则电子的共有化运动加剧,导致允带进一步分裂、变宽;允带变宽,则导致允带与允带之间的禁带相对变窄。
反之,温度降低,将导致禁带变宽。
因此,Ge、Si的禁带宽度具有负温度系数。
1-3、解:空穴是未被电子占据的空量子态,被用来描述半满带中的大量电子的集体运动状态,是准粒子。
主要特征如下:A、荷正电:+q;B、空穴浓度表示为p(电子浓度表示为n);C、E P=-E nD、m P*=-m n*。
1-4、解:(1)Ge、Si:a)Eg (Si:0K) = 1.21eV;Eg (Ge:0K) = 1.170eV;b)间接能隙结构c)禁带宽度E g随温度增加而减小;(2)GaAs:a)E g(300K)第二篇习题-半导体中的杂质和缺陷能级刘诺编2-1、什么叫浅能级杂质?它们电离后有何特点?2-2、什么叫施主?什么叫施主电离?施主电离前后有何特征?试举例说明之,并用能带图表征出n型半导体。
2-3、什么叫受主?什么叫受主电离?受主电离前后有何特征?试举例说明之,并用能带图表征出p型半导体。
1-1.(P 32)设晶格常数为a 的一维晶格,导带极小值附近能量E c (k )和价带极大值附近能量E v (k )分别为:E c (k)=0223m k h +022)1(m k k h -和E v (k)= 0226m k h -0223m k h ; m 0为电子惯性质量,k 1=1/2a ;a =0.314nm 。
试求:①禁带宽度;②导带底电子有效质量;③价带顶电子有效质量;④价带顶电子跃迁到导带底时准动量的变化。
[解] ①禁带宽度Eg 根据dk k dEc )(=0232m k h +012)(2m k k h -=0;可求出对应导带能量极小值E min 的k 值: k min =143k , 由题中E C 式可得:E min =E C (K)|k=k min =2104k m h ; 由题中E V 式可看出,对应价带能量极大值Emax 的k 值为:k max =0;并且E min =E V (k)|k=k max =02126m k h ;∴Eg =E min -E max =021212m k h =20248am h =112828227106.1)1014.3(101.948)1062.6(----⨯⨯⨯⨯⨯⨯⨯=0.64eV ②导带底电子有效质量m n0202022382322m h m h m h dkE d C =+=;∴ m n =022283/m dk E d h C = ③价带顶电子有效质量m ’02226m h dk E d V -=,∴0222'61/m dk E d h m V n -== ④准动量的改变量h △k =h (k min -k max )= ah k h 83431=1-2.(P 33)晶格常数为0.25nm 的一维晶格,当外加102V/m ,107V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
[解] 设电场强度为E ,∵F =h dt dk =q E (取绝对值) ∴dt =qEh dk∴t=⎰tdt 0=⎰a qEh 210dk =a qE h 21 代入数据得: t =E⨯⨯⨯⨯⨯⨯--1019-34105.2106.121062.6=E 6103.8-⨯(s ) 当E =102 V/m 时,t =8.3×10-8(s );E =107V/m 时,t =8.3×10-13(s )。
半导体物理学试题及答案半导体物理学试题及答案(一) 一、选择题1、如果半导体中电子浓度等于空穴浓度,则该半导体以( A )导电为主;如果半导体中电子浓度大于空穴浓度,则该半导体以( E )导电为主;如果半导体中电子浓度小于空穴浓度,则该半导体以( C )导电为主。
A、本征B、受主C、空穴D、施主E、电子2、受主杂质电离后向半导体提供( B ),施主杂质电离后向半导体提供( C ),本征激发向半导体提供( A )。
A、电子和空穴B、空穴C、电子3、电子是带( B )电的( E );空穴是带( A )电的( D )粒子。
A、正B、负C、零D、准粒子E、粒子4、当Au掺入Si中时,它是( B )能级,在半导体中起的是( D )的作用;当B掺入Si中时,它是( C )能级,在半导体中起的是( A )的作用。
A、受主B、深C、浅D、复合中心E、陷阱5、 MIS结构发生多子积累时,表面的导电类型与体材料的类型( A )。
A、相同B、不同C、无关6、杂质半导体中的载流子输运过程的散射机构中,当温度升高时,电离杂质散射的概率和晶格振动声子的散射概率的变化分别是( B )。
A、变大,变小 ;B、变小,变大;C、变小,变小;D、变大,变大。
7、砷有效的陷阱中心位置(B )A、靠近禁带中央B、靠近费米能级8、在热力学温度零度时,能量比EF小的量子态被电子占据的概率为( D ),当温度大于热力学温度零度时,能量比EF小的量子态被电子占据的概率为( A )。
A、大于1/2B、小于1/2C、等于1/2D、等于1E、等于09、如图所示的P型半导体MIS结构的C-V特性图中,AB段代表( A),CD段代表( B )。
A、多子积累B、多子耗尽C、少子反型D、平带状态10、金属和半导体接触分为:( B )。
A、整流的肖特基接触和整流的欧姆接触B、整流的肖特基接触和非整流的欧姆接触C、非整流的肖特基接触和整流的欧姆接触D、非整流的肖特基接触和非整流的欧姆接触11、一块半导体材料,光照在材料中会产生非平衡载流子,若光照忽然停止t??后,其中非平衡载流子将衰减为原来的( A )。
半导体物理学试题及答案半导体物理学试题及答案半导体物理学试题及答案(一) 一、选择题1、如果半导体中电子浓度等于空穴浓度,则该半导体以( A )导电为主;如果半导体中电子浓度大于空穴浓度,则该半导体以( E )导电为主;如果半导体中电子浓度小于空穴浓度,则该半导体以( C )导电为主。
A、本征B、受主C、空穴D、施主E、电子2、受主杂质电离后向半导体提供( B ),施主杂质电离后向半导体提供( C ),本征激发向半导体提供( A )。
A、电子和空穴B、空穴C、电子3、电子是带( B )电的( E );空穴是带( A )电的( D )粒子。
A、正B、负C、零D、准粒子E、粒子4、当Au掺入Si中时,它是( B )能级,在半导体中起的是( D )的作用;当B掺入Si中时,它是( C )能级,在半导体中起的是( A )的作用。
A、受主B、深C、浅D、复合中心E、陷阱5、MIS结构发生多子积累时,表面的导电类型与体材料的类型( A )。
A、相同B、不同C、无关6、杂质半导体中的载流子输运过程的散射机构中,当温度升高时,电离杂质散射的概率和晶格振动声子的散射概率的变化分别是( B )。
A、变大,变小 ;B、变小,变大;C、变小,变小;D、变大,变大。
7、砷有效的陷阱中心位置(B )A、靠近禁带中央B、靠近费米能级8、在热力学温度零度时,能量比EF小的量子态被电子占据的概率为( D ),当温度大于热力学温度零度时,能量比EF小的量子态被电子占据的概率为( A )。
A、大于1/2B、小于1/2C、等于1/2D、等于1E、等于09、如图所示的P型半导体MIS结构的C-V特性图中,AB段代表( A),CD段代表( B )。
A、多子积累B、多子耗尽C、少子反型D、平带状态10、金属和半导体接触分为:( B )。
A、整流的肖特基接触和整流的欧姆接触B、整流的肖特基接触和非整流的欧姆接触C、非整流的肖特基接触和整流的欧姆接触D、非整流的肖特基接触和非整流的欧姆接触11、一块半导体材料,光照在材料中会产生非平衡载流子,若光照忽然停止t??后,其中非平衡载流子将衰减为原来的( A )。
半导体物理学试题及答案半导体物理学试题及答案(一) 一、选择题1、如果半导体中电子浓度等于空穴浓度,则该半导体以( A )导电为主;如果半导体中电子浓度大于空穴浓度,则该半导体以( E )导电为主;如果半导体中电子浓度小于空穴浓度,则该半导体以( C )导电为主。
A、本征B、受主C、空穴D、施主E、电子2、受主杂质电离后向半导体提供( B ),施主杂质电离后向半导体提供( C ),本征激发向半导体提供( A )。
A、电子和空穴B、空穴C、电子3、电子是带( B )电的( E );空穴是带( A )电的( D )粒子。
A、正B、负C、零D、准粒子E、粒子4、当Au掺入Si中时,它是( B )能级,在半导体中起的是( D )的作用;当B掺入Si中时,它是( C )能级,在半导体中起的是( A )的作用。
A、受主B、深C、浅D、复合中心E、陷阱5、 MIS结构发生多子积累时,表面的导电类型与体材料的类型( A )。
A、相同B、不同C、无关6、杂质半导体中的载流子输运过程的散射机构中,当温度升高时,电离杂质散射的概率和晶格振动声子的散射概率的变化分别是( B )。
A、变大,变小 ;B、变小,变大;C、变小,变小;D、变大,变大。
7、砷有效的陷阱中心位置(B )A、靠近禁带中央B、靠近费米能级8、在热力学温度零度时,能量比EF小的量子态被电子占据的概率为( D ),当温度大于热力学温度零度时,能量比EF小的量子态被电子占据的概率为( A )。
A、大于1/2B、小于1/2C、等于1/2D、等于1E、等于09、如图所示的P型半导体MIS结构的C-V特性图中,AB段代表( A),CD段代表( B )。
A、多子积累B、多子耗尽C、少子反型D、平带状态10、金属和半导体接触分为:( B )。
A、整流的肖特基接触和整流的欧姆接触B、整流的肖特基接触和非整流的欧姆接触C、非整流的肖特基接触和整流的欧姆接触D、非整流的肖特基接触和非整流的欧姆接触11、一块半导体材料,光照在材料中会产生非平衡载流子,若光照忽然停止t??后,其中非平衡载流子将衰减为原来的( A )。
半导体物理习题解答(河北大学电子信息工程学院 席砺莼)1-1.(P 32)设晶格常数为a 的一维晶格,导带极小值附近能量E c (k )和价带极大值附近能量E v (k )分别为:E c (k)=0223m k h +022)1(m k k h -和E v (k)= 0226m k h -0223m k h ;m 0为电子惯性质量,k 1=1/2a ;a =0.314nm 。
试求:①禁带宽度;②导带底电子有效质量; ③价带顶电子有效质量;④价带顶电子跃迁到导带底时准动量的变化。
[解] ①禁带宽度Eg根据dk k dEc )(=0232m k h +012)(2m k k h -=0;可求出对应导带能量极小值E min 的k 值:k min =143k , 由题中E C 式可得:E min =E C (K)|k=k min =2104k m h ; 由题中E V 式可看出,对应价带能量极大值Emax 的k 值为:k max =0;并且E min =E V (k)|k=k max =02126m k h ;∴Eg =E min -E max =021212m k h =20248a m h =112828227106.1)1014.3(101.948)1062.6(----⨯⨯⨯⨯⨯⨯⨯=0.64eV ②导带底电子有效质量m n0202022382322m h m h m h dkE d C =+=;∴ m n =022283/m dk E d h C= ③价带顶电子有效质量m ’02226m h dkE d V -=,∴0222'61/m dk E d h m Vn -== ④准动量的改变量h △k =h (k min -k max )= ahk h 83431=[毕]1-2.(P 33)晶格常数为0.25nm 的一维晶格,当外加102V/m ,107V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
第一章习题1.设晶格常数为a的一维晶格,导带极小值附近能量Ec(k)和价带极大值附近能量EV(k)分别为:h2k2h2(k-k1)2h2k213h2k2Ec= +,EV(k)=-3m0m06m0m0m0为电子惯性质量,k1=〔1〕禁带宽度;〔2〕导带底电子有效质量;〔3〕价带顶电子有效质量;〔4〕价带顶电子跃迁到导带底时准动量的变化解:〔1〕导带:2 2k2 2(k-k1)由+=03m0m03k14d2Ec2 22 28 22=+=>03m0m03m0dk得:k=所以:在k=价带:dEV6 2k=-=0得k=0dkm0d2EV6 2又因为=-<0,所以k=0处,EV取极大值2m0dk2k123=0.64eV 因此:Eg=EC(k1)-EV(0)=412m02=2dECdk23m0 8πa,a=0.314nm。
试求: 3k处,Ec取极小值4 (2)m*nC=3k=k14(3)m*nV 2=2dEVdk2=-k=01m06(4)准动量的定义:p= k所以:∆p=( k)3k=k14 3-( k)k=0= k1-0=7.95⨯10-25N/s42. 晶格常数为0.25nm的一维晶格,当外加102V/m,107 V/m的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:f=qE=h(0-∆t1=-1.6⨯10∆k ∆k 得∆t= ∆t-qEπa)⨯10)=8.27⨯10-13s2-19=8.27⨯10-8s (0-∆t2=π-1.6⨯10-19⨯107第三章习题和答案100π 21. 计算能量在E=Ec到E=EC+ 之间单位体积中的量子态数。
*22mLn31*2V〔2mng(E)=(E-EC)2解232πdZ=g(E)dEdZ 单位体积内的量子态数Z0=V22100π 100h Ec+Ec+32mnl8mnl1*2〔2mn1V Z0=g(E)dE=⎰(E-EC)2dE23⎰VEC2π EC 23100h*2 =V〔2mn2(E-E)Ec+8m*L2Cn32π2 3Ecπ =10003L32. 试证明实际硅、锗中导带底附近状态密度公式为式〔3-6〕。
半导体物理习题及答案 Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#复习思考题与自测题1.原子中的电子和晶体中电子受势场作用情况以及运动情况有何不同, 原子中内层电子和外层电子参与共有化运动有何不同。
答:原子中的电子是在原子核与电子库伦相互作用势的束缚作用下以电子云的形式存在,没有一个固定的轨道;而晶体中的电子是在整个晶体内运动的共有化电子,在晶体周期性势场中运动。
当原子互相靠近结成固体时,各个原子的内层电子仍然组成围绕各原子核的封闭壳层,和孤立原子一样;然而,外层价电子则参与原子间的相互作用,应该把它们看成是属于整个固体的一种新的运动状态。
组成晶体原子的外层电子共有化运动较强,其行为与自由电子相似,称为准自由电子,而内层电子共有化运动较弱,其行为与孤立原子的电子相似。
2.描述半导体中电子运动为什么要引入"有效质量"的概念, 用电子的惯性质量描述能带中电子运动有何局限性。
答:引进有效质量的意义在于它概括了半导体内部势场的作用,使得在解决半导体中电子在外力作用下的运动规律时,可以不涉及半导体内部势场的作用。
惯性质量描述的是真空中的自由电子质量,而不能描述能带中不自由电子的运动,通常在晶体周期性势场作用下的电子惯性运动,成为有效质量3.一般来说, 对应于高能级的能带较宽,而禁带较窄,是否如此,为什么答:不是,能级的宽窄取决于能带的疏密程度,能级越高能带越密,也就是越窄;而禁带的宽窄取决于掺杂的浓度,掺杂浓度高,禁带就会变窄,掺杂浓度低,禁带就比较宽。
4.有效质量对能带的宽度有什么影响,有人说:"有效质量愈大,能量密度也愈大,因而能带愈窄.是否如此,为什么答:有效质量与能量函数对于K的二次微商成反比,对宽窄不同的各个能带,1(k)随k的变化情况不同,能带越窄,二次微商越小,有效质量越大,内层电子的能带窄,有效质量大;外层电子的能带宽,有效质量小。
5.简述有效质量与能带结构的关系;答:能带越窄,有效质量越大,能带越宽,有效质量越小。
6.从能带底到能带顶,晶体中电子的有效质量将如何变化外场对电子的作用效果有什么不同;答:在能带底附近,电子的有效质量是正值,在能带顶附近,电子的有效质量是负值。
在外电F作用下,电子的波失K不断改变,dkf hdt,其变化率与外力成正比,因为电子的速度与k有关,既然k状态不断变化,则电子的速度必然不断变化。
7.以硅的本征激发为例,说明半导体能带图的物理意义及其与硅晶格结构的联系,为什么电子从其价键上挣脱出来所需的最小能量就是半导体的禁带宽度答:沿不同的晶向,能量带隙不一样。
因为电子要摆脱束缚就能从价带跃迁到导带,这个时候的能量就是最小能量,也就是禁带宽度。
2.为什么半导体满带中的少量空状态可以用具有正电荷和一定质量的空穴来描述答:空穴是一个假想带正电的粒子,在外加电场中,空穴在价带中的跃迁类比当水池中气泡从水池底部上升时,气泡上升相当于同体积的水随气泡的上升而下降。
把气泡比作空穴,下降的水比作电子,因为在出现空穴的价带中,能量较低的电子经激发可以填充空穴,而填充了空穴的电子又留下了一个空穴。
因此,空穴在电场中运动,实质是价带中多电子系统在电场中运动的另一种描述。
因为人们发现,描述气泡上升比描述因气泡上升而水下降更为方便。
所以在半导体的价带中,人们的注意力集中于空穴而不是电子。
3.有两块硅单晶,其中一块的重量是另一块重量的二倍.这两块晶体价带中的能级数是否相等,彼此有何联系答:相等,没任何关系4.为什么极值附近的等能面是球面的半导体,当改变磁场方向时只能观察到一个共振吸收峰。
答:各向同性。
5.金刚石晶体结构和闪锌矿晶体结构的晶向对物理性质的影响。
6.典型半导体的带隙。
一般把禁带宽度等于或者大于的半导体材料归类为宽禁带半导体,主要包括金刚石,SiC,GaN,金刚石等。
26族禁带较宽,46族的比较小,如碲化铅,硒化铅(),35族的砷化镓()。
第二章1.说明杂质能级以及电离能的物理意义。
为什么受主、施主能级分别位于价带之上或导带之下,而且电离能的数值较小答:被杂质束缚的电子或空穴的能量状态称为杂质能级,电子脱离杂质的原子的束缚成为导电电子的过程成为杂质电离,使这个多余的价电子挣脱束缚成为导电电子所需要的能量成为杂质电离能。
杂质能级离价带或导带都很近,所以电离能数值小。
2.纯锗,硅中掺入III或Ⅴ族元素后,为什么使半导体电学性能有很大的改变杂质半导体(p型或n型)应用很广,但为什么我们很强调对半导体材料的提纯答:因为掺入III或Ⅴ族后,杂质产生了电离,使得到导带中得电子或价带中得空穴增多,增强了半导体的导电能力。
极微量的杂质和缺陷,能够对半导体材料的物理性质和化学性质产生决定性的影响,,当然,也严重影响着半导体器件的质量。
3.把不同种类的施主杂质掺入同一种半导体材料中,杂质的电离能和轨道半径是否不同把同一种杂质掺入到不同的半导体材料中(例如锗和硅),杂质的电离能和轨道半径又是否都相同答:不相同4.何谓深能级杂质,它们电离以后有什么特点答:杂质电离能大,施主能级远离导带底,受主能级远离价带顶。
特点:能够产生多次电离,每一次电离相应的有一个能级。
5.为什么金元素在锗或硅中电离后可以引入多个施主或受主能级答:因为金是深能级杂质,能够产生多次电离,每一次电离相应的有一个能级,因此,金在硅锗的禁带往往能引入若干个能级。
6.说明掺杂对半导体导电性能的影响。
答:在纯净的半导体中掺入杂质后,可以控制半导体的导电特性。
掺杂半导体又分为n型半导体和p型半导体。
例如,在常温情况下,本征Si中的电子浓度和空穴浓度均为╳1010cm-3。
当在Si中掺入╳1016cm-3后,半导体中的电子浓度将变为╳1016cm-3,而空穴浓度将近似为╳104cm-3。
半导体中的多数载流子是电子,而少数载流子是空穴。
7.说明半导体中浅能级杂质和深能级杂质的作用有何不同答:深能级杂质在半导体中起复合中心或陷阱的作用。
浅能级杂质在半导体中起施主或受主的作用8.什么叫杂质补偿,什么叫高度补偿的半导体,杂质补偿有何实际应用。
答:当半导体中既有施主又有受主时,施主和受主将先相互抵消,剩余的杂志最后电离,这就是杂质补偿,若施主电子刚好填充受主能级,虽然杂质很多,但不能向导带和价带提供电子和空穴,这种现象称为杂质的高度补偿。
利用杂质补偿效应,可以根据需要改变半导体中某个区域的导电类型,制造各种器件。
9.什么是半导体的共掺杂答:掺入两种或两种元素以上10.用氢原子模型计算杂质电离能第三章1.半导体处于怎样的状态才能叫处于热平衡状态,其物理意义如何载流子激发和载流子复合之间建立起动态平衡时称为热平衡状态,这时电子和空穴的浓度都保持一个稳定的数值,处在这中状态下的导电电子和空穴称为热平衡载流子。
2.什么是能量状态密度能带中能量E附近每单位能量间隔内的量子态数。
3.什么叫统计分布函数,费米分布和玻耳兹曼分布的函数形式有何区别在怎样的条件下前者可以过渡到后者,为什么半导体中载流子分布可以用玻耳兹曼分布描述统计分布函数描述的事热平衡状态下电子在允许的量子态如何分布的一个统计分布函数。
当E-EF>>kT时,前者可以过度到后者。
4.说明费米能级的物理意义,根据费米能级位置如何计算半导体中电子和空穴浓度,如何理解费米能级是掺杂类型和掺杂程度的标志。
费米能级的意义:当系统处于热平衡状态,也不对外界做功的情况下,系统增加一个电子所引起的系统自由能的变化,等于系统的化学能。
n型掺杂越高,电子浓度越高,EF就越高。
5.在半导体计算中,经常应用这个条件把电子从费米能级统计过渡到玻耳兹曼统计,试说明这种过渡的物理意义。
E-EF>>kT时,量子态为电子占据的概率很小,适合于波尔兹曼分布函数,泡利原理失去作用,两者统计结果变得一样了。
6.写出半导体的电中性方程,此方程在半导体中有何重要意义电子浓度等于空穴浓度。
意义:平衡状态下半导体体内是电中性的。
7.半导体本征载流子浓度的表达式及其费米能级载流子浓度:ni=n0p0=(NcNv)1/2exp(-Eg/2kT)费米能级:Ei=Ef=(Ec+Ev)/2+(3kT/4)*ln(mp/mn)8.若n型硅中掺入受主杂质,费米能级升高还是降低若温度升高当本征激发起作用时,费米能级在什么位置,为什么费米能级降低了。
费米能级在本征费米能级以上。
9.如何理解分布函数与状态密度的乘积再对能量积分即可求得电子浓度根据公式和常识,必然是这样。
10.为什么硅半导体器件比锗器件的工作温度高硅的禁带宽度比锗大,且在相同温度下,锗的本征激发强于硅,很容易就达到较高的本征载流子浓度,使器件失去性能。
11.当温度一定时,杂质半导体的费米能级主要由什么因素决定试把强n,弱n型半导体与强p,弱p半导体的费米能级与本征半导体的费米能级比较。
决定因素:掺杂浓度,掺杂能级,导带的电子有效态密度等。
费米能级比较:强n>弱n>本征>弱p>强p12.如果向半导体中重掺施主杂质,就你所知会出现一些什么效应费米能级深入到导带或者价带中13.半导体的简并化判据Ec-Ef<=0第四章1.试从经典物理和量子理论分别说明载流子受到散射的物理意义。
经典:电子在运动中和晶格或者杂质离子发生碰撞导致载流子速度的大小和方向发生了改变。
量子理论:电子波仔半导体传播时遭到了散射。
2.半导体的主要散射机制。
电离杂质散射;晶格振动散射,包括声子波和光学波散射;其他因素散射:等能谷散射,中性杂质散射,位错散射,合金散射,等。
3.比较并区别下述物理概念:电导迁移率,漂移迁移率和霍耳迁移率。
电导迁移率:漂移迁移率:载流子在电场作用下运动速度的快慢的量度,运动得越快,迁移率越大;运动得慢,迁移率小霍尔迁移率:Hall系数RH与电导率σ的乘积,即│RH│σ,具有迁移率的量纲,Hall迁移率μH实际上不一定等于载流子的电导迁移率μ, 因为载流子的速度分布会影响到电导迁移率4.什么是声子它对半导体材料的电导起什么作用声子是晶格振动的简正模能量量子,声子可以产生和消灭,有相互作用的声子数不守恒,声子动量的守恒律也不同于一般的粒子,并且声子不能脱离固体存在。
电子在半导体中传输时若发生晶格振动散射,则会发出或者吸收声子,使电子动量发生改变,从而影响到电导率。
5.平均自由程,平均自由时间,散射几率平均自由程:电子在受到两次散射之间所走过的平均距离;平均自由时间:电子在受到两次散射之间运动的平均时间;散射几率:用来描述散射的强弱,代表单位时间内一个载流子受到散射的次数。
6.几种散射机制同时存在,总的散射几率总散射概率等于多种散射概率之和。